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Harnessing imaging tools to guide immunotherapy trials: 
summary from the National Cancer Institute Cancer Imaging 
Steering Committee workshop
Lalitha K Shankar, Heiko Schöder, Elad Sharon, Jedd Wolchok, Michael V Knopp, Richard L Wahl, Benjamin M Ellingson, Nathan C Hall, 
Martin J Yaffe, Alexander J Towbin, Michael D Farwell, Daniel Pryma, Tina Young Poussaint, Chadwick L Wright, Lawrence Schwartz, 
Mukesh Harisinghani, Umar Mahmood, Anna M Wu, David Leung, Elisabeth G E de Vries, Ying Tang, Gillian Beach, Steven A Reeves

As the immuno-oncology field continues the rapid growth witnessed over the past decade, optimising patient 
outcomes requires an evolution in the current response-assessment guidelines for phase 2 and 3 immunotherapy 
clinical trials and clinical care. Additionally, investigational tools—including image analysis of standard-of-care scans 
(such as CT, magnetic resonance, and PET) with analytics, such as radiomics, functional magnetic resonance agents, 
and novel molecular-imaging PET agents—offer promising advancements for assessment of immunotherapy. To 
document current challenges and opportunities and identify next steps in immunotherapy diagnostic imaging, the 
National Cancer Institute Clinical Imaging Steering Committee convened a meeting with diverse representation 
among imaging experts and oncologists to generate a comprehensive review of the state of the field.

Background
The past decade has witnessed the success of immuno­
therapies in treating a range of cancers, primarily driven 
by immune checkpoint inhibitors and genetically 
engineered T cells (eg, chimeric antigen receptor [CAR] 
T cells). Immunotherapies include several other classes 
of agents, such as vaccines, cytokines, and antibodies, 
and their derivatives (eg, radioimmunotherapy, antibody–
drug conjugates, and bispecific antibodies).1 Currently, 
immune checkpoint inhibitors are the most widely 
used drugs in this class. It has been recognised that 
certain aspects of the radiological response patterns of 
immunotherapies are not adequately accounted for 
by conventional response criteria, such as response 
evaluation criteria in solid tumours (RECIST) and 
response assessment in neuro-oncology (RANO). To 
better guide drug development and patient care, modified 
criteria have been proposed2–7 and novel, complementary 
molecular imaging approaches are being developed to 
assess immunotherapy-induced changes in the tumour 
and its microenvironment that are more closely reflective 
of clinical outcomes.8,9

To provide a comprehensive review of the state of 
the field and offer guidance on next steps, the 
National Cancer Institute (NCI) Clinical Imaging 
Steering Committee convened a virtual meeting, entitled 
Harnessing Imaging Tools to Guide Immunotherapy 
Trials, on April 6, 2021. This meeting brought together 
imaging experts at the forefront of government and 
industry efforts to advance imaging in immunotherapy 
trials with the objectives of reviewing the utility of 
available diagnostic imaging tools (CT, magnetic 
resonance, F-fluorodeoxyglucose [FDG]-PET) and the 
current response-assessment guidelines for assessing 
immunotherapy, such as RECIST, immunotherapy 
RECIST (iRECIST), and immune RANO (iRANO) for 
predicting response in phase 2 and 3 immunotherapy 
clinical trials or clinical care; and assessing the role of 

investigational tools, including image analysis of 
standard-of-care scans, such as CT, magnetic resonance, 
and PET, by use of more advanced analytics, such as 
texture, volume, and radiomics, functional magnetic 
resonance agents, and novel molecular imaging PET 
agents. Particular attention was paid to imaging agents 
that can be integrated into multicentre phase 2 and 
phase 3 trials in US NCI National Clinical Trials 
Network10 and the NCI Community Oncology Research 
Program. This Policy Review highlights the landscape of 
different clinical imaging methods, including both 
standard-of-care and investigational approaches, and 
strategies and pathways for validating the novel imaging 
tools through either prospective trials or retrospective 
data analysis (table; figure; appendix pp 1–4).

Current clinical landscape and standard of care
The global landscape of immunotherapy oncology trials 
and NCI strategy
The immuno-oncology field has seen continued growth 
over the past several years with an increasing number of 
drugs in the development pipeline and in clinical trials, 
covering a wide range of target proteins (eg, LAG3, TIGIT, 
CTLA4, PD-L1, and PD-1).11 There are currently two CTLA4 
agents, seven PD-1 or PD-L1 agents, and one LAG3 agent 
that have received US Food and Drug Administration 
approval. There were almost 5000 immunotherapy drugs 
in development in 2020, and over 6000 active clinical trials 
investigating immunotherapy agents. This trend is also 
reflected in the NCI Cancer Therapy Evaluation Program. 
There are currently 128 active immunotherapy trials 
across NCI trial networks with an accrual of 8000 patients, 
with most investigating anti-PD-1 and PD-1 or PD-L1 as 
single agents or in novel combinations.

