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Polymeric foams have characteristics that make them attractive for different applications. However, some foaming methods rely
on chemicals that are not environmentally friendly. One of the possibilities to tackle the environmental issue is to utilize
supercritical carbon dioxide ScCO2 since it is a “green” solvent, thus facilitating a sustainable method of producing foams.
ScCO2 is nontoxic, chemically inert, and soluble in molten plastic. It can act as a plasticizer, decreasing the viscosity of
polymers according to temperature and pressure. Most foam processes can benefit from ScCO2 since the methods rely on
nucleation, growth, and expansion mechanisms. Process considerations such as pretreatment, temperature, pressure, pressure
drop, and diffusion time are relevant parameters for foaming. Other variables such as additives, fillers, and chain extenders also
play a role in the foaming process. This review highlights the morphology, performance, and features of the foam produced
with ScCO2, considering relevant aspects of replacing or introducing a novel foam. Recent findings related to foaming assisted
by ScCO2 and how processing parameters influence the foam product are addressed. In addition, we discuss possible
applications where foams have significant benefits. This review shows the recent progress and possibilities of ScCO2 in
processing polymer foams.

1. Introduction

Polymeric foams have a wide variety of applications. Due to
their versatility, nearly all industries produce or utilize some
type of polymer foams. The wide-ranging uses for foams
include home appliances, food industries, and spacecraft
[1]. Despite polymeric foams being introduced to the market
in the early 1930s, there are still many improvements that
researchers are trying to achieve, especially concerning the
material used and the production system implemented.
Polymeric foams have already shown attractive tunable fea-
tures, for instance, compressibility [2–4], thermal insulation
[5, 6], mechanical properties in general [7, 8], and lower
density [9, 10].

There are different methods for producing polymeric
foams. The majority of the processes rely on the fundamen-
tals of nucleation, growth, and expansion of gas bubbles in a
near melt, melt, or reacting liquid polymer matrix [11, 12].
Within this method, multiple variables influence the attri-

butes of the final product. The polymer matrix has the most
substantial effect on the product properties since it affects
the viscoelastic behaviour of the polymer in the course of
production. Process parameters such as temperature, pres-
sure, shear, CO2 concentration, cooling protocol, pressure
drop, and soaking time will, for example, impact the mor-
phology of the cells [11]. Other domains can also influence
the outcome of the material differently, such as blowing
agents [13, 14], polymer modifications [15], additives [16],
and fillers [17]. Indeed, minor adjustments in one of the var-
iables described above in the foaming process will modify
some features concerning the foam structure and, therefore,
the mechanical properties [18].

One of the promising techniques for producing foams is
the use of supercritical fluids (SCFs). An SCF is a material
that, at a specific temperature and pressure, above its critical
point, can effuse through solids like a gas and dissolve mate-
rials like a liquid [19] (Figure 1). Therefore, it is a state where
gases and liquids can coexist. Among SCFs, other than N2,
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supercritical carbon dioxide (scCO2) is a promising chemical
because of its relatively low critical temperature and pressure
(Table 1), nontoxicity, and environmentally friendliness
[20]. Within the processes utilizing scCO2, the combination
of gas and liquid behaviour can be fine-tuned to engineer the
density of the SCF with adjustments to the pressure and/or
temperature of the process [21, 22].

This report summarises polymeric foams primarily pro-
duced utilizing scCO2 as a blowing agent. Process related
factors, formulation, and extrinsic influences that modify
the polymeric foam properties are considered in Sections 2
and 3. In Section 4, we discuss foam cell morphology and
mechanical performance. Subsequently, in Section 5, we
report polymeric foam features and possible applications
where polymeric foams are relevant.

1.1. Blowing Agents in Polymer Foams. To manufacture a
polymeric foam, blowing agents are necessary to produce a
cellular structure in the polymer matrix. Essentially, blowing
agents used to produce polymeric foams are (i) gases that
expand when pressure is released, (ii) liquids that undergo
a phase transition to gases, forming pockets inside the
matrix, or (iii) chemical agents that react or decompose
under the influence of a catalyst or heat to create a gas and
consequently create the cell pocket [23]. The blowing agent
used is directly related to the properties of the end material,
such as density, morphology, and the structure of the pocket
of the foam. Therefore, in most cases, the blowing agent is an
important parameter to be considered for manufacturing the
polymer foam. Usually, blowing agents are classified as
chemical or physical, with some exceptions as expandable
beads [24, 25]. Most chemical blowing agents are solids at
standard conditions for temperature and pressure (STP) that
undergo a chemical reaction releasing gas in the material
matrix to be foamed [26]. Physical blowing agents are, in
general, liquid or gas under STP that are subjected to a
change of state and expansion to form pockets within the
polymer matrix [12]. Details of the blowing mechanisms will
be further explained in the following sections.

1.1.1. Chemical Blowing Agent (CBA). CBAs function over
thermal decomposition or chemical reactions where the

agent produces gases (usually N2 and CO2) inside the poly-
mer matrix for the polymer expansion [27]. Overall, CBAs
are classified as exothermic [28] and endothermic [29].
Moreover, the temperature of the gas release must be com-
patible with the polymer. Otherwise, it might result in com-
plications during the foaming and, therefore, the structure of
the cells [30]. As the name suggests, exothermic CBAs gen-
erate heat upon decomposition, rapidly occurring within a
small temperature range [31]. On the other hand, endother-
mic CBAs take in energy from the process once they decom-
pose, resulting in a broader spectrum of temperature range
and processing times [27]. In addition to working at
contrasting process temperature ranges, exothermic and
endothermic CBAs can produce different foam structures.
At a similar temperature, exothermic CBAs make a coarser
structure with a larger cell size compared to endothermic
CBAs [32].

The selection criteria for CBAs in the process of the
polymeric foam also take into consideration the polymer
compatibility with the chosen CBA and thermal behaviour
during the process [30]. Most of the advantages of utilizing
CBAs are for industrial applications. Considering the prod-
uct, CBAs work with self-nucleation and can produce finer
cell sizes if necessary. Furthermore, in industry, the imple-
mentation of the CBAs theoretically requires a smaller
investment in equipment [28]. Besides, the incorporation
of CBAs in the process is simply done directly into the hop-
per of the equipment or mixed with the polymer matrix
before handling the machinery. Most of the CBAs are solids
and do not require special storage.

Nonetheless, utilizing CBAs might be inconvenient due
to possible contamination in the final product because of
unreacted chemicals or solid remains from the CBAs in the
polymeric foam. Due to this possible contamination, the
recycling of the foam becomes more complex or impractical.
Other significant disadvantages of using CBAs are related to
the toxicity of the chemicals or how harmful the process can
be to the environment [33].

1.1.2. Physical Blowing Agents (PBA). PBAs are used in
polymer foaming through volatilisation of a liquid or dis-
charge of an incorporated compressed gas into the polymer.

Temperature

Solid phase
Liquid phase

Supercritical
phase

Pr
es
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Figure 1: Typical phase diagram representing the possible physical
states of a substance under different conditions of temperature and
pressure.

Table 1: Critical temperature and pressure of the most common
solvents utilized in industry.

Substance Temperature (°C) Pressure (bar)

Ethylene 9.3 50.4

Carbon dioxide 31.1 73.8

Ethane 32.2 48.8

Nitrous oxide 36.5 71.7

Propane 96.7 42.5

Isopropanol 235.2 47.6

Methanol 239.5 81.0

Benzene 289.0 48.9

Toluene 318.6 41.1

Water 374.2 220.5
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Utilizing PBAs requires time since saturation is needed and
based on a diffusion process. The process of foaming with
PBAs develops nearly together with the curing of the ther-
moset polymer, and when thermoplastic, the process occurs
over temperatures near or above the polymer glass transition
but mostly near polymer melting temperatures. Common
liquids used as PBAs are usually low boiling fluids, short-
chain molecules, and halogenated aliphatic hydrocarbons.
Gases utilized frequently as PBAs are CO2 [34, 35], N2 [36,
37], short-chain molecules, and halogenated aliphatic
hydrocarbons [38]. Currently, there are three main PBAs
used by industry: hydrocarbons, halogenated hydrocarbons,
and inert gases.

