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Abstract. Panel data models have been applied widely in many subject areas related to 

economic, social, and epidemiology. In some cases (e.g. epidemiology studies), the phenomena 

encountered have a complex relationship structured. The risk factors such as house index, 

healthy behaviour index, rainfall and the other risk factors of particular infectiouse disease may 

have different effect on the outcome due to the heterogeneity of crossection units. The effect of 

the covariates on outcome could vary over individual and time units. This condition is called as 

a non-stationary or instability relationship problem. This problem leads to bias and inefficient 

of the estimators. It is important to examine the heterogeneous coefficients model for avoiding 

inefficient estimator. We present in detail a statistical estimation procedure of the 

heterogeneous coefficients for fixed effect panel data model by means of the hierarchical 

Bayesian estimation approach. The challenges of the Bayesian approaches are finding the joint 

posterior distribution and developing the algorithm for estimating the parameters of interest. 

We find that the joint posterior distribution of the heterogeneous coefficients fixed effect panel 

data model does not follow any standard known distribution form. Consequently, the analytical 

solution cannot be applied and simulation approach of Markov Chain Monte Carlo (MCMC) 

was used. We present the MCMC procedure covering the derivation of the full conditional 

distribution of the parameters model and present step-by-step the Gibbs sampling algorithm. 

The idea of this preliminary research can be applied in various fields to overcome the non-

stationarity problem.   

1. Introduction 

Numerous economic, social and epidemiology studies have mainly focused on finding the relationship 

between the covariates and outcome [1]. The data used are collected from different individuals, times, 

and their variation. The covariates effect on outcome may vary over individual and time. Also, the 

standard assumption of the identically distributed in sampling process may not always be satisfied. 

These conditions may yield heterogeneities problem and possibly inefficient estimators  [2], [3], [4]. 

Hence, examining the heterogeneous coefficients model become important. The Panel Data Model 

usually uses for presenting the relationship between the covariates and outcome for panel data 

structure (i.e. combine the individual and time series data). There are three types of Panel Data 

Models: pooled, fixed, and random effect models. The pooled model assumes that the same regression 

lines for all individuals as the best model. The fixed effect takes different intercepts for different 
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individuals to accommodate the individual heterogeneity and the random effect model presents the 

individual heterogeneity as the random variance component with the same lines for all individuals [5]. 

The last two models only solve the heteroscedasticity problem due to the individual heterogeneity. In 

some cases (e.g. epidemiology studies), the constant slope may not be appropriate for explaining the 

relationship of the covariate and outcome. This condition is called as a nonstationary problem [6]. In 

this paper, we extend the fixed effect panel model by introducing heterogeneous of slope regression 

coefficients.     

To motivate this model, let us consider an effect of the clean and healthy life behavior index on 

the prevalence rate of diarrhea disease in several districts. The two districts may have equal clean and 

healthy life behavior index. The standard panel data model allows for two districts with an identical 

index to have a different expected prevalence rate (i.e. due to different intercepts). Furthermore, it 

allows for the marginal effect of clean and healthy life behavior index on the prevalence rate of 

diarrhea disease to vary across districts (i.e. due to different slope coefficients). If the variability of 

population density is important, then such an interaction between population density and the clean and 

healthy life behavior index may occur and lead to a non-stationarity problem [1]. The non-stationarity 

issue has attracted considerable attention in the past two decades. Mou et al (2017) [7] applied use non 

stationary regression model to estimate the housing price in China and found that the land price has 

significant effect with different magnitudes. The extension of the constant coefficients to the 

heterogeneous coefficients enable to reflect the cross section units nature of the data, minimize the 

bias and increasing the efficiency of the estimator [7].  

The standard panel data model with classical estimation approaches (i.e. ordinary least square and 

maximum likelihood) are not be appropriate used to solve the non-stationarity problem. The standard 

approaches lead to identifiability problems [8]. Moreover, unbiasedness, consistency, and efficiency 

become serious problems.  

