
Open Universiteit 
www.ou.nl 

Automated Feedback for Learning Code Refactoring

Citation for published version (APA):

Keuning, H. (2020). Automated Feedback for Learning Code Refactoring. [Doctoral Thesis]. Open Universiteit.

Document status and date:
Published: 09/10/2020

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 16 Jul. 2023

https://research.ou.nl/en/publications/73dd71cd-3bec-459f-bbe9-81b78835a096


 

Automated Feedback for   

Learning Code Refactoring 

 

Hieke Keuning 



Automated Feedback for
Learning Code Refactoring



Druk: Ridderprint | www.ridderprint.nl

Ontwerp omslag: Robbert Menko

ISBN: 978-94-6416-127-4

Dit proefschrift komt voort uit een Promotiebeurs voor Leraren (projectnum-

mer 023.005.063), ge�nancierd door de Nederlandse Organisatie voor Weten-

schappelijk Onderzoek (NWO).

Copyright © Hieke Keuning, 2020



Automated Feedback for
Learning Code Refactoring

PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Open Universiteit

op gezag van de rector magni�cus

prof. dr. Th.J. Bastiaens

ten overstaan van een door het

College voor promoties ingestelde commissie

in het openbaar te verdedigen

op vrijdag 9 oktober 2020 te Heerlen

om 13:30 uur precies

door

Hebeltje Wijtske Keuning

geboren op 14 augustus 1981 te Hardenberg



Promotor

Prof. dr. J.T. Jeuring Open Universiteit, Universiteit Utrecht

Co-promotor

Dr. B.J. Heeren Open Universiteit

Leden beoordelingscommissie

Prof. dr. J. Börstler Blekinge Institute of Technology

Prof. dr. ir. J.M.W. Visser Universiteit Leiden

Prof. dr. J. Voigtländer Universität Duisburg-Essen

Prof. dr. E. Barendsen Open Universiteit, Radboud Universiteit

Dr. A. Fehnker Universiteit Twente

Dr. ir. F.F.J. Hermans Universiteit Leiden



v

Contents

1 Introduction 1
1.1 A short history of programming education research . . . . . . 2

1.2 The struggles of novice programmers . . . . . . . . . . . . . . . 4

1.3 Tools supporting the learning of programming . . . . . . . . . 6

1.4 Teaching programming style and code quality . . . . . . . . . . 8

1.5 Research questions and thesis structure . . . . . . . . . . . . . . 10

1.5.1 Other work . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 A Systematic Literature Review of Automated Feedback
Generation for Programming Exercises 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Research questions . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.3 Search process . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.4 Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Feedback types (RQ1) . . . . . . . . . . . . . . . . . . . . 24

2.4.2 Technique (RQ2) . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Adaptability (RQ3) . . . . . . . . . . . . . . . . . . . . . 29

2.4.4 Quality (RQ4) . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 General tool characteristics . . . . . . . . . . . . . . . . . . . . . 30

2.6 Feedback types (RQ1) . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6.1 Knowledge about task constraints (KTC) . . . . . . . . 34

2.6.2 Knowledge about concepts (KC) . . . . . . . . . . . . . 37

2.6.3 Knowledge about mistakes (KM) . . . . . . . . . . . . . 37

2.6.4 Knowledge about how to proceed (KH) . . . . . . . . . 42

2.6.5 Knowledge about meta-cognition (KMC) . . . . . . . . 44



vi

2.6.6 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 Technique (RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.1 General ITS techniques . . . . . . . . . . . . . . . . . . . 47

2.7.2 Domain-speci�c techniques for programming . . . . . 49

2.7.3 Other techniques . . . . . . . . . . . . . . . . . . . . . . 52

2.7.4 Combining techniques . . . . . . . . . . . . . . . . . . . 55

2.7.5 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 Adaptability (RQ3) . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8.1 Solution templates (ST) . . . . . . . . . . . . . . . . . . . 57

2.8.2 Model solutions (MS) . . . . . . . . . . . . . . . . . . . . 58

2.8.3 Test data (TD) . . . . . . . . . . . . . . . . . . . . . . . . 58

2.8.4 Error data (ED) . . . . . . . . . . . . . . . . . . . . . . . . 59

2.8.5 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.9 Quality (RQ4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.9.1 Analytical (ANL) . . . . . . . . . . . . . . . . . . . . . . . 61

2.9.2 Empirical assessment . . . . . . . . . . . . . . . . . . . . 61

2.9.3 Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.10.1 Feedback types . . . . . . . . . . . . . . . . . . . . . . . . 64

2.10.2 Feedback generation techniques . . . . . . . . . . . . . 66

2.10.3 Tool adjustability . . . . . . . . . . . . . . . . . . . . . . 67

2.10.4 Tool evaluation . . . . . . . . . . . . . . . . . . . . . . . 67

2.10.5 Classifying feedback . . . . . . . . . . . . . . . . . . . . 68

2.10.6 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 69

2.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3 Code Quality Issues in Student Programs 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3.1 Blackbox database . . . . . . . . . . . . . . . . . . . . . . 75

3.3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.1 All issues (RQ1) . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Selected issues (RQ1) . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Fixing (RQ2) . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.4 Extensions (RQ3) . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



vii

3.5.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 87

3.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . 88

4 How Teachers Would Help Students to Improve Their Code 89
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.2 Background and related work . . . . . . . . . . . . . . . . . . . . 90

4.2.1 Code quality terms and de�nitions . . . . . . . . . . . . 91

4.2.2 Code quality in education . . . . . . . . . . . . . . . . . 91

4.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.1 Study design . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3.2 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.1 Background of teachers . . . . . . . . . . . . . . . . . . 94

4.4.2 Role of code quality (RQ1) . . . . . . . . . . . . . . . . . 95

4.4.3 Program hints and steps (RQ2 and RQ3) . . . . . . . . 96

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.1 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Conclusion and future work . . . . . . . . . . . . . . . . . . . . 105

5 A Tutoring System to Learn Code Refactoring 107
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Background and related work . . . . . . . . . . . . . . . . . . . . 109

5.2.1 Code quality and refactoring . . . . . . . . . . . . . . . 109

5.2.2 Professional tools . . . . . . . . . . . . . . . . . . . . . . 110

5.2.3 Tutoring systems . . . . . . . . . . . . . . . . . . . . . . 110

5.2.4 Teachers’ perspective and conclusion . . . . . . . . . . 111

5.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 A tutoring session . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4.1 Example 1: Sum of values . . . . . . . . . . . . . . . . . 114

5.4.2 Example 2: Odd sum . . . . . . . . . . . . . . . . . . . . 116

5.5 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . 118

5.5.2 Rules and strategies . . . . . . . . . . . . . . . . . . . . . 119

5.5.3 Feedback services . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . 121

5.6.1 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.6.3 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 123



viii

5.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . 124

6 Student Refactoring Behaviour in a Programming Tutor 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.2 Background and related work . . . . . . . . . . . . . . . . . . . . 127

6.2.1 Code quality in education . . . . . . . . . . . . . . . . . 127

6.2.2 Tutoring systems for programming . . . . . . . . . . . 128

6.2.3 Automated feedback on code quality . . . . . . . . . . 129

6.3 The Refactor Tutor . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.1 Study design . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.5.1 Solving exercises (RQ1) . . . . . . . . . . . . . . . . . . . 137

6.5.2 Hint seeking (RQ1 and RQ2) . . . . . . . . . . . . . . . . 142

6.5.3 Student evaluation (RQ3) . . . . . . . . . . . . . . . . . . 154

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.6.1 Student refactoring behaviour . . . . . . . . . . . . . . 157

6.6.2 Teaching code refactoring . . . . . . . . . . . . . . . . . 159

6.6.3 Quality of the rule set . . . . . . . . . . . . . . . . . . . . 159

6.6.4 Threats to validity . . . . . . . . . . . . . . . . . . . . . . 160

6.7 Conclusion and future work . . . . . . . . . . . . . . . . . . . . 161

7 Epilogue 163
7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

7.2 Recent trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Future work and �nal thoughts . . . . . . . . . . . . . . . . . . . 166

Samenvatting 169

Dankwoord 175

CV 177

Appendix A Code Refactoring Questionnaire 179

Appendix B Stepwise improvement sequences with hints 187

Bibliography 197



1

Chapter 1

Introduction

Learning to program is hard, or is it? Many papers in the �eld of novice

programming begin with stating that it is indeed ‘hard’, ‘challenging’, and

a ‘struggle’. Guzdial contemplates that ‘maybe the task of programming is

innately one of the most complex cognitive tasks that humans have ever cre-

ated’.
1

While there is plenty of evidence that students indeed struggle, there is

also nuance: Luxton-Reilly believes our expectations and demands of novices

are too high [172], reasoning that if children can learn how to program, it

should not be that hard to learn at least the basics. He argues that demanding

too much from beginners in too little time, which inevitably leads to unsatis-

factory results, does not imply that programming itself is hard.

To write a good program, novices need knowledge of programming lan-

guages and tools, as well as the skills to adequately use these resources to solve

actual problems [228]. Du Boulay identi�es �ve main problem areas [71]: ori-

entation (the goal of programming), the notional machine (an abstraction of

how the computer executes a program), notation (language syntax and se-

mantics), structures (such as plans or schemas to perform small tasks), and

pragmatics (planning, developing, testing, debugging, etc.). Programming re-

quires handling all of these aspects almost simultaneously, making things even

harder. Consequently, it is not surprising that this high cognitive load being

placed on novices, combined with often �awed mental models, leads to strug-

gling students.

Research into programming education has been focussing mainly on stu-

dent di�culties, and the mistakes that they make a�ecting functional correct-

ness. Style, e�ciency, and quality have played a minor role. This thesis aims

to focus attention on these aspects by applying them to the context of novice

1

Mark Guzdial, Computing Education Research Blog (2010). Is learning to program inher-

ently hard?

https://computinged.wordpress.com/2010/04/14/is-learning-to-program-inherently-hard/
https://computinged.wordpress.com/2010/04/14/is-learning-to-program-inherently-hard/


2 Chapter 1. Introduction

programmers and the small programs that they write. One might think that

bothering novice programmers with yet another topic would make it even

harder for them. However, writing code that is more readable and understand-
able, and thinking about how code constructs work and how they can be used

in the best way, could prepare students to become critical and quality-oriented

programmers.

The central topic of this thesis revolves around students learning about

code quality, and how tools in general and software technology in particu-

lar can be employed to support them. In this introductory chapter we �rst

explore the context by looking brie�y at the history of how programming is

being taught and studied, and zoom in on the perceived di�culties. Next, we

introduce the topic of (educational) tools to support students with program-

ming. Then, the topic of programming style and code quality is discussed,

establishing the terminology and its de�nitions used in this thesis, and we

give some background of the topic’s place in education. Finally, we list the re-

search questions of this thesis, and describe how these questions are addressed

in the subsequent chapters.

1.1 A short history of programming education re-
search

With the emergence of modern, digital computing in the 1940s quickly came

the realisation that programming was much more di�cult than just perform-

ing some mechanical operations [77]. Simple workers would not su�ce; peo-

ple had to be trained properly so they could handle the intricacies of the job

and take computer programming to a higher level. The profession of program-

mer quickly transformed into a well-paid and valued occupation.

Computer Science Education has been studied since the 1960s, when the

demand for programmers �rst emerged. In that time there was a huge problem

with �nding enough, and quali�ed programmers. In the early days, program-

mers were mostly trained in-house at companies. Later, vocational schools

o�ered educational programs. The ACM Special Interest Group on Computer

Personnel Research (SIGCPR) was founded in 1962, together with the �rst

standardised curriculum, marking the academic start of computer science as

a discipline [227]. However, at that time institutions struggled to train com-

petent programmers, because it was not generally known which traits a good

programmer should have and how these could be taught [77].
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During that time, research focused on the skill of programming and its psy-

chology (e.g. ‘The psychology of computer programming’ by Weinberg [284]),

inspired by the great demand for programmers, and methods for teaching pro-

grammers [103]. The main topics were the di�culties of novices, language

design, and learning programming both for its own sake and as a means to

learn other skills, such as mathematics. This was the era of Logo [79], BASIC,

Pascal, and the emergence of the ‘notional machine’ [71].

Later, object orientation (through Smalltalk) and an increased focus on

user interface and interaction through graphical artefacts and programmable

devices gained popularity, laying the foundation for modern block-based lan-

guages such as Scratch. In the 1970s en 1980s the advent of cognitive science

and learning sciences in�uenced the �eld. The �rst Intelligent Tutoring Sys-

tems for programming were built based on theories from cognitive science,

such as the LISP Tutor [57].

In 1970 the ACM Special Interest Group on Computer Science Education

(SIGCSE) was founded, followed by several other venues in which researchers

and teachers share their work and experiences. Most of the aforementioned

themes are still being investigated, and new themes have emerged as well.