Halogenated hydrocarbons as blowing agents provide
unique features to the foam as high insulation performance
and give them a certain advantage over other blowing agents
[38]. The possibility of using halogenated hydrocarbons, i.e.,
chlorofluorocarbons (CFC), as a blowing agent was first
observed in the 1940s and widely implemented in factories
around the 1950s [12] growing polymer foam production
and use. A major drawback of utilizing CFC is related to
the damage to the ozone layer of the earth. If released incor-
rectly, the gases of CFC diffuse into the stratosphere and
undergo a chemical reaction triggered by radiation, breaking
the bonds of the molecule harming the ozone layer [39]. To
overcome the harmful effects of CFC, hydrochlorofluorocar-
bon (HCFC) was developed. HCFC is less stable but still
decomposes in the lower layers of the atmosphere. Hydro-
fluorocarbons (HFC) [38] were also proposed as an alterna-
tive to CFC since they do not contain chlorine. However,
HFC does not achieve the same polymer foam morphology
compared to CFC production.

Inert gases are promising in the field of foam polymers.
One of the forms of utilizing inert gases for foaming requires
the process to surpass the critical point, achieving the state
of the supercritical fluid. Above the critical point, the sub-
stance has the density of a liquid but yet has the viscosity
of a gas and almost no surface tension [40]. When a polymer
is subjected to a supercritical fluid, i.e., CO2, it becomes
supersaturated, inducing diffusion over time and followed
by cell nucleation when thermodynamic instability occurs
[41]. Later during depressurisation, there is cell growth,
and it continues expanding until the polymer cures or cools
to the point where its melt strength prevents further expan-
sion [42]. Contrary to CO2, which has a critical point at mild
temperature and pressure, many gases can only reach super-
critical behaviour under high temperatures and high pres-
sures to surpass the crucial point. Furthermore, scCO2 is
considered a super-solvent for many polymers [40], becom-
ing one of the most promising blowing agents used today to
manufacture polymeric foams.

The selection criteria for PBAs consider compatibility
with the polymers, environment and safety since some of
the blowing agents can be flammable, and toxic or release
pollutants. The degree of importance of each factor might
vary mainly according to the polymer type and the desired
final product.

Halogenated hydrocarbons, in general, show some
advantages concerning the production and disadvantages

related to the environment. CFCs, for instance, are suitable
for the process of polymer extrusion, with the possibility of
producing open or closed-cell foams with outstanding
mechanical properties and attractive thermal insulation
[43–45]. But at the same time, CFCs are chemically unstable
and environmentally harmful, as already mentioned. Alter-
natively, there are some hydrocarbons (HC) applicable for
industries that display a lower boiling point, potentially suit-
able as a blowing agent. Some of the alternatives are cyclo-
pentane, isopentanes, and propane. These alternatives offer
lower cost, relative small impact on the environment, and
compatibility with polymers and are abundantly available
[46]. Nonetheless, cyclopentane, for instance, is notably
flammable with remarkable low energy of ignition, making
this HC an issue for transport, storage, and usage. Therefore,
utilizing HC in the industry requires careful consideration of
equipment from shipping to the final product during its use.

Inert gases (i.e., CO2, N2, and O2) are the most used
blowing agents in industry because of their price, widespread
availability, and the most environmentally friendly when
compared to other blowing agents previously described.
Despite CO2 being a greenhouse gas, its production might
be provided from a specific source, such as energy produc-
tion industries, since burning fossil fuels for energy produc-
tion is single handedly the most significant source of CO2
emissions [47]. Carbon capture, storage and utilization, is a
technology under development where CO2 is captured from
various sources and further reused or stored [48]. Therefore,
CO2 can be captured and utilized for foam production,
allowing multiple life cycles of CO2 [49].

2. Process Related Factors Influencing
Polymer Foams

Utilizing supercritical fluids in the process of polymer foam-
ing offers many benefits. Fluids in supercritical conditions
combine the viscosity of a gas and the density of a liquid,
therefore, performing as an excellent solvent and plasticizer
and enhancing the expansion of the polymer [50]. Supercrit-
ical CO2 (scCO2) is a nontoxic, nonflammable, chemically
inert, and reasonably low critical point. Thus, recent studies
investigated the interaction of some polymers with scCO2.
For instance, experiments using scCO2 as the foaming agent
have been performed together with polyethersulfone (PES)
[51], poly(butylene succinate) (PBS) [52], poly(methyl
methacrylate) (PMMA) [53], polylactide (PLA) [54], poly-
styrene (PS) [55, 56], and poly(e-caprolactone) (PCL) [57].
In addition, some authors have included different fillers,
additives, coblowing agents, and other extra steps to improve
the mechanical properties of the foam, optimize nucleation,
improve the homogeneity of the cells, or introduce an extra
feature to the final product.

The polymer foaming process assisted with scCO2 has
some advantages, such as the absence of organic solvent
and the plasticization effect. Nonetheless, utilizing scCO2
in the foaming has many variables and parameters to be
tuned, independently of the process being extrusion, batch
reactor foaming (Figure 2), or other possible foaming sys-
tems [58]. Batch reactor foaming proceeds with the polymer
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inside the reactor, followed by an increase in temperature
over or near the melting point of the polymer and injection
of CO2, consequently increasing the pressure. After a period
in stable conditions, the gas is released, dropping the pres-
sure and promoting the foam cell growth [59]. Extrusion
foaming process polymer continuously where a screw blends
CO2 and polymer. The temperature of the extruder is near
the melting point of the polymer, and pressure increases
along the screw, which is related to the feeding of the poly-
mer and injection of CO2. After the die, there is a sudden
decrease in pressure, promoting the foam cell growth [60].
Other foaming methods, such as injection mold, require
more attention due to the mold and different shear forces
involved with the process. However, the method can be con-
ventionalized as batch foaming since the foam growth
occurs inside the mold in batches.

Besides residence time and depressurization rate, foam
production with CO2 essentially relies on temperature and
pressure. Operational temperature and pressure directly
influence the density of the scCO2, thus making the super-
critical fluid behave more or less like a gas or liquid [22].
Fundamentally, temperature and pressure change the den-
sity of the scCO2. The CO2 density directly impacts scCO2
diffusion into the polymer over time, also influencing the
plasticization effect that consequently lowers the melting
point of crystalline regions of the polymer [61]. This chain
of events results in different outcomes concerning morphol-
ogy, mechanical properties, and applications. Moreover, as
explained later in this article, the polymer itself will change
its behavior according to the method protocol or how it is
pretreated. The following subsections describe some of the
process’ influences and effects on the properties of the foam.

2.1. Temperature and Pressure. Temperature and pressure
are often parameters adjusted in a foaming process due to
their direct impact on the results. For example, if tempera-
ture and pressure are increased to high values, the behaviour
of the polymer itself might change due to melt strength,
swelling, saturation, crystallization rate, etc. Li et al. [62]
have described one of the inflexion points related to pres-

sure. The research evaluates the swelling ratio and glass tran-
sition temperature (Tg) relation of PMMA within a CO2
pressure ranging from 2 to 22MPa at different temperatures.
This study helps to understand and improve cell nucleation
and, therefore, cell morphology [63, 64]. The authors
observed that the swelling ratio increases significantly, with
the temperature rising according to the pressure up to
12MPa, and at higher pressures, the swelling was not as sig-
nificant. It is also studied the Tg of the samples, estimated
according to the inflexion point in the plot of volume ratio
with temperature. The Tg of PMMA drops with an increase
in pressure to a minimum of 311.4K at 12MPa and then
increases again to 323.1K at pressures higher than 12MPa.
According to Li et al. [62], this change of pattern at
12MPa is attributed to the solubility of CO2 in the polymer
being less crucial when compared to the hydrostatic pressure
effect with CO2 pressure increase (Figure 3). A previous the-
ory proposed that because of plasticization, Tg of amor-
phous polymers under scCO2 decreases with pressure until
loss of free volume by compression becomes more relevant,
increasing Tg exponentially [65].

A singular PMMA foaming system was developed by
Ngo et al. [66] to evaluate the product outcome in different
pressure, temperatures. and time scenarios. The foaming
method system includes a 25 cm long internal cavity with a
gradient of temperature. The unique equipment Ngo et al.
built can produce polymer foam displaying gradient cell
morphology in multiple directions. Moreover, it is possible
to perceive that at the same temperature, cell size is inversely
proportional to the pressure. Cell density is defined by
nucleation density, which is affected by pressure and pres-
sure drop; therefore, cell density is proportional to the pres-
sure. Cell size and temperatures are directly proportional at
a given pressure but do not directly change the cell density
other than possible cell collapsing. Due to the protocol
adopted by Ngo et al. [66], it was possible to assess the pen-
etration depth of the CO2 into the sample, effectively
describing an estimation of the CO2 diffusion coefficient
dependent on temperature or pressure. Therefore, it is
proven that increasing the pressure from 9 to 25MPa in
the process with PMMA at 38, nearly double the CO2
diffusion coefficient. Moreover, at constant pressure, when
temperature increases from 28 to 65, the CO2 diffusion
coefficient in PMMA increases by a factor of 1.5. Therefore,
the equipment and protocol adopted by Ngo et al. [66] dem-
onstrate the influence of process temperature and pressure
on the morphology of polymer foams.

