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ABSTRACT

The internet has brought numerous benefits to end-users, companies, and governments,
but it has also led to severe threats to the security and privacy of data and systems. One
such threat is botnets, which are networks of infected systems controlled by a central ma-
licious machine. Botnets are used to spread various types of malware and attacks and can
be considered very dangerous. The two most known identifiers of a botnet are its use of a
C&C server to control the botnet and the need for a domain name or IP address for com-
munication between the bots and the C&C server. Botnets nowadays use domain genera-
tion algorithms (DGA) to obscure the actual domain that will be used for communication,
making it harder to detect the botnet. This research aims to improve DGA-based botnet
detection based on packet flow datasets that include DGA-based botnet network activity.
In doing so, the main research question is formulated to what extent machine learning
models can be built for the detection of DGA-based botnets by using packet flow datasets
and context-related feature selection methods. Improving the accuracy and speed of DGA-
based botnet detection is crucial due to the increasing number of systems connected to
the internet and the growing impact that successful attacks can have on the infected host
systems. Many studies have already been performed in the field of DGA-based botnet de-
tection by using traditional ML models, but not many of these studies use traditional ML
models based on packet flow data. Especially not on a combined dataset derived from
multiple other datasets. This research is conducted through an extensive literature study,
a search, and consolidation to obtain workable datasets, several experiments to support
the selection of feature sets and ML models, and a validation step to position the results
against the outcomes of earlier work. Out of a selection of eight machine learning tech-
niques, this study identifies three models as the best-performing models. These models
are Bagging, XGBoost, and Decision Tree. The performance results are based on several ex-
periments held against a combination of publicly available datasets and a dataset merged
as part of the experiments in this study. The datasets contain packet flow information in
which also the existence of DGA-based botnet behavior is available and labeled. Based on
the results from the experiments, the conclusion is made that high-performing machine
learning models can be built for the detection of DGA-based botnets by using packet flow
datasets and the application of context-related feature selection. With only four features
derived from the available datasets and extending these with two additional features based
on the IP address, an XGBoost classifier is trained that reaches an accuracy of 99.72%, an
AUC-score of 88.15%, and an F1-score on the positive class of 79.28%. The F1-score on
positive class is deemed to be the most important measure for this study. The importance
hereof is implied because the measure indicates how often a record is correctly classified
as true-positive in a very imbalanced dataset. True-positive in this case represents actual
DGA-based botnet behavior.
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1
INTRODUCTION

Over the last decades, the Internet has grown at a fast pace when looking at the number of
websites and services that are being provided to end-users, companies, and governments.
The options are limitless, varying from a low-risk food ordering website of your favorite
restaurant to the online banking system where you manage the financials of your entire
family. Although the importance and criticality of each of these systems can be completely
different, they all deliver a set of features to their end-users to improve the overall quality of
life and make engagement with the company better. Unfortunately, the benefits of having
all these connected services through mobile devices, laptops, and computers come hand in
hand with fast-emerging and severe threats to the security and privacy of data and systems.

These threats already exist for ages, some even as old as the first computer solutions
that were brought to market. They can also vary from simple misuse of the system by the
end user to the unsolicited installation or activation of viruses, rootkits, worms, or botnets.
A well-known example hereof is Conficker, a computer worm, with several variants, that
was used in 2008 and which was targeting a flaw in the Microsoft OS software Porras [2009].
Although not directly unique in the way of infiltration the network or based on its malicious
payload, the interest of researchers in Conficker mainly came from how it used different
methods in such a flexible way and the fast evolution of Conficker that was witnessed. This
adaptability resulted in Conficker becoming one of the widest-spread botnets in early 2009.

In a botnet, a network of infected systems is instructed via a central malicious machine,
also called a Command & Control (C&C) server Beneš [2015]; Khattak et al. [2014]. This C&C
server is the interface for a hacker or malicious user to control the botnet and initiate the
spread of malware or other attacks throughout the internet. Because the botnet is a means
to spread various types of malware and attacks, a botnet can be considered very dangerous.

Although botnets can distribute a variety of malware, or other attacks, they also have
several common elements that enable the detection and prevention of a botnet. The two
most known identifiers are first that they use a C&C server to control the botnet and second
that a domain name or IP address is needed for the communication between the bots and
the C&C server. If the botnet would make use of a hard-coded IP address or domain name
for the communication between the bots and the C&C server, the botnet traffic would be
easy to detect and communication could be traced quickly or even blocked entirely. Be-
cause the botnet aims to stay undetected as long as possible, most of the botnets make
use of domain generation algorithms (DGA) to obscure the actual domain that will be used
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for communication purposes which makes it harder to detect the botnet. More advanced
botnets nowadays even use dynamic DGA, meaning that also the valid domain names will
alter depending on either timestamp or other predefined parameters.

Taking down the communication between the bots and the C&C server would imme-
diately take down the entire botnet. Due to the usage of DGA algorithms, this can be a
difficult job to achieve. One of the most implemented ways of detecting and preventing
attacks through a botnet is the usage of blacklists of DGA domains that are maintained by
the so-called reputation providers Desmet et al. [2021]. These blacklists can then be used
by security researchers, security companies, and ISPs to evaluate internet traffic against
the blacklists. Even though this is a very valuable approach to detect and fight botnets, this
remains a reactive countermeasure against botnets as these can only be used once inter-
net traffic is already happening. This strategy is by now well-known by botnet creators and
is losing its effectiveness due to updated strategies implemented in botnets Desmet et al.
[2021]. Another approach for botnet prevention is to increase the difficulty for DGA algo-
rithms to succeed, which is seen as a proactive methodology. To obtain a more proactive
solution, researchers for example try to implement measurements that block the registra-
tion of malicious URLs.

For both the reactive and proactive approaches to botnet identification and preven-
tion, we must act faster and more accurately to stay ahead of the rapidly changing botnets
and their threats. This is the case since the creators of botnets and DGA algorithms evolve
their coding and software architecture based on new technologies, system architectures,
and preventive measures that become available. Due to the growing impact that successful
attacks can have on the infected host systems, the detection speed of DGA-based botnets
and other types of malware needs to increase. This growing impact of attacks is caused
due to the increasing amount of systems that are connected to the internet and numer-
ous solutions that are provided to end-users on which personal data, financial data, or any
other type of confidential data are managed and transported. In addition, more critical
transactions that can have a direct influence on people’s lives are managed over the inter-
net, e.g. health data and planning of treatments. Also, the accuracy of DGA-based botnet
detection needs to be further improved. A higher accuracy will likely reduce the amount
of false-positive or false-negative classifications, which in turn can help in a faster classi-
fication of malicious behavior and hence can contribute to faster detection of DGA-based
botnets. This faster detection of botnets can result in earlier prevention. If we can bring the
detection and prevention to a point before the botnet can execute its malicious payload,
the impact on the hosts might be reduced or even eliminated.

The objective of this research is to enhance the detection of DGA-based botnets by uti-
lizing aggregated packet flow datasets that contain instances of DGA-based botnet activ-
ity. The primary focus is on identifying and analyzing DGA-based botnet behavior within
datasets that are pre-labeled, enabling the distinction of records associated with DGA-
based botnets.

To provide meaningful contributions to the domain of DGA-based botnet detection, the
research is conducted based on a merged dataset, derived by combining multiple packet
flow datasets that have been used in earlier work. The process involves combining data
from multiple sources to gain a comprehensive view of network traffic, enabling the cre-
ation of possibly more accurate machine learning models, and validating and refining ex-
isting detection techniques.
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An answer is formed on how the performance metrics of ML models can be improved
for DGA-based botnet detection by applying ML methods to these data sets, and how the
performance of these ML models is positioned against earlier work. With performance
metrics, later also referred to as performance of the ML models, the metrics "accuracy",
"area under the curve (AUC)", and "F1 score" are referred.

This study does not address questions or topics related to further prevention of DGA-
based botnets based on the obtained outcomes. The research was conducted through an
extensive literature study, a search and consolidation to obtain workable datasets, several
experiments to identify if models can be built with highly accurate results based on the
context-related feature selection, and a positioning of the results of this work against the
outcomes of a selection of earlier work.

In the remainder of this thesis, the second chapter provides more background informa-
tion on important terminology and technologies. Section three describes the related work,
what is known, and what is not known yet. The fourth section presents the research design,
including the research method, research questions, and the data mining and validation ap-
proach that was applied. In section five, a summary of the datasets is provided. Section
six discusses the selection of context-related features. In section seven, the literature re-
view and experiments to select the ML methods are described. Section eight gives insight
into the experiments held in this research and the results obtained from these experiments.
Finally, section nine summarizes the answers to the research questions, discusses the con-
tribution of this research, and reflects on future work.
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2
BACKGROUND

This chapter provides the key concepts and theories about botnets in section 2.1, packet
flows in section 2.2, and machine learning in section 2.3. It serves as an introduction to
their fundamentals rather than a deep dive into their specifics. Its purpose is to provide
readers with a basic understanding of the technologies before reading the remainder of
this thesis.

2.1. BOTNETS
Botnets are networks of computers that have been infected with malware and are under the
control of a central command and control (C&C) server. The C&C server is the interface for
a hacker or malicious user to control the botnet and initiate the spread of malware or other
attacks throughout the internet Vranken and Alizadeh [2022]. Botnets are a major threat to
the security and stability of the internet, and they are becoming increasingly sophisticated
and difficult to detect. The summary below is mostly based on the work of Khattak et al.
[2014], who held in-depth research on botnets and their behavior. Figure 2.1 provides a vi-
sualization of a botnet in its easiest form, including a botmaster controlling multiple hosts
(bots) via a C&C server.

Creators of botnets typically infect computers with malware through various means,
such as phishing attacks, social engineering, or exploiting vulnerabilities in software. Once
a computer has been infected, it becomes part of the botnet and can be controlled remotely
by the botnet operator. The botnet operator can issue commands to the infected comput-
ers, such as sending spam emails, launching DDoS attacks, or stealing sensitive data. The
infected computers can also be used to spread the malware to other computers, further ex-
panding the botnet. Therefore, one of the first steps before a malicious botnet is created, is
often that a hacker will try to find a use case to build and deploy his botnet. This use case
is often tied to finding one or more vulnerabilities in a website, computer system, or ap-
plication. A vulnerability can even be the misusage of a system by a person which exposes
the users to the botnet. Once the vulnerabilities are identified, the hacker will try to build
the botnet in a way that it later can exploit these vulnerabilities for the propagation of the
botnet and deployment of the botnet payload.

Once the malware has been built and the first version is deployed, it will try to infect as
many hosts as possible to make a large network of unsolicited bots waiting to get further
instructions from the botmaster. More bots mean a higher success rate for the botnet. The
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Figure 2.1: Botnet in its easiest form.

way to infect hosts can vary depending on the type of botnet. The easiest way for a botnet
to propagate itself is when a user unknowingly takes an action that triggers the botnet in-
fection, e.g. opening a link from within an e-mail or downloading software that includes a
botnet payload. On the other hand, a botnet can also try to propagate itself trying to scan
for backdoors or security loopholes in computer systems.

After the botnet can infect another system, the newly deployed bot will try to get in
touch with the botmaster. To connect with that C&C server, the bot has to know the IP
address or the domain name to connect to. In earlier versions of botnets, the IP address
or domain name was often hardcoded in the malware. By using only the IP address and
not a domain name, the botnet avoids using DNS lookups and hence reduces the risk of
getting caught. However, once the IP address of a botnet is known, it is very easy for ISPs
or network administrators to block or blacklist the respective IP address and thus shutting
down the botnet.

To overcome that risk by using only the IP address, a domain name could be used in-
stead. Although its usage could be detected quicker because of the DNS lookups, tech-
niques like fast-flux exist to avoid detection. By applying fast-flux, the botnet uses a dy-
namic DNS system to change the underlying IP address to which the domain name resolves
regularly. By implementing this strategy, it is no longer sufficient to block or blacklist one
IP address.

A more advanced strategy, built upon fast flux, is called double flux. The principle
of changing IP addresses remains the same, but in a double flux strategy also the name
server that is responsible for looking up the IP addresses will dynamically and regularly be
changed.

Even with fast flux and double flux, botnets can still be rather easily detected and blocked.
This can be done by for example blacklisting the domain names used by the botnet or by
using a DNS sinkhole. Blackisting results in all traffic related to the botnet being blocked.
A DNS sinkhole does not block the traffic but instead routes the traffic of the botnet to an
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IP that is not part of the botnet and thus not in control of the botmaster. The latter, using
a DNS sinkhole, also reduces the risk that a botnet detects that its traffic is being blocked
and additionally can help in taking over a botnet to kill it completely.

Malicious users that try to build or distribute botnets also have advanced their tech-
niques, and that is where domain flux made its entry. By using domain flux, the botnets
no longer use a single domain name for communication purposes between the bots and
the C&C server. Instead, domain flux allows the botnet to continuously assign new domain
names to the C&C server for its communication. Domain flux would be a difficult task with-
out a mechanism to create new domain names randomly and automatically. This random
generation of domain names is made possible by applying Domain Generation Algorithms
(DGA).

2.1.1. DGA-BASED BOTNETS

Domain Generation Algorithms (DGAs) are algorithms that can automatically generate large
numbers of domain names. When combined with the technique of domain-flux, which in-
volves associating multiple domain names with a single IP address and rapidly changing
the associated domain names, it is commonly used by botnets for quickly changing the do-
main names used for communication between the botmaster (C&C Server) and infected
systems (bots) Plohmann et al. [2016]. The bots however do not know which are the valid
domain names, so they will try to communicate with the C&C server based on domains in
the generated list until they get a response. By applying these techniques, the botnet makes
it much harder to detect and block communication with the C&C server. The information
retrieved and represented about DGA in this section is derived from the work of Plohmann
et al. [2016]. The generation of domain names by a DGA, when used in a botnet, is mostly
based upon a variable known only to the botnet. This variable is also called a seed. The
generation based on seed has to make sure that both the bots and the C&C server generate
the same domain names to obtain a working communication channel with at least one of
the domain names. The seeds can be either static, dynamic, and deterministic, or dynamic
and non-deterministic.

Using a static seed is the easiest to detect, as the generation of domain names will al-
ways result in the same set of domains. When the seed is identified and the pattern of gen-
erating domain names is known, network administrators or security teams could generate
the same list of domain names that the botnet would also generate. This generated list of
domain names can then be used to block traffic from these domains and route the traffic
to DNS Sinkholes, or other botnet prevention measures. Using a dynamic seed makes it a
bit harder to block because the seed changes depending on certain characteristics like for
example the current time. This in turn results in different sets of domain names depending
on the nature of the seed. Although more difficult to block, once the deterministic pattern
is known, network administrators or security experts can implement strategies to block the
communication or even prevent the registration of these domain names.

The third variation of domain generation, using dynamic seeds that are non-deterministic,
is the hardest to block or shut down. It uses non-deterministic characteristics like exchange
rates or trending social media topics. The difficulty lies in the fact that these seeds can-
not be precalculated, making blacklisting or blocking of domain names almost impossible.
Although the implementation of dynamic seeds makes it harder to detect for security re-
searchers and network administrators, the dynamic nature of the seeds also increases the

6



complexity for the botmaster. It will become harder to register a working domain name
and open a communication channel between the C&C Server and the bots based on that
domain. This is caused by the time window that is largely reduced and might not have a
fixed duration for how long the seed remains valid. An example is when the trending Twit-
ter post is being used as a dynamic seed, which can change randomly and multiple times
throughout the day.
In addition to looking at how domains are generated by the use of different types of seeds,
there is also a difference in the type of domain names that are being generated. Plohmann
et al. [2016] have described four different types, as follows: Arithmetic-based DGA, Hash-
based DGA, Permutation-based DGA, and Wordlist-based DGA. When using Arithmetic-
based DGA, the domain names are generated based on either direct values or an offset
thereof based on a hardcoded offset of characters based on an array. This type of DGA is
also the most commonly used DGA algorithm type. The Hash-based DGA approach uses
hashes to generate domain names. In particular, it is using the string representation of
the hexadecimal digits of a hash. Often used hashes are MD5 or SHA256. The first two
types are more random and easier to detect because of their usage of random characters
and digits, making the domain names stand out against legit domain names. That is where
the next two types are harder to detect. Permutation-based DGAs for example use a per-
mutation technique on top of an initial domain name. These permutations then result in
domain names that are similar or have a great resemblance to each other. Depending on
the permutation scheme used and the initial domain name, this can already be more diffi-
cult to detect and stand out against valid domain names. More difficult to detect even, are
Wordlist-based DGAs. These will concatenate a sequence of existing words from a wordlist.
Due to this behavior, the domain names will look less random and hence camouflage the
domain generation nature of DGA more than any other type of DGA. The wordlists are in
turn either embedded in the botnet software (hardcoded and easier to detect or prevent) or
retrieved via a public source (potentially updated from time to time, making detection and
prevention more difficult).
DGA-based botnets are constantly evolving, and the algorithms used to generate the do-
main names are becoming increasingly sophisticated. As such, defending against botnets
and DGA-based botnets requires a multi-faceted approach that includes technical mea-
sures, user education, and ongoing research and development to stay ahead of the latest
threats. It is important to keep software up to date and to regularly patch known vulner-
abilities. User education is equally important, as users are often the weakest link in the
security chain. However, users can be trained to recognize phishing attacks, avoid click-
ing on suspicious links, and use strong passwords and two-factor authentication. Further
technical measures include deploying firewalls, intrusion detection systems, and antivirus
software to prevent infections and detect botnet activity. To support the development of
these technical measures, advanced techniques such as machine learning and deep packet
inspection are required. For instance, machine learning algorithms can be trained to de-
tect patterns in the generated domain names, allowing security researchers to identify and
block them. Deep packet inspection and feeding that data to ML algorithms can be used to
analyze the network traffic and detect any communication with known or suspected botnet
C&C servers. As botnets continue to evolve and become more sophisticated, it is important
to stay vigilant and take proactive steps to protect against them.
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2.2. PACKET FLOWS
Packet flow information refers to the movement of packets between clients and servers in a
network. In computer networking, data is broken down into small units known as packets,
each containing essential details for efficient routing and delivery across the network 1.
Packet flow data encompasses a wealth of information, including diverse network protocol
headers such as IP, TCP, UDP, ICMP, and more. These headers encapsulate critical metadata
that enable the identification and analysis of network traffic patterns.

In various datasets curated for network analysis, packet flow information is typically
represented through bidirectional flow records. These records capture the essence of com-
munication between network hosts, shedding light on key attributes such as source and
destination IP addresses, ports, protocol types, timestamps, and other relevant features.
By studying these flow records, researchers and analysts gain valuable insights into the be-
havior and characteristics of network communications2.

In this study, datasets with aggregated packet flow data are used. Packet flow infor-
mation with aggregated data refers to the collection and analysis of network packet-level
data, where individual packets are grouped together and processed as a whole. Instead of
focusing on individual packets, which can be voluminous and resource-intensive to han-
dle, aggregated data combines multiple packets into larger units for easier analysis. This
approach allows for a higher-level view of network traffic patterns, trends, and character-
istics, providing insights into the overall flow of packets within a network. Aggregated data
can include various metrics such as packet count, size, source and destination addresses,
protocols used, and other relevant attributes.

Analyzing datasets information with aggregated packet flow data can provide valuable
insights into network activity and can help to troubleshoot issues, detect security threats, or
highlight suspicious activities. To detect DGA-based botnets, flow packets can be analyzed
to identify patterns of communication between infected devices and the C&C servers. By
analyzing the network flow data, it is possible to identify suspicious domains that are gen-
erated by DGAs and used by the botnet. Several techniques can be used to analyze network
flow data for DGA-based botnet detection, including clustering, anomaly detection, and
machine learning algorithms. These techniques can identify patterns of communication
that are characteristic of DGA-based botnets, such as high volumes of traffic to previously
unseen domains or domains with similar patterns of character generation.

2.3. MACHINE LEARNING
Machine learning is a subfield of artificial intelligence that involves training computer sys-
tems to learn from data and make predictions or decisions without being explicitly pro-
grammed to do so Kühl et al. [2019]; Wankhede [2022]. Machine learning algorithms are
designed to analyze datasets, identify patterns, and make predictions based on those pat-
terns. There are three main paradigms of machine learning: supervised learning, unsu-
pervised learning, and reinforcement learning Kühl et al. [2022]; Praveena and Jaiganesh
[2017]. Applications of machine learning include image and speech recognition, natural
language processing, recommendation systems, and predictive modeling for areas such as
finance and healthcare. Machine learning is a rapidly growing field with significant poten-

1https://en.wikipedia.org/wiki/Traffic_flow_(computer_networking)
2https://www.cloudflare.com/learning/network-layer/what-is-a-packet/
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tial for improving many aspects of our lives.

Supervised machine learning is an ML paradigm in which the model is trained to learn
from labeled data. The algorithm is provided with a set of input-output pairs, known as
training data, and the goal is to learn a function that can accurately map new inputs to
their corresponding outputs Dridi [2022]; Mahesh [2019]. The algorithm uses statistical
techniques to identify patterns and relationships in the data and develop a model that can
generalize to new, unseen data. Supervised learning is commonly used for tasks such as
classification and regression, where the goal is to predict a categorical or continuous output
variable based on one or more input variables. Examples of applications of supervised
learning include spam filtering, image recognition, and medical diagnosis.