Non-parametric, semi-parametric, and the Geographically weighted regression (GWR) 

approaches are the most popular methods for estimating the individual and time-heterogeneous 

coefficients  [9], [10], [11]. Li  Q et al (2002) [9] introduced heterogeneous coefficients model in an 

individual setting and proposed a semi-parametric estimation to estimate the parameters model. Li D 

et al (2011) [10] proposed time heterogeneous coefficient fixed effect model and introduced the non-

parametric estimation procedure. Cai R et al (2011) [11] used the Geographically Weighted Panel 

Regressions (GWPR) to model varying relationship between covariates and an outcome.    

 We propose an alternative approach for individual heterogeneous coefficients of a panel data 

model using a hierarchical Bayesian estimation approach. The Bayesian approach has several 

advantages over non/semi-parametric and GWR approaches. Using Bayesian approach, we able to use 

out of the sample knowledge in the estimating process via a prior distribution. The complex problem 

can be solved using the hierarchical Bayesian and Bayesian approaches which provides interpretable 

answers from the credible interval of parameters of interest [12]. However, the Bayesian approach also 

has some disadvantages. Some difficulties using the Bayesian approach  is finding a joint posterior 

distribution and developing an algorithm for estimation process. Generally, the joint posterior 

distribution does not follow a standard distribution form and an analytical solution cannot be obtained.  

The Markov Chain Monte Carlo (MCMC) simulation can be used to solve this problem. However, the 

simulation approach requires a good computational ability. The Bayesian approach of heterogenous 

coefficient panel data have been introduced in [4]. However,  the derivatives for each full conditional 

posterior distributions are not explained in detail and the use of prior Gamma prior for error precision 

makes it difficult to obtain derivatives from the poster distribution.  

This paper focuses on the methodological issue on how to develop a Bayesian procedure for 

estimating parameters of heterogeneous coefficients in the fixed effect panel model and present the 

detail derivation of the full conditional posterior distributions using inverse Gamma prior for the 

variance error. The paper structure  is organized as follows; in Section 2, the Bayesian approach of 

heterogeneous coefficients Panel Data Model is described. The MCMC algorithm is accomplished in 

Section 3. Section 4 contains discussion and conclusion. 
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2. Heterogeneous coefficients panel data model 

2.1. Model  

A fixed effect model is developed to accommodate an individual heterogeneity by assuming the 

individual parameters effect are fixed. Consider a standard fixed effect panel data model [4] given 

below: 

𝐲𝑖  = a𝑖𝟏T + 𝐗𝑖b +  e𝑖    ;  𝑖 = 1,… , 𝑛 (1) 

 

where 𝐲𝑖  = [y𝑖1, . . , y𝑖𝑇]
𝑇 is a T–column vector of the response variable, 1T

 denotes a T -column vector 

of one’s, 𝐗𝑖 is a 𝑇´𝐾 design matrix with 𝐾 explanatory variables, b = [β1 β2 … βK]
T is a 𝐾- 

column vector of regression slope coefficients, e𝑖 = [e𝑖1 e𝑖2 … e𝑖𝑇]T is a T- column vector of 

random errors. The error term is assumed normally distributed, e𝑖~iidN(0, σ
2𝐈T). The least square 

dummy variable (LSDV) or within estimators are usually used to estimate the parameters of the fixed 

effect model.  

The standard fixed effect model can be extended to non-stationarity model by introducing the means 

of heterogeneous coefficients. The heterogeneous coefficient fixed effect panel data model [4] can be 

written below: 

 

𝐲𝑖  =  𝐗𝑖b𝑖  +  e𝑖    ;  𝑖 = 1,… , 𝑛 (2) 

  

where 𝛃𝑖 = [a𝑖 β𝑖1 … β𝑖𝐾]
T. The parameters vector of 𝛃𝑖 shows the heterogeneous coefficients 

of fixed effect panel data model. For 𝑇 → ∞, the 𝛃𝑖 can be estimated using a standard ordinary least 

square (OLS) method. However for small 𝑇,  the OLS estimator leads to inefficient. Non-parametric 

and semi-parametric approaches are the most popular methods that used to estimate the individual and 

time-heterogeneous coefficients. The semi-parametric and non-parametric approaches are generally 

used  [9], [10]. Choi et al (2012). [1] use non-parametric model by mean Bayesian  to model the 

spatiotemporally varying coefficients in low birth weight incidence data. Cai R  et al (2014) [11] 

introduced Geographically Weighted Panel Regressions (GWPR) using the weighted least square 

(WLS) estimators. We propose an alternative approach for individual heterogeneous coefficients panel 

data model  using hierarchical Bayesian estimation approach.    