A rather recent approach to polymer foaming is the idea
of foam products showing multiple morphological struc-
tures. Polymer foam with diversified morphology and bigger
and small cells combined, gains a bigger window of possible
properties, therefore, an opportunity for new potential appli-
cations. Inspired by nature, Huang et al. [67] have demon-
strated the possibility of fabricating a biomimetic PP foam
with a modifiable hierarchical tubular structure. More spe-
cifically, the inner diameter of the solid can be adjusted from
0.4mm to approximately 20mm by adjusting the radial
temperature distribution and, consequently, the melt visco-
elasticity. In comparison, Xu and Huang [68] created a

CO2

CO2

CO2

Figure 2: Principle of polymer foam production in (top) batch
reactor and (bottom) extrusion, polymer pellets feed, and foamed
product. Both processes assisted with supercritical carbon dioxide
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bimodal cell structure in PS by simultaneously adjusting the
temperature and the depressurisation rate. This method is
based on the fact that cell nucleation not only occurs during
depressurisation but also in the temperature variance during
polymer saturation. Similar results were found by authors
Xu and Huang [69] in a previous article utilizing PLA. The
authors claim that raising the temperature before the depres-
surisation leads to higher crystallinity, especially in the outer
layer of the sample. Therefore, microcells appear in the skin
region of the foamed samples when compared to the sample
foamed without temperature change over the process but at
the same saturation temperature. Another theory for this
method to achieve bimodal structure states that the temper-
ature boost results in lower CO2 solubility into the polymer,
thus gas supersaturation and cell nucleation. Consequently,
raising temperature favours nucleation and diffusion of gas
that is trapped to escape forming bigger cells compared to
the cells formed during the depressurisation [18].

For the foaming process, all the parameters and their
relation influence the product. There are effective connec-
tions between temperature, time, and pressure. Salerno
et al. [57] explain that in the process of PCL saturation,
the pressure is more relevant for the foam uniformity than
the polymer residence time. Foaming time or depressurisation
rate is directly related and proportional to the foam density,
and consequently, inversely proportional to the overall poros-
ity. Similarly, Tsivintzelis et al. [70] research the processability
of PLA. In comparison to other publications [57, 66, 71], PLA
follows a similar trend where large cells can be achieved with
lower pressures or higher temperatures according to the limi-
tations of the process and material.

2.2. ScCO2 Concentration. Concentration is directly linked to
pressure and time, adjusting the concentration of scCO2
load during the process can be challenging since it might
influence the plasticizing effect of the polymer. In other
words, the higher the concentration of scCO2, the less
energy will be necessary to reach the point where the rigidity
of the polymer drops. Therefore, in some cases, increasing

the concentration of scCO2 might result in the need to adjust
other parameters such as temperature to counterbalance the
polymer plasticization.

Zhou et al. [71] evaluated the partial gas saturation tech-
nique with PMMA under scCO2, gauging morphology and
mechanical properties. The gas concentration profile is
effective to control the ratio of foam and solid regions inside
the polymer; consequently, graded foam structure can be
manipulated. Functionally, graded porous polymers have
very appealing properties because they have continuously
changing in macroscopic mechanical and physical properties
(Figure 4). Mechanical property tests showed that on one
hand, flexural modulus is reduced from over 3000MPa to
nearly 152MPa, due to the foam structure formed. On the
other hand, the new partially foamed structure improves
the flexural toughness of the material, having its maximum
at 65% of foam in total. The outcome of the mechanical
properties can be extensively exploited according to the ratio
of open cells and solid regions that can be fine-tuned in the
process. One of the advantages of this material is that despite
the laminated foam structure, the graded foam presents a
more homogenous pore variation, a solid core, and a wider
range of tunable mechanical properties.

The morphology of polymer blends is generally more
difficult to predict, thus this subject will be better exempli-
fied in the following section. Furthermore, Wang et al. [72]
reported cell nucleation in PP/PS foam blend in an extrusion
process. The authors reported being able to produce a simi-
lar bimodal cell structure when increasing the concentration
of scCO2 and dropping the temperature due to the plasticiz-
ing effect of the scCO2. With the same temperature profile, it
is reported that increasing CO2 concentration resulted in
increasing cell density and thinner cell walls. In addition, it
is also reported that, despite the blend of polymers, the
process was able to produce uniform cell structure at low con-
centrations of CO2. The authors propose that this phenome-
non is because of nuclei density formed in the different
phases since the solubility of scCO2 in PS is lower than in PP
at their process conditions [73, 74]. Low scCO2 concentration
results in full dissolution of one of the parts, and partial disso-
lution of the other, resulting in possible similar cell growth.

Other than the cell morphology, foam porosity, or
mechanical properties, temperature and pressure also may
influence the surface of the cells. Wang et al. [75] studied
the control of the cell structure and surface in a foam pro-
duced with scCO2 adjusting temperature, pressure, scCO2
flow rate, and time in a semibatch process. The authors pro-
posed to initiate the process as usual batch foaming (increase
temperature and pressure), but after some time, open a bleed
valve that would allow scCO2 to flow at a low-flow rate;
meanwhile, a pump maintained the pressure inside the
chamber. With this system, it is reported that denser wrin-
kles were achieved with high pressure, low temperatures,
long time, and high scCO2 flow. The theory of the authors
states that this combination of temperature, pressure, and
scCO2 flow induces macromolecules to orient and formation
of intramolecular stress which is necessary to produce a
rough cell surface [76]. The report suggests that these find-
ings could help future work to produce and understand

Swelling effect

Hydraulic pressure effect

p(MPa)

Figure 3: Theoretical relationship between pressure and foaming
process effects. A crossing point of swelling effect and hydrostatic
pressure effect of CO2 with increasing the pressure describe the
inversion of impact over the foam (adapted with permission
from [62]).
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better rough cell surfaces of foam polymers, that could be
implemented in buffering and energy absorption.

2.3. Coblowing Agents. Coblowing agents are usually solvents
introduced to improve the foaming performance of the poly-
mer. Within the process using scCO2, coblowing agents can
enhance the solubility of CO2 into the polymer, assisting in
possibly expanding the foam temperature window. Attempt-
ing to evaluate the impact of a coblowing agent, Morisaki
et al. [77] set fixed values for temperature, pressure, and time
for the saturation of PMMA and added different concentra-
tions of ethanol to the process. As a result, the addition of 1
to 7.5mol% of ethanol as a coblowing agent, increase cell
size, promoted cell coalescence with bimodal distribution
and the outer skin thickness from 45m to 35m. Authors
theorise that ethanol could enhance affinity between semipo-
lar PMMA and scCO2 similarly as it does between cellulose
derivatives and CO2 fluid [66, 78]. Further, by utilizing an
extra step after the extrusion technique involving hot water,
the authors could produce a nearly skinless final product
with 10 ± 1μm.

Trying to optimize foam structure, Qiang et al. [55]
researched the effect of butanol and decanol as coblowing
agents for PS foaming assisted with scCO2. A computational
simulation was performed previously on the physical sam-
ples and suggested that the solubility and diffusion coeffi-
cient of CO2 for PS is directly proportional to the chain
length of alcohols used as coblowing agents. Indeed, the sim-
ulation proposed is confirmed, where not only butanol and
decanol proved to improve the interaction of scCO2 and
the polymer, but also the solubility is enhanced according
to the chain length of the alcohols. Decanol assisted to main-
tain a higher content of blowing agent in PS, producing
higher cell density. Butanol, on account of having a larger
plasticization effect on PS, improved the volume expansion
ratio (VER) of the foam. Both alcohols were combined as
coblowing agents causing the formation of PS foam with

smaller cells size and larger VER when compared to the
foam produced with pure CO2.

Utilizing software for molecular modelling, as such
Materials Studio [79] or Gaussian 09 software [80], is attrac-
tive when choosing from a large potential solvent as a
coblowing agent, because it calculates the binding energy
between the main blowing agent and possible solvents that
might be applied as the coblowing agent. Hu et al. [80]
studied the molecular modelling and experimental foaming
behaviours of microcellular polysulfone (PSU) and polyphe-
nylsulfone (PPSU) assisted with scCO2 and a coblowing
agent. Their study evaluated ethanol, water, acetone, and
ethyl acetate as coblowing agents. Ethanol showed a stronger
interaction with CO2 according to the software and experi-
mental analysis. The degree of interaction of ethanol with
CO2 is credited to the shorter distance between atoms. The
modelling placed water as the second most suitable interac-
tion with CO2, therefore, compatible as a coblowing agent in
a foaming process. Nonetheless, utilizing up to 10wt% of
ethanol in the foaming process of PPSU and PSU experi-
mentally resulted in an improvement in the expansion rate
from 2.07 to 5.02 and from 3.30 to 5.25, respectively, at
15MPa.