Recently, the research �eld has expanded because learning how to program

is not just for computer science students, but also for kids, teenagers in high

school, non-majors studying other topics (e.g. biology, physics), and an in-

creasing number of employees needing to be trained in various computing

skills. This motivated the need to change the name of the �eld to Computing

Education Research (CEdR) [80]. Furthermore, the increasing availability of

large amounts of educational data shows promises to learn more about how

students approach computing, and to design better interventions to support

them. However, this trend also requires improved validation methods and

more replication studies [120].

Novice programming has been, and will continue to be, a major topic in

this increasing research �eld. The 2018 systematic literature review of Luxton-

Reilly et al. on introductory programming shows an increase in paper count

from 2003 to 2017 with a factor three [173]. Categories with the most papers

were ‘measuring student ability’, ‘student attitudes’, ‘tools’, ‘teaching tech-

niques’ and ‘the curriculum in general’.
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1.2 The struggles of novice programmers

‘Adjusting to the requirement for perfection is, I think, the most di�cult

part of learning to program.’ [40]

In the early days of the �eld, it was believed that being able to program

was innate. Programming was considered some kind of ‘black art’, shrouded

in mystery. Aptitude testing was used for a long time to ‘discover’ who had the

programming gene and who did not. However, after decades of research into

which factor predicts programming skill, there is still no clear answer to that

question [226]. It is a common belief that the grades of novice programming

show a bimodal distribution in courses, implying there are the ones who get it

(who have the ‘geek gene’), and the ones who do not, and probably never will.

This viewpoint is still very persistent: Lewis et al. [166] asked students and

faculty to respond to the statement ‘Nearly everyone is capable of succeeding

in computer science if they work at it’, and 77% of faculty rejected this state-

ment, while the majority of students was positive towards it. Whether grades

are truly bimodal is currently under debate [206].

Robins poses the ‘Learning Edge Momentum (LEM)’ hypothesis that states

that once you have success in learning, you will more easily learn new con-

cepts, because learning is most successful if you build on your current knowl-

edge [226]. This is especially true in a domain in which concepts are tightly

connected and often build upon each other. Programming gets easier to learn

once you have learned something successfully, but at the other end becomes

more di�cult once you struggled at the beginning of your learning process.

This hypothesis calls for a big emphasis on the early stages on learning pro-

gramming, and a gradual build-up of knowledge and skills.

Failure rates of �rst CS courses have also had much attention in the last

decades. Bennedsen and Caspersen [30] measure an average failure rate of

33%. Watson and Li [280] report a pass rate of 67%, and the latest results from

Bennedsen and Caspersen [31] are an improved average failure rate of 28%,

which is much lower compared to some other subjects such as college alge-

bra. Reservations can be made because measuring failure rates is very di�cult.

A recent study tried to tackle this by comparing pass rates to those of intro-

ductory courses in other STEM (Science, Technology, Engineering and Math-

ematics) disciplines [240], �nding an average of about 75% and some weak

evidence that programming resides at the lower end.
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The well-known McCracken study measured if students could really pro-

gram after passing a novice course, and the authors were disappointed with

their skills [189]. A comparable result was found by Lister et al. in a study

with di�erent assignments [167]. Apparently, there is still a lot to learn after

the �rst course.

Misconceptions have been studied extensively, distinguishing between syn-

tactical, conceptual and strategic misconceptions [219]. Students must learn

the syntax of a programming language, learn how language constructs work

and how a complete program is executed, and employ all of these aspects to

create a program that solves a particular problem. Factors that contribute

to these misconceptions are: complex tasks leading to high cognitive load,

confusing formal and natural language, incorrectly applying previous math

knowledge, incorrect mental models of program execution (the notional ma-

chine [71]), lack of problem-solving strategies, issues with tools and IDEs, and

inadequate teaching.

What students mostly �nd hard is designing a program to solve a certain

problem, subdividing functionality into methods, and solving bugs [156]. Gar-

ner et al. �nd comparable results: understanding the task, design and structure

of a solution, and some basic typo/syntax issues [86].

There are still many open questions and debates on what is the most ef-

fective way to teach programming. For instance, the ‘programming language

wars’ have also taken a prominent place in computing education research,

disputing whether we should teach Python, Java, or C; start with object ori-

entation, imperative programming or even a functional or logical paradigm;

or maybe even begin with a visual language such as Scratch. To date, no clear

answer has emerged to that question [173].

However, there are some things we know are e�ective [80]. We should

teach a suitable language with a straight-forward syntax and helpful tool sup-

port, based on proper selection criteria [180]. Attention should be paid to

building correct mental models of program execution. For example, Nelson

et al. [199] propose a comprehension-�rst pedagogy, which �rst teaches how

code is executed, before teaching how to write code. Teaching about this no-

tional machine is often supported by tools simulating the computer, which is

further discussed in the next section. This pedagogy also �ts well with the

best practice of o�ering di�erent types of carefully designed exercises: read-

ing, writing, expanding, and correcting code (e.g. [267]). Some of these ex-

ercise types reduce the cognitive load students particularly struggle with as

beginners. Attention should also be paid to problem-solving, problem design,
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and programming strategies. A �nal e�ective method is collaboration in the

form of pair programming or peer learning (e.g. [216]).

Some of these teaching methods can be supported by automated tools.

In the next section we shift the focus to programming tools complementing

human teachers.

1.3 Tools supporting the learning of programming

From the very beginning of the research �eld of programming education, tools

have been developed to support students in their learning. Several categoriza-

tions can be made, for instance [44]:

● Algorithm and program visualization tools, which teach students how

algorithms work and how programs are executed, and algorithm and

program simulation tools, which go beyond visualization by providing

interaction. Some examples are the Python Tutor [101] in which stu-

dents can step through Python programs, UUhistle [247] that lets the

student play the role of the computer through executing various com-

mands, and TRAKLA2 [178], which creates visualisations of operations

on data structures such as (balanced) binary trees and graphs.

● Automatic assessment tools, which provide grades and feedback on stu-

dent submissions. Many of these systems run test cases on submit-

ted programs and run additional tools to check style and performance.

Ihantola et al. [119] provide a review, and a well-known system is Web-

CAT [75].

● Coding tools, in which student can practice and learn with program-

ming. Nowadays, many of these tools are o�ered online, either free or

commercial.
2

● Problem-solving support tools, for instance Intelligent Tutoring Sys-

tems (ITSs). As an example, in Parsons’ problems students have to put

code fragments in the correct order so the program works [204]. These

tools could also be more focussed on learning a speci�c skill.

For this thesis we are mostly interested in coding tools, problem-solving

support tools (in particular ITSs), and aspects of automatic assessment tools.

2

Examples are: codeacademy.com, code.org, codingbat.com

www.code.org
www.codeacademy.com
www.codingbat.com
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A central element in these tools is feedback, which has the potential to greatly

a�ect learning if delivered properly [107], [239]. When the feedback is auto-
mated, it alleviates teachers from the e�ort of giving feedback for large groups

of students. One of the earliest examples is shown in Figure 1.1, which is

a feedback message on an incorrectly quoted string given by the BASIC In-

structional Program (BIP) developed in the 1970s [19].

Figure 1.1: Feedback from the BASIC Instructional Program

(BIP) in the 1970s [19].

A more recent example can be seen in Figure 1.2. This hint is from the In-

telligent Teaching Assistant for Programming (ITAP) system that generates

data-driven hints [225]. Data-driven solutions are increasingly being used

for many applications, and have also taken a role in educational tools. ITAP

searches for student paths from a similar starting point leading to a correct

solution, and bases hints on the potentially most successful next step.

Figure 1.2: Feedback from the Intelligent Teaching Assistant

for Programming (ITAP) [224].

Feedback can be generated on various aspects of students’ programming,

such as programming mistakes, test results, task requirements, and, most rel-

evant for this thesis, style and quality aspects. In ITSs, feedback is used for

the inner loop, indicating whether steps are correct and giving feed forward in

the form of next-step hints.

Several tutors have been developed in the domain of programming. For
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my Master thesis I worked on supporting students with building small pro-

grams step by step [139], [140]. I developed a prototype of a tutoring sys-

tem that helps students with feedback and hints suggesting next steps to ex-

pand and re�ne their programs. This tutor is similar to the Ask-Elle tutor

for functional programming [88], but adapted for the paradigm of imperative

programming. Building this tutor introduced me to Ideas (Interactive Domain-

speci�c Exercise Assistants), a framework for creating interactive learning en-

vironments [109]. This framework has been used for many di�erent applica-

tions in various domains, such as programming [88], logic [168], mathemat-

ics [110], statistics [257], and communication skills [127]. Ideas is available as

a software package
3

written in the functional programming language Haskell.

Several components have to be built to make a tutor for a speci�c domain: a

data structure for the artefacts to be manipulated (e.g. programs, expressions,

or texts), rules that specify the steps to transform these artefacts, and strate-

gies that combine, sequence, and prioritise these steps.

For the work in this PhD thesis I have used this framework and my ear-

lier work on programming tutors to build a tutoring system for the domain

of code refactoring. The next section will give some background on refactor-

ing and code quality, and illustrates its place and importance in the �eld of

programming education.

1.4 Teaching programming style and code quality

‘Thus, programs must be written for people to read, and only incidentally

for machines to execute.’ [1]

In the context of this thesis, we de�ne code quality as dealing with the di-

rectly observable properties of source code, such as control �ow, expressions,

choice of language constructs, decomposition, and modularization. The prop-

erties are derived from the rubric by Stegeman et al. [249], which has been

developed to assess code quality in introductory programming courses. Other

aspects such as naming, layout, and commenting are outside our scope. Cod-

ing style is often associated with quality. The topics of quality and style touch

upon personal preferences and beliefs. Even though this might complicate de-

ciding what and how to teach, we believe this should not just be left to the

teacher. We should actively look for agreement and discuss what we disagree

on.

3hackage.haskell.org/package/ideas

http://hackage.haskell.org/package/ideas
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Code refactoring is de�ned as improving code step by step while preserv-

ing its external behaviour [84]. The starting point of refactoring is code that

is already functionally correct, but has characteristics resembling code smells.
The term ‘refactoring’ emerged from works in the early 1990s by Opdyke and

Griswold, and some other software engineering communities, as investigated

by Martin Fowler.
4

The e�ect of refactoring on software quality characteris-

tics is not consistent [11], [194]; although improving quality attributes is the

ultimate goal of refactoring, it can apparently do harm as well by negatively

impacting these attributes.

In this thesis we focus on single methods and how to improve aspects such

as �ow, expressions and use of language constructs, thus refactoring at the

data-, statement- and method-level [188]. These are not the types of higher-

level refactorings most commonly known, such as ‘Extract Method’, ‘Pull up

Field’ and ‘Inline Class’ as documented by Fowler [84]. However, Fowler also

describes the ‘Substitute Algorithm’ refactoring as ‘you want to replace an

algorithm with one that is clearer’. We consider our focus to be on the micro-

refactorings needed to perform this possibly complex task. Refactorings re-

lated to structure and modularity will be future work.

Attention for the stylistic aspects of code is not a new topic, and caught the

attention of researchers in the past. In 1978 Schneider proposed ten principles

for a novice programming course, among which number six: ‘The presentation

of a computer language must include concerns for programming style from

the very beginning’ [236]. However, programming style and quality have had

much less attention than writing functioning programs and �xing mistakes

such as compiler errors, runtime errors or incorrect output.

Recent increased attention might be attributed to changes in the �eld of

software engineering. The growing need for technological solutions has led

to software increasingly being made as products frequently updated with im-

provements and new features [3], [69]. Code is also more often shared as open

source software to be expanded by others. These developments, and in gen-

eral the increasing maturity of the �eld, call for understandable code that is

easily maintained and extended.

Another interesting development is the ever expanding choice of tools

dealing with quality and style available to developers, as well as the grow-

ing sophistication of IDEs. Developers can have their code analysed for bugs,

�aws, and smells; metrics can be calculated for performance, test coverage,

4

Martin Fowler, Blog – Etymology of refactoring (2003)

https://martinfowler.com/bliki/EtymologyOfRefactoring.html
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and complexity; and code can be automatically formatted and refactored. How-

ever, according to a study from 2012 the use of refactoring tools is not that

widespread [195]. Another study investigated reasons why developers hesi-

tate to use static analysis tools [130]. Developers mention the sheer overload

of warnings, sometimes even false positives, and lack of explanation of why

a warning is problematic and how to �x it. If even professional developers

struggle with this, how should our students deal with these tools? Students

learning programming can come into contact with these professional tools

early, and should be taught how to use these tools wisely.

A 2017 ITiCSE working group intended to answer questions about how

students, educators and professional developers perceive code quality, which

quality attributes they consider important, and what the di�erences are be-

tween these groups. I was a participant of this working group. We interviewed

individuals from various groups, questioning them on several aspects related

to code quality. We found no coherent image of what de�nes code quality, al-

though ‘readability’ was the most frequently mentioned indicator, and that all

interviewed groups have learned very little on the subject in formal education,

pleading for more attention to the subject [37].