Unsupervised machine learning is also an ML paradigm in which the model is trained
to identify patterns and structures in unlabeled data. Unlike supervised learning, there is
no labeled output data provided to the algorithm Mahesh [2019]. Instead, the algorithm
is given only input data and must identify patterns or relationships in the data on its own.
Unsupervised learning algorithms use techniques such as clustering and Principal Com-
ponent Analysis (PCA)3 to group similar data points together or to identify the underlying
structure of the data. PCA is a dimensionality reduction technique used in machine learn-
ing and data analysis to transform a high-dimensional dataset into a lower-dimensional
space while preserving the most important information. Unsupervised learning is used
in applications such as anomaly detection, customer segmentation, and natural language
processing. It is particularly useful when labeled data is scarce or expensive to obtain.

Reinforcement learning is another ML paradigm in which a machine (also called an
agent) learns to make decisions by interacting with an environment and receiving feedback
in the form of rewards or punishments Mahesh [2019]. The goal of the agent is to maximize
its cumulative reward over time. Reinforcement learning algorithms use trial and error to
learn the optimal action to take in a given situation based on the feedback it receives. The
agent learns through a process of exploration and exploitation, trying different actions to
see which ones lead to the highest rewards. Reinforcement learning is used in applications
such as robotics, game-playing, and autonomous vehicles. It is particularly useful in situ-
ations where the optimal strategy is not known in advance, and the agent must learn from
experience.

There are many different types of machine learning models within each of the ML
paradigms, each with its own strengths and weaknesses. Choosing the right model for a
particular task requires careful consideration of the data, the problem, and the desired out-
come. This study focuses on supervised learning techniques, given the presence of a clas-
sification problem that needs to be addressed. Experiments are held with several baseline
ML techniques and ensemble methods. For the baseline ML techniques, Decision Trees, k-
Nearest Neighbors, and Support Vector Machine are used. Looking at the ensemble meth-
ods, the models Ada Boost, Bagging, Histogram Gradient Boosting, Random Forest, and
XBoost are used. This selection of techniques is made based on findings and relevance in
the related work of van Renswou [2021] and Putra et al. [2022].

The information provided below on the different models is mostly derived from the
Scikit-learn website4.

3https://towardsdatascience.com/principal-component-analysis-pca-explained-visually-with-zero-math-
1cbf392b9e7d

4https://scikit-learn.org/
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2.3.1. BASELINE ML TECHNIQUES

Baseline ML techniques refer to simple and commonly used approaches that can serve as a
starting point for the comparison and evaluation of more advanced models. Baseline meth-
ods provide a point of reference to assess the performance of new models or algorithms in
a given task or dataset. Baseline models are typically straightforward and have minimal
complexity. They may be selected based on their simplicity, ease of implementation, or
popularity in the field.

DECISION TREES

Decision trees are a type of machine learning model that uses a tree-like structure to make
decisions based on a set of conditions. Each node in the tree represents a decision point,
and the branches represent the possible outcomes of that decision Praveena and Jaiganesh
[2017]; Talekar and Agrawal [2020]. The inner working of a decision tree is a three-step ap-
proach. The decision tree algorithm starts by splitting the entire dataset based on a selected
feature and criterion such as information gain or Gini impurity. This splitting process is
performed recursively, creating a binary tree structure where each internal node represents
a feature and each branch represents a decision rule. The splitting continues until a stop-
ping criterion is met. At this point, the algorithm assigns class labels to each leaf node for
classification tasks or predicted values for regression tasks. To make predictions for new
instances, the algorithm traverses the decision tree by following the decision rules based
on the feature values of the instance. It continues until it reaches a leaf node, where the
assigned class label or predicted value becomes the final prediction for that instance. This
process allows decision trees to make predictions based on the learned patterns and de-
cisions encoded within the tree structure. Decision trees offer interpretability, can handle
mixed data types, and capture nonlinear relationships. To address the issues of overfit-
ting and sensitivity to data variations inherent in decision trees, ensemble methods can be
utilized, incorporating decision trees as base models to achieve enhanced performance.
Decision trees are commonly used for classification and regression tasks and are easy to
interpret and visualize.

K-NEAREST NEIGHBORS

K-Nearest Neighbors (k-NN) is a popular machine learning algorithm that falls under the
category of instance-based or lazy learning methods Dridi [2022]. It is widely used for both
classification and regression tasks and is known for its simplicity and intuitive concept.

The underlying principle of the k-NN algorithm is to make predictions based on the
proximity or similarity of instances in the feature space. It assumes that instances with
similar features tend to belong to the same class or have similar output values. k-NN does
not involve a training phase like other algorithms; instead, it memorizes the entire training
dataset for prediction purposes.

When given a new instance to classify or predict, k-NN identifies the k nearest neighbors
in the training dataset based on a distance metric, typically Euclidean distance. The value
of k is a user-defined parameter that determines the number of neighbors considered. The
class label or output value of the new instance is then determined based on the majority
vote or averaging of the labels or values of its k nearest neighbors.

k-NN offers several advantages as further discussed. It is a non-parametric algorithm,
meaning it does not assume any specific underlying data distribution. This makes it robust
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to outliers and versatile for different types of data. Additionally, k-NN can adapt to chang-
ing or dynamic environments since it recalculates predictions based on the current nearest
neighbors.

However, k-NN’s computational complexity can increase as the size of the training dataset
grows since it requires calculating distances between the new instance and all training in-
stances. This can be alleviated by using efficient data structures like kd-trees or approx-
imate nearest-neighbor algorithms. Moreover, the choice of the distance metric and the
value of k can significantly impact the algorithm’s performance, and they should be care-
fully selected based on the characteristics of the data.

SUPPORT VECTOR MACHINE

Support Vector Machines (SVM) are used in various domains, including pattern recogni-
tion, classification, and regression tasks Dridi [2022]. SVM is particularly well-suited for
solving complex problems where data points need to be classified into different categories
or mapped to continuous output values.

The main principle behind SVM is to find an optimal hyperplane that separates data
points of different classes with the largest possible margin. The hyperplane is a decision
boundary in the feature space that maximizes the distance between the hyperplane and
the nearest data points, known as support vectors. By doing so, SVM aims to achieve good
generalization performance, minimizing the risk of overfitting.

One of the notable advantages of SVM is its ability to handle both linearly separable and
nonlinearly separable data. This is achieved through the use of kernel functions, which
transform the original feature space into a higher-dimensional space where a linear de-
cision boundary can be found. By leveraging the kernel trick, SVM can effectively model
complex relationships between features and the target variable.

SVM has proven to be robust to noise and outliers in the data due to its focus on the
support vectors, which are the critical data points closest to the decision boundary. This
robustness contributes to its ability to generalize well to unseen data.

While SVM has shown high accuracy and robustness, it is worth noting that the al-
gorithm has some considerations. SVM can be computationally expensive, especially for
large datasets, as it involves solving a quadratic optimization problem. Additionally, the
interpretability of SVM models can be challenging due to the complex decision boundary
representation in the transformed feature space.

2.3.2. ENSEMBLE METHODS

Ensemble machine learning methods are techniques that combine the predictions of mul-
tiple individual models to make more accurate and robust predictions. Instead of relying on
a single model, ensemble methods leverage the diversity and collective intelligence of mul-
tiple models to improve overall performance Mahesh [2019]. Ensemble methods are widely
used in various machine learning tasks, including classification, regression, and anomaly
detection.

Ensemble methods, which combine the predictions of multiple models, offer several
benefits. Firstly, they improve accuracy by leveraging the collective intelligence of the mod-
els, mitigating bias, reducing variance, and capturing different aspects of the data. Sec-
ondly, ensemble methods enhance robustness by being more resilient to noise and outliers.
Outliers have less influence on the final prediction due to the collective decision-making
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process. Additionally, ensemble methods excel in generalization by reducing overfitting
through the combination of models trained on different data subsets or with different al-
gorithms. Some ensemble methods, like Random Forest, provide feature importance mea-
sures, aiding in feature selection and data understanding.

However, ensemble methods also come with considerations. They can be computation-
ally expensive when training and evaluating multiple models, especially for large datasets
and complex models. The interpretability of ensemble models may be lower compared
to individual models, as the combined decision-making process can obscure underlying
factors. Hyperparameter tuning is crucial for optimal performance, as ensemble methods
often have additional parameters to optimize, such as the number of models, their weights,
or the combination strategy.

RANDOM FOREST

Random Forest is a versatile ensemble machine learning algorithm that has gained signif-
icant popularity in various domains, ranging from classification to regression and feature
selection. It combines multiple individual models to make more accurate and robust pre-
dictions.

The core idea behind Random Forest is to create a multitude of decision trees and com-
bine their outputs to make a final prediction. Each decision tree in the forest is built using
a random subset of the original training data and a random subset of features at each split.
This randomness introduces diversity among the trees and helps to reduce overfitting by
capturing different aspects of the data Talekar and Agrawal [2020].

During the training phase, Random Forest constructs an ensemble of decision trees
through a process called bagging (bootstrap aggregating). Bagging involves resampling the
training data with replacement to create multiple bootstrap samples, which are then used
to train individual decision trees. Each tree is grown until a certain stopping criterion is
met, such as reaching a maximum depth or a minimum number of samples at a leaf node.

When making predictions, each tree in the Random Forest independently classifies the
input data, and the final prediction is determined through a voting mechanism. For clas-
sification tasks, the class with the majority vote from the ensemble is selected as the pre-
dicted class. For regression tasks, the average or median of the individual tree predictions
is taken as the final output.

Random Forest offers several advantages. It tends to have high accuracy and general-
ization performance due to the combination of multiple decision trees. It is robust to noise
and outliers, as the ensemble-based approach reduces the impact of individual trees that
may overfit on noisy samples. Additionally, Random Forest provides a measure of feature
importance, allowing for feature selection and understanding of the data.

However, Random Forest also comes with some considerations. The algorithm can be
computationally intensive, especially for large datasets and a large number of trees. Ad-
ditionally, the interpretability of Random Forest models may be challenging, as it is not as
straightforward to interpret the collective decision-making process compared to individual
decision trees.

ADA BOOST

AdaBoost (Adaptive Boosting) is a machine learning algorithm that belongs to the family of
ensemble learning methods. It is designed to improve the performance of weak classifiers
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by iteratively combining their predictions to create a stronger and more accurate model
Praveena and Jaiganesh [2017].

The key idea behind AdaBoost is to focus on the misclassified samples during the train-
ing process. In each iteration, AdaBoost assigns higher weights to the misclassified sam-
ples, which emphasizes their importance in subsequent iterations. This adaptive weight
adjustment allows weak classifiers to concentrate on the samples that are difficult to clas-
sify correctly.

During training, AdaBoost builds a sequence of weak classifiers, where each classifier
is trained on a modified version of the training set. The modified version assigns higher
weights to the misclassified samples from the previous iteration. The weak classifiers are
typically simple models with limited predictive power, such as decision stumps (one-level
decision trees) or shallow decision trees.

The final prediction of AdaBoost is obtained by combining the predictions of all weak
classifiers. The weight assigned to each weak classifier depends on its performance during
training. More accurate classifiers have higher weights in the final ensemble, resulting in a
strong classifier that can provide more accurate predictions.

AdaBoost has a couple of advantages. It is capable of handling complex classification
tasks and can achieve high accuracy even with a large number of weak classifiers. AdaBoost
also has the ability to handle high-dimensional data and handle class imbalance issues by
adjusting the sample weights. Furthermore, AdaBoost is less prone to overfitting compared
to individual weak classifiers.

However, just like for other Ensemble methods like Random Forest, there are consider-
ations to be aware of when using AdaBoost. It can be sensitive to noisy or mislabeled data,
as the emphasis on misclassified samples can amplify their impact. Also, AdaBoost may be
susceptible to outliers, as they can have a strong influence on the training process. Lastly,
AdaBoost can be computationally expensive, especially if the weak classifiers are complex
or the dataset is large.

HISTOGRAM GRADIENT BOOSTING

Histogram Gradient Boosting, also known as Histogram-Based Gradient Boosting (HGB),
is a variant of the popular gradient boosting algorithm that utilizes histogram-based tech-
niques to improve its efficiency and scalability. It is specifically designed to handle large-
scale datasets with high-dimensional features and has gained attention for its ability to
deliver competitive performance in various machine-learning tasks.

In traditional gradient boosting, decision trees are commonly used as weak learners to
build the ensemble. However, the construction and evaluation of decision trees can be
computationally expensive, especially for large datasets. Histogram Gradient Boosting ad-
dresses this challenge by utilizing histograms to approximate the splitting points of the
decision trees, leading to significant speed improvements Ke et al. [2017].

The key idea behind Histogram Gradient Boosting is to discretize the feature space
into bins or intervals, forming histograms that summarize the distribution of each feature.
Instead of evaluating every possible splitting point for each feature, Histogram Gradient
Boosting only considers splitting at the boundaries of the bins. This approximation signif-
icantly reduces the number of candidate splitting points, resulting in faster tree construc-
tion.

Furthermore, Histogram Gradient Boosting employs a technique called subsampling to
further enhance efficiency. Rather than using the entire dataset to construct each tree, a
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random subset of the data typically referred to as the "subsample," is used. This subsam-
pling technique reduces both the memory and computational requirements, allowing for
faster model training.

Histogram Gradient Boosting exhibits superior scalability and computational efficiency
compared to traditional gradient boosting methods, making it well-suited for large datasets
and high-dimensional feature spaces. Additionally, the histogram-based approach enables
faster training and prediction times, enabling real-time or near-real-time applications. De-
spite its efficiency improvements, Histogram Gradient Boosting can still achieve competi-
tive predictive performance on par with or even better than traditional gradient boosting.

It is worth noting that specific implementations of Histogram Gradient Boosting may
have variations in their algorithmic details and additional features to further enhance per-
formance. Examples include LightGBM and CatBoost, which are popular gradient-boosting
libraries that incorporate histogram-based techniques for faster and more accurate predic-
tions.

XGBOOST

XGBoost (Extreme Gradient Boosting) is a highly efficient and powerful machine learning
algorithm that is often used for both classification and regression tasks, designed to address
the limitations of traditional gradient boosting algorithms. It incorporates several enhance-
ments, including a more optimized and regularized approach, regularization techniques,
parallel processing, and advanced tree construction methods, resulting in improved per-
formance, scalability, and superior predictive accuracy Bentéjac et al. [2019].

The algorithm works by iteratively adding weak learners, typically decision trees, to the
ensemble, with each subsequent learner aiming to correct the mistakes made by the previ-
ous ones. During each iteration, XGBoost calculates the gradients of the loss function and
applies a form of gradient descent to minimize the loss. This process enables the model to
continuously refine its predictions, resulting in a more accurate and robust final model.

XGBoost incorporates several key features that contribute to its effectiveness. First, it
employs a technique called "gradient-based boosting," which optimizes the model by us-
ing gradient information to guide the learning process. Second, XGBoost employs a regu-
larization approach known as "shrinkage" or "learning rate" that helps prevent overfitting
by controlling the contribution of each tree to the overall ensemble. Additionally, XGBoost
utilizes a novel technique called "column block" to enable parallel computation, making it
highly efficient and scalable for large datasets.

The advantages of XGBoost are numerous. It consistently delivers state-of-the-art per-
formance in various machine learning competitions and real-world applications. XGBoost
is known for its ability to handle high-dimensional data, handle missing values, and ef-
fectively capture complex relationships between features and the target variable. Further-
more, it offers built-in capabilities for feature importance estimation and can handle dif-
ferent loss functions to accommodate various problem types.

However, it is important to note that XGBoost is not without considerations. It can
be computationally expensive, particularly when dealing with large datasets and complex
models. Careful parameter tuning is essential to achieve optimal performance, and the
interpretability of XGBoost models can be challenging due to their complexity.
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BAGGING

Bagging, short for Bootstrap Aggregating, is an ensemble learning technique that combines
multiple individual models to improve prediction accuracy and reduce variance Kuncheva
et al. [2002]. It is widely used in machine learning and has been successful in various do-
mains, again including classification, regression, and anomaly detection.

The fundamental idea behind bagging is to create an ensemble of models by training
each model on a different subset of the original training data. The subsets are created
through a process called bootstrapping, where random samples are drawn with replace-
ments from the original training set. This sampling process introduces diversity among the
models, as each subset may contain different instances and exhibit variations in the feature
space Kuncheva et al. [2002].

During training, each model is trained independently on its corresponding bootstrap
sample. This means that each model sees a slightly different perspective of the data, and
their predictions can capture different aspects or patterns within the dataset. The final pre-
diction of the bagging ensemble is obtained by aggregating the predictions of all individual
models. For classification tasks, the ensemble typically uses majority voting, while for re-
gression tasks, it takes the average or median of the individual model predictions.

Bagging offers several advantages. It can effectively reduce the variance of the indi-
vidual models, which helps to improve generalization performance and reduce overfitting.
Bagging is particularly useful when the individual models have high variance or tend to
overfit the training data. Additionally, bagging is robust to noise and outliers, as the en-
semble decision-making process mitigates their impact on the final prediction.

However, it is important to note that bagging has its own considerations. While it can
improve the accuracy and robustness of the models, bagging does not necessarily improve
the interpretability of the ensemble. The combined decision-making process of the ensem-
ble may make it challenging to understand the underlying factors driving the predictions.
Additionally, the computational complexity of bagging increases with the number of mod-
els in the ensemble, making it more resource-intensive, especially for large datasets.

2.3.3. FEATURE SELECTION TECHNIQUES

Feature selection techniques are methods used to identify and select the most important
features or variables from a dataset for use in machine learning models. These techniques
are important because using too many features can result in overfitting, where the model
becomes too complex and performs poorly on new data.

There are various types of feature selection techniques, including filter methods, wrap-
per methods, and embedded methods Vergara and Estévez [2015]. Filter methods involve
selecting features based on statistical measures such as correlation or mutual information.
Wrapper methods involve selecting features based on the performance of a particular ma-
chine learning model. Embedded methods involve selecting features as part of the model
training process itself.

The choice of feature selection technique will depend on the specific problem and
dataset, as well as the machine learning algorithm being used. Properly selecting and
reducing the number of features can lead to more efficient and accurate models. In this
study, the feature selection methods Sequential Feature Selection, SelectKBest, and Recur-
sive Feature Elimination are used, which all can help in finding a suboptimal feature set
for classification problems. In this study, the objective is to evaluate and compare the out-
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comes of two different feature selection approaches: SelectKBest as a filter method and SFS
as a wrapper method. To account for the computational challenges that arise with larger
datasets, an additional wrapper method, RFE, is incorporated into the experiments. These
methods have been selected based on a broad Internet search and reading through the
Scikit-learn feature selection pages5. As part of the broad search, the highlighted feature
selection techniques are found to be commonly used techniques. These three techniques
are combined to form an ensemble approach that leverages different aspects of feature se-
lection. The ensemble includes Sequential Feature Selection (SFS), which emphasizes the
order and interactions of features, SelectKBest, which ranks features using statistical tests,
and Recursive Feature Elimination (RFE), which eliminates features based on their indi-
vidual contribution. By integrating these techniques, the ensemble approach provides a
comprehensive analysis that considers feature order, statistical significance, and individ-
ual feature impact to create a robust and effective feature selection framework. While there
are alternative feature selection techniques available, it is important to note that a com-
prehensive analysis of their performance has not been conducted in this study since the
assessment of feature selection techniques is not its primary focus.

SEQUENTIAL FEATURE SELECTION

Sequential feature selection (SFS) is a technique used in machine learning to select the
most relevant features in a dataset. It works by iteratively adding or removing features and
evaluating the performance of the model until a suboptimal set of features is identified. A
suboptimal set of features, in the context of feature selection, refers to a feature subset that
may not be the best or optimal solution but is still considered acceptable or reasonably
good for a given task. Feature selection algorithms like SFS aim to identify the most relevant
and informative features to improve the performance of a machine learning model. How-
ever, due to the complexity of feature selection problems and the trade-offs involved, it is
often challenging to find the globally optimal feature subset that maximizes performance.
This approach can improve the accuracy of the model while reducing the complexity of the
dataset.

SELECT K BEST

SelectKBest is a feature selection algorithm used in machine learning to select the K most
relevant features from a dataset. It works by ranking the features based on their statistical
significance, and selecting the K features with the highest score. This approach can improve
the accuracy of the model and reduce the complexity of the dataset by removing irrelevant
or redundant features.

RECURSIVE FEATURE ELIMINATION

Recursive Feature Elimination (RFE) is a feature selection algorithm used in machine learn-
ing to select the most relevant features in a dataset. It works by recursively eliminating the
least important features based on their contribution to the model’s performance until a
suboptimal set of features is identified. This approach can improve the accuracy of the
model and reduce the complexity of the dataset by removing irrelevant or redundant fea-
tures.

5https://scikit-learn.org/stable/modules/feature_selection.html
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3
RELATED WORK

3.1. DGA-BASED BOTNET DETECTION
Over the last decade, a lot of research already has been performed in the domain of botnet
detection and prevention using DGA, based on machine learning or deep learning. All this
research can be clustered into several subdomains, out of which most are classified into
two major categories.

3.1.1. SELECTION OF ML AND DL METHODOLOGIES
First of all, a big focus can be found on the research for ML / DL models to discover DGA
botnets. Within this domain, a first subdivision is identified with a primary focus on re-
search with ML models using features for botnet detection. Examples hereof are ML tech-
niques used such as logistic regression (LR) and decision trees (DT) as proposed by Zhang
et al. [2020]. In addition, and even more often applied in earlier work as indicated by
Vranken and Alizadeh [2022], are the random forest (RF) and support vector machine (SVM)
techniques. In recent work, RF and SVM models are for example applied in the work of Cuc-
chiarelli et al. [2020]; Mao et al. [2020]; Zago et al. [2019]. Other models that are regularly
used are gradient boost (GB) (Mao et al. [2020]; Zhang et al. [2020]), k-nearest neighbor
(kNN) (Zago et al. [2019]), or multi-layer perceptron (MLP) (Cucchiarelli et al. [2020]; Mao
et al. [2020]; Wu [2020]).