Just as the direct improvement in the foaming of the
polymer, coblowing agents can also be used as indirect sup-
port to the foaming process. Tsimpliaraki et al. [81] con-
firmed that ethanol as a coblowing agent is necessary to
produce polymer foaming out of the nanocomposite PCL/
clay. The conclusion was that without the solvent, clusters
of clay are formed in the PCL, and consequently, nonuni-
form cells are obtained. However, once the ethanol is intro-
duced, the dispersion of clay is more uniform; therefore, the
homogeneous distribution of cells is obtained. Following
other studies [55, 82, 83], the use of cofoaming proved to
be advantageous especially in polymer processing, demon-
strating limited solubility of CO2.

3. Extrinsic Influences

As already mentioned, polymeric foams are attractive due to
their lightweight, high specific strength, and good thermal
and sound insulation properties. These characteristics are
mostly, but not wholly, provided by the unique porous struc-
ture of the final product. Polymeric chemical modifications
and the use of additives or fillers in the process of making
foam also play an essential role in the final structure [84,
85]. Therefore, it is essential to study a potential combina-
tion of elements with the polymer to achieve a foam with
compelling features.

3.1. Additives. Additives are used to improve the material,
the processability of the polymer, implement new features
to the foam, and in some cases, aim to decrease the process
energy consumption. Novendra et al. [86] worked on a spe-
cific proposal of adopting a CO2-philic additive to cause
nucleation formation at lower temperatures than the melting
point of PLA. Their idea was based on utilizing types of
polyhedral oligomeric silsesquioxane (POSS). Given the pur-
pose of a polymeric foam for biomedical applications, POSSs
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Figure 4: The cross-sections comparison of unfoamed (original),
partially foamed (samples 1 to 3), and foamed (sample 4) PMMA
samples. Foamed samples processed with different average gas
concentration. The details of the graded structure are shown in
the SEM image. Samples stacked up for easy visualisation
(adapted with permission from [71]).
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are biocompatible molecules with low or nontoxicity, there-
fore, no major drawback according to the main objective.
CO2-philic trifluoropropyl polyhedral oligomeric silses-
quioxane (TFPOSS) was chosen as the nucleating agent
and added to the right concentration which could increase
the porosity up to 40% higher than usual with temperatures
100 below the melting point. Moreover, it is reported that
increasing TFPOSS concentration increased the average size
of the cells from 624 nm to 857 nm.

Proposing to improve solubility and desorption rate of
scCO2 in PS, Qiang et al. [35] utilized polydimethylsiloxane
(PDMS) and polyvinyl acetate (PVA) as CO2-philic addi-
tives to understand the influence of the number average
molecular weight (Mn) of the additives in the foaming pro-
cess of a polymer with poor affinity with CO2 [87]. The
incorporation of the lower molecular weight CO2-philic
additive PDMS had a better performance than PVA with
increasing the diffusion coefficient of CO2 and decreasing
the saturation time of the process due to the strong CO2
affinity. In comparison, the composite PS/PDMS showed
smaller cell sizes, higher cell density, and finer cellular struc-
ture (Figure 5) with superior control over the CO2 diffusion
during the foaming process. The authors conclude that
introducing a low Mn CO2-philic additive helps the foaming
process by producing a small cell size and large volume
expansion ratio.

3.2. Fillers. Fillers are, in general, particulate materials
mostly utilized to reduce costs. Contrary to additives that
are also bonded to the matrix of the polymer, fillers are sim-
ply dispersed in the polymer. Once well introduced to poly-
mers, fillers grant improved properties according to their
nature. The main properties explored with fillers include
increased stiffness, heat and electrical conduction, creep
resistance, and nucleation agent in the case of polymer foam
process. Liu et al. [88] prepared PVA/graphene nanocom-
posite foam with a different weight content of fillers. Firstly,
it is valuable to point out that graphene sheets are well incor-
porated into the polymer matrix, supporting the idea of
effective exfoliation. Furthermore, the addition of the fillers,
not only has proved to increase the tensile strength and ther-
mal behaviour of the final material but also plays an influen-
tial role in reinforcing the bubbles inside the foam,
supporting the structure during the cell growth (Figure 6).
Likewise, the fillers reinforce the nanocomposite foam
structure, resulting in an enhanced compressive property
(Figure 7). Comparatively, Moghadas et al. [51] also use gra-
phene oxide nanoparticles as filler and nucleation agents for
PES. Thus, it has been found that the weight percentage of
the nanoparticles plays a more significant role in the nucle-
ation of the polymer when compared to foaming tempera-
ture, saturation pressure, or foaming time. Moreover, the
higher concentrations of fillers, the smaller the cell size, the
higher the cell density, and therefore, higher Young’s modu-
lus and % elongation of the material when compared among
foamed samples. Because of the porous structure, samples
foamed with bigger cells have a smaller tensile strength
and elongation when compared to samples with higher cell
density and smaller cells. In the same line of thought, even

the most homogeneous and smaller cell morphology
achieved by the authors has a reasonably inferior tensile
strength and elongation compared to raw samples that are
not foamed.

Because carbon nanotubes (CNT) have interesting fea-
tures [89] such as outstanding strength and good electrical
and thermal properties, they are also studied in the field of
polymeric foams [90]. Chen et al. [91] utilized multiwall car-
bon nanotubes (MWCNT) with different ratios between
length and width blended into PMMA to evaluate the cell
density. Under similar temperature and pressure conditions,
with the same concentration of MWCNT, samples with
relative longer MWCNT exhibited lower cell density when
compared to samples filled with shorter MWCNT. It is also
reported that cell density has a dependency on the saturation
pressure due to the assumption that at lower pressure, the
nucleation happens most likely at the end of the nanotubes,
so shorter fillers, in this case, showed higher cell density. On
the contrary, at high saturation pressure, the nucleation is
based at the sidewalls of the MWCNT, resulting in multiple
nucleation sites, increasing the cell density. Similarly, Chen
et al. [92] observed that 1wt% of MWCNT into the PMMA
matrix resulted in an 82% increase of Young’s modulus and
more than double the collapse strength of the polymer foam.
Also, MWCNT improves the compressive properties of the
solid matrix, possibly due to the reduced size and higher
density of the cells. Concerning the size of fillers, it is con-
cluded that longer MWCNT resulted in overall polymer
foam with greater Young’s modulus and collapse strength
compared to any other samples. Shorter MWCNT PMMA
nanocomposites displayed higher relative modulus and rela-
tive strength when compared to the not-foamed nanocom-
posite which is also produced with shorter MWCNT.

Aiming to evaluate the morphology and properties of the
material and the effects of carbon black (CB) filler loading
into the polymer matrix, Chen et al. [52] fabricated nano-
composites foams made of PBS and CB. Coupled with the
fact that CB has good dispersion in the PBS matrix, the
increase in filler content increases crystallization tempera-
ture, crystallinity, thermal stability, storage modulus, and
complex viscosity. It has been reported that actually, lower
CB content displayed to have higher thermal stability and
toughness when compared to higher CB content due to
some agglomeration of the nanoparticles in the polymer
matrix. The use of CB improved the electrical conductivity
features of the foam by approximately 5 orders of magnitude
with 5wt% CB content when compared to the neat foam
nanocomposite as well as the one with 5wt% CB content.
Furthermore, higher CB concentration resulted in polymer
foams with high cell density and smaller cell sizes. There
are many other filler possibilities to be applied in polymer
foam science. For instance, layered silicates are also interest-
ing for the foaming industry since it is one of the most
widely used fillers for food packaging. Nanoclays are widely
available, it has easy processability, good performance, and
lower cost [93]. Keshtkar et al. [54] published a study on
the foamability of PLA with nanoclay filler in a continuous
extrusion using scCO2 as a blowing agent. The authors could
conclude that the increase of nanoclay content is directly
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related to the increase in the cell density, expansion rate of
the foam, and melting strength. Moreover, Keshtkar et al.
[54] reported a comparison of similar fillers, Cloisite 30B
(according to authors’ lower dispersibility), and Cloisite
20A, confirming that the properties of the filler, such as
dispersibility and compatibility with the polymer, notably
influence the foam production process such as expansion
rate and cell density.