  

2.2. Bayesian Estimation 
A Bayesian approach is widely used for economic, social and epidemiology in some recent decades due to the 

advantages of the Bayesian rather than classical approach. Jaya et al (2016) [13] used Bayesian varying 

coefficients model to estimate the effect of risk factors on dengue disease incidence in Bandung. Wheeler et al 

(2014) [14] estimate the hedonic price analysis by mean Bayesian approach and Law and Haining (2014) [15] 

used  approach to modeling binary data to model the case of high-intensity crime areas. The Bayesian approach 

is essentially using a Bayes theorem idea by considering. Three components of  a likelihood function, 𝑝(𝐲|𝛃, σ), 
the a prior distribution, 𝑝(𝛃, σ),  and the a joint posterior distribution, 𝑝(𝛃, σ|𝐲). The three components can be 

presented in simple formula as given below  [4], [16], [17]: 

 

𝑝(𝛃, σ|𝐲) =
𝑝(𝐲|𝛃, σ)𝑝(𝛃, σ)

𝑝(𝐲)
 

(3) 

 

where 𝑝(𝐲) is a normalizing constant, the posterior distribution, of 𝑝(𝛃, σ|𝐲)is proportional to (∝) the likelihood 

function multiplied by the prior distribution.  

𝑝(𝛃, σ|𝐲) ∝ 𝑝(𝐲|𝛃, σ)𝑝(𝛃, σ) (4) 

 

A main focus in the Bayesian estimation is obtaining the joint posterior distribution. After that, the 

joint posterior distribution is used to obtain the point and interval estimate of the parameter interest 

[10]. However, the joint posterior distribution is usually not in a closed form solution and an analytical 

solution cannot be obtained. As an alternative, a simulation using Markov Chain Monte Carlo 
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(MCMC) can be developed for performing Bayesian inferences  [17], [18], [19]. The MCMC 

algorithm has a good performance for either a simple or a complex model.   

 

2.2.1. Likelihood Function 

First step for applying the Bayesian method is, defining the likelihood function of the observed 

variable 𝐲 is given by: 
 

𝑝(𝐲|𝛃, σ) =∏
1

(2πσ2)
T

2

{exp(−
1

2σ2
(𝐲𝒊 − 𝐗𝒊𝛃𝒊)

𝑇(𝐲𝒊 − 𝐗𝒊𝛃𝒊))}

𝑛

𝑖=1

 (5) 

  

2.2.2. Prior Distributions 

A convenient hierarchical prior is assuming that the 𝛃𝒊 for 𝑖 = 1… , 𝑛 are independently drawn from a 

Normal distribution [3,11]: 

b𝑖 ~N(mb , 𝐕b) (6) 

 

where b𝑖 = [a𝑖 β𝑖1 … β𝑖𝐾]
T denotes the vector regression parameter of panel data model which 

varies by cross section unit.    

The second stage of the hierarchical prior is given by 

  

m
b
~N(m

b
,åb) (7) 

 

and 

𝑽b
−𝟏~𝑊(𝒗b, 𝑽b

−1) (8) 

where W(.) denotes the Wishart distribution. The Wishart distribution can be parameterized so that 

𝐄(𝑽b
−𝟏) = 𝒗b𝑽b

−1. For the error variance, it is assumed to follow an Inverse Gamma prior distribution 

[4] as follows, 

s2~𝐼𝐺 (s2, g) 

where s2 denotes the variance of error components.  
(9) 

 