Next to the feature-driven ML methodologies, other research focuses more on feature-
less DL algorithms Zago et al. [2019], Vranken and Alizadeh [2022]. In the field of stud-
ies that apply feature-less DL methodologies, the most common enumerator is the usage
of a Convolutional Neural Network (CNN) or Recurrent Neural Network (RNN) technique.
CNN’s and CNN-based methods are used for example in the recent work of Highnam et al.
[2021]; Namgung et al. [2021]; Ren et al. [2020]; Xu et al. [2019]. Building further upon
the CNN approach as a step into dealing with temporal information and handling domain
names and relevant metadata, the use and implementation of RNN (and hence Long Short-
Term Memory or LSTM) is discussed in the research of Cucchiarelli et al. [2020]; Highnam
et al. [2021]; Namgung et al. [2021]; Yilmaz et al. [2020]. Concluding on the research on
ML and DL models, some studies consider both approaches and try to identify what the
best-performing approaches are considering both ML and DL methodologies.

In addition, several literature reviews and surveys are available that focus on DGA-
based botnet detection based on supervised machine learning techniques. An example
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is the paper of Mac et al. [2017], who reviewed supervised detection methods and the accu-
racy of these methods. As part of the review, the authors also classify the methods based on
the type of features used, which are either handcrafted or implicit features. The study uses
datasets from Alexa (top 1 million domains) and the OSINT DGA feed from Bambenek Con-
sulting. In addition, some DGA families were added to the dataset by generating domain
names based on the algorithms used in these DGA families. Although many supervised ML
algorithms can detect DGA-botnets, this study indicates that bidirectional LSTM and Re-
current SVM achieve the highest detection rate on both binary and multiclass classification
problems.

3.1.2. FOCUS ON DATASETS AND FEATURE SELECTION
In contrast to the research done on ML or DL models, research is executed with an em-
phasis on finding or improving feature sets to make botnet identification easier, faster, and
more reliable. This research domain is for example represented through studies in the area
of dictionary extraction as per Pereira et al. [2018], character level-based detection as per
Yu et al. [2018] and context-sensitive word embedding as per Koh and Rhodes [2018].

CONTEXT-FREE AND CONTEXT-AWARE FEATURES

Most of these studies that were conducted in the area of feature selection have a focus on
context-free features and only a minimal amount of research is partially or fully focused on
context-aware features Vranken and Alizadeh [2022]. The publications to date with a focus
on context-aware features form a good foundation for further analysis but have some limi-
tations as they are often tailored to a specific dataset or analysis methodology, for example,
the usage of resolution rules specifically on the Rustock-botnet domain names as per Li
et al. [2019] or the usage of temporal variation patterns (TVPs) as discussed by Chiba et al.
[2017]. A temporal variation pattern refers to how the registration and usage of domain
names can change over time.

PATTERN RECOGNITION BASED ON PASSIVE DNS INFORMATION

When investigating literature on DGA-botnet detection in specific, many studies are found
that use passive DNS data as input for feature selection and model training. The pas-
sive DNS data is either represented by datasets containing benign and malicious domain
names, or datasets that provide a combination of domain names and registration data of
the domain names. During the literature study, many were found in this field of play, as
described in the below paragraphs.

One particular delineated domain within this field of research focuses on DGA-botnet
behavior at times of domain name registration, with the attempt to identify the registration
of malicious domains. These models and detection systems are trained by using for exam-
ple domain profile features, registration history features, and batch correlation features in
addition to DGA-based botnet data. A known approach to detect malicious domain names
at the time of registration is to calculate the domain reputation. The calculated domain rep-
utation aims to highlight if a domain might or might not be linked to malicious activities
before further harm is done. A particular example hereof is the work of Hao et al. [2016].
Their model uses 22 features, derived specifically from domain profile features, registra-
tion history features, and batch correlation features, to distinguish between legitimate and
abusive domain registration behavior. A Convex Polytope Machine (CPM) is used as the
supervised machine learning model. CPM maintains an ensemble of linear sub-classifiers
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and makes its final decision based on the maximum of all of their scores. Another approach
to detecting DGA-based botnets at the time of registration involves studying large amounts
of domain registration data to identify malicious campaigns. These studies focus for ex-
ample on one or more specific top-level domains (TLD) and attempt to identify malicious
entities that register domains for one-time use with malicious intent. An example is the
study of Vissers et al. [2017], who studied 14 months of registration date from the .eu TLD
and claim that they were able to identify 80.04% of these registrations and map them to
large malicious campaigns using clustering algorithms. Building on top of the work of Hao
et al. [2016] and Vissers et al. [2017], further research was conducted trying to answer some
of the unanswered challenges like ground truth imbalance and blacklist incompleteness.
One particular study took a distinct approach by also using registrant data to improve their
system compared with earlier solutions. Their research resulted in a security system that
detects DGA-botnets at the registration time of domain names that is called "Premadona".
Desmet et al. [2021]

CLASSIFICATION AND UNSUPERVISED CLUSTERING TECHNIQUES BASED ON PASSIVE DNS IN-
FORMATION

Another focus area to identify DGA-botnet behavior is using classification and unsuper-
vised clustering techniques based on passive DNS information alongside features retrieved
from the domain names, like Whois information, BPG information, DNS zone information,
related IP addresses, AS information, and honeypot analysis data. These clustering tech-
niques aim to identify similar characteristics and group domains according to their simi-
larities Weber et al. [2018], Antonakakis et al. [2010]. Some specified clustering techniques
are Density-based spatial clustering of applications with noise (DBSCAN), K-Means, Birch,
Ward Hierarchical Clustering, and Agglomerative Clustering Weber et al. [2018]. Anton-
akakis et al. [2010] also calculate reputation scores for new and unknown domain names,
based on the characteristics derived from the passive DNS information. A low score is
given to domains linked to malicious activities, while a high score is provided to domains
linked to legitimate activities. With the system they have built, called "Notos", they claim to
achieve a true positive detection rate of 96.8% and a false positive detection rate of 0.38%.

LEXICAL FEATURES AND CHARACTERISTICS FROM DNS REQUESTS AND LOGS

A wider explored domain within this study is based on research that uses data like NX Do-
main traffic, DNS logs, and DNS query information. By using this kind of data, two fore-
most streams of studies have been identified. The first stream primarily focuses on lexical
features and characteristics that are derived from DNS requests and logs. Lexical features
and characteristics can be identified as the domain length, usage or non-usage of specific
characters in the domain name, Shannon entropy, known word rate, and vowel rate Truong
and Cheng [2016], Soleymani and Arabgol [2021]. The setup of Truong and Cheng [2016] is
based on analyzing character string features. Various ML methods (Naïve Bayes, J48 (DT),
Random Forest, k-NN, SVM) were used to train their model, while validation happened
with the 10-fold cross-validation and the percentage split methods. The datasets used are
a combination of a self-created dataset by collecting DNS traffic data in a managed net-
work, a list of benign domains collected from Alexa, and a list of malicious domains col-
lected from sources like malwaredomains.com and analyzers such as Anubis. The overall
result indicates that J48, which is a Decision Tree algorithm, gives the best performance
with an accuracy rate of 92.3%. In addition to this research, Soleymani and Arabgol [2021]
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based their study on the knowledge that botnets regularly send lookup queries to DNS sys-
tems. They compare several models and their accuracy, where the models presented are
a stochastic forest model, a logistic regression algorithm, and an SVM algorithm. For all
models, the experiments include runs with and without using PCA (Principal Component
Analysis). A general outcome presented is that the decision tree and random forest algo-
rithms have the best accuracy and precision when using PCA. For experiments without us-
ing PCA, again Decision Tree and Random Forest generate the best performance in terms of
accuracy and precision, although the results are lower than when PCA was used. Extending
on this earlier research, other studies have emphasized building detection methods that
can be applied in a real-world setting. One example hereof is the detection approach sug-
gested by Manasrah et al. [2022], who claim that their DGA-based botnet detection model
can be placed before a recursive DNS (RDNS) server to monitor DNS query packets com-
ing from network hosts. The approach to making their framework scalable is to only focus
on abnormal DNS queries by distinguishing regular user behavior (looking at DNS queries)
from DNS queries from bot hosts. In turn, the distinguished DNS queries are then used
to identify if DGA-based bot hosts are present. This identification of DGA-based bot hosts
is based on 4 ML classifiers. These classifiers are k-NN, SVM, DT, and ANN. No additional
information regarding the architecture of the ANN is disclosed.

SIMILARITIES AND BEHAVIORAL PATTERNS OF DNS REQUESTS

The second stream is looking at grouping domains based on their similarities and behav-
ioral patterns of DNS requests. One of the primary findings is that DGA’s are often used only
over a short amount of time and have a similar lifetime and query style Zhou et al. [2013].
Grouping the domains based on their similarities and behavioral patterns can be done on
similarity characteristics like for example, the top-level domain Yadav et al. [2012] or what
is called rare destination requests Oprea et al. [2015]. A rare destination request is iden-
tified as a new domain that was not visited yet from within the network before and then
contacted by a limited amount of hosts from within that network. After the grouping, met-
rics are computed based on alphanumeric characteristics that are fed into the ML models.
Input for these studies are primarily DNS Logs from either ISPs or enterprise networks and
are sometimes enriched with DGA-based domain name datasets. In particular, Oprea et al.
[2015] used 2 months of DNS logs captured by LANL (Los Alamos National Lab) for APT
infections and 38TB of Web Proxy logs collected by an enterprise. Yadav et al. [2012] on the
contrary used an ISP dataset (network traffic), a non-malicious DNS dataset (DSN crawl), a
malicious domain name dataset obtained from BotLab, and a set of algorithmically gener-
ated domain names created using Kwyjibo (tool to generate pronounceable domain name,
but using words that are not in the English dictionary). Oprea et al. [2015] presents results
for LANL-simulated attacks with an overall 98.33% true detection rate and a false positive
rate of 3.72%. For the web proxy logs, even discoveries of unknown malicious domains (98)
were found. Some studies in this stream highlight that their models do not require malware
samples of malicious domains to be effective, but the limitation of their work lies in the us-
age of HTTP/HTTPS traffic and the time-range verification that is used Oprea et al. [2015].
A similar finding can be summarized for Yadav et al. [2012], who claim that also unknown
botnets can be detected by their model, but one of the limitations is that a large number of
test words is used, which could be overcome by attackers by timing the domain fluxing.
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PACKET FLOW DATA AS INPUT

Next to the studies that use passive DNS data, which includes data collected through DNS
lookups, sensors, etc., and allows building timelines of events, a lesser amount of literature
is available with a focus on DGA-based botnet detection that uses packet flow informa-
tion. With packet flow information, a reference is made to data derived from DNS queries
and packet flows captured at the moment of the DNS query itself or when the packet flow
was logged. This is in contradiction with research that focuses more holistically on regular
botnet detection where packet flow data is more often found as the used datasets. In this
area, studies are more focused on finding communication patterns and behaviors of botnet
attacks in the computer network based on the available packet flows and query data. An
initial example hereof is the work of Putra et al. [2022], whose main contribution is found
specifically in the pre-processing phase of data to achieve detect botnet detection. This
pre-processing is carried out including known techniques like data transformation, feature
engineering with one-hot encoding, and data normalization. In their proposed model, they
use machine learning algorithms like Decision Trees, Random Forest, Logistic Regression,
k-NN, and Naïve Bayes. The study is conducted on two major datasets, NCC and CTU-
13. In summary, the authors claim to have a detection accuracy of 99.99%. The novelty
compared to other works is that they apply and validate their model on multiple scenarios
of the CTU-13 dataset and they have put the effort into describing the pattern or botnet-
specific characteristics. In addition to this research, DBod was introduced by Wang et al.
[2017]. It is a DGA-based botnet detection scheme that uses DNS query behavior to detect
the botnets. The study is performed on a DNS dataset collected from an education net-
work, obtained over 26 months. Only the unsuccessful DNS queries from the dataset are
used, on which the researchers perform clustering and group detection algorithms. The
results of both studies indicate that both known and unknown DGA-based botnets can be
detected in real-world networks, without the need to have prior knowledge of a botnet.

SURVEYS BASED ON DNS DATA ANALYSIS

Surveys based on DNS data analysis have been conducted by another group of researchers.
These surveys typically categorize detection approaches based on the sources of DNS data
and also review how information from other sources enriches the DNS data. The methods
and evaluation strategies used are also discussed Zhauniarovich et al. [2018].

When considering DNS data sources, reviews are conducted on where and how the data
is collected. The "where" question is addressed through dimensions such as host-resolver
and DNS-DNS. Host resolver refers to communication between the host and the resolver,
while DNS-DNS is referring to communication between DNS servers. The "how" question
is answered by indicating whether studies used a passive or active way of collecting data.
Enrichment data types are also considered for classification, such as geolocation, ASN, and
registration records. In addition, a distinction is made between malicious and benign do-
main name records when using Ground Truth for the classification and evaluation of DGA-
based botnet detection approaches.

Detection methods are also reviewed in other studies, with viewpoints towards the fea-
tures being used, the methods applied, and the presented outcomes. In most cases, fea-
tures are engineered based on the availability of raw data rather than using the raw data
directly. Detection methods can be classified as knowledge-based or machine-learning-
based. The latter involves researchers using datasets with both benign and malicious do-
main names and applying machine learning techniques. Hybrid approaches combining
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both methods are also present in several cases.

The outcomes of detection methods are also analyzed, with a difference between those
that detect specific malicious behavior and those that focus on the detection of associa-
tions between domain names. Metrics and evaluation methods used in DGA-based bot-
net detection studies are also addressed, including TPR/Recall, FPR, TNR, FNR, Precision,
Accuracy, F1-score, and AUC. Evaluation methods can be grouped into different buckets
such as whole dataset, one round train-test split, leave p-out cross-validation, K-fold cross-
validation, cross-networks validation, cross-time validation, and cross-blacklists validation
Zhauniarovich et al. [2018]. Significant challenges in the field of surveys of DGA-botnet
detection based on DNS data analysis are highlighted, including data availability, lack of
agreed practices to define ground truth, the resilience of features, and adaptability of algo-
rithms. The lack of established theoretical foundations to evaluate detection approaches is
also noted.

The focus of some surveys on DNS data has been extended to include reviews of DNS
traffic analysis, which often involves the usage of passive DNS data. For instance, the study
by Al-Mashhadi et al. [2019] examines methods that use a Honeypot and approaches that
rely on an IDS (Intrusion Detection System). In their review, they summarize the models
associated with each technique and highlight the primary drawback of each one. The study
suggests that various DNS features can facilitate botnet detection, but the specific features
used depend on the model and context, such as the time period or the scope of available
datasets.

3.1.3. A FOCUS ON EXPLAINABLE AI
On a more holistic level, there is also the study from Piras et al. [2022]. They performed a
study towards explainable AI when looking at the detection of DGA-based botnets using ML
methodologies. They contribute model explanations with a local or global nature, where a
local explanation is made on a specific sample rather than an entire dataset. A global ex-
planation in turn has a focus on an entire dataset or collection of samples. The techniques
used for the experiments in this study are feature statistical analysis, partial dependence
plots, summary plots, and force plots. They used DNS traffic as input data alongside do-
main lists from Alexa for benign domains and DGAArchive for malicious domains. The
conclusions of their study, first of all, indicate that they have obtained a better understand-
ing of feature distribution and the correlation between features. In addition, there seems to
be a direct correlation as well between the selection of features and the ML models that are
used, including also the availability or usage of data. All the conclusions brought forward
demonstrate how context-dependent DGA botnet detection can be.

3.2. NON-DGA-SPECIFIC BOTNET DETECTION
Although research on non-DGA-specific botnets is slightly deviating from the purpose of
this study, many of these studies contain important information to consider. On top, more
studies can be found in this domain that use active DNS information to detect botnets and
is a source of relevant information to work with. Several studies are using TCP, UDP, and
IP traffic and header information as a foundation for their analysis and model training.
There is a distinction to make between researchers that emphasize packet flow informa-
tion van Roosmalen et al. [2018], van Renswou [2021], Kwon et al. [2016], Liang et al. [2022]
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and researchers that tried to distinguish themselves using only low-level network features
like TCP, IP, and UDP header information Poon [2018]. While some of the studies apply the
more traditional machine learning models to detect the presence of botnets and botnet be-
havior in network traffic, others applied deep learning methodologies like neural networks,
recurrent neural networks, and ladder networks for the same purpose van Roosmalen et al.
[2018], Poon [2018]. Concluding on results, the best results were obtained by researchers
that used the actual packet information. As an example, van Roosmalen et al. [2018] were
able to report a detection accuracy of 99.7%. On the contrary, the study from Poon [2018]
using only header information summarized that the accuracy of their proposed approach
was lower than expected compared to earlier work and that the number of false positives
was too high for the model to be seen as trustworthy. Given the huge datasets and large
volumes of DNS traffic that is flowing through networks every day, Kwon et al. [2016] pro-
poses a detection approach called PsyBog. It is a detection approach specifically tailored to
detecting malicious behavior within large volumes of DNS traffic. PsyBog uses a technique
called power spectral density (PSD) to discover major frequencies that can be a result of
DNS queries performed by botnets. The scalability of PsyBog on large data volumes origi-
nates in the usage of timing information of DNS query generation primarily and mostly ig-
noring other information like the actual domain name. The datasets used for their research
consist of a generated set of DNS traces in a controlled environment and a large number of
real-world DNS traces collected from a recursive DNS server, an authoritative DNS server,
and Top-Level Domain (TLD) servers. In summary, PsyBog detected 23 unknown and 26
known botnet groups with 0.1% false positives. This result also indicates that PsyBog does
not need to have prior knowledge of a botnet or a botnet’s behavior to detect botnets. From
a slightly different angle, Liang et al. [2022] has emphasized the group characteristics of
botnets for their proposed detection method. With this approach, they use the sequence of
packet length as one of the major characteristics, based on which the similarity between
sequences is calculated to identify botnet behavior. Through this methodology, the re-
searchers claim to be independent of any protocols used by the botnet and they are also
not affected by the encryption of network traffic. The dataset used for their research is the
ISCX dataset. Their proposed model can be implemented at the boundary of a network to
monitor network traffic that enters or leaves the designated network, and hence protect the
network before a botnet passes the boundary.

3.3. BUILDING UPON RELATED WORK
Concluding an extensive literature review, several papers provide a summary or survey of
earlier work that can be an entry point for future research. Earlier, the paper of Vranken
and Alizadeh [2022] was highlighted, which provides a summary of studies concerning
botnet and DGA-botnet detection. Table 3.1 provides a brief overview of recent related
work discussed in the preceding sections, serving as a baseline for this study. Although
newer research is available, literature is selected that either adopts a similar methodology
or has influenced the way of thinking. Previous studies have employed various models to
identify DGA-domain names and botnet behavior, such as clustering, classification, neu-
ral networks, and Long Short-Term Memory (LSTM). The related work showcases a mix
of studies that utilize machine learning models with feature selection and featureless deep
learning models. Nonetheless, this study will concentrate on machine learning models that
utilize feature selection. The application of supervised machine learning methods offers
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the advantage of reducing training time and providing greater control in assessing model
performance during the research. Feature selection plays a crucial role in enhancing the
effectiveness of machine learning models and is performed prior to model training. By
eliminating redundant or irrelevant features, feature selection ensures that only valuable
features are considered. This not only improves model performance but also reduces the
effort and time required for model training, enabling faster feedback loops throughout the
entire process.

Related work Year Primary Approach Main Data used

Desmet et al. [2021]
2021 Clustering, Classifica-

tion
domain records, registrant infor-
mation

Hao et al. [2016]
2016 Convex Polytope Ma-

chine (CPM)
domain profile, registration his-
tory and batch correlation

Vissers et al. [2017]
2017 Clustering, Classifica-

tion
Domain records, DNS registrant
information

Weber et al. [2018]
2018 Clustering, Classifica-

tion
Passive DNS records, domain
records

Antonakakis et al.
[2010]

2010 Clustering, Classifica-
tion

Passive DNS records, Zone- & net-
work based features

van Roosmalen
et al. [2018]

2018 Deep Neural network,
Ladder Network

TCP, UDP, IP botnet traffic

Poon [2018]
2018 Bidirectional LSTM

(BLSTM)RNNs
TCP, UDP, IP headers

van Renswou
[2021]

2018 Clustering, Classifica-
tion

TCP, UDP, IP headers

Putra et al. [2022]
2022 Clustering, Classifica-

tion
TCP, UDP, IP headers

Table 3.1: Summary of related work with the primary approach and the type of data used.

The previous studies on DGA-based botnet detection have used various datasets, such
as domain records, DNS records, registration information, and TCP/UDP/IP traffic. They
have applied feature selection techniques based on domain length, character/digit fre-
quency, registrant information, nameserver reputation, domain age, and IP information.
However, these studies also suggest that more attention is needed for feature selection and
identification of new features.

This research aims to answer to what extent machine learning models can be built for
the detection of DGA-based botnets by using aggregated packet flow datasets and context-
related feature selection methods. Context-related features are features that are selected
and designed specifically for a particular context or problem domain. In light of this re-
search, the problem domain is phrased as DGA-based botnet detection based on aggre-
gated packet flow data that includes DGA-based botnet behavior.