3.3. Polymer Pretreatment and Modification. Pretreatment of
polymers yields some attractive results. Salerno et al. [57],
studying PCL, tested different cooling procedures, foaming
temperature, saturation pressure, and foaming time, similar
to other studies [56, 66, 94]. PCL samples subjected to isother-

mal scCO2 pretreatment displayed a higher melting point and
melting onset. These findings align with other researchers who
link such difference in melting to the thermal history from
subsequent recrystalisation after scCO2 sorption-desorption
[95]. Moreover, Salerno et al. [57] utilized three cooling proto-
cols in the samples before foaming, subjecting samples to fast,
moderate, and slow cooling after shaping them. The authors
concluded that samples produced with the fastest cooling pro-
tocol performed in general foams with higher porosity, attrib-
uting these phenomena to the polymer’s crystallization. It is
reported that the evidence of the melting point shifting to
higher temperatures indicates higher crystalline fractions indi-
cating larger crystallites. Other authors have also studied sim-
ilar outcomes, suggesting that depressurisation time and
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Figure 5: Foam morphologies of PS with the low Mn additives were (a) PS, (b) PS with polydimethylsiloxane, and (c) PS with polyvinyl
acetate (adapted with permission from [35]).

(a)

(b)

Figure 6: SEM images of (a) PVA and (b) PVA with 2.5 wt% of graphene composite foams obtained at same process conditions. Cell size
distributions of (a-3) PVA and (b-3) PVA with 2.5 wt% graphene composite foams. Neat PVA shows many irregularly shaped bubbles after
the rapid pressure drop. However, by introducing graphene sheets, the obtained foam display a more uniform and regular cellular structure
with spherical bubbles (adapted with permission from [88]).
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crystalline structure are important in order to control foam
morphology [96–98].

A key factor to produce foams is related to the molecular
structure and molecular weight of the polymers. Therefore,
modifying polymers with branching agents or using poly-
mers with different molecular weights tend to produce dif-
ferent outcomes in the same process. The thermoplastic
polyester PLA is a biobased and biodegradable polymer with
promising features. However, it is rather difficult to produce
PLA foam materials with a high-expansion rate because of
their linear molecular arrangement, low melt strength, and
slow crystallization rate [99]. Consequently, to compensate
for the difficulties of PLA, Najafi et al. [100] added a com-
mercially available chain extender (CE) in order to overcome
issues related to elasticity and melt viscosity of PLA
(Figure 8). Long-chain branched (LCB) PLA when com-
pared to linear PLA, performs with enhanced viscosity, shear
sensitivity, and longer relaxation time. Therefore, LCB PLA
produces foams with more homogeneous cell distribution
and increased cell density. In another article, Li et al. [101]
also tried to overcome PLA problems previously mentioned
in the foaming process, modifying it with a random copoly-
mer of ethylene and glycidyl methacrylate as an efficient CE.
The branching and cross-linking of PLA samples with the
proposed CE is directly related to the enhancement of the
intrinsic viscosity. Therefore, the improvement achieved by
including the CE managed to increase cell density nearly
four times than neat PLA and the volume expansion ratio
by three folds.

As already mentioned, PLA is a remarkable polymer,
considering some of its features [102], but the foaming pro-
cess still presents some challenges. To overcome the PLA
foaming limitation, Li et al. [103] proposed a preisothermal

cold crystallization instead of branching agents or fillers,
claiming that some of those methods can disrupt PLA biode-
gradability and possibly raise production costs. Among
other reasons, authors claim that pretreatment will promote
crystallization and improve melt viscosity and strength con-
fining the movement of the polymer, therefore, contributing
to a larger number of heterogeneous nucleation interfaces
[104]. The article concluded that the preisothermal treat-
ment proposed resulted in PLA with more and improved
crystalline structure. Thus, the authors claim that the pro-
cess enhanced the maximum expansion ratio from 6.4-fold
to 17.7-fold. Further, the isothermal treatment enhanced
the uniformity of the dispersion and size of the foam cells.

Aiming to produce foam for photoinduced hydrogen
evolution Morisaki et al. [77] utilized scCO2 to foam two dif-
ferent weight average molecular weight (Mw) of PMMA.
Low molecular weight PMMA (LPMMA) and high molecu-
lar weight PMMA (HPMMA) produced different foams at
the end of the same process. Foams produced with LPMMA
displayed reasonably lower cell density and thinner walls
between cells when compared with HPMMA. Essentially,
the difference between LPMMA and HPMMA samples at
the same CO2 sorption is their viscosity, where the LPMMA
polymer can be up to one-sixtieth lower than HPMMA.
Lower viscosity essentially results in larger expansion and
likely coalescence of cells. Other publications have reported
that lower molecular weight polymers display fewer nucle-
ation sites if taking into consideration the classical nucle-
ation theory [105–107].

In the same category as modification, cross-linking of
thermoplastics is an exciting alternative to compensate poly-
mers with low molecular weight, low melt strength, or
adverse crystallization nature with issues to be foamed.
Therefore, to foam PE with scCO2, Zhou et al. [108] pro-
posed using dicumyl peroxide (DCP) in HDPE to produce
a micro cross-linked structure with enhanced viscoelasticity.
The authors used DCP up to 0.25 parts per hundred resin
into the HDPE and found that at higher concentrations,
the cross-linking limited the foaming behavior restricting
the cell growth. However, with low concentrations of DCP,
the authors could obtain foam structure with an improved
expansion volume ratio from 3.1 for pristine HDPE to 7.7
with a gel content of 5%. In a similar study, Zheng et al.
[109] found similar results where a high concentration of
bis-tert-butylperoxy diisopropylbenzene (BIPB) into EPDM
restrains the network of cell growth because of the rigid
cross-link. Zheng et al. [109] report that there is increase
in cross-linking degree, the cell morphology changed from
polygonal to elliptic, there is more homogeneity of cells,
and the wall thickness increased. Following other studies,
[110–112], it is concluded that the cross-linking degree of
thermoplastics indeed assists in the control and distribution
of the cells of the foam.

3.4. Polymer Blends. Polymer blends are mainly advanta-
geous because they make it possible to dilute the cost of
some materials and also broaden the property range of prod-
ucts. Mixing polymers is one of the approaches to designing
novel materials employing the best properties of the
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Figure 7: Compressive stress-strain curves of PVA and PVA/
graphene composite foams. Increasing the compressive strain
after a linear-elastic region, the cell walls start to bend. Therefore,
the neat PVA foam exhibit a relatively low-stress value, and PVA/
graphene composite foam displays a significant increase in
comprehensive stress because of the cellular structure (adapted
with permission from [88]).
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polymers involved, and reaching new possibilities due to the
synergy of the blend. Thereupon, Wang et al. [72] studied
cell nucleation in foam blend of polypropylene (PP) and
PS since it is generally more difficult to predict the morphol-
ogy of blends than single polymers. Firstly, the authors have
established that neat PP generates smaller cells and conse-
quently shows higher cell density when compared to neat
PS foam. Following the previous statement, the blend of
PP/PS also shows a similar pattern where large cells were
formed in PS rich phase, and small cells are formed in PP
rich phase with their correspondent properties according
to the morphology.

Correspondingly, biodegradable polymer foams made
out of polyesters PLA, PBS, and a blend of PLA with
poly(hydroxybutyrate) (PHB) have been foamed with
scCO2, tested, and compared by Frerich [113]. The authors
studied the influences of temperature and pressure on the
final product. Since melting has a great influence on the
foaming process, the authors managed to measure the melt-
ing temperature under CO2 pressure up to 45MPa. At the
pressure of 45MPa, PLA melting temperature reduces to
96, PBS reduces to 100, and the blend PLA/PHB reduces to
111; therefore, the plasticizing effect and the effect in the
melting temperature of each polymer is remarkable. The
authors suggest that the smaller change observed by PBS is
related to the effect of solubility and hydrostatic pressure
already mentioned previously in this review. The big changes
in melting temperature of PLA and the blend according to
the authors are mostly related to molecular weight, polydis-
persity, and high solubility of CO2 in PLA compared to
PBS. Related to the foamability, under their optimal condi-
tions, it is reported that PLA and PBS have shown similar
porosity of 0.81 and 0.82, respectively, and the blend PLA/
PHB shows a lower porosity of 0.76. Regarding the mechan-
ical properties, PLA/PHB blend has the highest values of

compressive modulus; however, it was found to be more brit-
tle when compared to the other polymers. While those PBS
and PLA samples were tested in the compression up to
60%, the blend PLA/PHB broke before compression of
10%. Both PLA and PBS generate different compression test
graphs; however, PLA displays higher rigidity regarding
compressive strength necessary to reach 60%.