Immunotherapy has shown remarkable activity in a 
variety of cancers, but only a minority of patients receive 
durable benefit.12,13 Strategies to optimise patient outcomes 
might rely on the use of biomarkers, including imaging 
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biomarkers, to elucidate the interaction between the 
tumour and the immune system at the cellular and 
molecular levels, thereby providing insight into rational 
combination therapies to overcome intrinsic or acquired 
resistance. Imaging biomarkers might be useful in the 
development of immunotherapy in a range of applications, 
providing prognostic, predictive, or pharmacodynamic 
signals, or for assessment of the response to therapy. The 
mechanism of action for immunotherapy often involves 
the activation of tumour-infiltrating lymphocytes and the 
interplay of immune cells within the tumour micro­
environment, which might manifest as enlargement of 
masses on CT and could be misinterpreted as tumour 
growth—also known as pseudoprogression (appendix p 5). 

New criteria (eg, iRECIST4 and immune-modified RECIST 
[imRECIST],5 among others) that attempt to capture the 
differing patterns of immunotherapy treatment responses 
have been developed but have not yet been fully validated, 
primarily due to the need for ongoing collection of patient-
level data to allow for proper validation of these new 
response criteria.

Despite tremendous progress in immunotherapy, 
more work remains. Collection of additional data and 
the provision of greater shared data access can allow 
for evaluations of competing criteria. Further evaluation 
of pseudoprogression might be improved with biopsy-
driven, translational research efforts to help better 
characterise these phenomena.
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See Online for appendix

Current Status Opportunities Challenges

Clinical landscape and 
standard-of-care

The growth of the immuno-oncology field has 
necessitated modified response-assessment criteria 
and further development of advanced and molecular 
imaging approaches to better guide patient care and 
drug development

Continue assessment of the imaging tools 
under investigation to assess immuno-
oncology-induced changes in the tumour 
and its microenvironment that could predict 
clinical outcomes

Need for the collection of additional data, the 
provision of greater access to these data, and 
additional clinical testing and validation; challenges 
in the establishment of clinical utility in predicting 
and monitoring clinical response to targeted 
immunotherapies, and the cost of and 
reimbursement for novel imaging agents; need for 
broader access to contrast agents and radiotracers

Evolving size-based metrics

mRECIST Consensus guidelines for use have been developed Provide more accurate response assessments Evaluation and validation is needed

Volume-based assessment Ongoing evaluation in prospective studies as a 
secondary or exploratory endpoint 

Utility of total tumour burden measurement 
and use in alternate endpoints in clinical 
trials

The identification of sites of disease for volumetric 
measurements and assessments of the accuracy of 
these measurements

mRANO Evaluation in prospective studies as a secondary or 
exploratory endpoint

mRANO outperforms RANO and iRANO in 
showing a correlation between radiographic 
progression-free survival and overall survival

Ongoing evaluation and validation of mRANO as 
primary endpoint 

Advanced imaging techniques

PERCIST and evolving FDG-based, 
semi-quantitative metrics

Evaluation and application ongoing Confirm accuracy in predicting response and 
identify true progression

Uneven success in assessment across disease sites

Radiomics Advances made in computing and feature 
classification have enabled the quantification of 
image features and correlation with molecular 
parameters and clinical outcomes

Continue assessing improvement in 
evaluating response, identifying 
pseudoprogression, and prognosis

A complex array of factors influences the 
reproducibility of imaging radiomic feature 
extraction

Ferumoxytol-enhanced MRI Early application as a functional contrast agent for 
MRI to identify tumours that have a high density of 
tumour-associated macrophages, determine 
treatment, and assess response

Confirm whether ferumoxytol is a biomarker 
for primary tumours given the colocalisation 
with tumour-associated macrophages in 
tumours

Testing is ongoing

Molecular imaging agents

⁶⁸Ga-NOTA-hGZP Agent in multicentre phase 1 trial Detect response to immune checkpoint 
inhibitors, tumour vaccines, and CAR T-cell-
mediated cell therapy for solid tumours

Testing is ongoing

⁸⁹Zr-Df-IAB22M2C Agent in multicentre phase 2 trial Image the distribution and abundance of 
CD8+ T cells in the tumour 
microenvironment

Confirmation of safety for repeat dosing and 
imaging, correlation of CD8 PET with CD8 
immunohistochemistry, and correlation with 
RECIST and outcomes

¹⁸F-BMS-986192 (anti-PD-L1), 
⁶⁸Ga-BMS-986192 (anti-PD-L1), 
⁸⁹Zr-nivolumab (anti-PD-1)

Early clinical and pre-clinical testing Evaluate as predictive biomarkers for 
treatment efficacy of PD-1 or PD-L1 blockade 
agents

Testing is ongoing

⁸⁹Zr-atezolizumab (anti-PD-L1), 
⁸⁹Zr-CX-072 (anti-PD-L1), 
⁸⁹Zr-pembrolizumab (anti-PD-1), 
⁸⁹ZED88082A (anti-CD8)