More evidence for lack of attention to code quality comes from Kirk et

al. [149], who investigated whether code quality is mentioned in learning out-

comes of introductory programming courses in higher education. They found

that in only 41 of 141 courses this was the case, and that it remained unclear

what exactly students were supposed to learn if code quality was mentioned.

The Lewis study on teacher and student attitudes and believes towards

Computer Science mentioned earlier [166] also contains the statement ‘If a

program works, it doesn‘t matter much how it is written’. While 92% of teach-

ers rejected this, only 55% of students in CS1 rejected the statement. The re-

jection percentage went up, however, for CS2 and senior students.

This thesis supports the call for more attention to the subject of code qual-

ity in education.

1.5 Research questions and thesis structure

The central research question of this thesis is:

How can automated feedback support students learning code refactoring?

Each of the following chapters answers one of the subquestions, which will

help �nding an answer to the central research question:
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RQ1 What are the characteristics of existing tools that give automated feed-

back on programming exercises?

RQ2 Which code quality issues occur in student code, and are these issues

being �xed?

RQ3 How would teachers help students to improve their code?

RQ4 How do we design a tutoring system giving automated hints and feed-

back to learn code refactoring?

RQ5 What is the behaviour of students working in a such a tutoring system?

The thesis is composed of �ve main chapters, each being a published or

submitted paper of which I am the �rst author. For those papers, I have de-

veloped the software, performed the analyses, and wrote the papers. For the

literature review in Chapter 2, the second author also played an active role by

participating in selecting papers and developing the coding, as is required to

ensure quality for a systematic review. In general, the co-authors contributed

to regular discussions on the research questions, and the research methods we

would need to answer these questions. Some minor improvements have been

made in the published chapters.

Chapter 2 “A Systematic Literature Review of Automated Feedback Gener-

ation for Programming Exercises”. Hieke Keuning, Johan Jeuring, and Basti-

aan Heeren. In: ACMTransactions on Computing Education (TOCE). 2018. [147]

This thesis begins with a systematic literature review (SLR) of automated

feedback generation for programming exercises. The �rst results of the lit-

erature study appeared as a conference paper [145], accompanied by a more

detailed version as a Technical Report [146]. After reducing the scope, the �-

nal review was published as a journal paper [147]. The SLR has a broad focus

looking at the earliest work from the 1960s up to papers from 2015. A total of

101 tools that provide automated feedback are included, describing the type of

feedback they generate, the techniques used, the adaptability of the feedback,

and the methods used for evaluation. To categorise the types of feedback, we

have used an existing feedback content classi�cation by Narciss [197] that we

instantiated for the domain of programming. From this study we learn that

feedback mostly focusses on correcting mistakes, and much less on helping

students along the way of solving a programming problem. We observe an in-

creasing diversity of techniques used for generating feedback, providing new
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opportunities, but also posing new challenges. Adaptability of tools and evalu-

ating the use and e�ectiveness of feedback techniques also remains a concern.

Chapter 3 “Code Quality Issues in Student Programs”. Hieke Keuning, Bas-

tiaan Heeren, and Johan Jeuring. In: Proceedings of the ACM Conference on
Innovation and Technology in Computer Science Education. 2017. [141]

To �nd out to what extent code quality issues occur in student programs,

we conducted a study analysing student code. We analysed over 2.5 million

Java code snapshots for the presence of code smells using a professional static

analysis tool. We selected a subset of rules from this tool that we categorised

under a rubric for assessing student code quality [249]. We found several oc-

currences of issues and noticed they were barely resolved, in particular the

modularization issues. We did not see the e�ect of an installed code quality

tool extension on the number of issues found.

Chapter 4 “How Teachers Would Help Students to Improve Their Code”.

Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. In: Proceedings of the
ACM Conference on Innovation and Technology in Computer Science Education.

2019. [142]

Teachers play an important role in raising awareness of code quality. Ide-

ally, every student should receive personalised feedback from a teacher on

their code, however, this is often an impossible task due to large class sizes.

In this chapter we investigate teacher views on code quality through a survey.

Thirty teachers gave their opinion on code quality, and were asked to make

this concrete by assessing three imperfect student programs. We found quite

a diversity in how they would rewrite the programs, but also extracted some

similarities.

Chapter 5 “A Tutoring System to Learn Code Refactoring”. Hieke Keuning,

Bastiaan Heeren, and Johan Jeuring. In submission. n.d. [143]

This chapter describes the tutoring system to learn code refactoring that

was developed based on the �ndings from the previous studies. The tutor-

ing system o�ers refactoring exercises, in which students have to rewrite im-

perfect solutions to given problems. The system o�ers feedback and hints at

various levels, and is based on a ruleset derived from our preliminary research.
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The imperative programming tutor developed for my Master thesis (see

Section 1.3) has served as a basis for the refactoring tutor. Several components,

such as the parser, the data types, normalisation rules, the code evaluator, have

been reused and expanded. In this chapter the design of the system is described

and its functionality is shown. The system is evaluated by comparing it with

professional tools, conducting a technical evaluation, and showing to what

extent the functionality matches with how teachers would help students.

Chapter 6 “Student Refactoring Behaviour in a Programming Tutor”. Hieke

Keuning, Bastiaan Heeren, and Johan Jeuring. In submission. n.d. [144]

This chapter describes the �ndings of 133 students working with the tutor-

ing system in the autumn of 2019. We elaborate on how they solved six refac-

toring exercises using the feedback and hints the system provides. Log data of

all interactions were studied revealing their programming behaviour, di�cul-

ties and successes. We also analyse the results of the survey the students �lled

in on using the system and working on code quality. Several improvements

for the tutoring system were derived from this study.

Chapter 7 The last chapter provides a �nal conclusion and re�ection on the

central topic of this thesis: automated feedback for students learning about

code quality and refactoring. We derive general insights from the thesis and

describe implications for future work. We also put the work of the published

papers from Chapters 2 to 4 in the context of the latest work that has appeared

since these papers were published.

1.5.1 Other work

The following papers are relevant work that I have done before and during

my PhD, but are not a part of my thesis:

Code quality working group “‘I know it when I see it’ – Perceptions of

Code Quality”. Jürgen Börstler, Harald Störrle, Daniel Toll, Jelle van Assema,

Rodrigo Duran, Sara Hooshangi, Johan Jeuring, Hieke Keuning, Carsten Kleiner,

Bonnie MacKellar. In: Proceedings of the ACM Conference on Innovation and
Technology in Computer Science Education, Working Group Reports. 2017. [37]
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Section 1.4 elaborates on the study of the working group I participated

in. My contribution consisted of conducting and transcribing interviews, and

processing the interview data together with the other group members.

Imperative programming tutor “Strategy-based Feedback in a Program-

ming Tutor”. Hieke Keuning, Bastiaan Heeren, and Johan Jeuring. In: Proceed-
ings of the Computer Science Education Research Conference. 2014. [140]

As explained in Section 1.3, I built an imperative programming tutor of

which some components have been reused for this thesis.

Predicting student performance “Automatically Classifying Students in

Need of Support by Detecting Changes in Programming Behaviour”. Anthony

Estey, Hieke Keuning, and Yvonne Coady. In: Proceedings of the ACM SIGCSE
Technical Symposium on Computer Science Education. 2017. [78]

This paper focuses on student behaviour in a programming tutor, investi-

gating to what extent compile- and hint-seeking behaviour can predict failure

or success in a programming course. We found that using a metric that incor-

porates behaviour change over time is more accurate at predicting outcome

than a metric that calculates a score at a single point in time. My contribu-

tion consisted of taking part in discussions about the prediction metrics and

writing down the �ndings.
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Chapter 2

A Systematic Literature
Review of Automated
Feedback Generation for
Programming Exercises

This chapter is a published paper [147].

Abstract Formative feedback, aimed at helping students to improve their

work, is an important factor in learning. Many tools that o�er programming

exercises provide automated feedback on student solutions. We have per-

formed a systematic literature review to �nd out what kind of feedback is

provided, which techniques are used to generate the feedback, how adaptable

the feedback is, and how these tools are evaluated. We have designed a la-

belling to classify the tools, and use Narciss’ feedback content categories to

classify feedback messages. We report on the results of coding 101 tools. We

have found that feedback mostly focuses on identifying mistakes and less on

�xing problems and taking a next step. Furthermore, teachers cannot easily

adapt tools to their own needs. However, the diversity of feedback types has

increased over the last decades and new techniques are being applied to gen-

erate feedback that is increasingly helpful for students.
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2.1 Introduction

Tools that support students in learning programming have been developed

since the 1960s [70]. Such tools provide a simpli�ed development environ-

ment, use visualisation or animation to give better insight in running a pro-

gram, guide students towards a correct program by means of hints and feed-

back messages, or automatically grade the solutions of students [138]. Two

important reasons to develop tools that support learning programming are:

● learning programming is challenging [189], and students need help to

make progress [48];

● programming courses are taken by thousands of students all over the

world [30], and helping students individually with their problems re-

quires a huge time investment of teachers [200].

Feedback is an important factor in learning [107], [239]. Boud and Mol-

loy de�ne feedback as ‘the process whereby learners obtain information about

their work in order to appreciate the similarities and di�erences between the

appropriate standards for any given work, and the qualities of the work it-

self, in order to generate improved work’ [38]. Thus de�ned, feedback is

formative: it consists of ‘information communicated to the learner with the

intention to modify his or her thinking or behavior for the purpose of im-

proving learning’ [239]. Summative feedback in the form of grades or per-

centages for assessments also provides some information about the work of

a learner. However, the information a grade without accompanying feedback

gives about similarities and di�erences between the appropriate standards for

any given work, and the qualities of the learner’s work, is usually only super-

�cial. In this article we focus on the formative kind of feedback as de�ned by

Boud and Molloy. Formative feedback comes in many variants, and the kind

of formative feedback together with student characteristics greatly in�uences

the e�ect of feedback [191].

Focussing on the context of computer science education, Ott et al. [203]

provide a roadmap for e�ective feedback practices for di�erent levels and

stages of feedback. The authors see a role for automated feedback at all three

levels as de�ned by Hattie and Timperley [107]: ‘task level’, ‘process level’

and ‘self-regulation level’, discarding feedback at the ‘self level’ because of its

limited e�ect on learning. In their roadmap, automated assessment of exams

is placed at the task level, student support through adaptive feedback from
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automated tools at the process level, and tutoring systems and automated as-

sessment as options for self-assessment of students at the self-regulation level.

Given the role of feedback in learning (programming), we want to �nd out

what kind of feedback is provided by tools that support a student in learning

programming. What is the nature of the feedback, how is it generated, can

a teacher adapt the feedback, and what can we say about its quality and ef-

fect? An important learning objective for learning programming is the ability

to develop a program that solves a particular problem. We narrow our scope

by only considering tools that o�er exercises (also referred to as tasks, assign-

ments or problems, which we consider synonyms) that let students practice

with developing programs.

To answer these questions, we have performed a systematic literature re-

view of automated feedback generation for programming exercises. A sys-

tematic literature review (SLR) is ‘a means of identifying, evaluating and in-

terpreting all available research relevant to a particular research question, or

topic area, or phenomenon of interest’ [150]. An SLR results in a thorough and

fair examination of a particular topic. According to the literature, a research

plan should be designed in advance, and the execution of this plan should be

documented in detail, allowing insight into the rigorousness of the research.

This article expands on the results of the �rst iteration of our search for

relevant tools, on which we have already reported in a conference paper [145]

and a technical report [146]. This �rst iteration resulted in a set of 69 di�er-

ent tools, described in 102 papers. After slightly adjusting our criteria, the

completed search resulted in a �nal collection of 101 tools described in 146

papers. We searched for papers in related reviews on tools for learning pro-

gramming and executed multiple steps of ‘backward snowballing’ by selecting

relevant references. We also searched two scienti�c databases and performed

backward snowballing on those results as well.

We have classi�ed the kind of feedback given by the tools we found by

means of Narciss’ [197] categories of feedback, such as ‘knowledge about mis-

takes’ and ‘knowledge about how to proceed’. We have instantiated these

feedback categories for programming exercises, and introduce several sub-

categories of feedback particular to programming. Narciss’ categories largely

overlap with the categories used to describe the actions of human tutors when

they help students learning programming [266]. Next, we determine how
these tools generate feedback by examining the underlying techniques. Be-

sides looking at feedback categories (the output of a tool) and the technique

(what happens inside a tool), we also look at the input. The input of a tool
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that supports learning programming may take the form of model solutions,

test cases, feedback messages, etc., and determines to a large extent the adapt-

ability of the tool, which is considered important [44], [170]. Finally, we collect

information about the e�ectiveness of the generated feedback. The e�ective-

ness of a tool depends on many factors and tools have been evaluated by a

large variety of methods.