The contribution of this study is found in the merging of multiple packet flow datasets
and the application of context-related feature selection based on that merged dataset. By
combining multiple datasets, the volume, and diversity of data increases. This increased
diversity of data improves the feature selection process and enhances the accuracy and re-
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liability of DGA-based botnet detection. This approach helps to address the challenges as-
sociated with DGA-based domain detection, such as the variability and complexity of DGA
algorithms, and the noise and ambiguity in packet flow data. It provides a fresh view on se-
lecting relevant features for ML model training based on an enriched dataset. In addition,
this study provides another view on the evaluation and performance analysis of the trained
models. Through extensive experiments and evaluations using packet flow datasets, the
effectiveness and robustness of the DGA-based botnet detection method are assessed by
means of the F1 performance metric on the positive target class. This provides valuable in-
sights into the strengths and limitations of the approach and establishes a benchmark for
future research in the field.

This study builds on earlier work, including the usage of passive DNS data for malicious
behavior prediction Xu et al. [2014] and the proposal of a model to prevent malicious do-
main registration Desmet et al. [2021]. The work of Putra et al. [2022] and van Renswou
[2021] are primarily used as a baseline in this study, with an aim to identify new findings
and contribute to the domain of DGA-based botnet detection. The two studies are selected
as the most relevant related work because of their insights and contribution to the existing
research domain. Although they both focus on botnet detection in a broader sense, they
demonstrate promising results for detecting botnets based on packet flow information. In
addition, they use similar datasets as the ones selected for this research. They also use ML
models for clustering and classification purposes, whereas other recent related work based
on packet flows often uses deep learning methods.

Studying these works provides insights into the strengths and limitations of different
detection methods, and identifies opportunities for future research to extend in the do-
main of DGA-based botnet detection. Furthermore, the selected works provide valuable
references and can be used as benchmarks for evaluating the effectiveness and efficiency
of results obtained in this work.
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4
RESEARCH DESIGN

Many studies have already been performed in the field of DGA botnet detection, often
with promising results. Each research has its boundaries in terms of selected botnets, used
datasets, feature selection, or model implementation to make the task at hand manageable
in the ever-changing environment where botnets reside in. The evolving environment and
the fast pace with which botnets are changing make it difficult for researchers and security
experts to stay ahead. Given the abundance of existing research and proposed preven-
tive measures in the field of DGA-based botnet detection, malicious users can leverage this
knowledge and established machine learning techniques to evade detection. Therefore,
researchers must constantly explore novel approaches to identify and block (DGA-based)
botnets and their activities. In this study, an answer is provided to how different ML mod-
els can be built for DGA-based botnet detection and how the results of these models can
be positioned against earlier work. Throughout the study, ML techniques are trained and
evaluated based on aggregated packet flow datasets. Better model performance can help
in a better and faster classification and detection of malicious botnet behavior. The packet
flow information is used to highlight patterns and DGA-specific behavior in the captured
network information. This faster detection can in turn contribute to earlier prevention
mechanisms when used in future work.

This study’s findings enhance DGA-based botnet detection by combining several packet
flow datasets labeled for DGA-based botnet behavior. Additionally, a context-related fea-
ture selection approach is utilized, and ML techniques are selected based on the derived
features to improve botnet detection. The context-relativity refers to feature and model se-
lection through multiple supervised (e.g. Select K Best and Sequential Feature Selections)
selection techniques depending on the availability, accuracy, and size of the datasets. To
zoom in on the context-relativity, usable features are identified from each specific dataset
individually, and how ML models perform when they are trained with these feature sets.
To bring more value to context-relativity, experiments are held on how ML models perform
when evaluated against other datasets than the one from which the feature sets are derived.

The research is characterized as a combination of extensive literature review and em-
pirical research. This approach entails a comprehensive examination of existing scholarly
works and research studies related to the topic at hand, providing a strong foundation of
theoretical knowledge. Additionally, empirical research is conducted to gather firsthand
data and evidence, enabling the study to draw practical insights and make informed con-
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clusions. By merging the insights gained from the literature review with the findings ob-
tained through empirical research, a well-rounded and holistic understanding of the sub-
ject matter is achieved.

4.1. RESEARCH QUESTIONS
The above-mentioned research aim and target contribution translate well into the main re-
search question of this study, formulated as:

To what extent can machine learning models be built for DGA-based botnet detection by
using aggregated packet flow datasets and context-related feature selection methods?

To formulate clear answers and recommendations that are beneficial for this research and
potential further research, several subquestions will be handled to deliver specific and tan-
gible results.

SRQ1: WHICH DATASETS ARE SUITABLE TO DERIVE CONTEXT-RELATED FEATURES FROM PACKET

FLOW INFORMATION?
The first subquestion targets to find a list of useable packet flow datasets that include DGA-
based botnet data. Packet flow data is a rich source of information for network analysis,
containing important details about network protocols and traffic patterns. In datasets used
for network analysis, packet flow information is often presented in the form of bidirec-
tional flow records. These records provide valuable insights into host communication by
capturing essential attributes like source and destination IP addresses, ports, protocols,
timestamps, and other relevant features. A useable dataset for this research indicates a few
characteristics. First of all, the dataset should include relevant data containing information
about DGA botnets or their behavioral network patterns, to perform further experiments.
Ideally, it should not be older than approximately five years to work with relevant informa-
tion. In addition, the data in the different datasets have to demonstrate commonalities so
that findings from one dataset can be transposed in some way on another dataset. In some
cases, it is also required to merge datasets based on one or more features (e.g. data from
multiple packet flow datasets have to be mergeable to generate a more complete and holis-
tic dataset). Thirdly, the dataset needs to have sufficient records to train and test the ML
models that will be used later. And finally, the datasets also need to have sufficient features
with qualitative data to work with, as further discussed in section 4.2.

SRQ2: WHICH CONTEXT-RELATED FEATURES CAN BE DERIVED FROM PACKET FLOW DATASETS

TO IMPROVE THE OVERALL PERFORMANCE AND ACCURACY OF DGA BOTNET DETECTION?
Subquestion two targets to find an answer on which context-related features can be de-
rived from the datasets to improve the overall detection and accuracy of DGA-based botnet
detection. Context-related features refer to features that are carefully chosen and designed
to address the specific context and problem domain. In light of this study, these features
are tailored to capture the unique characteristics of DGA traffic and network data, enabling
more effective detection of DGA-based botnets. The feature selection is supported through
the usage of multiple feature selection techniques tailored to the availability, accuracy, and
size of the datasets. By selecting the features based on the context of the DGA-based bot-
net detection, the best fit-for-purpose feature sets can be used when training the models.
Even though the feature selection is defined as a separate subquestion, the steps required
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for answering this subquestion will involve performing experiments as further described
for SRQ4.

SRQ3: WHICH ML METHODS CAN BE USED TO IMPROVE DGA-BASED BOTNET DETECTION

WHEN USING CONTEXT-RELATED FEATURES DERIVED FROM PACKET FLOW DATASETS?
Similar to the second subquestion, a third question is defined but with a focus on the se-
lection of machine learning techniques. The goal is to draw a conclusion on which ML
methods can be used to improve DGA detection when using context-related features that
are derived from the selected data sets. Initially, multiple ML models will be considered,
implemented, tested, and validated based on the available datasets and features. Because
finding the ML models with the best outcomes depends on the derived features, experi-
ments will have to be held. Hence, the work performed for answering this SRQ goes hand
in hand and will be answered through the experiments as described below for SRQ4. The
outcome of this experiment will be used to select the best suitable models based on the
derived features from the earlier described feature selection as part of SRQ2.

SRQ4: HOW DO THE PROPOSED MODELS PERFORM AND HOW CAN WE POSITION THE OUT-
COMES OF THESE MODELS AGAINST RESULTS FROM EARLIER WORK?
The final component of this research to answer is whether a model can be built combin-
ing the outcome of the former two subquestions and what the performance and accuracy of
detecting botnets look like with these models. The aim is to build models based on context-
related feature selection with good performance rates. In addition, the evaluation will be
made on how the outcomes of the proposed model can be positioned against the perfor-
mance of ML models from earlier work. This positioning happens based on the outcomes
of experiments in this study against the claimed results from two most related works.

4.2. RESEARCH METHOD
This research consists of several steps that contribute to answering the main research ques-
tions. These steps include an extensive literature review, a search and consolidation to
obtain workable datasets, a validation phase on the conclusions of earlier research, and
experiments to define the outcomes of the posed research questions.

To obtain a set of related literature, the literature review is handled in a controlled man-
ner, with a focus on literature published in the last three to five years. Several known scien-
tific databases such as IEEE Xplore, ScienceDirect, and ACM Digital Library are consulted
as starting points to minimize the risks of getting too much or irrelevant literature. In ad-
dition, Scopus and Google Scholar are used for more generic searches and for finding ad-
ditional literature. When performing the literature study, a defined set of keywords is used.
These keywords include terms like "DGA", "Domain Generation Algorithm", "Botnet de-
tection", and "Malicious domain" combined with "Machine Learning". The keywords are
also extended with terms like "packet flow", and "netflow" because context-related feature
sets based on packet flow data are created.

To facilitate further reuse and references of literature in this study, the Mendeley Ref-
erence Manager is used to store all papers with their respective reference. Specific tags
are given to the papers to categorize them into their domain expertise, findings, and ap-
proaches. The metatags are mainly used to keep a condensed overview of the type of re-
search conducted, the key ML methods implemented, the datasets used, and the relevant
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outcomes the article has. By using these established literature collections and the Mende-
ley reference manager, both the risks introduced by the high amount of papers and the risk
of limiting the reach of this study are minimized.

SRQ1: AVAILABILITY AND USABILITY OF DATASETS

The first subquestion to answer relates to the availability of datasets suitable for the study.
Suitable datasets should provide enough information to merge with other data or already
have DGA-based botnet behavior labeled data. Criteria used during the search for datasets
are relevance, quality, size, diversity, availability, and ethics. Relevant datasets contain use-
ful information, while high-quality datasets are accurate and representative of the prob-
lem domain. The dataset should be large enough to provide statistical power and diverse
enough to avoid bias and overfitting in the machine learning models. Sufficient records is
a rather hard-to-answer concept when looking for datasets because the amount of records
required very much depends on the problem to be solved and the complexity of the chal-
lenge and therefore used ML models. An example hereof is the need for a few hundred
records to obtain an optimal detection performance as proposed by Zhu et al. [2015]. In
comparison, Figueroa et al. [2012] performs experiments by fitting 568 models to predict
the sample size for classification performance. As a result, they can derive the need to have
between 80 and 560 tagged samples depending on the dataset and sampling method. Ad-
ditionally, the dataset should be easily accessible and available for other researchers to pro-
mote transparency and reproducibility in research. Obtaining the dataset in an ethical and
legal manner without sensitive or personally identifiable information is also important.

The initial activity to address this question is addressed via an extensive literature re-
view. Because of the quickly evolving landscape of DGA detection and prevention, the main
focus is on literature published in the last three to five years to minimize the risk of working
with outdated information and obtain more accurate results in the proposed experiments,
not excluding relevant older work. Datasets for DGA-based botnet detection ideally should
come from the same time period, as the DGA algorithms used by botnets can change over
time. Literature however demonstrates that the creation of new datasets does not follow
the same time evolution. Also in more recent research, packet flow datasets are used that
include data that is ten to fifteen years old. Using datasets from different time periods may
result in inaccurate or inconsistent results, as the DGA algorithms may have evolved or be-
come more sophisticated over time. For example, if you are training a machine learning
model to detect DGA-based botnets, using a dataset from several years ago may not accu-
rately represent the current state of DGA-based botnets. In this case, the model may not be
able to detect newer and more advanced botnets, leading to potential security vulnerabili-
ties. Even though it is not possible to obtain all datasets from the same time period, it is still
possible to use datasets from different time periods. In this case, it is important to carefully
select the features, try to avoid using time-specific features, and compare these character-
istics of the DGA-based botnets used in different time periods. Many groundworks have
already been done on the literature of the last decades, including studies specifically tai-
lored to the literature review of other papers. Two main studies in this domain are the ones
from Zago et al. [2019] and Vranken and Alizadeh [2022], which are used as starting points
for this study and are further used in the literature review. The scope of the literature study
for this subquestion is to find datasets in the most recent related work and to identify if they
are suitable for my research.

Next to the literature review, a broad search is performed to obtain qualitative datasets.
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This search is primarily conducted on data repositories like Kaggle and Google Dataset
Search, using search terms like DGA, Botnet, DNS, and WhoIs Information. In extension,
a free text search on the Google search engine is performed with terms and dataset names
obtained during the literature review. The search for datasets includes the datasets used in
earlier research as well as datasets found during the specific dataset search. On the datasets
that are found during the literature study and the extensive search, further investigation is
needed by means of experiments to identify if these datasets contain the correct data and
can be used for further research. For this part of the investigation, the data first has to be
cleaned, processed, and analyzed. The preprocessing involves validation, standardization,
formatting, transformation, matching, and cleaning of the data Alasadi [2017]. Data valida-
tion ensures the integrity and validity of the data, and it ensures the reliability of the results
obtained. This is done by identifying missing values, outliers, and inconsistencies. These
issues are then addressed by removing or handling the problematic data points appro-
priately. Next, data standardization ensures consistent representation of variables across
datasets, including converting date formats, normalizing numerical values, and encoding
categorical variables consistently. Data formatting ensures compatibility and consistency
of data formats, with necessary conversions of data types like string to numeric or date-
time formats. Data transformation involves necessary changes to make the data suitable
for merging, such as aggregating data, creating derived variables, or encoding variables
for compatibility. Data matching identifies common variables or identifiers for merging,
ensuring consistent and compatible values. Finally, specific data cleaning techniques are
applied, such as removing duplicates, handling missing values through imputation or dele-
tion, and addressing outliers Alasadi [2017].

To get a better understanding of the cleaned data, an initial investigation of the data and
identification of patterns happens through a structured Exploratory Data Analysis (EDA)
approach. EDA is an approach, promoted by John Tukey in 1970, used to analyze data
sets and identify the main attributes or features Cox and Jones [1981]. This approach in-
cludes anomaly detection, verification of outliers, and a check on several assumptions.
Exploratory Data Analysis (EDA) goes beyond identifying data quality issues and encom-
passes a diverse set of data analysis techniques aimed at extracting descriptive statistics
to uncover significant features and characteristics of the data. These statistics include es-
sential measures such as the mean, median, mode, standard deviation, and variance of
specific features. They provide valuable insights into the central tendency, variability, and
distributional properties of the data. Further details and comprehensive discussions on
these descriptive statistics are covered when describing the datasets, allowing for a more
in-depth understanding of the data’s key attributes and facilitating subsequent analytical
tasks.

SRQ2: CONTEXT-RELATED FEATURE SELECTION

For the second subquestion, an attempt is made to identify which context-related features
can derived from the collected datasets to improve the overall performance and accuracy
of DGA domain detection. Context-related features are features that are selected and de-
signed specifically for a particular context or problem domain. In the context of DGA-based
botnet detection, context-related features are selected based on the characteristics of DGA
traffic and network data. Context-related features include various types of information,
such as the domain name syntax, DNS query patterns, and network traffic characteristics.
One important aspect of context-related features is that they are specific to the domain be-
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ing studied. This means that the same features may not be applicable or effective for other
domains or problem contexts. These features are used to train machine learning models
that accurately classify DGA traffic and detect botnet activity. Performing feature selection
before model training is important because it can help reduce dataset complexity by re-
moving irrelevant or redundant features, improve model accuracy by training on a more
focused set of data, and prevent overfitting by selecting the most important features. Over-
fitting can occur when a model performs well on training data but poorly on new, unseen
data due to including too many features in the model.

Moreover, literature study is conducted to identify methodologies for feature selection
and experiments are performed with the identified methodologies to derive usable feature
sets from the datasets. This experiment runs in parallel with the search for datasets, as
the usability of the datasets and their features is verified. Feature sets are created that are
derived directly from the data sets without feature creation. The context-relativity of fea-
ture selection means the possibility to use certain features depending on the availability,
accuracy, and size of data elements. Features are selected using a combination of super-
vised feature selection techniques to obtain usable feature sets depending on the availabil-
ity and usability of the input data. Equally important to selecting the most relevant features
is the identification of less useful features and the removal of these features from the fea-
ture sets. This identification of less useful features is performed by calculating the almost
constant features and performing a feature correlation analysis. The goal is to apply an
ML model with the highest performance depending on the selected features. Combined
with the outcome of the literature study, this activity aims to form a conclusion on which
context-related feature sets can be derived from the data. On a high-level note, there is not
a single answer to the question as the context-relativity will be driven by the availability and
accuracy of the data or depending on the architecture and approach of certain botnets.

SRQ3: ML METHOD SELECTION

An explicit choice is made to execute this research with ML techniques and predefined fea-
ture sets, instead of feature-less deep learning methodologies. The first decision herein is
one of control, as the aim is to work with a controlled data set and to write a clear expla-
nation about the use of packet flow information and the impact of context-related feature
selection. Additionally, the usage of supervised ML methods allows for a shorter time in
training models throughout the research, which contributes to shorter experiment loops
and faster results to work with.

To answer the third subquestion related to the identification of ML methods that can be
used in combination with the derived feature sets, a similar approach is held. For this pur-
pose, the focus of the literature study goes to detection methods using ML and methodolo-
gies that are used for further validation and experiments. The list of ML methods includes
ML algorithms that already proved successful in the domain of botnet and DGA-botnet de-
tection in the related work of this study, as well as potentially less-used methods in earlier
research towards DGA detection. The performance of the selected ML methods is validated
throughout several experiments, where the earlier derived datasets and features are used
as input.
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SRQ4: PERFORMANCE OF PROPOSED MODELS AND POSITIONING AGAINST RELATED WORK

During the experiments to identify which ML methods can be used in combination with the
derived feature sets, MLFlow1 is used to capture the results of each experiment. MLFlow
automatically registers all performance indicators of model training and evaluation, in-
cluding parameters such as accuracy, recall, and F1-score, which give insight into how well
the trained models classify DGA-botnet data. The tool also records parameters like run
time and memory consumption of the models. In addition, MLFlow offers an easy-to-use
comparison tool that allows for the comparison of outcomes of different models both in a
textual and visual representation. This comparison within MLFlow makes it easier to ana-
lyze the results and detect the best-performing model.

The comparison of performance indicators, specifically performance indicators that
relate to the model’s ability to make correct classifications, should be treated and analyzed
with care. It is not advisable to look at one particular performance indicator like accuracy
or ROC score as it could be too limited and give a false indication of what a good model
looks like. In this research, the focus is on three performance indicators combined to iden-
tify if a model is performing well or not: area under the curve (AUC), accuracy, and F1 score
on the positive target class. AUC and accuracy are used to get a general understanding of
the trained model’s performance, as they indicate how well the model is performing on
classifying data within the full data provided, for both negative and positive classes. Since
highly imbalanced datasets are used, and the aim is to correctly identify DGA-botnet be-
havior, the F1-score on the positive class is added to the evaluation to measure how well
the model identifies true positive records, which are the actual DGA-botnet records.

Accuracy measures the overall correctness of the classifier by considering the ratio of
correctly classified instances (both positive and negative) to the total number of instances
Sokolova and Lapalme [2009]. It provides a general measure of how well the model per-
forms in terms of correct predictions. Accuracy is expressed as a value between 0 and 1,
where 1 represents a perfect classifier with 100% accuracy, and 0 represents a completely
inaccurate classifier.

Accur ac y = T P +T N

T P +T N +F P +F N
(4.1)

In this equation, True Positives (TP) represent the number of correctly classified posi-
tive instances, True Negatives (TN) represent the number of correctly classified negative in-
stances, False Positives (FP) represent the number of negative instances that are incorrectly
classified as positive, and False Negatives (FN) represent the number of positive instances
that are incorrectly classified as negative.

F1 score on the positive class provides a measure of model performance specifically for
correctly identifying positive instances, taking into account both precision and recallSokolova
and Lapalme [2009]. The F1 score for the positive class is calculated using precision and re-
call specifically for the positive class. The mathematical equation for the F1 score is as
follows:

F 1 = 2∗Pr eci si on ∗Recal l

Pr eci si on +Recal l
(4.2)

Precision is the ratio of true positives (TP) to the sum of true positives and false positives
(TP + FP).

1MLFlow: https://mlflow.org/
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Pr eci si on = T P

T P +F P
(4.3)

Recall is the ratio of true positives to the sum of true positives and false negatives (TP +
FN).

Recal l = T P

T P +F N
(4.4)

The AUC (Area Under the Curve) is a metric used to evaluate the performance of a bi-
nary classification model Fawcett [2006]. It represents the area under the Receiver Oper-
ating Characteristic (ROC) curve. The mathematical equation for AUC is not a single for-
mula. To calculate the AUC, the ROC curve is first constructed by plotting the True Positive
Rate (TPR, also called Recall) against the False Positive Rate (FPR) at various classification
thresholds. TPR is the ratio of true positives to the sum of true positives and false negatives,
while FPR is the ratio of false positives to the sum of false positives and true negatives. Once
the ROC curve is obtained, the AUC is calculated as the area under this curve. It represents
the probability that a randomly chosen positive instance will be ranked higher than a ran-
domly chosen negative instance by the model. An example ROC curve is provided in figure
4.1, collected from Wikipedia2. In this visualization, AUC is not explicitely shown, but it is
respectively the area under each ROC curve.

Figure 4.1: Example ROC curve visualized. Figure retrieved from the Wikipedia website.