Studies ongoing: phase 2 study of ⁸⁹Zr-atezolizumab, 
first-in-human study of ⁸⁹Zr-CX-072, early clinical 
study of ⁸⁹Zr-pembrolizumab, phase 1/2 study of 
⁸⁹ZED88082A

Investigate results that show an uptake in 
tumour lesions correlated with treatment 
response and patient survival

Testing is ongoing

RECIST=response evaluation criteria in solid tumours. mRECIST=modified RECIST. RANO=response assessment for neuro-oncology. iRANO=immunotherapy RANO. mRANO=modified RANO. PERCIST=PET 
response criteria in solid tumours. FDG=F-fluorodeoxyglucose. CAR=chimeric antigen receptor. 

Table: Summary of the state of the field and innovations under development
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Clinical characterisation and response assessment in 
immunotherapy
The importance of rethinking imaging in the assess­
ment of response to immunotherapy was realised 
from the initial clinical trials of ipilimumab, a fully 
human monoclonal antibody that blocks the crucial 
immune checkpoint CTLA4.14 In these studies, trans­
ient T-cell infiltration in the tumour microenvironment 
could not be distinguished conclusively from true 
progression with standard imaging criteria or 
standard imaging technologies. Also complicating the 
assessment is the mechanism-based time delay in 
response to immunotherapy compared with chemo­
therapy or targeted therapy, on which the traditional 
response criteria are based. There are general response 
patterns across immune checkpoint inhibitors, such 
as PD-1 and PD-L1 blockade agents. These patterns 
of response to immunotherapy might not be 
adequately reflected in the conventional RECIST 
criteria, prompting alternative response-assessment 
metrics based on retrospective analysis of phase 2 
and phase 3 immunotherapy trial data. These metrics 
include immune-related response criteria (irRC),2 
immune-related RECIST (irRECIST),3 iRECIST,4 and 
imRECIST.5 In addition to modified response criteria, 
innovative molecular imaging agents are being 
developed, which could shed light on the possibility 
of pseudoprogression being caused by immune 
infiltration. One approach that is currently in the most 
advanced stage of development is a zirconium-89-
labelled CD8 minibody (⁸⁹Zr-Df-IAB22M2C) PET-
imaging agent, being studied in phase 2 clinical trials 
in patients being treated with immune checkpoint 
blockade agents (NCT03802123 and NCT05013099), 
which has been shown to accumulate in CD8+ T cells 
in tumour lesions.15,16

Evolving tumour metrics: from morphology to 
metabolism
Although consensus guidelines for multiple alternative 
response metrics (eg, irRC, irRECIST, iRECIST, and 
imRECIST) have been published, none have been 
adequately evaluated. Efforts are being made to assist 
with collecting additional data elements as proposed 
in iRECIST and ultimately to facilitate the evaluation 
of these modified response-assessment metrics. Other 
response-assessment criteria, such as PET response 
criteria in solid tumours (PERCIST) and RANO, are 
also undergoing similar evolution as immunotherapy 
becomes increasingly available for a broader range of 
cancer types.

Modified RECIST metrics: facilitating validation of 
consensus guidelines for response assessment of 
immunotherapy
Evaluation and eventual validation of these proposed 
consensus guidelines for the response assessment of 
immunotherapy require the imaging community to 
continue to work closely with the clinical oncology 
community in implementing these modified RECIST 
metrics in clinical trials. The primary issue for these 
modified criteria is to address the concept of new 
lesions, which could be part of the immune response 
not necessarily related to progressive disease. With the 
collection of data, how often this phenomenon occurs 
in conjunction with specific therapies and in specific 
solid tumours can be assessed. Likewise, iRECIST 
might be better able to differentiate stable and 
progressive disease categorically in a clinical trial and 
in an individual patient. In some cases, stable disease 
alone provides clinical benefit, so it is crucial to ensure 
that this information is optimally collected. It is 
imperative that essential data elements recommended 

Figure: Imaging tools under development
imRECIST=immune-modified response evaluation criteria in solid tumours. iRANO=immunotherapy response assessment for neuro-oncology. 
iRECIST=immunotherapy response evaluation criteria in solid tumours. irRC=immune-related response criteria. irRECIST=immune-related response evaluation 
criteria in solid tumours. mRANO=modified response assessment for neuro-oncology. mRECIST=modified response evaluation criteria in solid tumours. PERCIST=PET 
response criteria in solid tumours.
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in these guidelines are collected in a structured way not 
only to enable these modified RECIST metrics to be 
evaluated, but also to provide the ground truth for the 
development of new imaging tools and biomarkers for 
immunotherapy. To facilitate consistent data collection 
to maximise data usability in validating iRECIST, 
the NCI Imaging and Radiation Oncology Core has 
developed electronic forms that can be integrated into 
the workflow of CT and MRI in clinical care and clinical 
trials, making it easier for radiologists to document 
and collect data elements per iRECIST. These data-
recording tools are being made available to the imaging 
community. Other network groups also have similar 
initiatives to facilitate consistent data collection (appen­
dix pp 1–4). These studies are assessing the performance 
of both RECIST and iRECIST in predicting clinical 
outcomes, such as progression-free survival.