This review makes the following contributions:

● An extensive overview of tools that give automated feedback.

● A description of what kind of feedback is used in tools that support

a student in learning programming. Although multiple other reviews

analyse such tools, none of them speci�cally looks at the feedback pro-

vided by these tools.

● An analysis of the relation between feedback content and its technology,

and the adaptability of the tool.

This article expands on our previous conference paper [145] in the follow-

ing ways:

● We removed 23 tools from our initial set of 69, after adjusting our in-

clusion criteria based on the initial �ndings (described in Section 2.3.2).

We completed our search by adding data for 55 new tools.

● We give elaborated examples and descriptions of several of these tools.

● We provide and discuss new tables and graphs summarising our �nal

results. We look at the data more in-depth by identifying trends in time,

and combinations of techniques and methods.

● We update, extend and �ne-tune the discussion of the results, resulting

in a more nuanced conclusion because of the characteristics of more

recent tools that were included later.

The article is organised as follows. Section 2.2 discusses related reviews

of tools for learning programming. Section 2.3 gives our research questions

and research method, and Section 2.4 describes the labelling we developed for

coding the tools. The results are described in Section 2.5 to 2.9, each describing

the results for one of the research questions. Section 2.10 discusses the results

and limitations of this review and Section 2.11 concludes the article.
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2.2 Related work

We have found seventeen reviews of tools for learning programming, mostly

on automated assessment (AA) tools [6], [46], [70], [119], [222], [229], [253]

or learning environments for programming [66], [67], [93], [102], [138], [164],

[165], [207], [213], [264]. Generating feedback is important for both kinds of

tools. Most AA tools only grade student solutions, but some tools also provide

elaborated feedback, and can be used to support learning [6]. We refer to the

technical report on the �rst phase of our review [146] for a detailed discussion

of these related reviews, in which we identi�ed their main research questions,

the scope of the selected tools and the method of data collection.

Most review papers describe the features and characteristics of a selection

of tools, identify challenges, and direct future research. Except for the review

by Ihantola et al. [119], authors select papers and tools based on unknown

criteria. Some mention qualitative factors such as impact (counting citations)

or the thoroughness of the evaluation of the tool. Most studies do not strive

for completeness, and the scope of the tools that are described varies greatly.

Tools are usually categorised, but there is no agreement on the naming of the

di�erent categories. Very few papers discuss technical aspects.

Our review distinguishes itself from the above reviews by focusing on the

aspect of generating feedback in programming learning tools, closely exam-

ining the di�erent types of feedback messages and identifying the techniques

used to generate them. Furthermore, we employ a more systematic approach

than all of the above reviews: we select tools in a systematic way following

strict criteria, and code them using a predetermined labelling.

2.3 Method

Performing an SLR requires an in-depth description of the research method.

Section 2.3.1 discusses our research questions. Section 2.3.2 describes the crite-

ria that we have set to de�ne the scope of our research. Section 2.3.3 describes

the process for searching relevant papers. Finally, Section 2.3.4 explains the

coding process.

2.3.1 Research questions

The following four research questions guide our review on automated feed-

back generation for programming exercises:
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RQ 1 What is the nature of the feedback that is generated?

RQ 2 Which techniques are used to generate the feedback?

RQ 3 How can the tool be adapted by teachers, to create exercises and to

in�uence the feedback?

RQ 4 What is known about the quality and e�ectiveness of the feedback or

tool?

2.3.2 Criteria

There is a growing body of research on tools for learning programming for

various audiences with di�erent goals. These goals can be to learn program-

ming for its own sake, or to use programming for another goal [138], such as

creating a game. Our review focuses on students learning to program for its

own sake. We have de�ned a set of inclusion and exclusion criteria (Table 2.1)

that direct our research and target the characteristics of the papers and the

tools described therein.

Although there are many online programming tools giving feedback, we

do not include tools for which there are no publications, because we do not

know how they are designed. The rationale of our functionality criteria is that

the ability to develop a program to solve a particular problem is an important

learning objective for learning programming [134]. Because we are interested

in improving learning, we focus on formative feedback. We use the domain

criteria to focus our review on programming languages used in the industry

and/or taught at universities. Many universities teach an existing, textual pro-

gramming language from the start, or directly after a visual language such as

Scratch or Alice. We do not include visualisation tools for programming be-

cause they were surveyed extensively by Sorva et al. [246] in the recent past.

However, we do include visualisation tools that also provide textual feedback.

Le and Pinkwart [164] have developed a classi�cation of programming

exercises that are supported in learning environments. The type of exercises

that a learning tool supports, determines to a large extent how di�cult it is to

generate feedback. Le and Pinkwart base their classi�cation on the degree of

ill-de�nedness of a programming problem. Class 1 exercises have a single cor-

rect solution, and are often quiz-like questions with a single solution, or slots

in a program that need to be �lled in to complete some task. Class 2 exercises

can be solved by di�erent implementation variants. Usually a program skele-

ton or other information that suggests the solution strategy is provided, but
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Table 2.1: Criteria for the inclusion/exclusion of papers.

Include Exclude

General Scienti�c publications (journal pa-

pers and conference papers) in En-

glish. Master theses, PhD theses and

technical reports only if a journal

or conference paper is available on

the same topic. The publication de-

scribes a tool of which at least a pro-

totype has been constructed.

Posters and papers shorter than four

pages.

Functionality Tools in which students work on

programming exercises of class 2

or higher from the classi�cation of

Le and Pinkwart [164] (see Sec-

tion 2.3.2). Tools provide automated,

textual feedback on (partial) solu-

tions, targeted at the student.

Tools that only produce a grade,

only show compiler output, or return

instructor-written feedback.

Domain Tools that support a high-level, gen-

eral purpose, textual programming

language, including pseudo-code.

Visual programming tools, e.g.

programming with blocks and

�owcharts. Tools that only teach a

particular aspect of programming,

such as recursion or multi-threading.

Technology – Tools that are solely based on au-

tomated testing and give feedback

based on test results.

variations in the implementation are allowed. Finally, class 3 exercises can

be solved by applying alternative solution strategies, which we interpret as

allowing di�erent algorithms as well as di�erent steps to arrive at a solution.

We select papers and tools that satisfy all inclusion criteria and none of

the exclusion criteria. We have included four PhD theses, one Master thesis

and three technical reports, whose contributions have also been published in

a journal or conference paper, because they contained relevant information.

Since no review addressing our research questions has been conducted be-

fore, and we aim for a complete overview of the �eld, we consider all relevant

papers up to and including the year 2015.

The criterion to exclude tools solely based on automated testing was added

after publishing our preliminary results [145], because of the sheer volume of

papers that we found. These papers all describe very similar tools, which

would make the review too large. Moreover, we do not think that including
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these papers would provide an interesting contribution within the scope of

this review.

2.3.3 Search process

The starting point of our search for papers was the collection of 17 review

papers described in Section 2.2. Two authors of this SLR independently se-

lected relevant references from these reviews. Then two authors indepen-

dently looked at the full text of the papers in the union of these selections,

to exclude papers not meeting the criteria. After discussing the di�erences,

we assembled a �nal list of papers for this �rst iteration. Following a ‘back-

wards snowballing’ approach, one author searched for relevant references in

the papers found in the �rst iteration. This process was repeated until no more

new papers were found. We believe that one author is su�cient for this task

because the scope had already been established.

Next, we searched two databases to identify more papers of interest, and

to discover more recent work. We have selected a computer science database

(ACM Digital Library) and a general scienti�c database (Scopus). We used the

search string from Listing 2.1 on title, abstract and key words, slightly adjusted

for each database.

Listing 2.1: Database search string

(exercise OR assignment OR task OR (solv* AND problem ))
AND programming
AND ( (tutor OR tutoring)

OR ((learn OR teach) AND (tool OR environment ))
OR (( automat* OR intelligent OR generat *)

AND (feedback OR hint))
)

Although the query could have been adjusted so that it would have re-

turned more papers that match our criteria, this adjustment would also have

generated a much larger number of irrelevant results. We believe the �nal

query has a good enough balance between accuracy and breadth, and because

we also traced references we had an alternative way to �nd papers that we

would have missed otherwise.

The results of the Scopus search were partly inspected by two authors,

who separately selected papers by inspecting the title, abstract, key words and

the name of the journal or conference. We combined the results and discussed

all di�erences. In the event of disagreement, we included the paper for further
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inspection. Two authors then further re�ned the acquired list by examining

the full text separately and again discussing di�erences. The second part of

the Scopus search results, the ACM search results and the relevant references

from both searches were inspected by one author, only consulting another

author if there were doubts.

We had to exclude a small number of papers we could not �nd after an

extensive search and, in some cases, contacting the authors. Some excluded

papers point to a potentially interesting tool. We checked if these papers men-

tion a better reference that we could add to our selection.

When we encountered papers we did not trust, we looked further into its

contents, author, or the journal that published it. We excluded one paper from

the review after all authors agreed that the paper was unreliable and would

have a negative in�uence on the quality of our review (this particular paper

seemed to be a copy of existing work).

Often multiple papers have been written on (versions of) a single tool. We

searched for all publications on a tool by looking at references from and to

papers already found, and searching for other relevant publications by the au-

thors. We selected the most recent and complete papers about a tool. We prefer

journal papers over conference papers, and conference papers over theses or

technical reports. All papers from which we collected information appear in

our reference list.

Table 2.2 shows the number of papers found by the searches. Many pa-

pers appeared multiple times in our search, both in references and in database

searches. The table only counts a tool when it �rst appeared in the search,

which was conducted in the order of the sources in the table.

2.3.4 Coding

To systematically encode the information in the papers, we developed a la-

belling (see Section 2.4) based on the answers to the research questions we

expected to get, re�ned by coding a small set of randomly selected papers.

One of the authors coded the complete set of papers. Whenever there were

questions about the coding of a paper, another author checked. In total, 24.8%

of the codings were (partly) checked by another author. Most of the checks

were done in the earlier stages of the review. A third author joined the general

discussions about the coding. When necessary, we adjusted the labelling.
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Table 2.2: Results of database search and snowballing. Our

previous work [145] included the 46 tools from the �rst it-

eration of review papers, and 23 additional tools that we ex-

cluded after adjusting the criteria for this �nal review.

Snowballing iterations**
Source Papers* 1st 2nd 3rd 4th Total
Review papers – 46 (76) 15 (17) 6 (9) 2 (2) 69 (104)

Scopus database 1830 25 (35) 5 (5) – – 30 (40)

ACM Digital library 798 2 (2) – – – 2 (2)

101 (146)

* excluding duplicates and invalid entries

** number of tools (number of papers)

2.4 Labelling

This section describes the labels used for our coding.

2.4.1 Feedback types (RQ1)

Narciss [197] describes a ‘content-related classi�cation of feedback compo-

nents’ for computer-based learning environments, in which the categories tar-

get di�erent aspects of the instructional context, such as task rules, errors and

procedural knowledge. We use these categories and extend them with repre-

sentative subcategories identi�ed in the selected papers. Narciss also consid-

ers the function (cognitive, meta-cognitive and motivational) and presentation
(timing, number of tries, adaptability, modality) of feedback, which are related

to the e�ectiveness of tutoring. We do not include these aspects in our review

because it is often unclear how a tool or technique is used in practice (e.g. for-

mative or summative).

Narciss �rst identi�es three simple feedback components:

● Knowledge of performance for a set of tasks (KP): summative feedback

on the achieved performance level after doing multiple tasks, such as

‘15 of 20 correct’ and ‘85% correct’.

● Knowledge of result/response (KR): feedback that communicates whether

a solution is correct or incorrect. We identify the following meanings

of correctness of a programming solution: (1) it passes all tests, (2) it is
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equal to a model program, (3) it satis�es one or more constraints, (4) a

combination of the above.

● Knowledge of the correct results (KCR): a description or indication of a

correct solution.

These types of feedback are not intended to ‘generate improved work’, a

requirement in the feedback de�nition by Boud and Molloy. Moreover, Kyrilov

and Noelle [155] have investigated the e�ect of instant binary feedback (mes-

sages that either contain ‘correct’ or ‘incorrect’) in automated assessment tools

and found harmful e�ects on student behaviour. They found that students who

received this kind of messages plagiarised more often and attempted fewer ex-

ercises. Because we focus on formative feedback on a single exercise, we do

not identify these types in our coding.

The next �ve types are elaborated feedback components. Each type ad-

dresses an element of the instructional context. Below we describe these types

and their subtypes in detail.

Knowledge about task constraints (KTC)

This type focusses on the task itself, and is subdivided into two subtypes:

● Hints on task requirements (TR). A task requirement for a programming

exercise can be to use a particular language construct or to not use a

particular library method.

● Hints on task-processing rules (TPR). These hints provide general in-

formation on how to approach the exercise and do not consider the stu-

dent’s current work.