This part of the experiment contributes to answering the main research question based
on the earlier steps in the research. The aim is to answer to what extent models can be
built for DGA-based botnet detection through applying machine learning techniques on

2https://en.wikipedia.org/wiki/Receiver_operating_characteristic
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packet flow data, and which feature sets can be deduced as input for the machine learning
techniques. In addition to finding an answer to the main research question, the experi-
ment also contributes to finding potential shortcomings, pitfalls, and attention points of
the proposed methodology of using a context-related approach for feature selection. This
will be used to shed visibility on potential disadvantages and mitigate that going forward
in further research.

Figure 4.2 represents a high-level schematic overview of the described steps in this and
the previous two subsections, dealing with feature selection, model selection, and model
evaluation. A detailed process flow is available in Appendix 1.

Figure 4.2: High level end-to-end ML process: From data cleaning to model evaluation

To conclude the evaluation of the proposed models and form an answer on the research
contribution, a summary is made on how the proposed models are positioned against the
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outcomes of earlier work, specific to recent related work. As related work, only academic
papers are used, and it is assumed that the results of related work are valid and solid conclu-
sions were presented in the literature. Due to time constraints, only two promising related
works are considered for validation, and no further validation of earlier work is conducted.
A comprehensive review is undertaken to identify relevant references that can be used to
position this research against, focusing on the utilization of ML models and the availabil-
ity of data and code in related works. The outcomes of this limited set of related work are
subsequently used to position the outcomes of this research against, aiming to determine
whether models can be proposed that have a high performance for DGA-based botnet de-
tection and that potentially can improve the outcomes of earlier findings.

4.3. DATA MINING, VALIDATION, AND ANALYSIS
Both the literature review and the gathering of datasets are forms of data mining. Data
mining involves retrieving information from large datasets or collections of data, includ-
ing literature. In the literature, data mining aims to gain knowledge of previous work on
ML methodologies, datasets, and research outcomes, as well as relationships and depen-
dencies between related works. When it comes to gathering datasets, data mining involves
finding correlations or patterns between datasets themselves and how they can be used for
the next steps in the research.

To follow a structured approach for these data mining activities, starting at the very be-
ginning of the study up to writing the conclusion, the CRISP-DM3 methodology is used.
The model proposes 6 steps to execute in an iterative manner: business understanding,
data understanding, data preparation, modeling, evaluation, and deployment. For this re-
search, only the first 5 steps of this model are used, where the last step called ’Deployment’
is reflected in the summarized results of the research.

Validation of earlier literature conclusions is performed to act as a validity check on the
used literature to ensure a solid and trustworthy baseline is in place. The baseline serves
to evaluate which other research can be considered as actual related work. All academic
papers are assumed to be trustworthy and have solid conclusions, making the hypothesis
to be validated. It is not the intention to fully redo the work of other researchers, as it would
be time-consuming and error-prone, with no positive contribution derived by doing so.
The validation includes two promising related works, and their results are used to position
the outcomes of experiments from this study against.

After the literature validation is completed, the preparation of data and analysis thereof
happens. In the preparation phase, one or more workable datasets need to be generated
out of the available datasets. The preparation steps include further data ingestion, clean-
ing and formatting of the data, and combining data elements. These steps are a critical
part to make a workable and error-free dataset for further processing is available. After
the preparation step, further analysis of the prepared dataset happens to validate the us-
ability and correctness of the dataset. This analysis happens via the earlier mentioned Ex-
ploratory Data Analysis (EDA) approach. It can help to formulate an answer to questions
like what algorithm to use on a dataset, how to refine features for a given use case, and
when are you ready to start applying these ML models and features on the dataset. In ad-
dition, EDA also helps in demonstrating what data features or characteristics are better not

3Cross-industry standard process for data mining: https://www.datascience-pm.com/crisp-dm-2/
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used or not as valuable as expected. The way how these outcomes are highlighted is of-
ten represented through data visualization techniques like statistical graphics. Examples
of statistical graphics on data sets are box plots, histograms, bar charts, scatter plots, and
heat maps.

4.4. INFRASTRUCTURE AND SOFTWARE SETUP
The validation and experimentation steps in this research are carried out using Jupyter
Notebooks4, within the Anaconda distribution5. The implementation is done in Python
due to the numerous libraries available that have implemented different classifiers. The
scikit-learn library is used specifically for evaluating the different algorithms. This library
is widely used in the machine learning community and has a wide range of classifiers and
utilities that can be used to evaluate the performance of the algorithms. Furthermore,
it supports all the classifiers mentioned earlier, making it easy to evaluate the different
algorithms. The experiments are conducted on a local machine, an HP Pavilion laptop,
built with an Intel(R) Core(TM) i7-9750H CPU @ 2.60GH processor and 32GB internal RAM
memory.

4Jupyter Notebooks: https://jupyter.org/
5Anaconda Distribution: https://www.anaconda.com/products/distribution
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5
VALIDITY AND USABILITY OF AVAILABLE

DATASETS

5.1. DGA AND BENIGN DOMAIN NAME DATASETS
To perform research on DGA-based botnets, datasets are obtained that have both benign
and malicious domain names. Benign domain name datasets are retrieved from the open
list TRANCO1, which includes the top one million and most popular domains. The dataset
only has domain names, so data processing is required on the data to get useful features.
TRANCO generates its dataset by averaging the ranks from Alexa, Cisco Umbrella, Majes-
tic, and Quantcast’s source lists over the past 30 days. Even though benign domain name
datasets are not directly related to DGA or botnets, they are required to train the ML meth-
ods. The malicious domain name datasets are obtained from multiple sources, such as
Netlab2, UMUDGA3, and DGArchive4. The DGA datasets are downloaded on different oc-
casions, including 21 October 2021, 21 November 2021, and 22 April 2022, to create a con-
solidated set for further research. The attributes found in these datasets are foremost do-
main names and a target label that indicates if the domain name is benign or related to
malicious activity.

During the dataset search, it was discovered that some sources, such as DGArchive and
Bambenek5, no longer provide publicly open datasets. Explicit access and permission to
retrieve the data from these sources need to be provided by the owners. In addition to the
pure benign or DGA datasets, several datasets are obtained from previous research which
include preprocessed lists of both benign and malicious DGA domains Cucchiarelli et al.
[2020], Tran et al. [2018], and Marques et al. [2021]. An overview of domain name datasets
that are identified and explored is summarized in Table 5.1.

5.2. DNS REGISTRATION INFORMATION DATASETS
DNS datasets are available on multiple sources and cover multiple time periods in the last
decades, even up to the most recent days. In these datasets, a list of domain names is found

1https://tranco-list.eu
2https://data.netlab.360.com/feeds/dga/dga.txt
3https://data.mendeley.com/datasets/y8ph45msv8/1
4https://dgarchive.caad.fkie.fraunhofer.de/
5https://osint.bambenekconsulting.com/feeds/
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Name Type of domains Records Unique attributes Data Time Period

Netlab DGA 1,476,507 4 2021-2022
UMUDGA DGA +30,000,000 1 (plain lists) 2020
DGAArchive DGA Not Counted 5 2019-2020
Bambenek DGA Not Counted 2 2021-2022
Tranco Lists Benign 1,000,000 1 2021 - 2022
Cucchiarelli et al. Benign + DGA 674,898 3 2020
Tran et al. Benign + DGA 169,847 8 2018
Marques et al. Benign + DGA 90,000 34 2020

Table 5.1: Summary of investigated datasets with benign and DGA-based domain names.

together with attributes like the registration date, registrant information, technical contact
details, and name server information. One example hereof is the datasets from Getwhois-
data6, which are updated daily and available after payment. The freely available version is
a limited dataset and contains information from 2017. The freely available datasets contain
150,910 records with relevant information spread across 90 attributes that can be mapped
with other datasets of benign domain names. Another source for DNS datasets can be
found on Whoxy7. It is similar in nature and also updated daily. The freely available dataset
is smaller in size and contains approximately 20,000 records.

In addition to datasets that only contain a list of domain names, several datasets exist
that already contain ready-to-use attributes and contain pre-processed information. As an
example, the OpenIntel dataset includes DNS records for all domains in the .se, .nu, .ee, .sk,
and .fr ccTLDs and all US Federal domain names from the .gov and .fed.us generic TLDs.
Data is collected daily. Each file in this dataset includes 100000 domains, where each record
represents a DNS query. This dataset consists of 106 unique attributes.

A summary of explored datasets with DNS registration information is found in table 5.2.

Dataset Records Unique attributes Data Time Period

Ant8 Not counted Depends on dataset 2016
Getwhoisdata (1 file)9 150,910 88 2017
Rapid7 (1 file)10 90,000 34 2021
Whoxy (1 file)11 21,319 58 2017

Table 5.2: summary of explored datasets with DNS registration information

Equal to datasets with benign and malicious domain names, also the datasets with DNS
information have a large number of records. However, the merge of DGA datasets with DNS
data does reduce the amount of valuable information a lot. This merge happens based on
common variables, where variables present in both the DGA and DNS datasets are used as
identifiers or keys for merging. For example, common variables include domain names,
timestamps, IP addresses, or other network identifiers. Both DGA and DNS datasets con-
tain missing, incomplete, or non-matcheable data. Missing values in key variables used for
merging can lead to difficulties in matching and combining the datasets effectively. The

6https://www.getwhoisdata.com/
7https://www.whoxy.com/whois-database/
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generated and merged datasets still contain a couple of hundreds or thousands of records
that are useful for this research, but the remaining amount of data limits the usability for
further experiments a lot.

One approach to merging the datasets is to identify matching identifiers like the domain
name itself. Because the DGA datasets are mostly lists of domain names without additional
attributes, it is too difficult to aggregate data based on other attributes.

5.3. PACKET FLOW DATASETS
Several datasets discovered during the literature study have been obtained, which already
provide a combination of aggregated packet flow information and indications of (DGA-
based) botnet behavior. Table 5.3 provides a summary of the datasets utilized in this re-
search, namely CTU-13, NCC-2, and STA2018. It is worth noting that all of these datasets
consist of data that ranges from eleven and twelve years old. These datasets have been
chosen because they already contain aggregated and labeled packet flows with a truth label
indicating whether the records are associated with malicious traffic, particularly botnets.

All three datasets incorporate several protocols for network traffic analysis. The top 3
represented protocols across the datasets are UDP, TCP, and ICMP. For both CTU-13 and
NCC-2, most records are related to the UDP protocol, followed by TCP and ICMP. Most
records in STA2018 are related to the TCP protocol, followed by respectively UDP and ICMP.
TCP stands for Transmission Control Protocol, which ensures reliable and sequential deliv-
ery of data packets. Another protocol used is UDP (User Datagram Protocol), which offers
a connectionless and less reliable means of transmitting data packets. Additionally, ICMP
(Internet Control Message Protocol) is employed primarily for error reporting and diagnos-
tics, such as ping requests and responses Kozierok [2005].

Datasets with aggregated packet flow data typically don’t include Time-To-Live (TTL)
attributes. When studying DGA, understanding the TTL value associated with a DNS record
can help to distinguish between legitimate and malicious domain names. DGA algorithms
generate a significant volume of domain names, some of which may not yet be registered
or have a short lifespan. As a result, the DNS records associated with these domains ei-
ther have a very short Time-to-Live (TTL) value, or attempts to resolve non-existing do-
mains lead to an NX-domain response. In contrast, legitimate domains typically have
much longer TTL values, commonly measured in days or weeks Sivaguru et al. [2020].

In the context of researching DGA-based botnets with aggregated packet flow data,
Time-to-Live (TTL) attributes are not available. Previous successful work in the field also
indicated that TTL-attributes are not a hard requirement for DGA-based botnet detection
and that other feature sets should be explored Sivaguru et al. [2020]. By not using TTL-
values, this research aims to direct its focus towards alternative distinguishing attributes
and leverage machine learning techniques to analyze aggregated packet flows, aiming to
identify and exploit other characteristic patterns associated with DGA-based botnet traffic.
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Dataset Source Records Unique attributes Data Time
Period

CTU-13 (Scenario
5 + 13)

CTU University, Czech
Republic

2.054.981 15 2011

NCC-2 Mendeley Data 14.779.083 18 2011
STA2018 University of St Andrews 1.537.285 550 2012

Table 5.3: Summary of packet flow datasets.

Based on the retrieved datasets, an experiment is performed to evaluate the usability of
the datasets. The first part of the experiment involves cleaning and processing the raw data
of each dataset, without adding more attributes or merging datasets. To begin with, the
raw data files are read into a Pandas dataframe, first rows are checked to understand the
data, and column names are transformed to lowercase for easier handling in later steps.
Next, the dataset is split into a train, validation, and test set in a 70%, 15%, and 15% ratio,
respectively, since only the training data will is cleaned. Then, a check for null or NaN (Not
a Number) values is performed and these are replaced with a predefined value for easier
handling. For attributes related to the number of bytes, the predefined value was set to
0.0. This is done to preserve the data integrity and that the missing values are explicitly
accounted for. For other numerical attributes, the Pandas ’fillna’12 function was used with
the ’ffill’ method. Hereby NaN or null values are replaced with the last valid observed value
in that column. For a categorical feature like ’state’, an arbitrary string like ’CON’ was used.
Null and NaN values can even generate errors during the training of some ML models. After
cleaning up the null and NaN values, verification was performed to identify outliers. Out-
liers are often considered to be noise or anomalies that do not align with the targeted data.
Removing them might help to reduce variability and avoid distorting the data distribution,
hence improving the accuracy and reliability of the analysis. For outliers in the packet flow
datasets in the context of DGA-based botnet detection, the outliers are not removed as they
could be genuine instances of DGA-based botnet activity and can be useful for training the
ML models. In the datasets used in this study, outliers were only found in approximately
0.1% of all records. The outliers were identified using the Tukey’s fences method13. Tukey’s
fences method uses the interquartile range (IQR), which is the range between the first quar-
tile (Q1) and the third quartile (Q3) of the dataset. Data points that fall below Q1 - k * IQR
or above Q3 + k * IQR (where k is a constant typically set to 1.5 or 3, and IQR is Q3-Q1) are
considered outliers. Another compelling argument for retaining outliers in the dataset is
the utilization of various ensemble methods that demonstrate increased resilience to out-
liers. By incorporating ensemble techniques into the analysis, the models can effectively
mitigate the potential adverse effects of outliers on the overall performance. Therefore, re-
taining outliers in the dataset is a viable strategy for leveraging the robustness offered by
ensemble methods in handling outlier instances.

Depending on the available labels or target indicators in the dataset, a target class is
added to indicate whether a record is linked to benign or malware behavior. As an exam-
ple, for the CTU-13 dataset the feature "label" was used. If the label contains the word
"virut", the target class is set to "1" to indicate that the record is associated with a DGA-

12https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.fillna.html
13https://en.wikipedia.org/wiki/Outlier#Tukey’s_fences
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Figure 5.1: Data cleaning, processing and exploratory data analysis steps

based botnet. The class balance was identified and the datatype information of each fea-
ture was determined, including which attributes are categorical and which are numerical.
All of the above steps are part of the Exploratory Data Analysis (EDA) approach used in this
study. The results of the data cleaning and processing were saved in CSV format for further
use in subsequent experiments. Figure 5.1 provides a high-level flow of the cleaning and
processing steps performed on the collected datasets.

5.3.1. CTU-13
The CTU-13 dataset, provided by the Czech Technical University (CTU), remains valuable
despite being captured in 2011, making it 11 years old. This dataset continues to hold sig-
nificance as it contains a valuable mix of botnet traffic and regular benign network traffic,
providing relevant information for research and analysis in the field. It is a widely used
benchmark dataset in the field of cybersecurity and botnet detection, providing a stan-
dardized evaluation platform for comparing different detection techniques. Its popularity
and extensive use make it a valuable reference point for researchers. The dataset contains
a diverse range of botnet activities and network traffic scenarios. The dataset includes vari-
ous types of botnet traffic, including DGA-based botnets, which are still prevalent in today’s
cybersecurity landscape. This diversity allows researchers to study and develop detection
methods that can generalize to different botnet behaviors. CTU-13 contains information
from 13 scenarios, where each scenario includes one or more types of cyber attacks. Sev-
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eral scenarios include traffic from different botnets, which are used for this research. The
information in this dataset is already labeled depending on the type of traffic, resulting
in records labeled as botnet, normal, or background. Because the focus of this study is on
DGA-botnets, a primary focus for CTU-13 will be given to scenarios 5 and 13, which include
respectively traces of the Virut. Virut is also identified as a DGA-botnet by DGAArchive and
Netlab and is included with the known domain names in their datasets. Virut operates as
a time-dependent and deterministic DGA-based botnet. The algorithm used for generat-
ing domain names in Virut incorporates a changing seed, resulting in dynamically evolving
domain outputs. These generated domains possess a high probability of colliding with ex-
isting or legitimate domains due to their specific format, which consists of six alphabet
characters followed by the ".com" top-level domain (TLD) Kocinec [2022]. The other sce-
narios are dealing with other, non-DGA botnets. They will not be used in this study. An
overview of the scenarios with a high-level view of the content is presented in table 5.4.

Scenario Bot Is DGA? Benign and Malicious data?

1 Neris No Yes
2 Neris No Yes
3 Rbot No Yes
4 Rbot No Yes
5 Virut Yes Yes
6 Menti No Yes
7 Sogou No Yes
8 Murlo No Yes
9 Neris No Yes

10 Rbot No Yes
11 Rbot No Yes
12 NSIS.ay No Yes
13 Virut Yes Yes

Table 5.4: Summary of the CTU-13 dataset content per scenario.

Scenario 5 contains 129832 records with data across 15 attributes and scenario 13 con-
tains 1925149 records across 15 attributes. These attributes, which are equal for all scenar-
ios, are presented in Table 5.5 including a short description for each feature. In terms of
the attributes of the CTU-13 dataset that are relevant for DGA botnet detection, the dataset
includes a number of different types of data that may be useful. For example, the dataset in-
cludes flow-level data, which includes information about the size, duration, and direction
of each network traffic flow. This data may be useful for identifying patterns or attributes
that are indicative of DGA botnet activity. The CTU-13 dataset also includes packet-level
data, which includes information about the content of each network packet. This data may
be useful for analyzing the specific types of data that are being transmitted as part of a
DGA botnet attack, and for identifying patterns or characteristics that are specific to DGA
botnets.

Out of the 15 attributes, 1 attribute called ’label’ identifies whether or not the record is
related to malicious behavior. This label data can be used to define a target class which in
turn can be used to train and evaluate machine learning models for DGA botnet detection,
by providing a labeled dataset for training and testing purposes.
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Attribute Description

starttime The timestamp when the network flow was captured.
dur The duration of the network flow in seconds.

proto The protocol used for the network flow (TCP, UDP, etc.).
srcaddr The source IP address of the network flow.

sport The source port number of the network flow.
dir The direction of the network flow.

dstaddr The destination IP address of the network flow.
dport The destination port number of the network flow.
state The state of the network flow.
stos The type of service in the IP header of the last packet in a network flow, referring to the

source.
dtos The type of service in the IP header of the first packet in a network flow, referring to the

destination.
totpkts The total number of packets transmitted during a network flow, in both directions.

totbytes The total number of bytes that were transmitted during a network flow in both
directions.

srcbytes The number of bytes transmitted from the source IP address to the destination IP
address during a network flow.

label The label or ground truth for the dataset, indicating if the network flow is related to
benign of malicious behavior.

Table 5.5: Summary of the CTU-13 dataset attributes with short description.

In addition to identifying data quality issues and analyzing the high-level attributes in
the dataset, EDA involves conducting a range of data analysis steps to extract descriptive
statistics that reveal key attributes and characteristics of the data. These statistics encom-
pass a variety of measures such as the mean, median, mode, standard deviation, and vari-
ance of specific attributes. The mean provides insights into the central tendency of the
data, indicating its average value. The median serves as a measure of the data’s central po-
sition, unaffected by extreme values. The mode represents the most frequently occurring
value in the dataset. Standard deviation quantifies the degree of dispersion or spread of
the data, while variance measures the average squared deviation from the mean. Collec-
tively, these statistics offer valuable insights into the distributional properties, variability,
and shape of the data, aiding in the identification of patterns, anomalies, and trends. Fig-
ure 5.2 provides a holistic view of the descriptive attribute statistics for CTU-13 - Scenario 5
and Scenario 13, created via the Pandas ’describe’ function. This function provides a sum-
mary of descriptive statistics for columns in a DataFrame. It computes various statistical
measures that help in understanding the distribution and properties of the data. The out-
put includes the following statistics for each numerical column:

•Count: The number of non-null values in the column.
•Mean: The average value of the column.
•Standard Deviation: A measure of the dispersion or spread of the values.
•Minimum: The minimum value in the column.
•25th Percentile (Q1): The value below which 25% of the data falls.
•50th Percentile (Median or Q2): The middle value of the data, separating the lower and
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upper halves.
•75th Percentile (Q3): The value below which 75% of the data falls.
•Maximum: The maximum value in the column.

Additionally, if the column contains non-numeric values, ’describe’ provides the count,
unique count, and the most frequent value of the non-numeric values. To enhance read-
ability, all measures have been converted to integer representation.

(a) CTU-13 Scenario 5 (b) CTU-13 Scenario 13

Figure 5.2: CTU-13 Scenario 5 & 13: attribute statistics

After the cleaning and processing, the class distribution for the unbalanced dataset for
both scenarios was calculated as visualized in Figure 5.3, respectively representing CTU-13
scenario 5 and CTU-13 scenario 13.