The structure of hierarchical Bayesian for the heterogeneous coefficients fixed effect panel data model 

can be written as: 

 

{
 
 
 

 
 
 
𝐲i|𝛃i,σ

2~N(𝐗i𝛃i,σ
2𝐈T)

𝛃i~Np(𝛍β, 𝐕β)               

σ2~IG(σ2, 𝛾)                  

𝛍β~N(𝛍β, 𝚺β)                

𝐕β
−𝟏~W(𝝊β, 𝐕β

−𝟏)              
                           

 (10) 

 

2.2.3. The Joint Posterior Distribution 

Here we present the deviation of the joint posterior distribution by multiplying the likelihood function 

over to the prior distribution.  

𝑝(𝛃, σ2|𝐲, ) ∝ 𝑝(𝐲|𝛃, σ2)𝑝(𝛃)𝑝(σ2) 

             =
1

(2πσ2)
nT

2

 × exp(−
1

2σ2
∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

) 
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                                   ×
1

(2π)
p

2|𝐕β|
1

2

exp (−
1

2
∑(𝛃i − 𝛍β)

T
𝐕β
−𝟏(𝛃i − 𝛍β)

n

i=1

) 

                                  ×
γσ2

Γ(σ2)
(s2)−(σ

2+1) × exp {−
γ

s2
} 

 

             ∝ (s2)
−[

nT+2σ2

2
]−1

× exp (−
1

2
[
1

s2
(2γ+∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

) 

 

                                                                                   +∑(𝛃i − 𝛍β)
T
𝐕β
−𝟏(𝛃i − 𝛍β)

n

i=1

]) 

 

 

 

 

 

 

 

 

 

 

 

 

(11) 

 

The posterior distribution (Eq.11) of heterogeneous coefficients of fixed effect panel data does not 

follow a standard known distribution. Hence, we used the MCMC approach with the Gibbs sampling 

algorithm for estimating the parameters of interest. 

 

3. MCMC Derivation  

The analytical solution is hard to obtain from the joint posterior distribution of the heterogeneous 

coefficients of fixed effect panel data. We introduce the MCMC procedure with Gibbs sampling 

algorithm to estimate the parameters of interest. The Gibbs sampling algorithm works with the full 

conditional distribution of the parameter model.  

 

3.1. Full conditional posterior distribution of 𝛃i|𝐲i, σ
2, 𝛍β, 𝐕β 

The full conditional posterior distribution of 𝛃i|𝐲i, σ
2, 𝛍β, 𝐕β can be defined as: 

𝑝(𝛃i|𝐲i,σ
2, 𝛍β, 𝐕β )  ∝ 𝑝(𝐲i|𝛃i,σ

2)𝑝(𝛃i) 

     =
1

(2πσ2)
T

2

 × exp (−
1

2σ2
(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)) 

                            ×
1

(2π)
p

2|𝐕β|
1

2

exp (−
1

2
(𝛃i − 𝛍β)

T
𝐕β
−𝟏(𝛃i − 𝛍β)) 

     ∝ exp(−
1

2σ2
(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i) −
1

2
(𝛃i − 𝛍β)

T
𝐕β
−𝟏(𝛃i − 𝛍β)) 

    = exp (−
1

2σ2
(𝐲i

T𝐲i − 𝛃i
T𝐗i

T𝐲i − 𝐲i
T𝐗i𝛃i + 𝛃i

T𝐗i
T𝐗i𝛃i) 

                       −
1

2
(𝛃i

T𝐕β
−𝟏𝛃i − 𝛍β

T𝐕β
−𝟏𝛃i − 𝛃i

T𝐕β
−𝟏𝛍β + 𝛍β

T𝐕β
−𝟏𝛍β)) 

    ∝ exp(−
1

2
(σ−2𝛃i

T𝐗i
T𝐗i𝛃i + 𝛃i

T𝐕β
−𝟏𝛃i − 2𝛃i

T𝐕β
−𝟏𝛍β − 2σ−2𝛃i

T𝐗i
T𝐲i + 𝛍β

T𝐕β
−𝟏𝛍β)) 