Modified RANO (mRANO)
The first radiographic response assessment specific to 
brain tumours was introduced in 1990 by Macdonald and 
colleagues17 by substantially improving upon the Levin 
criteria18 and the WHO oncology response criteria.19 
The Macdonald criteria were retained as the standard 
response-assessment criteria for over 20 years. The RANO 
criteria were developed in 201020 and are considered to 
be an extension of the Macdonald criteria. Notably, 
they include qualitative assessments of T2 and T2 fluid-
attenuated inversion recovery hyperintensity, although this 
hyperintensity is difficult to assess quantitatively. They also 
include other important improvements (eg, defining 
measurable vs non-measurable disease, specific inclusion 
or exclusion criteria, requirement for confirmatory scans, 
recommendations for the care of patients with equivocal 
imaging changes, and criteria for non-enhancing tumour 
progression. Similar to RECIST, the RANO response 
assessment is divided into four categories: complete 
response, partial response, stable disease, and progressive 
disease. iRANO criteria were proposed in 20156 to allow 
patients to better tolerate transient changes that might 
occur during initial treatment due to inflammation 
or pseudoprogression. A drawback of iRANO is that 
it includes an arbitrary 3-month window to confirm 
progressive disease, which causes excessive censoring in 
glioblastoma trials. An updated set of criteria based on new 
data, version 2.0, is in development. In 2017, an mRANO 
was developed7 to improve upon RANO and iRANO 
in assessing immunotherapy. In a prospective, phase 2 
trial of convection-enhanced delivery of an IL4R-targeted 
immunotoxin (MDNA55-05) in recurrent glioblastoma,21 
mRANO outperformed both RANO and iRANO in 
showing a correlation between radiographic progression-
free survival and overall survival. Currently, mRANO 
is being used in many trials as secondary and explora­
tory endpoints for immunotherapy and other thera­
peutics in glioblastoma (eg, NCT01564914, NCT01866449, 
NCT02441322, NCT02326441, NCT03296696, and 

NCT02871843). The conventional RANO is still considered 
the gold standard for response assessment in glioblastoma 
as the primary endpoint for regulatory purposes.

Advanced imaging techniques
Besides linear tumour size and metabolism-based 
metrics (eg, the immune variants of RECIST, PERCIST, 
and RANO), image analysis of standard-of-care scans, 
such as CT, MRI, and PET, with more advanced 
analytics, such as volume and radiomics, functional 
MRI agents, and metabolic changes, has also shown 
promise in improving the tumour response assessment 
for immunotherapy. 

PERCIST and FDG-PET or CT in guiding immunotherapy 
trials
FDG uptake is indicative of glucose utilisation and 
although elevated glucose utilisation is commonly seen 
in cancers,22 it is not specific to cancer.23,24 FDG-PET has 
been mostly used for imaging cancers (appendix p 6), 
but it has also been used to image inflammatory and 
infectious processes.23,24

Challenges exist for FDG-PET and CT in assessing the 
response to immune checkpoint inhibitors, especially 
early after treatment is initiated. Soon after treatment, an 
immune response in tumours can appear on FDG-PET 
scans as an increased uptake versus baseline signal due to 
the imaging of the immune and inflammatory infiltrate 
by lymphocytes and macrophages in the tumour 
microenvironment and, therefore, could be misinter­
preted as tumour progression (ie, pseudoprogression).4 
Delayed response to immune modulators also leaves a 
window of time for tumours to continue to grow before 
therapeutic effects dominate. FDG-PET has been useful 
in identifying various immunotherapy-related adverse 
events in organs such as the gastrointestinal and 
endocrine systems.25 Early identification and management 
can decrease the severity of such adverse events.

In addition, immune response in normal tissues can 
appear to suggest new tumour or tumour progression, 
which sometimes can be dramatic (eg, sarcoid-like 
reactions).26,27 Caution should be exercised when inter­
preting FDG-PET images, particularly in the period 
relatively soon after the initiation of immunotherapy 
(eg, days to months).