Narciss gives a larger set of examples for this type of feedback, such as

‘hints on type of task’. We do not identify this type because the range of

exercises is limited by our scope. Also, we do not identify ‘hints on subtasks’

as a separate category, because the exercises we consider are relatively small.

Instead, we label these hints with KTC-TPR.

Knowledge about concepts (KC)

We distinguish two subtypes:



26 Chapter 2. Systematic Literature Review

● Explanations on subject matter (EXP), generated while a student is work-

ing on an exercise.

● Examples illustrating concepts (EXA).

Knowledge about mistakes (KM)

KM feedback messages have a type and a level of detail. The level of detail

can be basic, which can be a numerical value (total number of mistakes, grade,

percentage), a location (line number, code fragment), or a short type identi�er

such as ‘compiler error’; or detailed, which is a description of the mistake,

possibly combined with some basic elements. We use �ve di�erent labels to

identify the type of the mistake:

● Test failures (TF). A failed test indicates that a program does not produce

the expected output.

● Compiler errors (CE). Compiler errors are syntactic errors (incorrect

spelling, missing brackets) or semantic errors (type mismatches, un-

known variables) that can be detected by a compiler and are not speci�c

for an exercise.

● Solution errors (SE). Solution errors can be found in programs that do

not show the behaviour that a particular exercise requires, and can be

runtime errors (the program crashes because of an invalid operation) or

logic errors (the program does not do what is required), or the program

uses an alternative algorithm that is not accepted.

● Style issues (SI). In various papers we have found di�erent de�nitions of

programming style issues, ranging from formatting and documentation

issues (e.g. untidy formatting, inconsistent naming, lack of comments)

to structural issues and issues related to the implementation of a certain

algorithm (use of control structures, elegance).

● Performance issues (PI). A student program takes too long to run or uses

more resources than required.

Knowledge about how to proceed (KH)

We identify three labels in this type. Each of these types of feedback has a

level of detail: a hint that may be in the form of a suggestion, a question, or
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an example; a solution that directly shows what needs to be done to correct an

error or to execute the next step; or both hints and solutions.

● Bug-related hints for error correction (EC). Sometimes it is di�cult to

see the di�erence between KM feedback and EC. We identify feedback

as EC if the feedback clearly focuses on what the student should do to

correct a mistake.

● Task-processing steps (TPS). This type of hint contains information about

the next step a student has to take to come closer to a solution.

● Improvements (IM). This type deals with hints on how to improve a so-

lution, such as improving the structure, style or performance of a cor-

rect solution. However, if style- or performance-related feedback is pre-

sented in the form of an analysis instead of a suggestion for improve-

ment, we label it as KM. The IM label has been added after we published

the results of the �rst iteration of our search [145].

Knowledge about meta-cognition (KMC)

Meta-cognition deals with a student knowing which strategy to use to solve a

problem, if the student is aware of their progress on a task, and if the student

knows how well the task was executed. According to Narciss, this type of feed-

back could contain ‘explanations on metacognitive strategies’ or ‘metacogni-

tive guiding questions’.

2.4.2 Technique (RQ2)

We distinguish between general techniques for Intelligent Tutoring Systems

(ITSs), and techniques speci�c for the programming domain. Each category

has several subcategories.

General ITS techniques

● Tools that use model tracing (MT) trace and analyse the process that the

student is following solving a problem. Student steps are compared to

production rules and buggy rules [192].

● Constraint-based modelling (CBM) only considers the (partial) solution

itself, and does not take into account how a student arrived at this (par-

tial) solution. A constraint-based tool checks a student program against
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prede�ned solution constraints, such as the presence of a for-loop or

the calling of a method with certain parameters, and generates error

messages for violated constraints [192].

● Tutors based on data analysis (DA) use large sets of student solutions

from the past to generate hints. This type was also added after publish-

ing our �rst results [145].

Domain-speci�c techniques for programming

● Dynamic code analysis using automated testing (AT). The most basic

form of automated testing is running a program and comparing the

output to the expected output. More advanced techniques are unit test-

ing and property-based testing, often implemented using existing test

frameworks, such as JUnit.

● Basic static analysis (BSA) analyses a program (source code or bytecode)

without running it, and can be used to detect misunderstood concepts,

the absence or presence of certain code structures, and to give hints on

�xing these mistakes [253].

● Program transformations (PT) transform a program into another pro-

gram in the same language or a di�erent language. An example is nor-

malisation: transformation into a sublanguage to decrease syntactical

complexity. Another example is migration: transformation into another

language at the same level of abstraction.

● Intention-based diagnosis (IBD) uses a knowledge base of programming

goals, plans or (buggy) rules to match with a student program to �nd out

which strategy the student uses to solve an exercise. IBD has some sim-

ilarities to CBM and static analysis, and some solutions are borderline

cases. Compared to CBM, IBD provides a more complete representation

of a solution that captures the chosen algorithm.

● External tools (EX) other than testing tools, such as standard compilers

or static code analysers. These tools are not the work of the authors

themselves and papers do not usually elaborate on the inner workings

of the external tools used. If a tool uses automated testing, for which

compilation is a prerequisite, we do not use this label.
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2.4.3 Adaptability (RQ3)

We identify several input types for tools that enable teachers to create exer-

cises and in�uence the generated feedback.

● Solution templates (ST) (e.g. skeleton programs and projects) presented

to students for didactic or practical purposes as opposed to technical

reasons such as easily running the program.

● Model solutions (MS) are correct solutions to a programming exercise.

● Test data (TD), by specifying program output or de�ning test cases.

● Error data (ED) such as bug libraries, buggy solutions, buggy rules and

correction rules. Error data usually specify common mistakes for an

exercise.

Another aspect we consider is the adaptability of the feedback generation

based on a student model (SM). A student model contains information on the

capabilities and level of the student, and may be used to personalise the feed-

back.

2.4.4 Quality (RQ4)

As a starting point for collecting data on the quality of tools, we have identi�ed

and categorised how tools are evaluated. Tools have been evaluated using a

large variety of methods. We use the three main types for the assessment of

tools distinguished by Gross and Powers [96].

● Anecdotal (ANC). Anecdotal assessment is based on the experiences and

observations of researchers or teachers using the tool. We will not at-

tach this label if another type has been applied as well, because we con-

sider anecdotal assessment to be inferior to the other types.

● Analytical (ANL). Analytical assessment compares the characteristics of

a tool to a set of criteria related to usability or a learning theory.

● Empirical assessment. Empirical assessment analyses qualitative data or

quantitative data. We distinguish three types of empirical assessment:
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– Looking at the learning outcome (EMP-LO), such as mistakes, gra-

des and pass rates, after students have used the tool, and observing

tool use.

– Student and teacher surveys (EMP-SU) and interviews on experi-

ences with the tool.

– Technical analysis (EMP-TA) to verify whether a tool can correctly

recognise (in)correct solutions and generate appropriate hints. Tool

output for a set of student submissions can be compared to an anal-

ysis by a human tutor.

2.5 General tool characteristics

In this section we discuss the general characteristics of the tools we inves-

tigated, such as their type, supported programming language and exercises.

Table 2.3 shows an overview of these characteristics and the papers we con-

sulted for each tool. The complete coding is available as an appendix to this

article and as a searchable online table.
1

In the remainder of this article we only cite papers on tools in speci�c

cases. We refer to tools by their name in Small caps, or the �rst author and

year of the most recent paper (Author00) on the tool we have used.

History

Figure 2.1 gives an impression of when the tools appeared in time. Because

we do not know exactly in which time frame tools were active, we calculated

the rounded median year of the publications related to a tool that we used for

our review. Between the 60s and 80s a small number of tools appeared. Since

the 90s we can see an increase in the number of tools, which slowly grows in

the 2000s and 2010s.

Tool types

The tools that fall within our criteria are mostly either Automated Assess-

ment (AA) systems or Intelligent Tutoring Systems (ITSs). AA systems focus

on assessing a student’s �nal solution to an exercise with a grade or a feed-

back report, to alleviate instructors from manually assessing a large number

1www.hkeuning.nl/review

www.hkeuning.nl/review
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Table 2.3: Tool publications, supported language paradigm

and exercise class. Class 2 tools support exercises that can

be solved by a predetermined strategy, allowing small vari-

ations. Exercises in class 3 tools can be solved by multiple

strategies (see Section 2.3.2).

Tool Publications Language Class Tool Publications Language Class
ACT Programming Tutor (APT) [54]–[56] Multi 2 (Jackson00) [123] Imp/OO 3

ADAPT [87] Log 3 Java Sensei [22] Imp/OO 2

(Ala-mutka04) [7] Unknown 3 (Jin12) [128] Imp/OO 3

(Allemang91) [10] Imp/OO 3 (Jin14) [129] Imp/OO 2

AnalyseC [289] Imp/OO 3 JITS [255], [256] Imp/OO 2

APROPOS2 [169] Log 3 (Keuning14) [140] Imp/OO 3

Ask-Elle [89], [90], [126] Fun 3 (Kim98) [148] Imp/OO 3

ASSYST [122], [124] Imp/OO 3 Koh [151] Imp/OO 2

At(x) [25], [26] Multi 3 LAURA [4] Imp/OO 2

AutoGrader [111] Imp/OO 3 (Lazar14) [158] Log 3

AutoLEP [279] Imp/OO 3 LISP tutor [14], [57] Fun 2

AutoStyle [193] Imp/OO 3 Ludwig [237] Imp/OO 3

AutoTeach [15], [16] Imp/OO 3 (Mandal07) [179] Imp/OO 3

BIP [19]–[21] Imp/OO 3 Marmoset [248] Multi 3

Bridge [35] Imp/OO 2 MENO-II [244] Imp/OO 3

C-tutor [245] Imp/OO 3 (Naur64) [198] Imp/OO 3

Camus [270] Imp/OO 3 Online Judge [50] Imp/OO 3

Ceilidh [27]–[29] Multi 3 PASS [258] Imp/OO 2

(Chang00) [49] Imp/OO 2 PATTIE [61] Imp/OO 3

Checkpoint [76] Multi 3 Pex4Fun [259] Multi 3

CHIRON [233] Imp/OO 3 PHP ITS [285], [286] Imp/OO 3

COALA [135], [136] Imp/OO 2 PRAM [113], [181] Log 3

Code Hunt [208], [209] Imp/OO 3 ProgramCritic [232] Imp/OO 3

CourseMarker/CourseMaster [85], [112], [114] Multi 3 ProgTest [63]–[65] Imp/OO 3

CSTutor [104], [105] Imp/OO 3 ProPAT_deBUG [23] Imp/OO 3

Ctutor [154] Imp/OO 2 ProPL [157] Imp/OO 2

(Dadic11) [59], [60] Imp/OO 3 PROUST [131], [233] Imp/OO 3

datlab [175], [176] Imp/OO 3 (Rosenthal02) [230] Imp/OO 3

DISCOVER [223] Imp/OO 2 (Ruth76) [231] Imp/OO 3

EASy [177] Imp/OO 3 (Sant09) [235] Imp/OO 3

ELM-PE/ELM-ART (II) [45], [281]–[283] Fun 3 SCENT [186], [187] Fun 3

ELP [260], [261] Imp/OO 2 Scheme-robo [234] Fun 3

(Fischer06) [82] Imp/OO 3 (Shimic12) [238] Imp/OO 2

FIT Java Tutor [97]–[99] Imp/OO 3 (Singh13) [241] Imp/OO 3

FLIP [137] Imp/OO 3 SIPLeS-II [290] Imp/OO 3

GAME (2, 2+) [33], [34], [184], [185] Multi 3 Smalltalker [51] Imp/OO 2

(Ghosh02) [91] Imp/OO 3 SOP [242] Imp/OO 3

Grace [190], [221] Imp/OO 2 (Striewe11) [252] Imp/OO 3

(Gulwani14) [100] Imp/OO 3 submit [271] Imp/OO 3

HabiPro [275], [276] Imp/OO 2 Submit! [215] Multi 3

(Hasan88) [106] Imp/OO 3 Talus [196] Fun 3

(He94) [108] Imp/OO 2 Test My Code [205], [274] Imp/OO 3

(Hong04) [116] Log 3 Testovid [217] Multi 3

INCOM [160], [162], [163] Log 3 Ugo [121] Log 3

InSTEP [202] Imp/OO 2 VC Prolog Tutor [212] Log 3

INTELLITUTOR (II) [263] Imp/OO 2 Virtual Programming Lab [214] Multi 3

IPTS [291] Imp/OO 2 (Vujosevic-Janicic13) [277] Imp/OO 3

ITAP [225] Imp/OO 3 Web-CAT [74], [75] Multi 3

ITEM/IP [43] Imp/OO 3 WebToTeach [18] Imp/OO 3

J-LATTE [115] Imp/OO 2 WebWork-JAG [94], [95] Imp/OO 3

JACK [92], [152], [153], [251] Imp/OO 3
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Figure 2.1: Number of tools per median year of their publi-

cations.

of students. ITSs help students to arrive at the solution by o�ering help at

each step [268]. Other tools we found are programming environments for

novices with a feedback component. A newer type of such a tool is the educa-

tional programming game, or serious game, in which learning programming

is more implicit and considered a side e�ect of playing a fun game. Examples

are Pex4Fun and its successor Code Hunt that challenge students to iter-

atively discover the speci�cation of a hidden program. Code Hunt has an

even stronger gaming vibe to it, created by the ‘worlds’ and ‘levels’ in which

the player solves programming problems.