    = exp(−
1

2
(𝛃i

T(σ−2𝐗i
T𝐗i + 𝐕β

−𝟏)𝛃i − 2𝛃i
T(𝐕β

−𝟏𝛍β + σ−2𝐗i
T𝐲i) + 𝛍β

T𝐕β
−𝟏𝛍β)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(12) 

 

Using Gaussian manipulations, we obtain: 

𝑝(𝛃i|𝐲i,σ
2, 𝛍β, 𝐕β ) ∝ exp (−

1

2
(𝛃i − 𝛃̅i)

T
𝐕̅i
−𝟏(𝛃i − 𝛃̅i)) (13) 

where 
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𝛃̅i = 𝐕̅i(𝐕β
−𝟏𝛍β + σ−2𝐗i

T𝐲i)and 𝐕̅i = (𝐕β
−𝟏 + σ−2𝐗𝐢

T𝐗i)
−𝟏

 

 
(14) 

(Eq.14) is proportional to Normal distribution: 

 

𝛃i|𝐲i,σ
2~Normal(𝛃̅i, 𝐕̅i) 

 
(15) 

3.2. Full conditional posterior distribution of  σ2|𝐲, 𝛃, σ2, 𝛾 

Full conditional posterior distribution of  σ2|𝐲, 𝛃, σ2, 𝛾 can be defined as:  

𝑝 (σ2|𝐲, 𝛃, σ2, 𝛾 ) ∝ 𝑝(𝐲|𝛃, σ2)𝑝(σ2) 

                       =
1

(2πσ2)
nT

2

 × exp(−
1

2σ2
∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

) 

                             ×
γσ2

Γ(σ2)
(s2)−(σ

2+1) × exp {−
γ

s2
} 

                          ∝ (s2)−(nT/2)(s2)−(σ
2+1) exp(−

1

σ2
{2−1∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

+ γ}) 

                          = (s2)
−(σ2+

nT

2
+1)

exp (−
1

σ2
{γ+ 2−1∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

}) 

                          ∝ (s2)−(σ̅
2+1) exp (−

γ̅

σ2
) 

 

 

 

 

 

 

 

 

 

 

 

 

(16) 

 

3.3. Full conditional posterior distribution of  𝛍β|𝐲, 𝛃, σ
2𝛍β, 𝚺β 

Full conditional posterior distribution of  𝛍β|𝐲, 𝛃, σ
2𝛍β, 𝚺β can be defined as:  

𝑝 (𝛍β|𝐲, 𝛃, σ
2𝛍β, 𝚺β) ∝ 𝑝(𝐲|𝛃 , σ

2)𝑝(𝛃)𝑝(𝛍β) 

        =
1

(2πσ2)
nT

2

 × exp(−
1

2σ2
∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

) 

                                ×
1

(2π)
p

2|𝐕β|
1

2

exp(−
1

2
∑(𝛃i − 𝛍β)

T
𝐕β
−𝟏(𝛃i − 𝛍β)

n

i=1

) 

                                ×
1

(2π)
p

2|𝚺β|
1

2

exp(−
1

2
(𝛍β − 𝛍β)

T
𝚺β
−𝟏 (𝛍β − 𝛍β)) 

         ∝ exp(−
1

2
(∑(𝛃i − 𝛍β)

T
𝐕β
−𝟏(𝛃i − 𝛍β)

n

i=1

+ (𝛍β − 𝛍β)
T
𝚺β
−𝟏 (𝛍β − 𝛍β))) 

        = exp(−
1

2
(𝛍β

T(n𝐕β
−𝟏 + 𝚺β

−𝟏)𝛍β − 𝟐𝛍β
T (𝐕β

−𝟏∑𝛃i

n

i=1

+ 𝚺β
−𝟏𝛍β) +∑𝛃i

T𝐕β
−𝟏𝛃i

n

𝑖=1

)) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(17) 

 

Adopting the Gaussian manipulations in (Eq. 17) we obtain: 