PERCIST was developed to provide a framework for 
assessing metabolic tumour response with FDG-PET.28 
It has been evaluated in patients treated with immune 
checkpoint inhibitors, with more success in patients 
with melanoma than in patients with lung cancer 
in predicting patient outcomes (appendix p 7).29–33 
It has also been applied with success in patients 
treated with other immunomodulators. For example, 
a PERCIST FDG-PET assessment at day 9 of anti-IGF1R 
antibody treatment predicted survival in sarcoma;34 
similarly FDG PERCIST-like criteria predicted response 
to ¹³¹I-anti-B1 (CD20) radioimmunotherapy treatment 
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of non-Hodgkin lymphoma,35 and response to CAR 
T-cell therapy.36

Given the possibility of new lesions developing or 
existing lesions showing increased FDG uptake during 
therapy, PERCIST can be misleading in the early stages 
(ie, weeks) of assessing immunotherapy response. 
Several modifications of PERCIST for patients under­
going immunotherapies have been proposed (eg, 
PET response criteria for immunotherapy, immune 
PERCIST, and immune-modified PERCIST 5),37 mainly 
addressing how the appearance of new lesions on PET 
should be classified. There are currently insufficient 
data to define one set of criteria as preferable to another. 
Regardless, despite the challenges, FDG-PET is a 
valuable tool in clinical studies of immune checkpoint 
inhibitors. It appears that pseudoprogression is 
common with CTLA4 blockade therapies and at early 
timepoint assessments after the initiation of treat­
ment.2,38 Assessment of progression with FDG-PET at 
3 months after therapy might reflect true progression 
more reliably than RECIST and FDG-PET imaging at 
earlier time points. Currently, it is uncertain how to 
best assess response or progression with FDG-PET at 
early timepoints after therapy and prospective studies 
could be informative. Some of the considerations 
regarding the interpretation of FDG-PET following 
immunotherapy have been reviewed and show the 
potential pitfalls in reading PET scans in patients 
treated with immunotherapy.37,39

Advanced analytics for CT images: radiomics
There is great potential for developing radiomic bio­
markers for immunotherapy trials by taking advantage 
of all the existing imaging data and clinical outcome 
data from completed clinical studies. Radiomics, which 
extracts quantitative features from medical images by 
use of data characterisation algorithms, has the potential 
to uncover disease characteristics that are difficult to 
identify by visual assessment. Although the concept of 
radiomics is not new, advances in computing and feature 
classification now enable quantification of image features 
and uncover the relationship of these features or their 
change over time with other molecular parameters or 
clinical outcomes. Because of the higher dimensions of 
data used to derive certain radiomic features, compared 
with what is typically used for conventional imaging 
assessment, radiomic feature analysis shows promise 
to improve the understanding of the disease and its 
progression with or without treatment. Of particular 
interest is its potential to address the challenges in 
evaluating response to immunotherapy. In a 2018 study, 
the CT radiomic signature of CD8+ cells predicted the 
immune phenotype of tumours and inferred clinical 
outcomes for patients with cancer who had been treated 
with anti-PD-1 or anti-PD-L1 immunotherapy.40 In 
patients with lung cancer, radiomic phenotypes derived 
from CT images were associated with underlying 

molecular pathways.41 Ongoing efforts to evaluate cohorts 
of patients from the Lung Cancer  Master Protocol are 
underway.42 In a cohort of patients with melanoma 
treated with pembrolizumab from two phase 3 trials, 
a composite radiomic feature outperformed RECIST in 
predicting overall survival;43 radiomic signatures also 
helped identify pseudoprogression in immunotherapy 
trials earlier than iRECIST. Before radiomic signatures 
can be used for clinical care or regulatory decision 
making for drug development, understanding factors 
that influence the reproducibility of imaging radiomic 
feature extraction is important. Several parameters 
were studied,44–46 and additional efforts might be needed 
to define and standardise imaging acquisition and 
reconstruction parameters to reduce variability of 
radiomic feature extraction. This standardisation could 
prove to be a challenge in clinical practice. The role 
and benefit of radiomics in this context, although 
promising, remains to be assessed and validated in large 
multicentre trials.

Novel MRI contrast agent: ferumoxytol-enhanced MRI
In addition to PET tracers, MRI could provide comple­
mentary information to improve response assessment 
of immunotherapy, and clinical trials are ongoing.47

Cancer and inflammation often coexist and share the 
same tissue-infiltrating cells (lymphocytes, macrophages, 
and mast cells),48 underscoring the role of inflammation 
in the tumour microenvironment. This relationship 
provides opportunities to image the inflammatory 
components of the cancer microenvironment. A high 
number of tumour-associated macrophages (TAMs) is 
associated with tumour progression and overall poor 
prognosis in cancers of the breast, prostate, lung, and 
pancreas.49,50 M2 macrophages are particularly important 
because they can promote progression and migration 
of tumour cells by secreting proangiogenic factors.51 
M2 TAMs can be detected by immunohistochemical 
staining of upregulated CD163. The proportion and 
amount of TAMs M1 and M2 can vary across patients 
and across tumours and might correlate with resistance 
to immune checkpoint blockade agents. New therapies 
that target these macrophages are entering into 
clinical practice. Whether combining these agents with 
immunotherapy agents can lead to more predictable and 
durable responses remains to be seen. To answer this 
question, developing the means to image intratumoural 
inflammation non-invasively to assess the contribution 
of TAM-targeted therapies to the overall response is 
important. One approach is to use ferumoxytol, an agent 
approved by the US Food and Drug Administration for 
treatment of iron deficiency anaemia, as a contrast agent 
for MRI to identify tumours that have a high density 
of TAMs to select patients for treatment with TAM-
modulating therapies and for monitoring response.52,53 
Images obtained early (ie, 0–15 h) after the intravenous 
administration of ferumoxytol largely reflect the vascular 
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distribution of this agent, whereas images obtained at 
later timepoints (ie, 1–10 days) largely report on its 
uptake by macrophages. Ferumoxytol-enhanced MRI 
improved the detection of metastatic lymph nodes54 and 
quantified inflammation at the target organ in type 1A 
diabetics with active insulitis.55 Ferumoxytol was found 
to colocalise with TAMs in tumours, suggesting it could 
potentially serve as a biomarker for primary tumours, 
such as in pancreatic cancer,56,57 as TAMs are one of 
the most abundant immune cell populations in the 
pancreatic tumour stroma.58 Ferumoxytol enhancement 
on MRI was also found to be correlated with TAM 
density in the tumours in paediatric and young adult 
patients with lymphoma and bone sarcoma.47