Some papers more generally describe a technique that can be used for

generating feedback, which could be applied in an assessment or learning

tool. We came across many papers on debugging and program understand-

ing techniques, of which we only included the ones that were clearly used in

an educational context.

Programming language

Tools o�er either exercises for a speci�c programming language, a set of pro-

gramming languages within a particular paradigm, or multiple languages within

multiple paradigms. Table 2.4 shows the distribution of the di�erent paradigms.

The majority of the 101 tools supports programming in imperative languages,

including object-oriented languages. Tools developed in the 21st century of-

ten support imperative languages such as Java, C and C++, whereas older

tools provide exercises in ALGOL (Naur64), FORTRAN (LAURA) and Ada

(ASSYST). Some recent tools focus on (web) scripting languages such as PHP,
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Table 2.4: Supported language paradigm of tools (n=101).

Paradigm %

Imperative/object-oriented 73.3

Multiple paradigms 11.9

Logic 7.9

Functional 5.9

Unknown 1.0

JavaScript and Python. Tools for functional programming languages support

Lisp (the LISP tutor), Scheme (Scheme-robo) or Haskell (Ask-Elle). All tools

for logic programming o�er exercises in Prolog. The remaining tools support

multiple languages of di�erent types and paradigms, and are often test-based

AA systems.

Programming exercises often require a student to write a few lines of code

or a single function, meaning that many tools only support a subset of the

features of a programming language. For instance, a tool that requires pro-

gramming in Java, an object-oriented language, may not support feedback

generation on class declarations.

Exercise type

We have recorded the highest exercise class a tool supports and found that

23.8% of the tools support exercises of class 2 (can be solved by a predetermined

strategy), and 76.2% exercises of class 3 (can be solved by multiple strategies).

However, exercises that do not require a student to write code him or her-

self do not easily �t in this classi�cation. For example, in PATTIE and ProPL

the student engages in a conversation with an automated tutor to solve a pro-

gramming problem. If the student makes a good suggestion, the tutor expands

the solution-in-progress. CHIRON, the successor to the intelligent debugger

PROUST also incorporates an interactive question/answer session with the

student. Through natural language parsing CHIRON responds to questions on

topics such as terminology, goal/plan implementation and data �ow. We have

included these systems because this approach closely mimics the behaviour of

a human tutor.

Another uncommon type of exercise is o�ered by the programming game

Code Hunt that asks the student to write a program for which he or she

does not know the speci�cation yet. Instead, the student has to discover the
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speci�cation by inspecting the results of a set of test cases and modifying their

code to satisfy these tests.

2.6 Feedback types (RQ1)

This section describes the results of the �rst research question: ‘what is the

nature of the feedback that is generated?’ Figure 2.2 shows for each feedback

type the percentage of tools that o�er it, including the distinction between

class 2 and class 3 tools. The percentages do not add up to 100%, because one

tool can provide more than one feedback type. We have found KTC (knowl-

edge about task constraints) feedback and KC (knowledge about concepts)

feedback in only a few tools, with 14.9% and 16.8% respectively. KM (knowl-

edge about mistakes) is by far the largest type: with 96.0% it is found in almost

all tools. The subtype of KM we found most in the �rst part of our review, was

TF (test failures). After omitting purely test-based tools in this �nal review, SE
(solution errors) is the largest category with 59.4%. We have found KH feed-

back (knowledge about how to proceed) in 44.6% of the tools, of which EC
feedback (error correction) is the largest subcategory with 32.7%.

Class 2 tools provide more solution error feedback (83.3% versus 51.9%),

and more KH feedback (knowledge about how to proceed) with around twice

as much for each subtype. Class 3 tools provide more test failure feedback

(59.7% versus 29.2%) and more style issue feedback (36.4% versus 8.3%) and

performance issue feedback (19.5% versus 0%). KTC (knowledge about task

constraints) feedback is also seen in fewer class 2 tools. We also calculated

that in 11.9% of the tools one type of feedback is generated, but 48.5% of the

tools only generate one of the �ve main types (these percentages are not in

the table). In the next subsections we expand on the di�erent feedback types

and provide examples of tools and the feedback messages they provide.

2.6.1 Knowledge about task constraints (KTC)

The �rst things a student should know when attempting an exercise are the

requirements of the task and possibly some information on how to approach

it.
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All (n=101) Class 2 (n=24) Class 3 (n=77)
Feedback type Count % Count % Count %

KTC Knowledge about task constraints 15 14.9 2 8.3 13 16.9
TR Hints on task requirements 9 8.9 1 4.2 8 10.4

TPR Hints on task-processing rules 8 7.9 1 4.2 7 9.1

KC Knowledge about concepts 17 16.8 5 20.8 12 15.6
EXP Explanations on subject matter 14 13.9 3 12.5 11 14.3

EXA Examples illustrating concepts 5 5.0 2 8.3 3 3.9

KM Knowledge about mistakes 97 96.0 24 100.0 73 94.8
TF Test failures 53 52.5 7 29.2 46 59.7

CE Compiler errors 35 34.7 8 33.3 27 35.1

SE Solution errors 60 59.4 20 83.3 40 51.9

SI Style issues 30 29.7 2 8.3 28 36.4

PI Performance issues 15 14.9 0 0.0 15 19.5

KH Knowledge about how to proceed 45 44.6 16 66.7 29 37.7
EC Bug-related hints for error correction 33 32.7 13 54.2 20 26.0

TPS Task-processing steps 19 18.8 7 29.2 12 15.6

IM Improvement hints 3 3.0 1 4.2 2 2.6

KMC Knowledge about meta-cognition 1 1.0 1 4.2 0 0.0

Figure 2.2: Number of tools (count) and percentage of tools

that o�er a feedback type (by subtype and combined by main

type), for all tools, and subdivided by exercise class. A tool

can o�er more than one feedback type.
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Hints on task requirements (TR)

An example of this subtype can be found in the INCOM system. When a stu-

dent makes a mistake with implementing the method header, feedback is given

by ‘highlighting keywords in the task statement and advising the student to

fully make use of the available information’ [161].

Another example can be found in the BASIC Instructional Program

(BIP), a system from the seventies. Some exercises in BIP require the use of

a speci�c language construct. If this construct is missing from the student

solution, the student will see the following message [19]:

Wait. Something is missing.

For this task, your program should also include the following basic state-
ment(s): FOR

Automated assessment tools have to check for task requirements as well.

For example, if an exercise requires implementing a method that is also avail-

able in the standard library of the language, the assessment tool will have to

check if this library method was not used. The AA tool from Fischer06 pro-

vides the following feedback when a student uses a prohibited method [82]:

signature and hierarchy: failed
Invocation test checks whether prohibited classes or methods are used; call
of method reverse from the prohibited class java.lang.StringBuffer

Hints on task-processing rules (TPR)

For this category we consider the built-in feedback related to the tutoring

strategy of the tool, as opposed to the dynamically generated feedback based

on a (partial) student solution that we categorise under KM and KH. Tools that

provide this kind of feedback may have a built-in stepwise approach to solving

a programming problem. The ACT programming tutor shows a ‘skill meter’

that indicates the probability that a student knows a ‘rule’ (a rule corresponds

to a step). The automated tutor in ADAPT gives some general information on

how to solve a particular exercise [87]:

There are 2 major components to this template:

● base case

● recursive step

For the base case, the basic idea is to stop processing when the list becomes
empty and return 0 for the sum. For the recursive step, the basic idea is
to [...]
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2.6.2 Knowledge about concepts (KC)

This feedback type deals with the subject matter of the exercise.

Explanations on subject matter (EXP)

This subtype can be found in theAsk-Elle tutor that refers to relevant internet

sources when a student encounters certain language constructs.

Examples illustrating concepts (EXA)

The LISP tutor uses this type of feedback in its tutoring dialogue. After a

student has made a mistake, the tutor might respond with [14]:

That is a reasonable way to think of doing factorials, but it is not a
plan for a recursive function. Since you seem to be having trouble with
the recursive cases, let us work through some examples and figure out the
conditions and actions for each of these cases.

The ELM-PE/ART tutors support ‘example-based programming’, and provide

a student with an example program that the student solved in the past, specif-

ically selected to help the student solve a new problem.

The FIT JavaTutor uses machine learning techniques to generate example-

based feedback, as shown in Figure 2.3. The program on the right is an example

program (KC-EXA) for the student who programmed the erroneous program

on the left. Di�erences with respect to the example program may be high-

lighted in the student program (KM-SE), and a feedback message tells the stu-

dent that the program on the right is one step further (KH-TPS). The student

can compare the two programs and identify mistakes and next steps. The data

set consists of both student solutions and sample solutions by experts, from

which a representative solution is chosen to compare with the student solu-

tion. In situations in which no representative solution can be selected, the

student solution is compared to a similar program from the data set. How-

ever, it is possible that the similar program is not correct, in which case the

feedback addresses the possible incorrectness and asks the student to identify

mistakes in the similar program.

2.6.3 Knowledge about mistakes (KM)

This most common feedback type deals with reporting mistakes to students.
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Figure 2.3: Feedback from the FIT Java Tutor (image

from [97]).

Figure 2.4: Feedback showing test cases in COALA on the

left (image fragment from [135]) and feedback on test execu-

tion in Testovid on the right (image fragment from [217]).

Test failures (TF)

A large number of tools give feedback based on the success and failure of

executing tests on student programs. Online Judge is an automatic judge

for programming contests that provides basic feedback on test failures. The

system returns a short string such as ‘[..x]’ as feedback, indicating that tests

cases 1 and 2 are successful (indicated by a dot) and test case 3 is not successful

(indicated by an ‘x’).

Figure 2.4 shows two examples of more detailed feedback on test execu-

tion. COALA shows the output of JUnit test cases integrated in a customised

Eclipse environment. Testovid provides more informative feedback on the

execution of test cases. We found this type of feedback, which resembles the

output of professional testing tools, in many AA tools.

ProgTest requires a student to upload his or her own tests together with a

solution. The tool shows the results of testing the student’s code with the stu-

dent’s tests and the instructor’s tests, but also the results of testing the model

program of the instructor with the tests of the student. Additionally, the tool
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presents the results of a code coverage analysis. The authors of ProgTest

have put e�ort into improving the understandability of the test coverage out-

put. Based on this output, they calculate six metrics, such as ‘testing complete-

ness’, ‘program correctness’ and ‘tests adequacy’, the results of which indicate

how well the student performed on di�erent aspects of testing. Instructor-

written hints on failed tests can be shown as well.

Compiler errors (CE)

Feedback on compiler errors might be the output of a compiler that is passed

on to the student, enabling the student to do exercises without directly using

a compiler him or herself. The main reasons for working without a compiler

are not having access to the necessary tools and avoiding the di�culty of the

compilation process, as experienced by a novice programmer. Test-based AA

systems often provide compiler output as feedback, because successful com-

pilation is a prerequisite for executing tests.

Some tools have replaced a standard compiler or interpreter by a more

student-friendly alternative. An example is the interpreter used in BIP, which

generates extensive error messages in understandable language. Below we

give an example of such a message [19]:

*20 PRINT "THE INDEX IS; I
↑

SYNTAX ERROR: UNMATCHED QUOTE MARKS -- FOUND NEAR '"THE INDEX IS'
LINE NOT ACCEPTED (TYPE ? FOR HELP)

More feedback can be given if the student asks for more help [19]:

*?
'"THE INDEX IS' HAS AN ODD NUMBER OF QUOTE MARKS.
REMEMBER THAT ALL STRINGS MUST HAVE A QUOTE AT THE BEGINNING AND END.

Solution errors (SE)

We have seen many instances of feedback on solution errors. AutoLEP de-

scribes the results of matching the student program with several model pro-

grams, comparing aspects such as size, structure, and statements. The tool by

Singh13 also produces this type [241]:

The program requires 1 change:
- In the function computeDeriv, add the base case at the top to return [0]
for len(poly)=1
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Figure 2.5: Solution error feedback in AnalyseC on the left

(image from [289]) and ELP on the right (image fragment

from [261]).

This feedback message provides a numerical value (the number of required

changes) and the location of a solution error. The message does not give a

description of what the student has done wrong. The suggestion on how to

correct the mistake is labelled with KH, which is described next.