Fully biodegradable polymer blends are complex to pro-
duce due to compatibility and often require petrol-based
additives [114, 115]. Liu et al. [116] made use of Joncryl
chain extender to consolidate poly(propylene carbonate)
(PPC) and polybutyrate adipate terephthalate (PBAT). PPC
is an amorphous aliphatic polycarbonate with a good oxygen
barrier and high solubility in CO2. PBAT is a random copol-
ymer that is ductile [117] and comes into the mix with PCC
to compensate for the brittleness of PCC. Liu et al. [116]
reported that blending PPC and PBAT with a small percent-
age of Joncryl ADR-4368 additive (around 1%) leads to an
increase in complex viscosity fourfold. Therefore, the prod-
uct foamed with scCO2, out of the blend PCC/PBAT with
additive, showed a density of 0.083 g/cm3 and uniform cells
with the size of 15m. For comparison, the same scCO2
foaming method produced PBAT foam with a density of
0.4 g/cm3 and cells size of 75m.

To comply with the high demand for lighter-weight
materials in high-performance applications such as aeronau-
tic and automotive, Cafiero et al. [118] studied the foamabil-
ity of miscible blends based on poly(ether ether ketone)
(PEEK), semicrystalline engineering thermoplastics, and
poly(ether imide) (PEI), an amorphous thermoplastic poly-
mer, using scCO2 as blowing agent. It is found that foam
density is inversely proportional to PEEK content up to
50%, where with higher loads the foam density increase
again. The blend of PEEK/PEI with a ratio of 50 : 50 dis-
played a limited crystallinity during foaming according to
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the thermal analysis, in addition to the minimum in foam
density configuration. According to the authors, the
described behaviour can be explained by 2 reasons: first, a
slower crystallization rate occurs during the foaming pro-
cess, and second, the presence of portions of amorphous
PEEK remain rigid also above the glass transition tempera-
ture [119]. The presence of such a rigid amorphous fraction
could slow down the crystallization rate. In conclusion, the
50 : 50 ratio of PEEK/PEI produced the lowest foam density,
microcell structure, and high nucleated cells.

4. Cell Morphology and Performance

Cellular morphology is a critical factor that directly affects
the actual performance of polymer foams such as mechani-
cal properties (Figure 9) [120–123]. Foams for thermal insu-
lation and packaging possibly benefit more from closed-cell
structures, while acoustic insulation foams usually require
an open-cell structure. In this part of the article, the influ-
ence of cellular morphology (cell size and distribution, struc-
ture) on the performance of polymer foams is reviewed.

4.1. Microcellular Foams. Microcellular polymer foams have
been widely used since the 1980s as they can reduce the
material density and fulfil other functions (e.g., as bone scaf-
folds) while maintaining good mechanical properties when
compared to its not-foamed form [124]. For microcellular
foams, results have shown that reducing the cell size and
lowering the size distribution can enhance the foam proper-
ties like tensile and impact strength [125–127].

Cellular structures have a variety of applications; hence-
forth, it is necessary to match their structure with engineer-
ing applications. To correlate foam porosity and cellular
structure to the foam properties, Zhang et al. [53] fabricated
PMMA microcellular foams by adjusting process conditions.
It is reported that the relation between PMMA cell size or
porosity and mechanical properties (i.e., compressive
strength and modulus) exhibits quadratic growth where
strength increases with the development of smaller cells or
lower porosity. Cell size going from 45.7 to 15.0μm
increased modulus from 70.48 to 98.59MPa and strength
from 4.70 to 6.84MPa. The porosity and the mechanical
properties of PMMA microcellular foam behave similarly.
Varying the porosity from 82 to 40% increased modulus
from 73.60 to 230.32MPa and strength from 5.17 to
40.63MPa. Essentially, in the case of PMMA, the authors
[53] reported that a cell diameter greater than 30μm, usually
has the shape of a polygon and thin walls which for the most
part withstands the pressure. Increasing the cell size results
in a decrease in wall thickness, therefore, possibly reducing
mechanical strength [128, 129]. Moreover, decreasing the
porosity or reducing the cell size in a microcellular foam
structure produces materials with increased compressive
strength and modulus. High cell density and small cell sizes
contribute to stress transfer, thus reaching higher compres-
sive strength due to loss of stress concentration.

4.2. Nanocellular Foams. Studies on nanocellular foams have
been revealed as the next generation of high-performance

polymeric foams [130–132]. To achieve nanocellular struc-
tures, new techniques were developed, and those are
described below. For example, Sharudin and Ohshima
[133] utilizing CO2-induced crystalisation in combination
with the nanoscale dispersed-domain method [134] man-
aged to create nanocellular foam. PP combined with sty-
rene-ethylene-butylene-styrene (SEBS) were annealed in
scCO2 to promote the change in the crystalline morphology
of the matrix blend. SEBS act as dispersed nucleation sites
for CO2 during rapid pressure quenching for the production
of nanocellular foam [133]. The obtained foams have higher
yield and ultimate tensile stresses than those of correspond-
ing solids. Their results also suggested that elongation at
break could deteriorate possibly due to the presence of
superficial collapsed bubbles which played the role of a
notch for the tensile test. Thus according to the authors,
controlling the outer skin layer may play a more critical role
in improving the elongation at the break of foams.

Besides the mechanical properties, the nanocellular foams
are also anticipated to have better thermal-insulation perfor-
mance than conventional foams, because their pore sizes fall
in the range of the mean free path of gas molecules [135].
The modelling of thermal transportation within the nanocel-
lular foams suggested that increasing the refractive index or
the absorption coefficient of the polymer matrix is beneficial
for decreasing the thermal conductivity of foams [129, 136].
In the case of nanocellular foams, a polymer matrix with high
infrared absorption could significantly block the thermal radi-
ation through the foam. Along with a reasonable porosity, the
nanocellular polymer foams can attain a super-insulating
property [137]. According to the reported model, the target
cell size should be less than 200nm, and the optimum porosity
should be in the range between 0.9 and 0.95 to achieve a super-
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Figure 9: A summary of literature data showing the relationship
between compressive strength and cell size.
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insulating property [136]. Thismathematical model is relevant
for inspiring the development of the next generation of super-
insulating materials which can be conveniently fabricated out
of polymer foam.

Nanocellular polymers show similar advantages associ-
ated with polymeric foams and extra features due to their
reduced cell size. One of the recent improvements found
within nanocellular polymers is the transparency, which
made the foam utterly promising for new markets. Martín-
de León et al. [138] characterized the optical transmittance
of transparent PMMA according to their cell size and mate-
rial thickness. PMMA foam with a cell of 14nm, a relative
density of around 0.47 and a thickness of 0.05mm reached
an impressive transmittance of 0.94. These values are
remarkable since similar materials with the exact dimen-
sions, but displaying a cell size of 225 nm result in a near-
zero transmittance (Figure 10). The authors reported that
scattering theories state that for the light to pass through,
the maximum particle size should be in the order of one-
tenth of the light wavelength. Visible light has wavelengths
in the range of 400–700nm. Therefore, Martín-de León
et al. [138] comply with the theory since samples with cell
sizes smaller than 50nm display some transmittance. It is
hypothesised that the future market for these materials can
include super-insulating windows, nanoporous materials
for filtration, energy storage, and catalyst support [139].

The issue of creating nanocells in a polymer foam is
directly related to the thermodynamic instability of the
nanoscale since the cells are inclined to burst during the
foaming process and merge [140]. Therefore, Shi et al.
[141] project a method and polymeric blend that provides
stable cell growth and developing high porosity nanocellular
polymer foams. Utilizing CO2 as blowing agent, the authors
employed a blend of PMMA and poly(vinylidene fluoride)
(PVDF). The composite choice is because PMMA can
absorb a large quantity of CO2 while PVDF arranges consis-
tently along the polymer, making nucleation points for
microcrystals. Therefore, PMMA containing 20% PVDF at
13.8MPa prepared by a two-step temperature foaming
process produced a material with over 70% porosity and a
cell size averaging 287nm. The method proposed by Shi
et al. [141] is environment friendly and simple but with high
efficiency and flexibility. The authors also assert the
applications of the product for filtration, energy insulator,
and catalysis.