(a) CTU-13 Scenario 5 (b) CTU-13 Scenario 13

Figure 5.3: CTU-13 Scenario 5 & 13: class distribution before balancing

Overall, the CTU-13 dataset has a number of attributes that makes it a well-suited dataset
for research on DGA botnets. Its flow-level, packet-level, and label data provide a rich
source of information for developing and evaluating methods for detecting and analyzing
DGA-based botnets.
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5.3.2. NCC-2
The NCC-2 dataset is a curated dataset that combines activity patterns from the CTU-13
and NCC datasets. It was created by simulating botnet attacks in July 2022 and published
in September 2022. Although the simulation is based on the extracted activity patterns
from the original datasets, the data itself is considered to be from 2011. Unlike the CTU-13
dataset, the NCC-2 dataset does not include detailed packet-level information but instead
focuses on network header data. As a result, it may not provide specific insights into the
types of data transmitted during a DGA botnet attack. However, it remains valuable for
identifying patterns and characteristics related to DGA botnets at the network header level.
The added value of NCC-2 is that it generates a view of simultaneous attack activity based
on the CTU-13 data, resembling sporadic attacks, and NCC data which resembles periodic
attacks. Because the NCC-2 dataset is based on CTU-13 and NCC, it also includes informa-
tion on DGA-based botnets. This study focuses on the data related to the Virut DGA-botnet.
Virut is found in all three sensors of the NCC-2 dataset. In the context of packet flow cap-
tures, a sensor refers to a network device or software component that captures and moni-
tors network traffic. It acts as an observer and collects packets flowing through a network
segment or interface. Table 5.6 provides a holistic overview of the content per sensor.

Sensor Bot Contains DGA? Benign and Malicious data?

1 Rbot, Neris, Sogou, NSIS.ay, Virut Yes Yes
2 Rbot, Neris, Menti, Virut Yes Yes
3 Rbot, Neris, Murlo, NSIS.ay, Virut Yes Yes

Table 5.6: Summary of the NCC-2 dataset content per sensor.

NCC-2 includes 18 attributes available for the identification of network activity and cov-
ers a total of 14779085 records collected through three different sensors. These attributes,
which are equal for all sensors in this dataset, are presented in Table 5.7 including a short
description for each attribute. In terms of the attributes of the NCC-2 dataset that are rele-
vant for DGA botnet detection, the dataset includes a number of different types of data that
may be useful. For example, the dataset includes flow-level data, which includes informa-
tion about the size, duration, and direction of each network traffic flow. This data may be
useful for identifying patterns or attributes that are indicative of DGA botnet activity.

Due to the size of the dataset and to prevent excessive compute time, a focus was put on
data coming from sensor 1, representing a total of 4895158 records. The dataset from sen-
sor 1 represents a similar target class balance of benign versus malicious records. Looking
at the descriptive statistics from sensor 1 as described in figure 5.4, it becomes clear that
further processing and cleanup are needed.
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Attribute Description

starttime The timestamp when the network flow was captured.
dur The duration of the network flow in seconds.

proto The protocol used for the network flow (TCP, UDP, etc.).
srcaddr The source IP address of the network flow.

sport The source port number of the network flow.
dir The direction of the network flow.

dstaddr The destination IP address of the network flow.
dport The destination port number of the network flow.
state The state of the network flow.
stos The type of service in the IP header of the last packet in a network flow, referring

to the source.
dtos The type of service in the IP header of the first packet in a network flow, referring

to the destination.
totpkts The total number of packets transmitted during a network flow, in both

directions.
totbytes The total number of bytes that were transmitted during a network flow in both

directions.
srcbytes The number of bytes transmitted from the source IP address to the destination IP

address during a network flow.
label The label or ground truth for the dataset, indicating if the network flow is

related to benign of malicious behavior.
activitylabel A more descriptive label descriving the type of activity of the network flow.
botnetname The name of the botnet to which the malicious behavior is related. Used in

combination with the label to identify DGA-based botnet behavior.
sensorid The ID of the sensor that captured the network flow.

Table 5.7: Summary of the NCC-2 dataset attributes with short description.

Figure 5.4: NCC-2 Sensor 1: attribute statistics
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A thorough examination of outliers is conducted to assess their distribution within the
dataset and to evaluate their potential influence on the training and evaluation of the ML
models. This analysis aims to gain insights into the extent of outlier presence and under-
stand their potential impact on the performance of the models during the training and
evaluation stages. Because outliers are only identified in approximately 0.1% of the records
and these can potentially indicate DGA-based botnet behavior, the decision is made to
keep the outliers in the dataset. Null data is removed and attributes are converted into us-
able datatypes for further analysis. As highlighted before, null values and NaN values have
to be removed or replaced because they can increase variability in the data or distort the
distribution of data. This can impact the training and evaluation of the ML models, and
negatively influence the classification of DGA botnet behavior.

Out of the 18 attributes, 1 attribute called ’label’ identifies whether or not the record
is related to malicious behavior. This label data can be used to define a target class which
in turn can be used to train and evaluate machine learning models for DGA botnet detec-
tion, by providing a labeled dataset for training and testing purposes. In addition, another
feature also indicates the botnet name related to the malicious activity.

After the cleaning and processing, the NCC-2 dataset showed a class distribution as
shown in Figure 5.5 .

(a) NCC-2 - All sensors (b) NCC-2 - Sensor 1

Figure 5.5: NCC-2 All Sensors & Sensor 1: class distribution before balancing

The NCC-2 dataset includes multiple attributes that make it well-suited for research on
DGA botnets. Its flow-level and label data provide a rich source of information for develop-
ing and evaluating methods for detecting and analyzing DGA-based botnets.

5.3.3. STA2018
The STA2018 dataset is a rather new dataset published in 2020 by researchers at the Univer-
sity of St Andrews in partial fulfillment of a thesis. The dataset uses the UNB ISCX Intrusion
Detection Evaluation Dataset from 2012 as a baseline and includes 1537285 records of net-
work traces that are transformed into 193 basic attributes (derived directly from the net-
work traces) and then extended to 550 attributes. These additional attributes are generated
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by using Onut’s feature classification schema Onut and Ghorbani [2007].
The data comprises network traffic of five simulation days. It is a combination of normal

and malicious network activity, out of which botnet activity can be distilled. However, DGA-
botnet behavior cannot easily be identified out of the regular botnet behavior as there is
no identification as such available in the dataset. A high-level overview of the content is
presented in table 5.8.

Sensor Bot Contains DGA? Benign and Malicious data?

11 jun Unknown Unknown No
12 jun Unknown Unknown Yes
13 jun Unknown Unknown Yes
14 jun Unknown Unknown Yes
15 jun Unknown Unknown Yes
16 jun Unknown Unknown No
17 jun Unknown Unknown Yes

Table 5.8: Summary of the STA2018 dataset content per day.

In terms of the attributes of the STA2018 dataset that are relevant for (DGA) botnet de-
tection, the dataset includes a number of different types of data that may be useful. For
example, the dataset includes flow-level data, which includes information about the size,
duration, and direction of each network traffic flow. This data may be useful for identifying
patterns or attributes that are indicative of DGA botnet activity. Out of all the attributes, 1
attribute called ’class’ identifies whether or not the record is related to malicious behavior.
This label data can be used to define a target class which in turn can be used to train and
evaluate machine learning models for botnet detection, by providing a labeled dataset for
training and testing purposes. A partial overview of the most relevant attributes is provided
in Table 5.9. Attributes that have not been described in detail, are grouped and indicated
separately in the table.
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Attribute Description

start_time The timestamp when the network flow was captured.
duration The duration of the network flow in seconds.
ipVersion IP version (IPv4 or IPv6) of a connection.
protocol The protocol used for the network flow (TCP, UDP, etc.).

src_ip The source IP address of the network flow.
src_zone The topological zone of the source host (GLOBAL, MULTICAST, UNICAST,

UNKNOWN, LOCAL, LAN1, LAN2, LAN3, LAN4, LAN5, LAN6)
src_prt The source port number of the network flow.
dst_ip The destination IP address of the network flow.

dst_zone The topological zone of the destination host (GLOBAL, MULTICAST, UNICAST,
UNKNOWN, LOCAL, LAN1, LAN2, LAN3, LAN4, LAN5, LAN6)

dst_prt The destination port number of the network flow.
conn_state The state of the network flow.

service The application protocol of a connection as detected.
synthetic One (1) if synthetic connection and zero (0) otherwise.
origOrder The original sequence number of connections and 0 for all synthetic connections
src_pkts Total packets sent by source host.
dst_pkts Total packets sent by destination host.

dst_ip_bytes Total IP bytes sent by destination host.
src_ip_bytes Total IP bytes sent by source host.

dst_bytes Total payload bytes sent by destination host.
src_bytes Total payload bytes sent by source host.

urg Number of total urgent TCP packets within a connection.
bro_* 9 attributes starting with bro_, referring to attributes that are captured by Bro14’s

Internal Engine.
conn_* 20 attributes starting with conn_, providing additional insight on the connections

as computed by Bro’s statistics event.
ip4_* 29 attributes starting with ip4_, providing additional insight on the IPv4 packet

information of a connection.
ip6_* 7 attributes starting with ip6_, providing additional insight on the IPv6 packet

information of a connection.
tcp_*, udp_* 49 attributes starting with tcp_ or udp_, providing additional insight on the TCP

or UDP packet information of a connection.
DFMC_*,

DFMCB_*,
DFMCOS_*,
DFMCOD_*,
DFMCG_*,
DFMT_*,

DFMTB_*,
DFMTOS_*,
DFMTOD_*,

DFMTG_*

405 attributes providing additional insight on the number of connections,
number of packets and number of bytes in connection windows of 5 or 100
seconds.

class The connection label, indicating if the network flow is related to benign of
malicious behavior.

Table 5.9: Partial summary of the STA2018 dataset attributes with short description.
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Figure 5.6 represents a subset of the descriptive statistics from STA2018. Also for this
dataset, the conclusion is made that further processing and cleanup is needed.

Figure 5.6: STA2018: subset of the attribute statistics

After the cleaning and processing, the STA2018 (11 through 14 Jun) dataset showed a
class distribution as shown in Figure 5.7.

Overall, the STA2018 dataset has a number of attributes that make it well-suited for
research on DGA botnets, given that DGA behavior can be identified for training the model.
Its flow-level and label data could provide a rich source of information for developing and
evaluating methods for detecting and analyzing DGA-based botnets.

Figure 5.7: STA2018 - 11 through 14 Jun dataset: class distribution before balancing

5.3.4. MERGED DATASET
The merged dataset is derived from the CTU-13 Scenario 5, CTU-13 Scenario 13, and NCC-
2 - Sensor 1 datasets. It is a combination of normal and malicious network activity, out of
which botnet activity can be distilled. Because it is based on CTU-13 and NCC-2, the la-
beled information is available and DGA-botnet behavior is already identified. The STA2018
dataset is excluded from the merge, due to the lack of correct labeling of DGA-based botnet
behavior. The merged dataset contains 6948547 before the removal of duplicates, across 19
attributes (including the target class). Other than removing duplicate records, no further
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Figure 5.8: Merged dataset: class distribution before balancing

data cleaning was required as each of the individual datasets was already cleaned. Iden-
tification and removal of duplicate records happened by checking for duplicates based on
the combined attributes ’dur’, ’proto’, ’srcaddr’, ’dstaddr’, ’totbytes’, and ’target’. The ’target’
class identifies whether or not the record is related to DGA-based botnet behavior. The
attribute ’starttime’ was excluded from the merging process as it had been removed from
the individual datasets during cleaning. This attribute indicates the initiation of a packet
flow capture and is not pertinent to the actual behavior of DGA-based botnets. The class
distribution for the merged dataset is shown in Figure 5.8.

The merged dataset has a number of attributes that make it well-suited for research on
DGA botnets. Its flow-level and label data are a good source of information for developing
and evaluating methods for detecting and analyzing DGA botnets.

5.3.5. IP2ASN-V4
IP2ASN-v415 refers to a database that is used to map IP addresses (IPv4 addresses) to Au-
tonomous System Numbers (ASNs). An Autonomous System (AS) is a collection of IP net-
works under the control of a single administrative entity, such as an Internet Service Provider
(ISP) or a large organization. ASNs are globally unique identifiers assigned to these entities
by regional Internet registries. The IP2ASN-v4 database provides a means to determine
the corresponding ASN for a given IPv4 address. It enables the identification of the or-
ganization or network associated with a specific IP address, which can be useful in various
applications and analyses, such as network monitoring, security investigations, traffic anal-
ysis, and routing optimizations. The database includes information such as the IP address
ranges allocated to each ASN, the organization or entity associated with the ASN, and other
relevant metadata. It allows users to map IP addresses to ASNs and obtain valuable insights
about the ownership and routing of internet traffic.

The IP2ASN-V4 dataset contains 466798 records with data across 5 attributes. These
attributes are presented in Table 5.10 including a short description for each attribute.

In this study, the IP2ASN-V4 dataset is used to map the IP addresses found in the packet
flows to the actual ASN number, the country name, and the ISP name. Even though the

15https://iptoasn.com/
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Attribute Description

start_ip_range The first IP of the IP-range that belongs to a particular ASN or ISP
end_ip_range The last IP of the IP-range that belongs to a particular ASN or ISP

ASN The ASN-number that is linked to the IP-range
country The country of the ISP that is linked to the IP-range

isp The ISP-name that is linked to the IP-range

Table 5.10: Summary of the IP2ASN-V4 dataset attributes with short description.

IP2ASN dataset has been retrieved in 2023 and includes the most up-to-date data at the
time of retreival, it is still deemed relevant for this study. This is based on the knowl-
edge that ASN number assignments do not change frequently. Once an organization is
allocated an ASN, it typically retains that number for an extended period, often years or
even decades. ASN assignments are managed by Regional Internet Registries (RIRs) such
as ARIN, RIPE NCC, APNIC, LACNIC, and AFRINIC. There are reasons why an ASN assign-
ment can change, like a merger, a network divestiture, or policy changes. Because these
happen less frequently, the assumption is made that this has less of an impact and the data
is still relevant. The conclusion above about the changing nature of ASN numbers is based
on several sample lookups that were performed. The lookups were executed via an online
tool16, based on randomly selected ASN numbers found in the dataset. Table 5.11 shows a
few results of the lookups.

ASN-number Country Allocated Updated

13335 United States Jul 14, 2010 Feb 17, 2017
29208 Czech Republic Jul 01, 2003 Apr 03, 2023
5610 Czech Republic Jul 22, 2002 Jan 10, 2023

38803 Australia Oct 12, 2007 Aug 26, 2020
9808 China Jan 10, 2000 Oct 27, 2021

Table 5.11: Summary of the ASN lookup examples performed via ipinfo.io.

5.4. SUMMARY
This study intends to identify how DGA-based botnet detection can be improved based on
packet flow information. To support this research, the usability of different dataset types is
investigated as described in the previous sections. A conclusion is made that the merge of
domain name datasets with datasets that contains DNS information is very difficult due to
the lack of information that overlaps and can be linked.

To overcome this challenge, existing packet flow datasets are used for this study for
which the data is already labeled with a truth label. The truth labels indicate whether or
not the records are generated by botnets and DGA-based botnets. The packet flow datasets
that form the basis for all further steps in this research are CTU-13, NCC-2, the combined
dataset, and for parts of the experiments STA2018. The STA2018 dataset can be used for fur-
ther analysis on botnet detection and can be included when merging datasets to increase
the overall data diversity, but further research is needed to identify if DGA-based botnet

16https://ipinfo.io/
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flows can be derived or filtered out of the network traffic. A summary of the datasets with
their respective attributes is presented in table 5.12.

Dataset Record
count

Unique
at-

tributes

Records after
cleaning

botnet
records

DGA-botnet
records

CTU-13 - Scenario 5 129.832 15 129.810 0.7% 0.7%
CTU-13 - Scenario 13 1.925.149 15 1.924.446 2% 2%
NCC-2 - Sensor 1 4.895.158 18 4.894.291 3% 0.4%
NCC-2 - All Sensors 14.779.083 18 14.776.785 5% 0.5%
STA2018 1.537.285 550 1.537.285 36% Unknown
Merged dataset 6.948.547 19 4.697.735 Not counted 0.6%
IP2ASN-V4 468.433 5 466.798 N/A N/A

Table 5.12: Summary of datasets and a holistic usability view for research.

Each of the datasets, with the exception of the IP2ASN-V4 dataset, contains packet flow
data and includes DGA-based botnet traces. They also contain similar attributes like ’du-
ration’, ’ip addresses’, ’ports’, and ’protocol’. Based on these attributes, the datasets can be
merged into one bigger dataset. Although the time of publication for the different datasets
varies from 2011 to 2022, more important is that the actual data across all datasets are dat-
ing back from 2011 and 2012. When merging datasets, it is important to ensure that they
are compatible and representative of the same context or problem domain. If datasets from
different time periods are merged without considering these changes, it can lead to inac-
curate or inconsistent results. In the case of studying DGA-based botnet behavior, the al-
gorithms used by botnets can evolve and become more sophisticated over time. Therefore,
using datasets from different time periods may not accurately capture the current state of
DGA-based botnets. The model trained on such merged datasets may fail to detect newer
and more advanced botnets, which can pose security vulnerabilities. Figure 5.9 provides a
visual representation of the datasets used for this study.

Figure 5.9: Overview of the datasets used in this study.

Several processing steps are performed on the datasets to ensure that they contain us-
able and accurate information. Duplicate records are removed to ensure that the data is
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as clean and accurate as possible, individually on the separate datasets and again on the
merged dataset afterward. In addition, a final verification is performed to verify records
that have empty or incorrect data, such as null values, and incorrect classifications. Be-
cause the merged dataset is based on already cleaned data, no additional operations are
needed for this dataset other than the removal of duplicate records. The datasets are nor-
malized to get representative data across the different datasets. This is done to ensure that
the final combined dataset is comprehensive and usable for ML model training.

Various techniques such as downsampling, upsampling, and applying sample weights
were investigated to overcome the target class imbalances. The most successful approach
involved applying sample weights, with a weight ratio of 1 to 4 for negative versus pos-
itive target classes, where a positive target class represents DGA-based botnet behavior.
Regarding resampling, the dataset was upsampled using the RandomOversampler17 from
the imbalanced-learn package, while downsampling was achieved using the resample18

method from sklearn. Dealing with highly imbalanced data is crucial to ensure that the
trained models correctly classify benign and malicious network flows and that the models
do not overfit or present incorrect outcomes. These processing steps are crucial in ensuring
that the final datasets are accurate, clean, and representative of the data that is collected.

In summary, the datasets utilized in this study to address the subquestions pertaining
to dataset availability, feature selection, and model selection include CTU-13, NCC-2, the
merged dataset combining CTU-13 and NCC-2, and STA2018 for specific parts of the ex-
periments. The merged dataset, derived from CTU-13 and NCC-2, serves as the primary
dataset for addressing the final subquestion related to the training and evaluation of the
machine learning models developed in this research. However, the STA2018 dataset is ex-
cluded from the merge due to its inadequate labeling of DGA-based botnet behavior.

17https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.RandomOverSampler.html
18https://scikit-learn.org/stable/modules/generated/sklearn.utils.resample.html
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6
SELECTION OF CONTEXT-RELATED

FEATURES

The data in all datasets is first cleaned and processed to make sure feature selection tech-
niques can work with adequate data. The data cleaning and preparation are already per-
formed and described as part of the experiments to search for usable datasets. This part of
the experiment aims at finding relevant and usable features in the selected datasets. The
high-level flow of the feature selection process is visualized in figure 6.1.

The focus is placed on already available features in the non-resampled datasets. This
part of the experiment is mainly supported through a combination of supervised methods.
The respective supervised methods that are used in support of the presented classifica-
tion problem, are SelectKBest and Recursive Feature Elimination (RFE) were used. The
calculation for SelectKBest was performed using the scoring function chi2. The Chi2 score
measures the relevance of each feature to the target variable. The higher the chi2 score,
the more relevant the feature is to the target variable. For RFE, a logistic regression model
was applied. An explicit choice was made to not use the Sequential Feature Selection (SFS)
throughout all experiments in this research, as initial experiments on the CTU-13 dataset
pointed out that this method has a much higher computational complexity than RFE on
larger datasets. From an unsupervised method perspective, correlation matrices and corre-
lation analysis are used to check which highly correlated features can be eliminated. For the
correlation calculation, the Pearson method is used, which resembles a correlation mea-

Figure 6.1: Feature selection process steps
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sure based on a linear relationship between two features and highlights to what extent the
features are related to each other.

By defining a variance threshold to identify almost constant features and performing
a feature correlation analysis, features can be identified as being of less importance. This
means, being of less importance within the current feature set available in the dataset. The
variance threshold verification is configured to use a threshold value of 0.01, which means
that some features could still pass the test although they have many constant values. A
higher value can be used, which would result in even fewer features being passed to the
models. However, we want to avoid stripping out too many features and leave some deci-
sion logic to the ML model during training. Because the data already went through data
cleaning and processing, the categorical features are one hot encoded. For example, this
results in a feature vector of 4303 features for the CTU-13 Scenario 13 dataset out of which
4284 are identified as being almost constant Examples hereof are features like ’state__SPA’,
’dir_ who’, and ’new_country_AD’. In the case of the NCC-2 dataset, 7009 out of 7029 fea-
tures are found to be almost constant. Thus, the above-mentioned technique help us in
removing many less relevant features from the feature vector.