AnalyseC provides detailed feedback on solution errors by identifying

incorrect statements and showing the correct statement from a model solution,

shown in Figure 2.5. ELP (also in Figure 2.5) matches a model solution with

the student solution at a slightly higher level by comparing the structure (the

language constructs used, such as loops and assignments) of a student solution

to a model solution.

Code Hunt takes test-based feedback a step further by combining feed-

back that shows the results of test cases with a hint that points to a line number

on which the code needs to be changed (KM feedback). In addition, the stu-

dent receives information on new features that are useful to solve the problem,

and warns the student against features that might not be such a good idea (KH
feedback). Code Hunt uses an approach based on student data: the line num-

ber and feature recommendation hints are derived from a large set of previous

solutions and unsuccessful attempts.

Style issues (SI)

Many teachers consider learning a good programming style important for

novice programmers. As an example of feedback on style issues, Figure 2.6
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Figure 2.6: Fragment of style feedback with a score for each

issue in Jackson00 (image from [123]).

Figure 2.7: Feedback on performance inCheckpoint (image

fragment from [76]).

shows the feedback generated by the tool of Jackson00 aimed at formatting

and commenting.

Performance issues (PI)

Checkpoint, a recent AA system, also provides feedback on performance is-

sues, as can be seen in ‘Test 4’ in Figure 2.7. Naur64, one of the earliest sys-

tems, checks one particular exercise that lets a student write an algorithm for

�nding the root of a given function. The system gives performance feedback

for each test case, such as ‘No convergence after 100 calls’ [198].
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2.6.4 Knowledge about how to proceed (KH)

Knowing what is wrong with a solution is meaningful information, but in

order to learn how to proceed, students need feedback on �xing their mistakes

and taking a next step.

Bug-related hints for error correction (EC)

JITS gives feedback on �xing typing errors, such as ‘Would you like to replace

smu with sum?’ [256]. Proust generates an elaborated error report contain-

ing hints on how to correct errors. The following fragment provides such

hints [131]:

The maximum and the average are undefined if there is no valid input. But
lines 34 and 33 output them anyway. You should always check whether your
code will work when there is no input! This is a common cause of bugs.

You need a test to check that at least one valid data point has been input
before line 30 is executed. The average will bomb when there is no input.

The examples from ELP and AnalyseC (Figure 2.5) in the KM-SE category

also contain the correct code of the solution, therefore we label these tools with

KH-EC as well.

CSTutor �rst gives KM-SE feedback in the form of questions that get

more speci�c after each request for help, such as ‘... Why do you think that

the value in the variable ‘fahrenheit’ does not have this value?’ [105]. The au-

thors state that asking questions enables the students to re�ect on the problem

themselves for some time, as opposed to suggesting a solution instantly. If the

student continues to ask for help, the system shows the solution code for the

particular problem (KH-EC).

Hints on task-processing steps (TPS)

Hints on task-processing steps can help a student to solve a programming

problem step by step. The Prolog tutor Hong04 provides a guided program-

ming phase. If a student asks for help in this phase, the tutor will respond

with a hint on how to proceed and generates a template for the student to �ll

in [116]:

You can use a programming technique that processes a list until it is empty
by splitting it into the head and the tail, making a recursive call with
the tail.
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Figure 2.8: Incremental code revealing feedback in

AutoTeach (image from [15]).

reverse([ ], ⟨arguments⟩).
reverse([H ∣ T], ⟨arguments⟩) :-
⟨pre-predicate⟩,
reverse(T,⟨arguments⟩),
⟨post-predicate⟩.

Another example can be found in the Ask-Elle tutor for functional pro-

gramming. The tool provides a student with multiple strategies to tackle a

programming problem [90]:

You can proceed in several ways:
- Implement range using the unfoldr function.
- Use the enumeration function from the prelude.
- Use the prelude functions take and iterate.

AutoTeach is an incremental hint system that gradually reveals larger

parts of a model solution to the student, as shown in Figure 2.8. The hints

are generated by taking a model solution as input and producing output �les

for multiple hint levels. An output �le shows parts of the solution code and

replaces hidden code by matching hint messages. However, these hints are

pre-processed, meaning that they do not take into account the student’s cur-

rent work. Unit testing is used as a back-up mechanism to check alternative

solutions.

The Jin14 programming tutor incorporates two aspects of programming:

planning and coding. The ‘guided-planning’ component leads the student

step-by-step through several prede�ned stages such as ‘variable analysis’, ‘com-

putation’ and ‘output’, giving hints along the way. The ‘assisted-coding’ com-

ponent helps the student with hints on writing code for the di�erent stages.
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The hint-generation is based on the technique from Jin12 that uses model pro-

grams as input.

Program improvements (IM)

Only a few tools give feedback aimed at program improvements. An example

message from Gulwani14 to improve the performance of a program is [100]:

Instead of sorting input strings, compare the number of character occurrences
in each string.

AutoStyle is a tool that gives feedback on programs to make them more

concise and readable. It uses historical student data to �nd a path from a prob-

lematic, but functionally correct, solution to a stylistic better solution. As

an example, AutoStyle can detect if the functionality of a library method is

hand-coded by the student and may suggest using that library method instead.

2.6.5 Knowledge about meta-cognition (KMC)

We have only found one example of KMC. HabiPro provides a ‘simulated

student’ that responds to a solution by checking if a student really knows

why an answer is correct.

2.6.6 Trends

Figure 2.9 shows the changes of using a particular type of feedback in a tool

over the last three decades. A tool is linked to the decade of its median year

(as in Figure 2.1). We have omitted the decades before the 1990s because of the

low number of tools and do not show the types of feedback that never occur

in at least 15% of the tools (KTC-TR, KC-EXA, KH-IM and KMC). The �gure

shows that in the 1990s 76.2% of the tools provided solution error (KM-SE)

feedback, which decreases in the 2000s and 2010s to 52.8% and 48.4%. Test

failure feedback (KM-TF) increases in the 2000s from 42.9% to 66.7%, declining

to 51.6% in the 2010s. It should be noted, however, that we exclude purely test-

based tools, so the actual percentage would be much higher. Multiple types

show an increase from the 2000s (KM-CE, KM-SI, KTC-TR), which makes the

diversity of feedback types greater in the 21st century.
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1990 2000 2010
Feedback type % % %

KM-SE Solution errors 76.2 52.8 48.4

KM-TF Test failures 42.9 66.7 51.6

KH-EC Bug-related hints for error correction 38.1 27.8 35.5

KH-TPS Task-processing steps 23.8 8.3 25.8

KC-EXP Explanations on subject matter 23.8 2.8 19.4

KTC-TPR Hints on task-processing rules 23.8 0.0 3.2

KM-CE Compiler errors 19.0 41.7 41.9

KM-SI Style issues 14.3 41.7 32.3

KM-PI Performance issues 14.3 19.4 12.9

Figure 2.9: Percentage of tools with feedback type in the

1990s (n=21), 2000s (n=36) and 2010s (n=31), omitting types

that never occur in at least 15% of the tools. The legend and

table have the same order as the bars in the chart.
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All (n=101) Class 2 (n=24) Class 3 (n=77)
Technique Count % Count % Count %

AT Automated testing 59 58.4 7 29.2 52 67.5

PT Program transformations 38 37.6 8 33.3 30 39.0

BSA Basic static analysis 37 36.6 7 29.2 30 39.0

Other 28 27.7 6 25.0 22 28.6

IBD Intention-based diagnosis 21 20.8 3 12.5 18 23.4

EX External tools 12 11.9 0 0.0 12 15.6

MT Model tracing 10 9.9 6 25.0 4 5.2

DA Data analysis 8 7.9 1 4.2 7 9.1

CBM Constraint-based modelling 4 4.0 2 8.3 2 2.6

Figure 2.10: Number of tools (count) and percentage of tools

that employ a technique, for all tools, and subdivided by ex-

ercise class.

2.7 Technique (RQ2)

This section describes the results of the second research question: ‘which tech-

niques are used to generate the feedback?’ Figure 2.10 shows for each tech-

nique the percentage of tools that use it. Even after omitting purely test-based

tools, automated testing is still the technique used the most (58.4%) in tools

that generate feedback. After that, 37.6% use program transformations and

36.6% of all tools use static analysis. Intention-based diagnosis is used in 20.8%

and 11.9% of the tools use an external tool. We have found that 9.9% of the tools

use model tracing, 7.9% use data analysis and only 4.0% use constraint-based

modelling. In 27.7% of the tools other techniques were found. Figure 2.10 also

shows the di�erences between tools of class 2 and class 3. Class 3 tools use

more automated testing, external tools, intention-based diagnosis and data

analysis than class 2 tools. Class 2 tools more often use model tracing and
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Figure 2.11: A production rule from the LISP tutor (image

from [57]).

constraint-based modelling. In the next subsections we expand on the di�er-

ent techniques and explain how they are used.

2.7.1 General ITS techniques

Model tracing (MT)

The LISP tutor is a classic example of a model tracing system. An exam-

ple of a production rule (rephrased in English) used in this tutor is shown in

Figure 2.11. Whereas classic tools use a production system for model tracing,

some tools use a slightly di�erent approach. As an example, Ask-Elle and Ke-

uning14 generate programming strategies derived from model solutions that

are used to check where the student is in his or her programming process,

and give hints on what to do next. We found one instance of example-tracing

used in the Java Sensei tool that o�ers class 2 exercises. Example-tracing

tutors follow the steps that a student takes based on ‘generalised examples

of problem-solving behaviour’ [9], making it easier to create ITSs. Although

example-tracing is a di�erent tutoring paradigm, we categorise it under the

MT label.

Constraint-based modelling (CBM)

INCOM uses Constraint-based modelling. The authors of INCOM argue that

CBM has its limitations in the domain of programming because of the large so-

lution space for programming problems [162]. They have designed a ‘weighted

constraint-based model’, consisting of a semantic table, a set of constraints,
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constraint weights (to indicate the importance of a particular constraint), and

transformation rules. The authors show that this model can recognise student

intentions in a much larger number of solutions compared to the standard

CBM approach.

J-LATTE, the Java Language Acquisition Tile Tutoring Environment, is a

constraint-based ITS for learning Java. The tutor presents students with sim-

ple programming exercises that can be solved in two modes. In Concept mode,

a student selects prede�ned programming artefacts de�ned at a higher level

(e.g. declarations, return statements and loops) from the user interface and

combines them to create the structure of the solution. After selecting a con-

cept, the accompanying code can be entered in the Coding mode. Using con-

straints does not force the student to follow a predetermined path. J-LATTE

uses constraints to represent domain knowledge describing the syntactic, se-

mantic and style-related features of the solution. An example of a semantic

constraint is:

(sum-of-function-over-a-range :range
(:from (method-arg :name "startNum")

:to (method-arg :name "endNum"))
:function square)

This speci�cation states that the ‘sum-of-function-over-a-range’ pattern should

be used (which could be any kind of loop) with a speci�c lower and upper limit

of the range and a call to a square-function. Feedback can be requested by the

student at any time during the exercise. The system presents error messages

related to constraints that are violated, such as ‘You should be initialising the

loop-variable to the beginning of the range you are looping over’ [115].

Data analysis (DA)

Using large sets of historical student data to generate hints is a recent devel-

opment that has already produced some promising results. ITAP (Intelligent

Teaching Assistant for Programming) is a data-driven tutor for programming

in Python. It creates a solution space graph with (intermediate) program states

as nodes, in which directed edges represent next steps. ITAP matches a stu-

dent solution with a state in the graph, constructs a path to a correct solution

and generates hints based on the steps of the path.

The Jin12 tool also uses a set of student solutions and creates Markov

Decision Processes to generate feedback to correct or �nish an incorrect or
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incomplete program. Lazar14 inspects traces of students solving Prolog pro-

gramming problems to collect common line edits. This information is then

used to �nd a sequence of line edits that transform an incorrect program into

a correct one, preferring the shorter sequences.

2.7.2 Domain-speci�c techniques for programming

Dynamic code analysis using automated testing (AT)

AT is often implemented by running a program and comparing its output to

the expected output. Some tools integrate professional testing tools, such as

JUnit
2

for unit testing and QuickCheck [53] for property-based testing. Test-

ing is frequently used as a ‘last resort’ if the tool cannot recognise in any other

way what the student is doing. Striewe11’s technique o�ers a solution to the

problem that students may have di�culty identifying the cause of a failed test

case. This is particularly relevant for blackbox testing, which only shows a

di�erence between expected and actual outcome. Striewe11’s tool generates

run-time traces for the execution of test cases using debugging technology.

Students can inspect the traces to �nd out where unexpected behaviour oc-

curred. For speci�c issues the tool automatically analyses the trace to provide

even more help. For example, assertion checking is used to point to the loca-

tion of an error, and automated comparison of the student trace to the trace

from a model program can be used to detect abnormal behaviour.

