
Towards Supporting Agile Practice Within The Libre Software Paradigm

Paul Adams and Cornelia Boldyreff (Supervisor)
University of Lincoln

Lincoln,  England
{padams, cboldyreff}@hemswell.lincoln.ac.uk

I. INTRODUCTION

Individual agile methods have never been practiced as
defined, in the same way that Royce's waterfall [1]  model
never  reflected  actual  practice.  Instead,  practitioners
adapted the core principles of these processes in order to
suit their needs. Understanding this is key to appreciating
the agile mindset. What does exist is a set of principles1

which, when followed loosely, form the agile practices.
It  is  an  important  part  of  the  agile  mentality  that  the

individuals  within  a project  are  more  important  that  the
process they follow. However, the individual methods do
have their own identifying features that make them unique;
for  example  testing  must  be  performed  before  coding
within  eXtreme  Programming  (XP)  [2].  However,  if
practitioners were to apply XP, exactly as Beck describes
it, then they are probably not “doing agile” as they may not
be following the process that suits their needs best.

One of the interesting features of the XP method is its
requirement  of  a  collocated  team.  This  requirement  is
never particularly specified, but can be inferred from XP's
lightweight  nature  coupled  with  its  requirement  of  tight
collaboration, such as pair programming. This requirement
of  a  collocated  team can  limit  the  usefulness  of  XP in
certain  contexts,  especially  as  it  may  not  always  be
possible to have a customer always available on site for the
development  team.  This  is  not  acceptable  as,  within the
agile  mindset,  the  customer  is  just  as  much  part  of  the
development team as the programmers.

This research is concerned with the effective distribution
of agile practice and, in particular,  the XP method. This
abstract addresses a particular case study of this research,
applying  distributed  XP  within  the  libre  software
paradigm.  The  work  described  here  will  only  play  one
small part of a larger programme of research, investigating
the effective distribution of agile practice.

II. MOTIVATION

Due to  its  lightweight  nature  and  its  focus on certain
communication principles, we can infer from the XP agile
method  a  requirement  of  collocation.  This  can  be  very
restrictive and limit the usefulness of XP.

Within the agile methods, the customer is just as much
part of the “team” as the developers. However, to always
have  a  representative  of  the  customer  on  site,  as  XP
requires,  can  be  difficult.  In  the  perfect  world  the
development  team  would  uproot  itself  to  be  with  the
customer; in the past, great things have come from this [3].

1The Agile Manifesto. http://www.agilemanifesto.org

In reality, this is rarely possible and the customer has to
uproot  to  join  the  developers.  This,  although  a  key
motivation for this research, is not too relevant to this case
study.

Processes  within  the  libre  software  paradigm  are
inherently  distributed.  Each  project,  as  with  classic
software  engineering,  has  its  own  process.  As  can  be
expected,  some  of  these  processes  are  more  agile  than
others. The purpose of this case study is to experiment and
evaluate the use of distributed agile methods, in particular
XP, within the libre paradigm. 

III. BEYOND THE LIBRE AND AGILE PARADIGMS

This  project  will  investigate  a  new  paradigm,  the
“Liberal” paradigm. It would not be sufficient to create a
process  that  allows XP practitioners  to  fit  into  the  libre
paradigm,  nor  would it  be  sufficient  to create a  process
allowing  libre  practitioners  to  fit  the  agile  paradigm.
Figure  1  shows  how  the  “Liberal”  paradigm  is  derived
from both libre and agile paradigms. This new paradigm
will  provide  an  process  framework  for  allowing  agile
practitioners to follow a libre process and vice versa.

The “Liberal” paradigm shall  be formed on principles
and practices shared by the libre and agile paradigms. This
will create an environment in which distributed eXtreme
Programming will flourish, but still be acceptable as a libre
software process.

The distribution of XP is already a well researched area
[4,5,6]. Although not as deeply researched, the application
of agile methods within the libre software context has also
been explored [7].  Despite all of this research, there has
yet to be a process developed that supports agile and libre
practices  within  both  paradigms.  Most  of  the  research
conducted so far has, however,  produced useful  (but not
ideal) tools for supporting these practices.

Fig. 1. The transition from agile and libre paradigms to the
“Liberal” paradigm.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/57184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


IV. RESEARCH METHOD

It  has  been  shown  [8]  that  there  is  great  difference
between the libre software processes and, therefore, some
are  going  to  be  more  “agile”  than  others.  At  first,  it
appears that these differences are greater than those found
between  the  agile  processes.  The  first  area  of  research
within this project will be to develop a set of libre software
process  features,  abstracted  from  current  libre  software
projects. This layer of abstraction will provide one input
set  for  the  distillation,  that  will  eventually  produce  the
“Liberal”  paradigm.  It  will  be  impossible  to  create  an
abstraction  over  all  libre  software  project  processes.
Instead, a sample of projects shall be chosen according to
their size (in number  of  active participants).  Some large
projects, such as Apache and Mozilla, have already been
studied and this research can easily be incorporated into
this  project.  Similar  will  be  carried  out  on  medium and
small-sized  projects  to  complete  the  abstraction.  This
project  shall  not  be as concerned  with an  abstraction of
agile processes as this is already provided, in the form of
the “Agile Manifesto”.