Molecular imaging agents in clinical development
One of the main challenges complicating response 
assessment of immunotherapy is pseudoprogression, 
which can be observed during immunotherapy on 
traditional imaging, such as CT and FDG-PET-CT. Novel 
imaging agents aiming to differentiate true tumour 
growth from changes in the tumour microenvironment 
might aid in assessing immunotherapy. Imaging can 
take a broad range of approaches in this regard, by 
interrogating immune cells directly (eg, CD3, CD8, and 
reporter genes for CAR T cells), immune modulators 
(eg, CTLA4, PD-1, and PD-L1), and immune cell activity 
(eg, granzyme B and nucleoside analogues). Some 
novel PET imaging agents that are currently in clinical 
development attempt to probe tumour microenvironment 
changes associated with immunotherapy, some of which 
we discuss in the following sections.

PET agent targeting granzyme B
Granzyme B is a serine protease that presents in the 
granules of T cells, including natural killer cells and 
cytotoxic T cells. When the T cells interact with tumour 
cells, granzyme B is released along with pore-forming 
protein perforin, allowing active granzyme B to enter 
tumour cells and mediate apoptosis. ⁶⁸Ga-NOTA-hGZP, 
a gallium-68-labelled peptide targeting extracellular 
granzyme B in the tumour microenvironment, is 
proposed to be able to detect response to immune 
checkpoint inhibitors, tumour vaccines, and CAR 
T-cell-mediated cell therapy for solid tumours.

Data from mouse models showed that ⁶⁸Ga-NOTA-
hGZP PET imaging correlates with histological granzyme 
B assessment in tumours; combination therapy of anti-
PD-1 plus anti-CTLA4 antibodies produced a higher PET 
signal intensity than anti-PD-1 monotherapy alone or 
vehicle alone. This graded response potentially allows 
rank ordering of efficacy early in a trial. It predicted 
responders and non-responders to checkpoint inhibitors 
before changes in CT tumour volume were present, 
allowing an early response assessment non-invasively.8

The agent is currently being investigated in a 
multicentre phase 1 trial of 20 patients with solid 

tumours or lymphoma treated with pembrolizumab 
(NCT04169321). In this trial, a single ⁶⁸Ga-NOTA-hGZP 
PET is performed between day 14 and day 42 (ie, before 
cycle two and through cycle three) and CT scan is 
performed at 6 months. Excisional biopsy and contrast-
enhanced CT scan at the time of imaging is optional. 
Three sites are recruiting and scanning patients. 
Preliminary analysis of images showed a favourable 
biodistribution profile and tracer accumulation at 
tumour sites.59

PET agent targeting CD8+ T cells
The PET agent ⁸⁹Zr-Df-IAB22M2C (crefmirlimab) is 
designed to image the distribution and abundance 
of CD8+ T cells in the tumour microenvironment. 
It is composed of an engineered, fully humanised 
anti-CD8 minibody IAB22M2C with a high binding 
affinity to CD8+ cells, conjugated with desferoxamine 
and labelled with ⁸⁹Zr. In-vitro assessment of ⁸⁹Zr-Df-
IAB22M2C showed no effect on proliferation, depletion, 
or cytokine release in normal human T cells. In 
humanised mouse models, there was no effect on T-cell 
populations or cytokine release. The anti-CD8-minibody 
⁸⁹Zr-Df-IAB22M2C revealed a high sensitivity for 
detecting intratumoural CD8+ T-cell infiltrates in a 
mouse model.60

The first-in-human phase 1 study of ⁸⁹Zr-Df-
IAB22M2C in patients with cancer (NCT03107663) has 
been completed in patients with solid tumours eligible 
for, or already on, checkpoint inhibitor therapy.15,16 The 
agent was found to be safe and showed rapid clearance. 
Uptake was seen in T-cell-rich tissues, including spleen, 
bone marrow, and lymph nodes; no to low uptake was 
seen in normal organs, such as muscle, heart, brain, 
and lungs. Tumour uptake was variable (maximum 
standard unit value ranging from 0 to 20) and seen in 
ten (67%) of 15 patients. The minibody protein dose 
range with the most favourable distribution was 
0·5–1·5 mg, and the most favourable imaging time 
appeared to be 24 h, although tumours were seen as 
early as 1–2 h post injection.