𝑝 (𝛍β|𝐲, 𝛃, σ
2𝛍β, 𝚺β)  ∝ exp(−

1

2
(𝛍β − 𝛍̅β)

T
𝚺̅β
−𝟏(𝛍β − 𝛍̅β)) (18) 
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where 

𝚺̅β = n𝐕β
−𝟏 + 𝚺β

−𝟏 and 𝛍̅β = 𝚺̅β (𝐕β
−𝟏∑𝛃i

n

i=1

+ 𝚺β
−𝟏𝛍β) 

 

(19) 

(E.q 16) is proportional to a Normal distribution: 

𝛍β|𝐲, 𝛃, σ
2𝛍β, 𝚺β~Normal(𝛍̅β, 𝚺̅β) 

 
(20) 

3.4. The full conditional posterior distribution of  𝐕β
−𝟏|𝐲, 𝛃, σ2, 𝜐β, 𝐕β

−𝟏 

The full conditional posterior distribution of  𝐕β
−𝟏|𝐲, 𝛃, σ2, 𝜐β, 𝐕β

−𝟏 can be defined as:  

𝑝(𝐕β
−𝟏|𝐲, 𝛃, σ2, 𝜐β, 𝐕β

−𝟏) ∝ 𝑝(𝐲|𝛃 , σ2)𝑝(𝛃)𝑝(𝐕β
−𝟏) 

                             =
1

(2πσ2)
nT

2

 × exp(−
1

2σ2
∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

) 

                                ×
1

(2π)
np

2 |𝐕β|
n

2

exp (−
1

2
∑(𝛃i − 𝛍β)

T
𝐕β
−𝟏(𝛃i − 𝛍β)

n

i=1

) 

                                ×
1

(2)
𝝊βp

2 Γp (
𝜐β

2
) |𝐕β

−𝟏|

𝝊β

2

|𝐕β
−𝟏|

(𝜐β−p−1)/2
exp (−

1

2
trace(𝐕β𝐕β

−𝟏) ) 

 

 

 

 

 

 

(21) 

 

The exponential terms of (Eq. 21) can be manipulated as below: 

∑(𝛃i − 𝛍β)
T
𝐕β
−𝟏(𝛃i − 𝛍β)

n

i=1

=∑∑𝐕β(ab)
−𝟏 𝐒𝛍β(ab)

p

b=1

p

a=1

 

                                                        = trace (𝐕β
−𝟏𝐒𝛍β

𝐓 ) = trace (𝐕β
−𝟏𝐒𝛍β

) 

𝐒𝛍β(ab)
=∑(𝛃i(a) − 𝛍β(a))(𝛃i(b) − 𝛍β(b))

n

i=1

and 

𝐒𝛍β
=∑(𝛃i − 𝛍β)(𝛃i − 𝛍β)

T
n

i=1

and 

∑∑Y(ab)X(ab)

𝑝

𝑏=1

𝑝

𝑎=1

= Trace(𝐘𝐗T) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(22) 

Substitute the exponential term in (Eq.21) using (Eq.22) so that we obtain: 

𝑝(𝐕β
−𝟏|𝐲, 𝛃, σ2, 𝜐β, 𝐕β

−𝟏)  = exp(−
1

2
trace (𝐒𝛍β

𝐕β
−𝟏)) |𝐕β

−𝟏|

((𝝊β+n)−p−1)

2  

                                                  × exp (−
1

2
trace(𝐕β𝐕β

−𝟏) ) 

                                              = |𝐕β
−𝟏|

((𝝊β+n)−p−1)/2
exp (−

1

2
trace ((𝐒𝛍β

+ 𝐕β)𝐕β
−𝟏) ) 

                                              = |𝐕β
−𝟏|

(𝝊̅β−p−1)/2
exp (−

1

2
trace(𝐕̅β𝐕β

−𝟏) ) 

 

 

 

 

 

 

 

(23) 

(Eq. 23) is proportional to a the Wishart distribution: 

 

𝐕β
−𝟏|𝐲, 𝛃, σ2, 𝜐β, 𝐕β

−𝟏 ∝ W(𝜐̅β, 𝐕̅β
−𝟏) (24) 
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where 