4.3. Complex Cell Size Distribution. To achieve some
functional requirements, it is necessary to engineer the
design structure of porous materials. Polymeric foams with
complex cell size distribution conveniently gather different
magnitudes of cells [142]. In general, larger cells reduce the
density of the material, while smaller cells assist the mechani-
cal and thermal insulation properties. For instance, improved
acoustic performance can be produced with graded polymer
foams compared to materials with uniform sizes. Although
Mosanenzadeh et al. [143] did not utilize scCO2 in their pro-
cess, they managed to create a foam with cells size shifting
from 600 to 200μm along with the material. This shift in cell
size enhanced the maximum sound absorption coefficient up

to 20% compared to uniform cell size foams with similar
porosity. As mentioned before in this report, it is possible to
produce gradient foam structure utilizing scCO2 [66].

The field of tissue engineering also takes advantage of
foams with complex cell size distribution to develop new
materials that better mimic biological structures. For exam-
ple, a scaffold plays a vital role in cell adhesion and induces
cell growth for bone regeneration. Chen et al. [144] devel-
oped a PCL scaffold with a bimodal pore from 100μm to
smaller than 50μm using two-step depressurisation of
scCO2. The resultant material has potential for scaffolds
since its morphology is very similar to the extracellular
matrix of natural bone tissue. Essentially, in this case of scaf-
fold for bone tissue, the large pores are necessary for adhe-
sion, proliferation, and migration of stem cells, while the
small pores assist the transport of nutrients and waste [144].

5. Applications

In material science, there are broad pathways to cover spe-
cial features that are attractive to obtain different functional-
ities. The market in general (food industry, healthy system,
and aerospatial engineering) demands every day more per-
sonalised foams with diverse characteristics as electrically
conductive, biodegradable, and biocompatible. The foaming
process using scCO2 produces polymer foams with special
features due to the versatility of the supercritical fluid
(Figure 11). It has been reported that polymeric foams pro-
duced by scCO2 with specific features could enter the market
for thermal insulation [145, 146], bone tissue [147], EMI
shielding [148], adsorbing materials [130, 149], and filters
[150]. This section will describe some of the attributes of
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Figure 10: Optical images of light transmission through actual
samples with the same relative density and different cell sizes. The
amount of scattered light decreases with smaller cell sizes, and the
amount of scattered light is higher in bigger cell sizes resulting in an
opaque sample (adapted with permission from [138]).
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polymeric foams that researchers have found and some of
their applications.

5.1. Electrical Conductivity. Polymer materials have been
known for decades as good insulators. However, combining
polymers with additives or chemically modifying them
makes it possible to create polymers that conduct electricity.
Therefore, polymeric foams with electrical properties are
feasible and attractive [151].

Since we are in the information age, developing light-
weight materials with high specific strength and good ther-
mal and sound insulation properties capable of conducting
electricity or even insulating from electricity is interesting
[152]. Gedler et al. [153] reported a study on a foam nano-
composite made out of polycarbonate (PC) and graphene,
aiming to assess how the dielectric and electromagnetic
interference (EMI) shielding properties and the foam mor-
phology is related. Maintaining graphene at the same weight
content but adjusting process parameters already displayed
disparate results since it changed the foam structure. There-
fore, in conclusion, besides the filler content, the morphol-
ogy of the polymer foam significantly impacts the EMI
results. In fact, with some tailoring of the process, it is pos-
sible to reach a material with EMI shielding effectiveness
roughly 35 times better than the not-foamed version of the
nanocomposite. Sharing comparable objectives of conduc-
tive materials and EMI shielding application, in 2016, Kuang
et al. [120] reported a green method to produce foam with
PLA/MWCNT nanocomposite, which resulted in a low cost
and environmentally friendly process. Their approach con-
sists of soaking the sample of PLLA/MWCNT in scCO2 for
3 hours at high temperature, dropping the temperature to
foaming temperature, and followed by fast depressurisation.
This process proposed by Kuang et al. [120] uniquely
produced lightweight, high strength, and highly conductive
biodegradable polymer composite foams. Similar studies
have also proved the feasibility of producing lightweight
frequency-selective EMI shielding with other polymers
[154–156]. Some of the mentioned studies suggest that this
new technology for EMI polymer products is suitable for
the electronics, automobiles, and packaging markets.

In contrast to the previous electric conductive studies, Qi
et al. [157] studied low-weight polyarylene ether nitrile (PEN)
polymer combined with SiO2 as filler and nucleation agent to
form polymer foams that conduct less electricity. Foaming of
the polymer matrix with SiO2 filler remarkably increased the
porosity of the final material from 38%, with no filler, to more
than 58% with 5wt% SiO2. In addition, there is a considerable
reduction in the dielectric constant and loss tangent, meaning
that the new material becomes a better insulator. Moreover,
the weight content of SiO2 added to the polymer matrix is
directly related to enhancing the thermal insulation properties
of PEN/SiO2, and the same way, the cell density increases.

5.2. Thermal Insulation. A significant part of global energy
consumption comes from heating and cooling [158].
Therefore, thermal insulation is vital for a more sustainable
society. Thermal insulators improve energy efficiency in
packaging, transport, construction, and industrial processes.

Governed by the physical structure and chemical composi-
tion, the thermal conductivity of a material describes the
performance of a thermal insulator [159, 160]. Therefore,
polymer foams have the advantage of the physical struc-
ture with the void density and low-thermal conductivity
of the matrix.

Essentially, thermal conductivity directly relates to
molecular motion and is a property of a material’s ability
to transfer heat [161]. Gases generally have a lower thermal
conductivity than most polymer foams. However, the
Knudsen effect states that heat conductivity is affected by
the confined gaseous phase [162], making it possible for
nanoporous polymers to overcome the thermal conductivity
of some gases. Thus, Forest et al. [163] et al. studied the Knud-
sen effect by modelling foam features with micro/nano cell
morphology produced with CO2 as a blowing agent. Employ-
ing an analytical model based on a similar treatment for aero-
gels, Forest et al. [163] model the effect of foam morphology
on thermal conductivity. In conclusion, polymer foams with
a density of 0.1 to 0.2 g/cm3 and cell size smaller than 100
nm would feature an effective thermal conductivity equal to
or lower than 0.02W/mK, which is equivalent of thermal con-
ductivity of air. Other authors utilized the nano-cellular foam
theory combined with fillers or additives to achieve the same
or lower thermal conductivity of gases [164–166].

In parallel with studying heat insulation materials, other
lightweight features are also very beneficial. Shi et al. [167],
using scCO2 as a blowing agent, produced a lightweight
PVDF/PMMA open-cell foam with remarkable thermal
insulation. In addition, because of the material morphology,
the foam displays oil-absorption properties, making it a
suitable candidate for ecological disasters. Employing a
sustainable method, Shi et al. [167] obtained a foam with
open porosity up to 98.6%, the density of 0.0361 g/cm3,
and thermal conductivity of 31.07mW/mK. The thermal
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Figure 11: Some applications for foams are produced using scCO2
as the blowing agent.
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conductivity reached by PVDF/PMMA foam blend is
comparable to rock wool and PU foam [168], but with the
oil-absorption feature.

Polymer foams are reliable heat insulators, but some are
not environmentally friendly. Therefore, Yin et al. [169] pro-
posed to produce a fully biodegradable foam composite of
PBS and cellulose nanocrystals (CNC). In order to improve
PBS foaming properties, the authors utilized a branching
agent epoxy based. In addition, CNC is pretreated with
hydrophobic surface modification by acetylation to raise
the compatibility of CNC with PBS. The foamed PBS/CNC
material produced by Yin et al. [169] presented improved
cellular structure, increased volume expansion rate (VER),
and consequently lower thermal conductivity. The authors
claim that their composite displays thermal conductivity of
0.021W/mK and VER of 37.1. Therefore, PBS/CNC is a
promising material for construction and packaging, combin-
ing outstanding thermal conductivity and biodegradability.

5.3. Biodegradable. The majority of the polymers nowadays
last many years in nature if wrongly discarded, and the long
life of plastics causes environmental problems. Conse-
quently, plastics biodegradable are necessary to fulfil the poly-
mer’s market demands without harming the surroundings.
Thus, Ju et al. [170] developed and described the fabrication
of unimodal and bimodal biodegradable PBS with cellulose
nanocrystals (CNC). This composite scaffold foam displays
remarkable mechanical properties, improved hydrophilicity
and degradability, and promising results for tissue engineering
applications. The foaming process of PBS composite was per-
formed at cooperative temperature control variation and a
two-step depressurisation. Particularly, the incorporation of
up to 5% of CNC into the composite proved to increase the
compressive strength, decrease the water contact angle of the
material, and nicely enhance the degradation rate according
to the early experiments (Figure 12). In addition to all the fea-
tures PBS/CNC bear, it is relevant to mention that polymeric
scaffolds with bimodal structures are attractive for bone regen-
eration due to their morphological properties [171].