These results were used to guide the design of the 
phase 2 study (NCT03802123) in patients with metastatic 
solid tumours who are initiating checkpoint inhibitor 
therapy (ipilimumab, nivolumab, or pembrolizumab as 
standard-of-care). ⁸⁹Zr-Df-IAB22M2C PET-CT imaging 
(1 milliCurie; 1·5 mg cold minibody; 24 h after injection), 
with biopsies conducted before treatment (eg, baseline) 
and 4–5 weeks after therapy initiation. The objectives are 
to investigate the safety of repeat dosing and imaging, 
the correlation of CD8 PET with CD8 immuno­
histochemistry, and the correlation with RECIST and 
outcome (appendix p 7). This is a multicentre, ongoing 
trial with ten sites currently active. Several pharmaceutical 
companies using CD8 immuno-PET in conjunction 
with ongoing therapy studies are starting trials soon. 
Infrastructure to support conducting phase 2 trials has 
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been established, including PET scanner validation and 
radiopharmaceutical manufacturing and supply.

Activated T cells can also be imaged with the PET 
radiotracer ¹⁸F-arabinofuranosyl guanine (¹⁸F-AraG).61,62 
Following cellular uptake and phosphorylation by 
mitochondrial deoxyguanosine kinase and, to a lesser 
degree, cytoplasmatic deoxycytidine kinase enzymes, 
¹⁸F-AraG becomes trapped inside the cell. Although its 
uptake is not cell-specific, activated CD8+ cells show the 
greatest increase in uptake compared with baseline 
measurements.62 Initial, small, phase 2 trials are ongoing 
in patients with lymphomas (NCT05096234) and solid 
tumours (NCT04260256), correlating the imaging signal 
with T-cell infiltrates in tumour biopsies and RECIST 
responses to treatment with CAR T cells and immune 
checkpoint inhibitors.

PET agents targeting PD-1 and PD-L1 
PET imaging agents targeting PD-1 or PD-L1 can 
non-invasively quantify their protein concentrations; 
therefore, they might serve as predictive biomarkers for 
treatment efficacy of PD-1 or PD-L1 blockade agents. An 
anti-PD-L1 adnectin, BMS-986192, labelled with ¹⁸F, 
was studied along with ⁸⁹Zr-nivolumab for PET imaging 
in a first-in-human phase 1 study in patients with 
melanoma or non-small-cell lung cancer treated with 
nivolumab (NCT03520634). Uptake of both agents 
in tumours quantified by PET correlated with PD-L1 
and PD-1 expression in tumour biopsies assessed by 
immunohistochemistry. Tumour uptake of both tracers 
correlates with response to nivolumab treatment.63

An ongoing phase 1 study in patients with oral cavity 
squamous cell carcinoma (NCT03843515) is evaluating 
serial PET imaging with ¹⁸F-BMS-986192 (anti-PD-L1) 
and ¹⁸F-FDG at baseline and after a single dose of 
nivolumab in the neoadjuvant setting. The primary end­
points are serious adverse events, tumour maximum 
standard unit value for FDG-PET, and tumour maximum 
standard unit value for anti-PD-L1 PET; the secondary 
endpoint is to study the correlation between PET data 
and blood and tissue markers.

Advances in radiochemistry also facilitate the develop­
ment of novel PET agents. The two-step radiolabelling 
of short-lived ¹⁸F for BMS-986192 presents challenges 
for clinical application. To optimise the PET tracer 
for anti-PD-L1 adnectin BMS-986192, a simpler, one-
step labelling chemistry was developed for conjugation 
with ⁶⁸Ga.64 The imaging agent ⁶⁸Ga-BMS-986192 has 
shown favourable imaging properties in PD-L1-positive 
xenograft tumours in animal models and is to be tested 
in the clinic.64

Additional PET agents targeting PD-1, PD-L1, and CD8
Several other PET imaging agents targeting PD-1, 
PD-L1, or CD8 are showing promise in clinical 
development. The PET imaging agent ⁸⁹Zr-atezolizumab 
(anti-PD-L1) was administered before treatment in 

patients with solid tumours; the patients were then 
treated with atezolizumab until disease progression. 
Part A of the study (NCT02453984) assessed tracer 
protein dose for imaging and schedule; part B 
(NCT02478099) implemented imaging with the optimal 
dose and imaging timepoint (ie, day 7 after injection).65 
In total, 22 patients were evaluable. Uptake of 
⁸⁹Zr-atezolizumab was high in lymphoid tissues and at 
sites of inflammation; uptake was high in tumours but 
heterogeneous, varying within and among lesions, 
patients, and tumour types. ⁸⁹Zr-atezolizumab tumour 
uptake correlated with RECIST response, progression-
free survival, and overall survival. Progression-free 
survival and overall survival correlated not with 
PD-L1 staining of tumour biopsies.