𝜐̅β = 𝜐β + 𝑛 and 𝐕̅β =∑(𝛃i − 𝛍β)(𝛃i − 𝛍β)
T

n

i=1

+ 𝐕β (25) 

 

The MCMC with Gibbs Sampling for the Bayesian heterogeneous coefficients fixed effect panel data 

model can be written as: 

1. Set 𝛃i(0) = 𝛍β(0) = 𝛃̂, 𝛃̂   is the OLS estimator of  b  

2. Do i=1 to n 

      2.1. Do m = 1 to M, 

             a. Given 𝛃i = 𝛃i(𝐦−𝟏) and 𝛍β = 𝛍β(m−1)  generate     

𝜎(𝑚)
2 ~IG(σ2 +

nT

2
, γ+ 2−1∑(𝐲i − 𝐗i𝛃i)

T(𝐲i − 𝐗i𝛃i)

n

i=1

) 

      and 

𝐕β(𝑚)
−𝟏 ~W((𝜐β + n), [∑(𝛃i − 𝛍β)(𝛃i − 𝛍β)

T
n

i=1

+ 𝐕β]

−1

) 

                b.  Given Vb
-1 = Vb

-1
(m), generate 

𝛍β(m)~N((n𝐕β
−𝟏 + 𝚺β

−𝟏) (𝐕β
−𝟏∑𝛃i

n

i=1

+ 𝚺β
−𝟏𝛍β) , (n𝐕β

−𝟏 + 𝚺β
−𝟏)) 

                 c. Given  (s2, mb,Vb
-1 )(m) , generate  

𝛃i~N((𝐕β
−𝟏 + σ−2𝐗𝐢

T𝐗i)
−𝟏
(𝐕β

−𝟏𝛍β + σ−2𝐗i
T𝐲i), (𝐕β

−𝟏 + σ−2𝐗𝐢
T𝐗i)

−𝟏
) 

 

     2.2. End do; 

3. End do; 

4. Burn-In: Throw away the first 𝑁0 of observations of (bi,s2, mb, Vb
-1)(m). Usually, the  number of 

burn-in (𝑁0) is 10% of  number of iterations. In the computation, the prior hyperparameters (mb, åb 

,vb,Vb
-1, s2 , g) are specified by the analyst. The values of the hyperparameters are specified based on 

the type of prior that will be used whether informative or uninformative priors. Usually the 

uninformative prior is used. The uninformative prior  is achieved by setting  mb , vb,s2, g are closed to 

zero and åb takes large value e.g. 105.  

 

Hypothesis testing 

The common advantage of Bayesian approach is for hypothesis testing. We can apply the credible interval for 

testing the significant parameters of interest.  

𝐻0: 𝛽𝑖 = 0 𝑣𝑠 𝐻1: 𝛽𝑖 ≠ 0 

Using central limit theorem distribution, for the probability error type one is 0.05,  the null hypothesis is rejected 

if the 95% credible interval does not include 0, then one may conclude that the coefficient is significantly 

different from 0, and the predictor is important. 

 

4. Discussion and Conclusion 

The heterogeneous coefficients panel data model is the extension of standard panel data model which  

can be used to solve the non-stationarity problem. The non/semi-parametric and GWPR models have 

been applied  to estimate the non-stationarity models. Here we present the alternative approach to 

cover the non-stationarity problem for panel data modeling by introducing the heterogeneous 

coefficients model. We use hierarchical Bayesian approach to estimate the parameters of the model. 

The detail derivation and MCMC procedures are presented. We find that the joint posterior 
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distribution of heterogeneous coefficients panel data model does not follow standard distribution form.  

MCMC with Gibbs sampling algorithm is used to estimate the conditional posterior distribution and 

obtain the parameters estimate. The Bayesian approaches give an advantage in hypothesis testing. 

Using credible interval which  is obtained from 2.5% and 97.5% quantiles of iteration samples. The 

null hypothesis testing is accepted if the credible interval includes zero value.  
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