The  “Liberal”  paradigm  will  be  generated  as  a
distillation  of  the  abstractions  of  the  agile  and  libre
paradigms; the resultant paradigm utilising the important
and  relevant  features  of  the  parent  paradigms.  At  this
stage, it is possible to make some predictions as to what
the characteristics of the “Liberal” paradigm will be.

From  the  libre  software  paradigm  the  “Liberal”
paradigm  will  inherit  the  low-level  freedoms  that  libre
practitioners  are  afforded.  These  are  freedoms  such  as
location,  tools  and  to  an  extent,  time.  From  the  agile
paradigm the “Liberal” paradigm will inherit some of the
high-level  principles  of  the  Agile  Manifesto,  but  with a
resolution of conflict. For example, customer collaboration
and  code  production  are  both  important,  but  we cannot
allow one to stand in the way of the other.

Any tools developed within the larger research of this
project  shall  be  used  in  order  to  help  define  a  process
within the “Liberal” paradigm. However, there shall also
be  top-down approach  to  this  research,  allowing  for  the
tool's  development  to  be  affected  by  any  hypothetical
process.

The ideal method for evaluating this project would be
based  on  groups  of  experienced  eXtreme  Programmers
using the final system. It would be possible to evaluate the
performance  of  any  tools  developed  to  support  the
“Liberal”  paradigm  in  a  goal-question-metric  [9]
environment.  XP  lends  itself  well  to  metric-driven
evaluation because of aspects such as project velocity.

To  thoroughly  evaluate  any  new  processes  or  tools
produced by this case study,  experimentation and metric
analysis will take place within different contexts. Firstly, it
will  be  required  to  see  that  the  process  and  tools  can
support the use of XP within an open source project; the
case study described in this abstract. It is planned for this
work to  be performed in  conjunction with the EU  FP6
project, “CALIBRE”2.  It will also be important to see if

2http://www.calibre.ie

software  engineers,  used  to  collocation  can  perform
distributed XP effectively. It is planned for this part of the
evaluation to be a collaboration with an industrial partner.

V. CONCLUSION

This  case  study  is  aimed  at  developing  the  “Liberal”
paradigm, encompassing features of both the open source
and agile  paradigms.  Further  work  will  also help define
processes that fit into this paradigm. These processes will
allow for  the effective distribution of  agile practice in a
manner  that  would  allow  libre  software  projects  to  use
them.  Processes  within  the  “Liberal”  paradigm  may,  in
particular,  facilitate  the  contributions  of  industrial
contributors to open source; especially those organisations
that already use agile practices. 

VI. REFERENCES

[1] W.W.  Royce,  “Managing  the  development  of  large
software systems,” in  Proceedings of the 1970 IEEE
WESCON.

[2] K.Beck, Extreme Programming Explained: Embrace
Change, Addison-Wesley, 2000.

[3] R.X.Cringely, Accidental Empires: How The Boys Of
Silicon  Valley  Make Their  Millions,  Battle  Foreign
Competition  And  Still  Can't  Get  A  Date,”  Penguin
Books, 1996.

[4] M.Kircher,  P.Jain,  A.Corsaro  and  D.Levine,
“Distributed extreme programming”, in  Proceedings
of XP2001.

[5] F.Maurer, B.Dellen, F.Bendeck, S.Goldman, H.Holtz,
B.Kötting and M.Schaaf,  “Merging project planning
and web-enabled dynamic workflow technologies,” in
IEEE Internet Computing, May 2004.

[6] R.Jota  and  A.Rito-Silva,  “Supporting  distributed
extreme  programming  with  adaptive  workflow,”  in
Proceedings of the Workshop on Cooperative Support
for Distributed Software Engineering Processes, 2004

[7] M.Kircher and D.Levine, “The XP of TAO: eXtreme
Programming  od  Large,  Open-source  Frameworks”,
in  Extreme  Programming  Examined,  Addison-
Wesley, 2000.

[8] A.Mockus,  R.T.Fielding  and  J.D.Herbsleb,  “Two
Case Studies of Open Source Development:  Apache
and  Mozilla”,  in  ACM  Transactions  on  Software
Engineering and Methodology, July 2002.

[9] R.van Solingen,  The goal/question/metric method: a
practical guide for quality improvement of software
development, McGraw-Hill, 1999.