The second agent, CX-072, is a protease-activatable anti-
PD-L1 antibody (probody). CX-072 can be activated in vivo 
by proteases present in the tumour microenvironment, 
thereby potentially reducing anti-PD-L1-mediated toxici­
ties. In a mouse model, ⁸⁹Zr-CX-072 accumulates 
specifically in PD-L1-expressing tumours with limited 
uptake in peripheral lymphoid tissues.66 The imaging 
agent might support the development of CX-072 as 
an immunotherapy (NCT03013491).67 The first-in-human 
biodistribution and pharmacokinetic study showed 
⁸⁹Zr-CX-072 uptake in tumours and modest uptake in 
normal lymphoid organs, with no unexpected uptake 
in other healthy tissues.68

A study with ⁸⁹Zr-pembrolizumab in 18 patients 
with melanoma and non-small-cell lung cancer, before 
receiving treatment with anti-PD-1 antibody, showed 
that ⁸⁹Zr-pembrolizumab uptake in tumour lesions 
correlated with treatment response and patient survival 
(appendix p 8). ⁸⁹Zr-pembrolizumab also showed uptake 
in lymphoid tissues and at sites of inflammation.9

In the PET imaging study with a ⁸⁹Zr-labelled, 
one-armed, CD8-specific antibody (⁸⁹ZED88082A; 
NCT04029181), uptake of this radiopharmaceutical can 
be seen in lymphoid tissues and tumour lesions 2 days 
after tracer injection.69 Uptake in tumour lesions was 
heterogeneous within and between patients. To conclude, 
these studies provide insight into essential characteristics 
for immunotherapy and into the heterogeneity of their 
presence between lesions in a patient and between 
patients, which is information not obtained with a biopsy 
from a single tumour site.

Discussion
Imaging remains the primary tool for assessing treat­
ment effect in solid tumours and lymphomas (panel). 
Conventional response-assessment criteria, such as 
RECIST, RANO, and response assessment in paediatric 
neuro-oncology, are the current standard for regulatory 
decisions despite shortcomings in differentiating true 
tumour growth from immune cell infiltration in 
the tumour microenvironment (ie, pseudoprogression) 
subsequent to immune therapies, especially immune 
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checkpoint inhibitors. Modified consensus guidelines for 
response assessment of immune therapies attempt to 
ascertain the effects of immune response from true 
tumour growth, primarily by delaying the time of tumour 
imaging assessment after immunotherapies until the 
immune response has subsided. These modified guide­
lines have shown a better correlation with clinical 
outcomes in retrospective analyses in some studies; 
however, validation is required by use of a larger number 
of cases of retrospective data and prospective data. 
Emerging techniques, including radiomics derived from 
CT or MRI, novel MRI contrast agents enhancing detection 
of immune cell infiltration, and novel PET tracers 
specifically probing immune molecular pathways (eg, 
PD-1, PD-L1, CD8+ T cells, and granzyme B), are promising 
in filling gaps in knowledge and will need evaluation in 
multicentre clinical trials. Combining novel imaging 
tools to probe different aspects of immune response, or 
combining imaging with tissue-based or blood-based 
biomarkers to assess multi-dimensions of the disease, 
could further improve the assessment of immunotherapy.

Conclusion
The NCI National Clinical Trials Network continues 
to encourage and support the assessment of imaging 

tools and imaging biomarkers, and many of the 
network’s completed, ongoing, and upcoming clinical 
trials might provide the imaging data to address 
the challenges in the response assessment of 
immunotherapies and validate the novel imaging tools 
and biomarkers. Going forward, it will be important to 
determine their clinical utility, alone or in combination, 
to predict and monitor treatment response and to study 
the effect that such imaging tools and biomarkers 
might have; for instance, on the selection of differential 
therapies or early termination of immune checkpoint 
blockade. The designs of clinical trials for the 
assessment of these roles are distinct and NCI clinical 
trial consortia, among others, offer a conduit for these 
important investigations.70,71 Funding opportunities 
are available through various mechanisms in the 
National Institutes of Health (NIH) to support such 
discoveries and development.72–74 Overall, there is 
considerable interest in and support for activities in 
current and planned immunotherapy trials that use 
diagnostic imaging for both predictive capabilities and 
response assessment.
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Panel: Recommendations on imaging tools to guide 
immunotherapy trials from the National Cancer Institute 
Cancer Imaging Steering Committee 

•	 Use promising imaging modalities prospectively in 
immunotherapy treatment trials to assess how they could 
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•	 Continue to expand efforts to harmonise data collection 
and facilitate uniform image assessment across sites and 
trials to assess performance of modified metrics
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