The feature correlation matrices of respectively CTU-13 - Scenario 5, CTU-13 - Scenario
13, NCC-2 Sensor 1, and STA2018 are shown in Figure 6.2. Due to the big feature vector of
the STA2018 dataset, the full correlation matrix is shown as a reference but not readable
in its totality. The feature correlation matrices provide information about the relationships
between the different features through a calculated correlation coefficient. The correla-
tion coefficient measures the strength and direction of the linear relationship between the
features. The correlation coefficient can range from -1 to +1, where -1 indicates a strong
negative correlation, +1 indicates a strong positive correlation, and 0 indicates no correla-
tion. By examining the correlation matrices, the strongly correlated features can be iden-
tified, meaning they tend to vary together. This information is useful for feature selection
and dimensionality reduction. Highly correlated features may provide redundant informa-
tion, and keeping only one of them can simplify the model and improve its interpretabil-
ity. On the other hand, features with low or no correlation may offer unique insights and
contribute independently to the model’s predictive power. Visualization of the feature cor-
relation matrices for the different datasets indicates that the features totpkts and totbytes
are highly correlated. Because of this very high correlation, the dimensional complexity of
the dataset can be reduced by keeping only one, which will make training of the selected
models in further experiments faster. The same applies to the features ’label’ and ’target’,
which are both representing the ground truth of the data.

Based on the literature review, the feature ’starttime’ has been removed from all datasets.
It is an identifier related to the moment when the packet flow capture started and is not re-
lated to the actual DGA-based botnet behavior. Also dataset-specific features like ’sensorid’,
’activitylabel’, and ’botnetname’ are removed because they are only used to label the data
and build up the target class, without further use during feature selection of ML model
training.

During the analysis, RFE is performed on different feature sets and the features ’state_XXX’,
’new_country_XXX’, and ’new_ASN_XXX’ are often identfied as relevant features. Here, XXX
represents a specific state, country, or Autonomous System Number (ASN) abbreviation.
These states, countries, and ASN numbers are derived from one hot encoding the original
features ’state’, ’country’, and ’ASN’. It is worth noting that states refer to the state of a net-
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(a) CTU-13 Scenario 5 (b) CTU-13 Scenario 13

(c) NCC-2 Sensor 1 (d) STA2018

Figure 6.2: Feature correlation matrices of CTU-13 Scenario 5, CTU-13 Scenario 13, NCC-2 Sensor 1 &
STA2018
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work connection and that ASN is a unique identifier that is assigned to a network operated
by a single organization. In addition to RFE, also the SelectKBest feature selection method
is used to identify the most relevant features in some datasets. This method demonstrates
that for some datasets, the most relevant features are derived from both ’country’ and
’ASN’. Additionally, the features ’ports’ and ’src_bytes’ are also important to consider in cer-
tain cases. A sequential feature selector (SFS) is only used on CTU-13 - scenario 5 and CTU-
13 - scenario 13. It yields a slightly different result, where the most important features are
indicated as ’dur’, ’totpkts’, and ’ports’. As highlighted earlier, given the computational time
complexity on larger datasets, this feature selection technique is not further used during
the experiment and is left out of the summary table.

In summary, different feature selection techniques are utilized, including RFE and Se-
lectKBest, to identify the most relevant features in the datasets. The results show that fea-
tures related to ’state’, ’country’, ’ASN’, ’ports’, and ’src_bytes’ are frequently returned as rel-
evant. SFS is also considered, but given its computational time complexity, it is only used
on a limited number of datasets.

Each feature set to further use during experiments contains between 18 and 26 columns
depending on the dataset from which they are derived, due to the one-hot encoded nature
of these features. From the original features, only four are used. They are extended by the
country and ASN information derived from the destination IP address. The four original
features are ’dur’, ’srcbytes’, ’dport’, and ’state’. The details of the top 3 most relevant features
as a result of this experiment are captured in table 6.1.

Dataset Technique Preprocessed + OHE Features (top
3)

Derived from
(original features)

CTU-13 - Scenario
5

RFE dir_ ->, new_country_DE,
new_country_None

dir, country

SelectKBest ports, src_bytes, new_country_DE dport, src_bytes,
country

CTU-13 - Scenario
13

RFE state_INT, state_SRPA_FSPA,
new_ASN_36351

state, ASN

SelectKBest ports, src_bytes, new_ASN_36351 dport, src_bytes, ASN
NCC-2 - Sensor 1 RFE state_FSA_FSA, state_SRPA_FSPA,

new_country_CZ
state, country

SelectKBest ports, srcbytes, new_country_US dport, srcbytes,
country

STA2018 RFE state_SH, new_country_None,
new_ASN_611

state, country, ASN

SelectKBest ports, srcbytes, dur ports, srcbytes, dur

Merged dataset RFE state_INT, state_S_,
new_ASN_43037

state, ASN

SelectKBest ports, src_bytes, state_S_ dport, src_bytes, state

Table 6.1: Summary of most relevant features based on RFE and SelectKBest techniques.
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7
SELECTION OF ML METHODS

Classifying datasets is a fundamental task in machine learning, and there are many algo-
rithms that can be used to accomplish this. These algorithms can be broadly categorized
into two groups: baseline and NN-based classifiers. Baseline classifiers include a wide
range of algorithms such as Decision Trees, Naive Bayes, and k-Nearest Neighbors. On the
other hand, neural networks are modeled after the human brain, making them particularly
suited to tasks such as image and speech recognition. In addition, ensemble methods are
strategies employed to enhance model accuracy by aggregating multiple models instead of
relying on a single model. These methods leverage the collective insights of diverse mod-
els, enabling them to make more accurate predictions and achieve better performance. By
combining the predictions of individual models, ensemble methods can effectively reduce
errors, increase robustness, and capture a broader range of patterns and relationships in
the data.

In this study, initial experiments are performed using three classifiers that have per-
formed well in previous studies: Support Vector Machines (SVM), Random Forest Classifier
(RFC), and Gradient Boosted Trees (in specific XGB) van Renswou [2021]. Additionally, Pu-
tra et al. [2022] focused their research primarily on the classifiers Decision Tree, Random
Forest, Logistic Regression, kNN, and Naïve Bayes. To limit the scope of this research, no
further focus was given to Naïve Bayes and Logistic Regression. Most classifiers from both
studies have been extensively tested and have proven to be effective in many different ap-
plications. SVM is particularly useful for datasets that are not linearly separable, while RFC
is known for its ability to handle large datasets and GBT is a powerful algorithm that can
achieve high accuracy on many datasets.

The derived feature sets from earlier steps of the experiments, which were discussed
in the previous section, are utilized to enhance the performance of the classical classifiers.
These feature sets involve a subset of the features that are most relevant to the classification
task and derived from the context of the earlier obtained datasets.

In addition to the highlighted classifiers above, further experiments were performed on
less-used algorithms like bagging, kNN, Ada Boost, and Histogram Gradient Boost. Even
though less used in the field of play, these are all machine learning techniques that are
commonly used for classification and prediction tasks and might yield good results with
specific context-related feature sets. kNN and Histogram Gradient Boosting are both good
candidates when working with large-scale datasets and many features, while Ada Boost has
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Figure 7.1: Model training and evaluation process steps

a better focus on unbalanced data and Bagging (in this research using a Decision Tree Clas-
sifier) in general can help to reduce overfitting by reducing the variance of its predictions.
These classifiers are all tested in the experiments to identify if good model performance
could be obtained based on the context-selective features that are used, equal to earlier
proven methodologies. A graphical overview of the model training and evaluation process
is presented in figure 7.1.

A summary of all the models that were tested during the experiments can be found in
table 7.1.

Model Type

Ada Boost Ensemble - Boosting (can be any type of classifier)
Bagging Ensemble (can be any type of classifier)
Decision Trees Baseline - Decision Trees
Histogram Gradient Boosting Ensemble - Boosting (based on Decision Trees)
kNN Baseline - Nearest Neighbors
Random Forest Ensemble (based on Decision Trees)
Support Vector Machine Baseline - SVM
XGBoost Ensemble - Boosting (based on Gradient Boosting)

Table 7.1: Summary of tested models.

From a programming perspective, the implementation was done in Python due to the
many available libraries that have implemented different classifiers. In particular, the scikit-
learn library was used for evaluating the different algorithms. This library is widely used in
the machine learning community and has a wide range of classifiers and utilities that can
be used to evaluate the performance of the algorithms. Additionally, it supports all the
earlier-mentioned classifiers, making it easy to evaluate the different algorithms. To make
a first selection of models, each model was trained and evaluated against feature sets of the
CTU13 dataset (respectively scenarios 5 and 13), without further hyperparameter tuning.
The dataset was also not resampled, but a sample weight of 1 (negative class) compared
to 4 (positive class) was provided. The actually calculated sample weights for the classes
were 0.5 for the negative class against 63 for the positive class, but experiments indicated
that the 1 compared to 4 weights gave better results for the models. The decision to use
datasets that are not resampled was made based on experiments on both the CTU-13 Sce-
nario 5 and CTU-13 Scenario 13. In these experiments, higher performance results were
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(a) Model comparison by accuracy (b) Model comparison by AUC

(a) Model comparison by F1 Pos (b) Model comparison by compute time

Figure 7.2: CTU-13 Scenario 5: Model performance comparison

obtained in runs when using sample weights compared to the runs where downsampled
or upsampled datasets were used. From the initial runs as indicated above, the accuracy
score, AUC score, F1 Positive score and compute time were calculated to perform an initial
assessment. The comparison of the above-mentioned scores is respectively represented in
figure 7.2.

On accuracy scores, XGBoost, Random Forest, and kNN come out as the top 3 models.
For AUC scores, this is respectively Histogram Gradient Boosting, Decision Tree, and XG-
Boost. Taking the F1 Positive score into consideration, Histogram Gradient Boosting, XG-
Boost, and Random Forest come out as best performing models. Finally, looking at com-
puting time, Bagging, Decision Tree, and XGBoost come out as best performing. On the
other spectrum, looking at the least performing models, SVM scores lowest on almost all
criteria and has the highest compute time. Based on this initial analysis, a preliminary deci-
sion was made to continue further experiments with the models XGBoost, Histogram Gra-
dient Boosting, Random Forest, and Bagging. The main driver for this decision is the best
performance on F1 Positive Score combined with a high AUC score and the low compute
time that the models require. The results of this experiment against the CTU-13 dataset are
provided in table 7.2.

To validate the obtained outcomes of the first experiment on models, the results and
selection of the models to use have been compared with the outcome of another run of all
models, now using the NCC-2 Sensor 1 dataset. Because the intention was to find the best
suitable ML algorithms, the models were trained again with the NCC2 Sensor 1 dataset. The
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Model Accuracy AUC F1 Pos score Training Time (seconds)

Histogram Gradient Boosting 0.997 0.886 0.792 6.9s
XGBoost 0.998 0.854 0.789 6.8s
Random Forest 0.997 0.854 0.783 10.6s
Bagging 0.997 0.854 0.783 5.4s
kNN 0.997 0.816 0.763 78s
Ada Boost 0.997 0.81 0.71 14.6s
Decision Tree 0.996 0.866 0.695 5.5s
Support Vector Machine 0.993 0.814 0.541 126s

Table 7.2: CTU13 Scenario 5: Performance of trained models without hyperparameter tuning, sorted by F1
Pos score in descending order.

same sample weights to train the models were not changed, meaning the same weight of 1
against a weight of 4 is used for respectively the negative and positive target classes. In this
run, 1912437 records were used to train the models. From the validation runs, where a big-
ger dataset was used, the impact and performance of different ML models were very clear.
Although kNN came out better in AUC and F1 Pos scores compared to the previous run and
even compared to some other models, a decision was made to keep it out of scope for fur-
ther analysis. The main driver for the decision was the computing time, where the actual
training and evaluation time did exponentially explode. k-NN is a non-parametric algo-
rithm that requires comparing a new data point with all existing data points in the training
set to determine the K nearest neighbors. This big increase in training time makes the mod-
els less usable and hence also supports the earlier provided decision on ML models. Also
for the SVM model, the significant increase in training time, resulting from the dataset’s size
and the decision boundary’s complexity due to the numerous features, led to the exclusion
of the model for subsequent experiments. This decision was reinforced by the validation
run on the NCC2 Sensor 1 dataset, which had to be terminated after continuously running
for more than 24 hours. For Decision Tree, a major performance improvement was seen,
and was therefore also added to the selection of models to further explore. The results of
this experiment that ran against the NCC2 Sensor 1 dataset can be found in table 7.3. A
graphical overview of the results is also visualized in figure 7.3, in which the values of SVM
have been set to 0 manually as this model was excluded from the experiment.

Model Accuracy AUC F1 Pos score Training Time (seconds)

XGBoost 0.99968 0.99028 0.97356 74.10s
Bagging 0.99935 0.97021 0.94546 53.64s
kNN 0.99929 0.97158 0.94127 17919.02s
Decision Tree 0.99929 0.97018 0.94072 13.55s
Histogram Gradient Boosting 0.99671 0.95515 0.76871 18.94s
Random Forest 0.99336 0.82569 0.54148 151.81s
Ada Boost 0.99387 0.65915 0.38443 287.58s

Table 7.3: NCC2 Sensor 1: Performance of trained models without hyperparameter tuning, sorted by F1 Pos
score in descending order.
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(a) Model comparison by accuracy (b) Model comparison by AUC

(a) Model comparison by F1 Pos (b) Model comparison by compute time

Figure 7.3: NCC2 Sensor 1: Model performance comparison

In the third round of this experiment, the same process is applied to the combined
dataset generated out of the CTU-13 and NCC-2 datasets. Also in this step, the models
were separately trained and evaluated to identify which models perform best. To obtain a
fair point for comparison, again sample weights are used to score the models during train-
ing. In this run, 3214038 records were used to train the models. Based on the outcomes of
the runs on CTU-13 and NCC-2 data, the models AdaBoost, kNN, and SVM are no longer
considered. On this dataset, Bagging, XGBoost, and Decision Tree come out as the top three
best-performing models when considering the F1 Pos score combined with the AUC score.
Also for the combined dataset, a Decision Tree Classifier was used for Bagging. The results
of this experiment can be found in table 7.4. Figure 7.4 provides a visual representation of
these results, in which the values of Ada Boost, kNN, and SVM have been set to 0 manually
as these models were excluded from the experiment.
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Model Accuracy AUC F1 Pos score Training Time (seconds)

Bagging 0.99727 0.83895 0.77566 146.91s
XGBoost 0.99699 0.86671 0.77228 158.02s
Decision Tree 0.99664 0.84819 0.74282 29.55s
Histogram Gradient Boosting 0.99654 0.82740 0.72464 46.19s
Random Forest 0.99629 0.77893 0.67669 322.21s

Table 7.4: Merged dataset - CTU-13 & NCC-2: Performance of trained models without hyperparameter tun-
ing, sorted by F1 Pos score in descending order.

(a) Model comparison by accuracy (b) Model comparison by AUC

(a) Model comparison by F1 Pos (b) Model comparison by compute time

Figure 7.4: Merged dataset - CTU-13 & NCC-2: Model performance comparison
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It is clear that there is a big difference between the obtained accuracy scores and the
visibly lower F1 Positive scores. Accuracy is a straightforward metric that calculates the ra-
tio of correctly classified instances to the total number of instances. It provides a general
overview of the model’s overall correctness. However, accuracy alone is not a reliable mea-
sure when dealing with imbalanced datasets, where one class significantly outweighs the
other. In such cases, a high accuracy can be achieved by simply predicting the majority
class most of the time, while the minority class remains misclassified. On the other hand,
the F1 score considers both precision and recall, which are calculated based on true pos-
itive, false positive, and false negative predictions. Precision represents the proportion of
correctly classified positive instances out of all instances predicted as positive, while recall
measures the proportion of correctly classified positive instances out of all actual positive
instances. The F1 score combines these two measures into a single value, which provides a
balanced evaluation of the model’s performance, particularly in cases where there is an im-
balance between the classes. Because the models are trained based on highly imbalanced
datasets, the accuracy and F1 scores differ significantly. The model’s ability to correctly
classify positive instances differs from its ability to correctly classify negative instances.
The F1 score places more emphasis on the model’s performance in correctly identifying
positive instances, making it a more suitable metric in the given scenarios of this research,
where the detection of positive cases is of higher importance.

All of the hereby mentioned experiments have been performed on ML models with-
out considering hyperparameter tuning. The actual tuning and effect on the performance
of the ML models is discussed in the next section which deals with improving the perfor-
mance of the selected models and how these results can be positioned against related work.
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8
PERFORMANCE OF SELECTED MODELS AND

POSITIONING AGAINST RELATED WORK

The previous experiment had a focus on selecting ML models that are best fit-for-purpose
in the context of this research. The experiments are continued based on the outcomes of
the model selection, formulating an answer on the performance of the classifiers Bagging,
Decision Tree, and XGBoost.
A short overview of the top three selected models is summarized again in Table 8.1, ranked
on their respective F1 Pos-Score. These scores represent the model performance before
hyperparameter tuning.

Data Model Accuracy AUC F1 Pos-score (DGA)

Merged dataset Bagging 0.99727 0.83895 0.77566
Merged dataset XGB 0.99699 0.86671 0.77228
Merged dataset Decision Tree 0.99664 0.84819 0.74282

Table 8.1: Top three results ranked by F1 Pos-score, obtained during model selection, before hyperparameter
tuning.

In an attempt to increase and assess the performance of the selected models, hyperpa-
rameter tuning is performed. Hyperparameter tuning is an important step in improving the
performance of a machine-learning model. The process involves defining the range of hy-
perparameters, selecting a search method, recursively evaluating the model on a validation
set, and selecting the best set of hyperparameters. For this study, the explicit choice is made
to use grid search for the tuning steps. One advantage of grid search is that it is guaranteed
to find the best set of hyperparameters within the predefined range, given enough compu-
tational resources. This immediately also highlights the potential challenge of grid search,
as it can be computationally expensive and time-consuming, especially when dealing with
a large number of hyperparameters or a large range of values for each hyperparameter. As
the number of hyperparameters and the range of values increase, the search space can be-
come exponentially large, leading to an explosion in the number of models that need to
be trained and evaluated. Alternatives to the grid search, are for example random search
or Bayesian optimization. These methods are however not further explored during this re-
search to limit the scope of the study.
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To validate the outcomes from different experiments during hyperparameter tuning, a
cross-validation approach was employed Cucchiarelli et al. [2020]. The cross-validation is
done as part of the grid search execution. In grid search, the k-fold cross-validation tech-
nique is used. K-fold cross-validation1 involves dividing the dataset into k equal-sized sub-
sets or folds. The grid search algorithm then trains and evaluates the model k times, each
time using a different fold as the validation set and the remaining folds as the training set.
The performance of the model is averaged over the k iterations to provide an overall eval-
uation. This helps to assess the model’s generalization performance and find the optimal
hyperparameters for the given grid of parameter values. This method was used to compare
the efficiency of the models based on the earlier described performance metrics and helped
to reduce the risk of overfitting. This is in contrast with the initial training of the models,
for which a cross-validation approach was not used. Instead, a choice was made to use a
fixed dataset split between train, test, and validation sets for a few reasons. Firstly, the fixed
split allows for consistency in evaluating model performance. By keeping the same data
points in the validation set throughout the training process, we can compare the model’s
performance on the validation set across different iterations or experiments. Secondly, a
fixed split can be more efficient when working with limited computational resources or
time constraints. Cross-validation involves repeating the training and evaluation process
multiple times, which can be computationally expensive, especially for larger datasets or
complex models. With a fixed split, we can train the model once on the training set, eval-
uate its performance on the validation set, and then use the independent test set for the
final evaluation.

Once the hyperparameters are tuned and the final models are trained, it is important
to assess their performance. Assessing the performance of the tuned models is done with
unseen data, in this particular case on a test set that was earlier derived from the merged
dataset. After tuning, XGBoost obtains the best performance increase with an end result in
F1 Pos-score of 79.28%, AUC-score of 88.15%, and accuracy score of 99.72%. The Bagging
classifier also shows an increased performance after tuning but with a smaller performance
gain. Only for the Decision Tree, the performance score reduces when looking at the F1
Pos-score. Table 8.2 summarizes the performance of the earlier selected models after hy-
perparameter tuning. Important to note that the results after hyperparameter tuning are
based on an evaluation dataset with previously unseen data. This makes us conclude that
the baseline Decision Tree classifier likely demonstrates overfitting and that it learned the
training data too well, including noise and irrelevant patterns, which leads to poor gener-
alization on unseen data. In contrast, methods like XGBoost and Bagging employ regular-
ization techniques such as shrinkage and tree pruning, which help prevent overfitting and
improve generalization performance. Another reason can be the existence of non-linear
relationships in the data. Decision trees are limited in their ability to capture complex non-
linear relationships between features and the target variable. XGBoost for example, being
an ensemble of decision trees, can effectively model non-linear relationships by combin-
ing multiple weak learners to form a strong learner. This enables XGBoost to capture more
intricate patterns and achieve better performance on the validation set.

In a previous study by van Renswou [2021], a Random Forest Classifier achieved an ac-
curacy score of 99.63%, followed by a Gradient Boost model with an accuracy of 97.40%,
and an SVM with 82.42% accuracy. The Random Forest Classifier achieved the best re-

1https://scikit-learn.org/stable/modules/cross_validation.html
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Data Model Accuracy AUC F1 Pos-score (DGA)

Merged dataset XGB 0.99724 0.88148 0.79279
Merged dataset Bagging 0.99738 0.84610 0.78497
Merged dataset Decision Tree 0.99471 0.85719 0.65209

Table 8.2: Top three results ranked by F1 Pos-score, obtained after hyperparameter tuning.

sult when trained with an oversampled dataset. However, the selected models, after hy-
perparameter tuning, performed equally well or even slightly better than the models in
Renswou’s study based solely on the accuracy metric. There are no other performance
metrics used in Renswou’s study that can be used to compare results with. Renswou used
a Matthews Correction Coefficient (MCC-score), while in this study an AUC-score and F1-
score is used. Although MCC is linked to an F1-score, MCC considers all four scores of the
confusion matrix, while in this study only F1 for the positive class is considered for scor-
ing due to the highly imbalanced dataset. An important note to highlight when comparing
machine learning model performance between studies is that the performance metrics and
evaluation methodologies used may vary. It is crucial to consider the specific metrics used,
the dataset characteristics, the preprocessing techniques applied, and the experimental
setup. Therefore, direct comparisons between different studies should be made cautiously,
taking into account these factors to ensure a fair and meaningful comparison.