Pharmaceutical companies also try to get the most out of
biodegradable foam, and one good example is the applica-
tion of scaffolding polymers as a drug delivery method.
Moreover, releasing multiple medicines or stimulants at dif-
ferent ratios is an attractive technique that could facilitate
treatments and create new healing processes. Biodegradable
polymer scaffolds are one strategy to manage drug delivery.
Bai et al. [172] produced composite foam out of polylactic-
co-glycolic acid (PLGA) and PLA with different biodegrada-
tion rates, making it possible to achieve sequential release of
selected factors. Due to the different biodegradation rates of
the polymer foam, the system can replicate the natural bio-
logical timing of the physiological process factor by fine-
tuning the ratio of PLA and PLGA in the polymer foam.

Occasionally, the combination of unique features is also
needed; therefore, Kuang et al. [121] use the biodegradable
polymer PBS in combination with carbon fibres (CF) formu-
lated a composite foam assisted with scCO2 as a blowing
agent. The polymer foam display not only the already men-
tioned benefits of using a filler but the CF specifically

granted the material to be electrically conductive. It is
proven that with similar weight percentage content of CF,
the foam material exhibits higher conductivity when com-
pared to the solid polymer. Altogether, PBS/CF foams still
display biodegradability as expected from PBS and improved
electrical conductivity suitable for substituting metals in
applications that are necessary only for a limited amount
of time.

Fully biobased and biodegradable polymers are challeng-
ing due to biodegradability tuning, mechanical properties
matching, price, and eventually, processability [173]. Yet,
Li et al. [149] study a fully biobased alternative for oil-
absorbing material since the existing technologies to sepa-
rate oil and water utilized can produce secondary pollution.
Therefore, a blend of PLA with PBS foam made with scCO2
creating open cells foam with selective oil adsorption is pro-
posed and achieved. The PLA/PBS foam displays porosity up
to 97.7% and successfully adsorb solvents and oil out of the
water, reaching 21.9 g/g. The interconnected open-cell
structure displaying microscopic channels for the diffusion
of oil and solvents through the foam also enables storage.
Moreover, Li et al. [149] reported that the PLA/PBS foam
could withstand up to 20 cycles of adsorption and desorp-
tion of CCl4, making it a remarkable high-performance oil-
absorbing material.

5.4. Shape-Memory. In order to achieve a polymer foam with
shape memory, it is necessary to combine the shame mem-
ory features of polymer or polymer composites with the
foam morphology. In polymer foams, the shaping capability
is usually limited when set to repetitive or large compressive
stress. Thus, a highly flexible, durable shape-memory poly-
mer foam is proposed by Fei et al. [3] combining a thermo-
plastic polyurethane (TPU) with MWCNT processed with
scCO2. Thus, it is recognised that in 100 cycles at a compres-
sive strain of 30%, the composite TPU with 5% of MWCNT
behaved relatively stable after the 10th cycle. In the first ten
cycles, the foam showed a higher decrease in compressive
strength and energy loss due to the viscoelastic properties
of the polymer material, meaning that the strain change of
the material lags behind the stress change (Figure 13).
Despite the loss during the early cycles, the material is truly
capable of shape-memory. Moreover, TPU embedded with
MWCNT displays not only shape-memory features but also
remarkable electrical conductive properties that can vary
given the external force that the foam is subjected to. Both
features combined, in addition to enhanced mechanical
properties, make this polymer foam model for sensors that
requires improved sensitivity, accuracy, recoverability, and
flexible materials [174].

Polymer foam featuring shape-memory is generally an
adaptive material that can undergo deformation and return
to its original shape. The shape-memory feature has some lim-
itations, and Wang et al. [175] proposed a composite with
TPU and PLA foamed with the scCO2 method to minimise
possible constraints of each material and combine individual
advantages. A lightweight shape-memory blend foam TPU/
PLA is displayed with improved shape recovery from 72.7 to
91.7% compared to the not-foamed blend. In addition, it is
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also established that the introduction of PLA into TPU
assisted in the apparent shrinkage of the final material and
the content of PLA in the composite TPU/PLA is directly pro-
portional to the expansion ratio of the foam. Together with
remarkable mechanical properties, the proposed blend TPU/
PLA has the potential to be applied in the field of sensors,
packing, and intelligent medical devices [176, 177].

6. Summary

Polymeric foams are encountered in every field, from
medical applications and home appliances to spacecraft.
This versatility is due to the tunable properties of the
material. However, the process of making the foams can be
rather complex. As discussed here, implementing scCO2 into
the foaming process can be very advantageous. scCO2 is a
green solvent that acts as a plasticizer for polymers, facilitat-
ing the foaming process. Due to its inertness, scCO2 can be

processed with polymers and chemicals without reacting
while still assisting the reaction between additives and the
polymer itself.

It is valuable to understand that the density of scCO2
changes under different conditions; therefore, pressure and
temperature play a vital role in foaming assisted with CO2.
Pretreatments are valuable in the foaming process since they
can eventually improve nucleation. Isothermal steps before
the regular process can improve cell size and homogeneity
of the polymeric foam. Independent of the polymer matrix,
there is a trend among studies confirming that cell size is
directly proportional to temperature and inversely propor-
tional to pressure. Nonetheless, it is possible that at specific
pressure and temperature, the behaviour of the polymer
influences the outcome of the process other than the CO2
density. The influence of the polymer can be estimated
according to the thermal properties of the polymer (glass
transition, melting, and degradation temperatures).
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Figure 12: Performance of neat PBS foams and PBS5 (5wt% CNC) foams with unimodal and bimodal structure: (a) specific compressive
stress-strain curves; (b) water contact angle; (c) degradation in vitro on mass loss (adapted with permission from [170]).
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Solvents such as coblowing agents improve solubility
and diffusion of scCO2 into the polymer. The CO2-polymer
interaction enhancement can create foams with bigger and
more homogeneous cells. In addition, utilizing coblowing
agents can be essential to permit the dispersion of additives
into the polymer, serving as compatibilisers. To broaden
the possibilities of polymeric foams, it is necessary to
use extra elements. Additives, fillers, chemical modifica-
tions, and even polymer blends have proven to reach
new foam properties that can be exploited in a greater
variety of applications.

Some of the benefits of using additives are more effort-
less adjustment of cell structure and decreased time or tem-
perature of the process. Fillers have a more generic role in
improving the mechanical properties of the final product.
Fillers, when introduced to a system, may react chemically
with the polymer matrix. However, due to the dispersibility
of fillers and often inertness, fillers act as nucleation sites
in most cases, directing CO2 into small pockets prior to
the expansion.

Since the molecular structure of the polymer is crucial
for foaming, chemical modifications can be very beneficial
from the perspective of melt strength and intrinsic viscosity.
Adjusting the molecular branching or chain length can lead
to different outcomes, so each polymer and chemical modi-

fication must be evaluated carefully. One last strategy to
engineer polymeric foam properties is to blend other poly-
mers. Foam properties can be tuned with ease depending
on the fraction of each polymer in the blend. The possible
downside of this approach is bringing the disadvantages of
each polymer into one process, for example, having a smaller
window of temperatures to process and to degrade none of
the polymers in the blend.

From the product point of view, the cell size is one of the
most critical parameters dictating not only the mechanical
properties of the foam but also how it will perform in each
application. For example, open-cell polymeric foam is pro-
posed for applications where softer or permeable materials
are needed. Closed-cell is required in the case of stiffer or
energy isolating materials. Concerning cell size, a clear trend
is noticed from the literature, and within the same polymer
system, smaller cells tend to have higher compressive
strength compared to polymeric foams with bigger cell sizes.

Combining some features is of the utmost importance in
creating polymeric foams that suit different applications.
From the applications assessed by this review, polymeric
foams have the potential to be used in operations that
require thermal radiation isolation, electromagnetic interfer-
ence, electrical conductivity, biodegradability, shape-mem-
ory, filtering, sound isolation, packaging, biological tissues,
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Figure 13: (a) 100 cycles of TPU filled with 5.0% MWCNT foam at a maximum compressive strain of 30%; (b) stress-strain curve of
continuous cycles (1st, 2nd, 10th, 20th, 50th, and 100th); (c) energy loss coefficient of continuous cycles (adapted with permission from [3]).
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intelligent medical devices, release control medicines, energy
storage, super insulator windows, and catalyst support.

In conclusion, the future of engineering materials will be
shaped by polymeric foams since they can replace most of
the materials utilized in diverse applications with the main
advantage of being lighter. Therefore, rethinking the process
of producing polymeric foams and using scCO2 are essential
to build an environmentally friendly and sustainable pro-
duction line.
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