Another study by Putra et al. [2022] used similar datasets and ML models, such as De-
cision Trees, Random Forest, Logistic Regression, k-NN, and Naïve Bayes. They claimed to
have achieved a detection accuracy of 99.998% for the CTU-13 dataset and 99.999% for the
NCC dataset. However, they only described an average accuracy score and did not provide
details about individual models. Moreover, their study evaluated models on each dataset
separately, without training or evaluating on a combined dataset. Therefore, a detailed
comparison of their results with the results from this research is not possible based solely
on the average accuracy score.
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9
CONCLUSIONS - DISCUSSION, VALIDITY,

FUTURE RESEARCH, REFLECTION

9.1. ANSWERS TO RESEARCH QUESTIONS
To produce clear answers and recommendations that will benefit this research and poten-
tial future studies, several sub-questions are addressed to provide specific and tangible out-
comes.

SRQ1: WHICH DATASETS ARE SUITABLE TO DERIVE CONTEXT-RELATED FEATURES FROM PACKET

FLOW INFORMATION?
In chapter 5.3, three datasets are described that are identified as relevant and suitable data
sources for this study. These three datasets were created by peer researchers and used in
this research are:

1. CTU-13

2. NCC-2

3. STA2018

Further experiments on these datasets are performed and described in section 6.1. The
combined datasets consist of 18.371.351 records that are used in this research, which con-
sist of both benign and malicious network flow data. Out of the full datasets, only an aver-
age of 0.6% is related to DGA-based botnet behavior. Unfortunately, the data is relatively
old considering the domain of DGA-based botnet detection, and data is not unique across
the different datasets. Based on the above-mentioned datasets, a merged dataset is also
generated as part of this study. It combines data from CTU-13 (both scenarios) and NCC-
2 - Sensor 1. The STA2018 dataset is excluded from the merge, due to the lack of correct
labeling of DGA-based botnet behavior. During experimentation, duplicate records are
discarded in the original datasets and the merged dataset. The merged dataset resulted
in 6.948.547 records, out of which 4.697.735 unique records are obtained for usage in fur-
ther experiments. The merged dataset also represents 0.6% DGA-based botnet data related
specifically to Virut.
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SRQ2: WHICH CONTEXT-RELATED FEATURES CAN BE DERIVED FROM PACKET FLOW DATASETS

TO IMPROVE THE OVERALL PERFORMANCE AND ACCURACY OF DGA BOTNET DETECTION?
The context-relativity for feature selection refers to selecting features specifically in the par-
ticular domain of DGA-based botnet detection. In the context of DGA-based botnet de-
tection, context-related features are selected and designed based on the characteristics of
DGA traffic and network data. To support that context-relativity, a combination of super-
vised feature selection techniques is used to obtain relevant features based on the available
input data. Section 6.2 described the selection of context-related features in more detail.
In summary, four main features are derived from the datasets, being ’dur’, ’srcbytes’, ’dport’,
and ’state’. The feature set with these four features is further extended by adding two fea-
tures related to the country and ASN information derived from the destination IP address.
Table 9.1 provides a quick overview of these features with their respective description.

Feature Description

dur The duration of the network flow in seconds.
srcbytes The number of bytes transmitted from the source IP address to the destination IP

address during a network flow.
dport The destination port number of the network flow.
state The state of the network flow.
country The country of the ISP provider related to the destination IP address.
ASN The unique network identifier provided to the ISP provider related to the

destination IP address.

Table 9.1: Summary of most relevant features derived from the datasets based on the context of DGA- based
botnet detection.

When considering DGA-based botnet detection, the highlighted features can exhibit
specific characteristics related to DGA activities. They are general network traffic features
that can be used for various types of network traffic analysis, including but not limited to
DGA detection. However, this fits the purpose of this study is to identify how these features
can improve DGA-based botnet detection. The breakdown of how the above-mentioned
features may be relevant:

• Dur (Duration): The duration of a network connection can provide insights into DGA
activities. DGA-generated domain names often exhibit short-lived connections or short
durations, as they are frequently changing and dynamically generated. Monitoring the du-
ration of network connections can help identify suspicious or anomalous behavior associ-
ated with DGA-generated domains.

• Srcbytes (Source Bytes): Srcbytes represent the number of bytes sent by the source in
a network connection. In the case of DGA, analyzing the srcbytes feature can reveal pat-
terns or abnormalities in the size of data transmitted to or from DGA-generated domains.
Unusual variations or significantly different srcbytes values may indicate DGA-related ac-
tivities.

• Dport (Destination Port): The destination port in network traffic data can provide in-
sights into the specific services or protocols being targeted by DGA activities. DGA may
attempt to communicate with specific ports associated with known services or exploit vul-
nerabilities in certain protocols. Analyzing the destination port can help detect suspicious
traffic patterns associated with DGA.
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• State: The state feature refers to the state of a network connection (e.g., established,
closed, etc.). DGA-generated domains may exhibit specific connection states that differ
from normal traffic patterns. Monitoring the state feature can help identify abnormal con-
nection states that may be indicative of DGA activities.

• Country: Analyzing the country associated with the network traffic can provide geo-
graphical insights into DGA activities. DGA campaigns often involve malicious actors dis-
tributing their activities across various countries to evade detection. Detecting connec-
tions to DGA-generated domains originating from multiple or unexpected countries can
help identify potential DGA-related traffic.

• ASN: The ASN represents a unique identifier associated with an Autonomous System
(AS) in the internet routing infrastructure. Analyzing the ASN of network traffic can help
identify patterns or clusters of DGA activities originating from specific ASNs or network
providers. Unusual or unexpected ASN values associated with DGA-generated domains
can be indicative of malicious traffic.

SRQ3: WHICH ML METHODS CAN BE USED TO IMPROVE DGA BOTNET DETECTION WHEN

USING CONTEXT-RELATED FEATURES DERIVED FROM PACKET FLOW DATASETS?
Section 6.3 provides insight into the experiments held to identify which ML techniques can
be used to improve DGA botnet detection. Eight different classifiers are investigated based
on multiple datasets and derived feature sets. Following the outcomes of several experi-
ments, Bagging, XGBoost, and Decision Tree are identified to be the best-performing ML
methods for the current scope and context of DGA-based botnet detection. kNN provided
better results during some of the experiments but was not further considered due to the
compute time required for training the model. SVM was also quickly kept out of scope, due
to the combination of a long training time and less-than-optimal results derived from the
initial runs.

The best results are obtained when using an imbalanced dataset, but applying sample
weights during the training and evaluation of the ML model. For the merged dataset, the
Bagging classifier can get an accuracy of 99.73%, an AUC-score of 83.90%, and an F1-score
for the positive class of 77.57%. XGBoost scores marginally lower with an F1-score of 77.23%
and Decision Tree demonstrates an F1-score of 74.28%. The emphasis is put on the F1-
score rather than the accuracy score, as this measure provides more meaningful results
given the class imbalance and the aim to classify the actual DGA-based botnet behavior in
the dataset.

SRQ4: HOW DO THE PROPOSED MODELS PERFORM AND HOW CAN WE POSITION THE OUT-
COMES OF THESE MODELS AGAINST RESULTS FROM EARLIER WORK?
Hyperparameter tuning is used to further improve the performance of the trained ML mod-
els. Hyperparameter tuning involves defining hyperparameter ranges, selecting a search
method, and recursively evaluating models on a validation set to choose the best hyperpa-
rameters. Grid search is used in this study as it guarantees to find the best hyperparameters,
although it can become computationally expensive if the feature sets are not selected care-
fully. The tuned models are evaluated based on an unseen test set derived from the same
dataset as earlier experiments. As a result of the hyperparameter tuning, most of the perfor-
mance metrics can be increased for the selected models. For the Bagging classifier, results
are obtained that demonstrate an accuracy of 99.74%, an AUC-score of 84.61%, and an F1-
score for the positive class of 78.50%. For XGBoost, the accuracy score is improved with a
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marginal 0.1%, but the F1 Pos-score with 2%, resulting in 79.28%. On AUC-score, XGBoost
now demonstrates a score of 88.15% and on accuracy a score of 99.72% Only for the Deci-
sion Tree method, both the accuracy score and F1 Pos-score decrease. The accuracy score
reduces by 0.2%, but the F1 Pos-score reduces by almost 9%. This is likely caused by overfit-
ting or a limited search space of the model during training, while unseen data is introduced
for evaluation and the model starts classifying the unseen data incorrectly. Overfitting or a
limited search space can have a big impact on classifier models like Decision Trees. In sum-
mary, depending on the used dataset and feature selection in the provided setup, XGBoost
is the best-performing model.

An attempt has been made to position the results of this research against the outcomes
of van Renswou [2021] and Putra et al. [2022]. The first study achieved high accuracy scores
with Random Forest Classifier, Gradient Boost, and SVM models. The performance indi-
cators respectively demonstrate an accuracy score of 99.63%, 97.40%, and 82.42%. Based
on only the accuracy metric, a conclusion can be made that the presented models perform
equally well or even slightly better. The second study claimed to have achieved even higher
accuracy scores with similar models but did not provide details on individual models or
evaluate the models on a combined dataset. Therefore, a detailed comparison of results
between these studies is difficult due to differences in datasets, feature engineering tech-
niques, and performance metrics. In general, comparisons of results between different
studies must be done with the utmost care and caution.

9.2. CONTRIBUTION
In this study, we investigate if the DGA-based botnet detection can be improved by ap-
plying context-related feature selection and training traditional ML models based on these
feature sets. The contribution lies in the usage of traditional ML models trained by data de-
rived from packet flow datasets, where the data is labeled as DGA-botnet related or not. In
addition and a more specific contribution, we use merged datasets to increase the data di-
versity during training and evaluation. As part of the research, we identified the feature im-
portance of the selected features and how the usage of these features contributes to more
accurate detection of DGA-based botnet behavior. We perform this analysis by training
multiple models and selecting the highest-performing models. The concept of highest-
performing models, in combination with the feature selection and merged datasets, is to
my knowledge not performed in a similar way in other studies. In this study, the primary
performance metrics used are F1-score, AUC-score, and Accuracy. Most studies use the
accuracy score as the leading indicator, while this research uses F1-score as the leading in-
dicator. The models obtained the best performance metrics when using sample weights to
score the training and evaluate the models. Most other related work use either downsam-
pled or upsampled datasets.

9.3. DISCUSSION AND THREATS TO VALIDITY
This study highlights the possibility of machine learning techniques to improve the speed,
effectiveness, and accuracy of detecting DGA-based botnets. During the experiments, only
a small subset of features is derived from packet flow datasets. It is important to note that
machine learning techniques are not foolproof and can be susceptible to evasion tactics
by sophisticated botnets. Therefore, it is necessary to continuously improve and update
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these techniques to keep up with evolving botnet strategies. Furthermore, the use of ma-
chine learning algorithms for detection purposes may also introduce potential biases and
limitations. The effectiveness of machine learning algorithms depends on the quality and
quantity of training data used to develop the model. If the training data is limited or biased,
the resulting model may not accurately generalize to new or different environments. In ad-
dition, several ML models like SVM have been disregarded after the initial experiments due
to the time complexity during training. Although models like SVM might have an exponen-
tial training time, the detection accuracy of these models could potentially be higher than
the selected models in this study.

Another significant risk involves the potential of outdated literature, as new informa-
tion is frequently published, and the field of study is continuously progressing. This cre-
ated difficulties in validating the research outcomes and conducting a positioning against
the newly acquired information. To mitigate this risk, the study primarily focused on pa-
pers published within the last three to five years, although literature from the last ten to
fifteen years was also considered. However, limiting the amount of reviewed literature and
the number of validated results presented another potential risk. This risk suggests that the
baseline for future comparisons could be based on a limited dataset. To manage this risk,
known scientific databases were used in conjunction with the Mendeley reference man-
agement tool to maintain a comprehensive overview of the literature used in the study.

The literature and presented outcomes were extensively validated to ensure the legit-
imacy and accuracy of the input used for the research. This included the literature, out-
comes, and datasets used. However, in the case of DGA-based botnet detection and pre-
vention, it is challenging to establish a golden standard for comparison due to the field’s
rapid evolution. Consequently, much earlier research may not apply in the current context
with new datasets. On the other hand, the continuous evolution of the domain results in an
ongoing stream of new research papers published each year, which can help with the first
level of validation - quantitative research. To increase the likelihood of finding correct and
legitimate information, the extensive literature study confirmed information in multiple,
non-related sources. Related work for validation was derived from the analysis of feature
selection and choice of machine learning (ML) techniques used. However, different usage
of feature sets or ML methodologies can result in different related works to validate against.

The potential risk of datasets becoming outdated or unavailable was present, which can
be problematic when working in a fast-changing field. Outdated or irrelevant datasets can
affect the research’s accuracy and relevance. However, the availability and quality of the
data were already extensively covered during the literature study and dataset search. In
addition to the quantitative literature research used for the first level of validation, qual-
itative validation was performed on the obtained datasets. This involved a combination
of techniques such as building confusion matrices and checks against overfitting. Confu-
sion matrices were used, with the rows representing actual target classes and the columns
representing predicted classes from applied machine learning (ML) models. To validate
against overfitting, where the ML model models the training set too well, metrics such as
accuracy, AUC, and F1 score were calculated and monitored to identify and prevent/correct
overfitting.

The CTU-13 dataset, and on limited occurrences the NCC-2 dataset, are widely used in
research on botnet and DGA-botnet detection, but there are potential threats to the valid-
ity of the results obtained from these datasets. Generalizability is one threat, as the CTU-13
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dataset is collected from a single organization and may not be representative of other net-
works or organizations. To address this, the NCC-2 and STA2018 datasets were included
in the experiments. Another threat is data quality, as real-world network traffic may con-
tain errors or inconsistencies that can lead to inaccurate results if not accounted for. Data
relevance is a third threat, as the datasets are relatively old and may not reflect current net-
work security or threats faced by organizations. To mitigate this, the more recent STA2018
dataset was added to the experiments. Class imbalance is a fourth threat, as both datasets
are heavily skewed towards benign traffic, which can make it challenging to train models
and obtain accurate results. This is especially problematic when studying malicious traffic,
as the majority of the data is benign. To address this, methods such as downsampling, up-
sampling, and applying sample weights were explored. The best results were obtained by
applying sample weights with a weight of 1 to 4 for negative versus positive target classes,
where a positive target class indicates DGA-based botnet behavior. Although the datasets
are valuable resources for DGA-botnet detection research, it is essential to recognize the
potential threats to validity and consider them when interpreting the results.

One final point to consider regarding the datasets is the utilization of specific features
derived from the network packets. For example, the destination port is a fixed port that a
server listens on to receive a connection request from a client. This port number can be
particular to a specific botnet and therefore significant to detect it. However, it is also easily
modifiable and probably varies for different types of botnets. The use of destination ports
can create issues when attempting to detect novel botnets. While it may be relevant for a
particular dataset, it will likely differ in other contexts, rendering its usefulness question-
able. Consequently, it may be beneficial to exclude certain features from the feature vector
in new research to develop an algorithm that can more effectively identify botnets in new
environments.

Part of the research focused on positioning the outcomes against those of earlier work.
As the literature review was conducted using academic research, the qualitative outcomes
of related work were assumed to be valid. Reproducing or validating earlier work would
have been too time-consuming and beyond the scope of this research. Instead, the valida-
tion of this research involved positioning the outcomes and conducting small experiments
on smaller datasets to determine if similar results could be achieved.

In addition to the qualitative and quantitative approaches, this work also included an
exploratory research layer. While the qualitative research had already included some exper-
iments to validate outcomes, the focus of the exploratory research was to provide accurate
and legitimate answers to the research questions posed in this work. To conduct these ex-
periments, Jupyter Notebooks1 were used. Since Jupyter Notebooks are widely used in the
data analysis and machine learning domains, the validity of the tools themselves was as-
sumed. Furthermore, many packages, libraries, and ML methods already exist for these
tools, which could be used as starting points for the experiments.

9.4. FUTURE WORK
This study demonstrates that DGA-based botnet detection can be improved through adap-
tive feature selection based on packet flow information. At the same time, it also introduces
several areas of research that could be explored in the future to improve the accuracy and

1Jupyter Notebook: https://jupyter.org/
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effectiveness of these methods even further.
In this study, we contribute to the research domain by merging multiple datasets and

using the merged dataset for feature selection and model training. The used datasets are
quite old, which raises the question of whether the network packets contained within the
datasets are still useful. To ensure the effectiveness of newly developed algorithms for clas-
sifying new data, it is recommended that fresh datasets are captured or constructed. Ad-
ditionally, we can look at scaling to larger datasets. As the size of network traffic datasets
continues to grow, future work could focus on developing machine learning models that
can efficiently scale to handle larger datasets without sacrificing accuracy. Finally, the cur-
rently used datasets only contain information about a limited set of DGA families. Datasets
could be searched or created that include information from multiple DGA families.

The selection and engineering of features are critical in developing accurate machine-
learning models. Future work could focus on identifying new features that may be more
effective in detecting DGAs and botnets. In this study, we kept the focus on a limited set of
features based on the feature selection techniques RFE and SelectKBest. Contextual infor-
mation based on the IP addresses was added to the datasets. For the feature selection pro-
cess, additional feature selection techniques could be explored or other thresholds could
be explored to obtain different feature vectors.

In this study, an initial selection of 8 machine learning methods has been chosen. This
selection is done based on literature studies to identify methods that have been used be-
fore, forming a baseline for comparison. Future work could extend the research by ex-
ploring other, newer, and less used machine learning or deep learning methods. From a
different angle, although hyperparameter tuning is performed as part of this study, more
research could go into the actual hyperparameter tuning to identify how detection effec-
tiveness can be improved. Considering the outcomes achieved through grid search, the
utilization of Bayesian optimization, as an alternative optimization technique, becomes
relevant. This choice is warranted when faced with potential overfitting, constraints im-
posed by the limited search space, or computational limitations.

9.5. REFLECTION
Careful planning was essential to achieve the expected outcomes and meet the target dead-
lines. One major planning challenge was the amount of time I spent on certain tasks, which
had an impact on the overall timeline of the study. There have been two main areas that
influenced the duration of the research.

The first area is the literature review. The amount of literature available on the topic
of DGA-based botnet detection is quite extensive and has many variations that can lead
in different directions. This made it difficult to manage the amount of time spent on the
literature review and to stay on track with the overall timeline of the research. To mitigate
this challenge, I had to set clear boundaries for the literature review, and a clear but strict
threshold had to be defined for how many results I would validate my results against, a
limited amount of papers selected during the literature review.

Linked to that first area, the second area is the validation of results from earlier work.
This could have been a very time-consuming activity that even leads to deviation from the
expected outcomes if not managed properly. To minimize this risk, I limited my research
phase to datasets that are already used in other research and that have proven to be trust-
worthy and reliable. During the pre-work of this research, several datasets have already
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been obtained from earlier work and reviewed on their usefulness.
A crucial note to make, is the decision to shift from the initial approach of merging

DGA and DNS datasets to using packet flow datasets. It has proven to be a significant turn-
ing point in my research on DGA-based botnet detection. This change in approach has
provided several notable benefits and addressed several challenges that were encountered
during the earlier stages of the project.

One of the primary advantages of using packet flow datasets is the availability of more
comprehensive and detailed information about network traffic patterns. These datasets
encompass a wealth of network protocol headers, including IP, TCP, UDP, ICMP, and more.
This rich data allows for a more thorough analysis of DGA-based botnet behavior, enabling
me to identify distinct patterns and characteristics associated with malicious activities.

By working with packet flow datasets, I have also been able to overcome the challenges
related to merging DGA and DNS datasets. The previous approach involved handling miss-
ing, incomplete, or non-matchable data, which posed significant difficulties and limited
the reliability of the merged dataset. The transition to packet flow datasets eliminates these
challenges, providing a more reliable and consistent source of data for my research.

In retrospect, the decision to shift to packet flow datasets has proven to be a pivotal step
in my research. It has provided a solid foundation for my analysis of DGA-based botnet
detection. The availability of detailed network traffic data, coupled with context-related
feature selection techniques, has empowered me to develop a more accurate and efficient
detection approach. The insights gained from this transition have not only improved the
quality of my research but also expanded my understanding of DGA-based botnet behavior
in real-world network environments.

Another reflection is on the time and resources required to run the ML algorithms. As
the datasets used in this research are relatively large, it did take a significant amount of
time and resources to calculate results and to make alterations to the model for validating
and improving results. I tried to minimize this risk by spending plenty of time on data pre-
processing and the selection of ML methods to use. Additionally, it is important to note
that only 1 DGA-botnet in CTU-13 (virut) is available which is contradictory to the expected
outcome for the datasets, which might limit this research.

I would also like to emphasize the support and help I received from Harald Vranken
and Clara Maathuis. The constructive periodic discussions proved helpful in keeping me
motivated and focused on continuing. Without their regular feedback, it would have been
significantly more challenging to adhere to the planned course of action.
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APPENDIX A: DETAILED PROCESS FLOW

Figure 1: Detailed end-to-end ML process: From data cleaning to model evaluation
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