Test My Code (TMC) counts bytecode instructions to assess the perfor-

mance of algorithms. The authors illustrate this with an exercise that requires

the student to write an implementation for the Fibonacci sequence that runs

in linear time. The resulting calculations can be shown to the student. Count-

ing bytecode instructions as an alternative to simply measuring running time

prevents unreliable measurements caused by busy assessment servers.

Test cases may be prede�ned by the instructor, generated randomly, or

have to be supplied by the student him or herself. We have also noticed the

use of re�ection in multiple tools, a technique that can be used to dynamically

inspect and execute code. AutoGrader is a lightweight framework that uses

Java re�ection to execute tests for grading and creating feedback reports.

Feedback on performance issues can be done by pro�ling, a dynamic pro-

gram analysis method. PRAM uses pro�ling to measure several aspects related

to complexity in Prolog programs, such as the average number of calls and the

2www.junit.org

www.junit.org
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percentage of backtracking. The system compares the results to the results of

the pro�ling of a model program and presents the issues found together with

a mark to the student.

Finally, code coverage tools can be used to identify unnecessary state-

ments, as seen in ProgTest.

Basic static analysis (BSA)

Some tools use static analysis for calculating metrics, such as cyclomatic com-

plexity or the number of comments. TheGAME-2 tool performs static analysis

by examining comments in a solution. The analysis identi�es code that is com-

mented out as ‘arti�cial’ comments, and identi�es ‘meaningful’ comments by

looking at the ratio of nouns and conjunctions compared to the total word

count. InSTEP looks for common errors in code, such as using ‘=’ instead of

‘==’ in a loop condition, or common mistakes in loop counters, and provides

appropriate feedback accordingly.

Program transformations (PT)

Transformations are often used together with static code analysis to match a

student program with a model program. The normalisation technique used in

SIPLeS-II is a notable contribution. The authors have identi�ed 13 ‘semantics-

preserving variations’ (SPVs) found in code. Some of these SPVs are handled

using transformations that change the computational behaviours (operational

semantics) of a program while preserving the computational results (compu-

tational semantics). As an example, the ‘di�erent control structures’ SPV is

handled by transformations that standardise control structures, and the ‘dif-

ferent redundant statements’ SPV by dead code removal. As a result, a larger

number of student programs can be recognised.

Migration is applied in INTELLITUTOR, which uses the abstract language

AL for internal representation. Pascal and C programs are translated into AL

to eliminate language-speci�c details. After that, the system performs some

normalisations on the AL-code.

Synthesis, transformation to a lower level such as bytecode, is another

program transformation technique. We have not found this technique in tools

other than compilers, and the external tool FindBugs.
3

FindBugs translates

3findbugs.sourceforge.net

findbugs.sourceforge.net
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Figure 2.12: Simpli�ed plan in PROUST (image from [131]).

Java code into bytecode, and performs static analysis on this bytecode to iden-

tify potential bugs.

Intention-based diagnosis (IBD)

The term intention-based diagnosis was introduced by Johnson and Soloway

for their tutor PROUST [132]. PROUST has a knowledge base of programming

plans, which are implementations of programming goals. One programming

problem may have di�erent goal decompositions. Figure 2.12 shows the sim-

pli�ed plan for the ‘Sentinel-Controlled Input Sequence goal’. PROUST tries

to recognise these plans, including erroneous plans, in the submitted code

and reports bugs. Later, Sack proposed an improved system (ProgramCritic)

based on MicroPROUST (a simpler version of PROUST) by simplifying its de-

sign and �xing its weaknesses, including the elimination of the distinction

between goals and plans.

MENO-II is a predecessor to PROUST, which ‘failed miserably’ [133] ac-

cording to the authors. The tool uses a library of 18 common bug templates for

simple programs containing a loop, derived from a set of student programs.

The bug templates are linked to possible misconceptions, but are not problem-

speci�c. The tool identi�es plans in a student program, matches them against

the bug templates (see Figure 2.13) and reports errors, misconceptions and

possible solutions. This approach failed to recognise many mistakes in exer-

cises because the bug templates were too general and lacked information on

how program components worked together to solve a particular problem. A

better solution was needed to support the great variety in student programs.

Some of the IBD systems only work for a limited set of prede�ned exer-

cises, such as the classic Rainfall problem for Proust.
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Figure 2.13: Bugs located in a parse tree in MENO-II (image

from [244]).

External tools (EX)

We have found a number of static analysis tools, for example CheckStyle
4

for checking code conventions, FindBugs [117]
5

for �nding bugs, and PMD
6

for detecting bad coding practices. These tools do not speci�cally focus on

novice programmers and may produce output that is di�cult to understand

for beginners. The tools are often con�gured to provide a limited set of output

messages so as not to overwhelm and confuse the learner.

2.7.3 Other techniques

Of all tools, 27.7% use techniques that do not �t one of our labels, which are

often AI techniques.

As an example, the ProPL tutor uses natural language processing to en-

gage in a dialogue with the student to practice planning and program design.

Human tutoring is a proven technique for e�ective learning. The tutor mimics

the conversation that a human tutor would have with a student using natural

language processing. ProPL uses a dialogue management system that requires

a substantial amount of input to construct a tutor for a programming problem.

4checkstyle.sourceforge.net
5findbugs.sourceforge.net
6pmd.github.io

checkstyle.sourceforge.net
pmd.github.io
findbugs.sourceforge.net
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datlab employs machine learning techniques to classify student errors

and generate corresponding feedback. The author uses a neural network to

‘learn relationships corresponding to trained error categories, and apply these

relationships to unseen data’ [176].

The COALA system uses fuzzy logic to analyse similarity to a model solu-

tion. The system calculates the score for a set of metrics (such as cyclomatic

complexity, lines of code, number of parameters) for both the student program

and model program, fuzzi�es the scores, and calculates feedback on style is-

sues and how to improve them using fuzzy rules such as:

IF (control complexity is low AND cyclomatic complexity is high)
THEN show message ('The solution can be done easily by reviewing

the conditions and deleting some bifurcation')

In addition, the system uses test cases to determine the correctness of the

solution. The instructor has to provide a model program and a set of test

cases, but also the region values for each metric that are used to generate the

fuzzy sets.

The authors of the Singh13 tool use program synthesis techniques to gen-

erate feedback on solutions for Python programming problems, such as [241]:

The program requires 3 changes:
- In the return statement return deriv in line 5, replace deriv by [0].
- In the comparison expression (poly[e] == 0) in line 7, change (poly[e] ==
0) to False.
- In the expression range(0, len(poly)) in line 6, increment 0 by 1.

The problem author writes a model solution and an error model. The error

model consists of a set of correction rules that solve a mistake together with

appropriate feedback messages. All possible programs based on these rules

applied to the student’s solution are then searched to �nd the one that most

closely matches the model solution. This is done by translating the program

with the correction rules into a Sketch program. Sketch is a software synthesis

tool that can complete a partial code implementation to make it behave like a

given speci�cation. The Sketch synthesiser �nds the solution and feedback is

generated based on the applied correction rules. A limitation of the tool is its

inability to deal with student programs that have large conceptual errors.

The technique employed in Gulwani14 focuses on performance issues in

student solutions. They observe that the percentage of solutions that are al-

gorithmically ine�cient is around 60% and can go up to 90% for their example
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Combination Count
Automated testing + Basic static analysis 30

Automated testing + Program transformations 16

Intention-based diagnosis + Program transformations 16

Automated testing + External tools 12

Program transformations + Basic static analysis 11

Data analysis + Program transformations 6

Figure 2.14: Chord diagram showing the frequency of com-

binations of two techniques in the 101 tools through the

width of a connection, omitting ‘Other’. The table shows

all combinations that occur more than 5 times, also omitting

‘Other’.

problem of checking if two strings are anagrams of each other. In their so-

lution, an instructor annotates a program by specifying key values that are

computed during the execution of the program, thereby ignoring irrelevant

implementation di�erences. A new language construct called ‘observe’ is in-

troduced to specify these values. The execution trace of a student program is

compared to the traces of annotated programs and for the matching program

an appropriate feedback message is shown. Although the instructor has a sub-

stantial task to annotate programs with di�erent algorithmic approaches, the

authors show that this is worth the e�ort for use in large-scale systems.
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2.7.4 Combining techniques

Figure 2.14 shows how often combinations of two techniques are used in one

tool. Because our review excludes tools that only use automated testing (AT)

and give feedback in the form of test case results, this technique is the one

combined most with other techniques. AT is most often (in 30 tools) com-

bined with basic static analysis (BSA). After that, combinations with program

transformations (PT) are seen most often (in 16 tools), followed by combina-

tions with external tools (EX) in 12 tools. Intention-based diagnosis (IBD) and

PT are used in the same tool in 16 cases. BSA is also often combined with PT:

we see this in 11 tools.

As a concrete example, the assessment technique of Vujošević-Janičić13

combines multiple techniques (testing, automated bug �nding and control

�ow graph similarity) to overcome the shortcomings of only using a single

technique. The authors state that software veri�cation tools can pick up miss-

ing bugs not covered by a test case. Moreover, structural issues such as modu-

larity cannot be intercepted by testing and veri�cation only, so the similarity

to a model program should also be incorporated in an assessment. In their

solution, the C–code of students is translated into the LLVM intermediate lan-

guage
7

and static veri�cation is performed on the intermediate representation.

The program is also translated into a control �ow graph (CFG) and compared

to the CFG of model programs, calculating the degree of similarity. The results

are used to calculate a grade, but can also be used to give feedback on bugs

and similarity to a model solution.

The ITS designed by Dadic11 uses di�erent techniques for di�erent types

of students. The system uses model tracing to force ‘stoppers’, students that

give up quickly, to write a program in a prede�ned order. ‘Movers’, students

that will keep trying even when they are struggling, are allowed more freedom

in their problem-solving process, for which the system uses a constraint-based

technique to check their solution.

2.7.5 Trends

Figure 2.15 shows the techniques that have been used over the years. Intention

based diagnosis emerged around the 1990s, but has been used less often in the

21st century. Automated testing is most seen in the 2000s, but remains popular

7www.llvm.org/

www.llvm.org/
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Figure 2.15: Cumulative number of tools with technique

over the years, based on the earliest paper on a tool from

our data set. The legend has the same order as the endings

of the lines in the chart.

in the 2010s. The same applies to basic static analysis. In the 2010s various

new techniques, such as data analysis, make their appearance.

2.8 Adaptability (RQ3)

In this section we describe the results of the third research question: ‘how

can the tool be adapted by teachers, to create exercises and to in�uence the

feedback?’ To answer this question, we have categorised the di�erent types

of input that teachers can provide. We require that the tool does not need to

be recompiled, and not too much e�ort or specialised knowledge is needed.

Some tools enable authors to write complex error models or rules and con-

straints to specify correct solutions. However, we consider these inputs to be

too specialised and time-consuming for a teacher who quickly wants to add a

new exercise.

Figure 2.16 shows for each input type the percentage of tools that use it.

We have found that model solutions are used most, in 50.5% of the tools. After

that, 47.5% of the tools use test data. Of all tools, 15.8% o�er solution templates,

and in 5.0% error data can be speci�ed. We have found the use of a student

model for generating feedback on solutions in 5.9% of the tools. In 30.7% of

the tools we have found other types of input. A total of 18.8% of the tools do

not use any input type. The feedback these tools generate is often based on

hard-coded knowledge bases (e.g. He94), or it is just too time-consuming to

add an exercise (e.g. one person-week for Bridge).
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MS Model solutions 51 50.5 8 33.3 43 55.8

TD Test data 48 47.5 4 16.7 44 57.1

Other 31 30.7 6 25.0 25 32.5

ST Solution templates 16 15.8 7 29.2 9 11.7

SM Student model 6 5.9 3 12.5 3 3.9

ED Error data 5 5.0 0 0.0 5 6.5

None 19 18.8 9 37.5 10 13.0

Figure 2.16: Number of tools (count) and percentage of tools

with input type, for all tools, and subdivided by exercise

class.

Class 2 tools more often do not use any input. Class 3 tools use more test

data and model solutions than class 2 tools. Class 2 tools use more solution

templates and input from a student model. The next subsections expand on

the di�erent input types and explain how they are used.

2.8.1 Solution templates (ST)

Solution templates are often used for class 2 exercises to restrict the student’s

freedom in solving a particular problem. An example is the ELP system shown

in Figure 2.17, in which students �ll in gaps (the white area in the middle) in

a Java template with prede�ned code fragments (the yellow areas surround-

ing the white gap). Solution templates found in test-based assessment tools

are often project skeletons, or an interface de�nition for a data structure that

prescribes the names of functions, parameters and return values.
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Figure 2.17: Fill-in-the-gap exercise in ELP (image fragment

from [261]).

Figure 2.18: Test code in Naur64 (image from [198]).

2.8.2 Model solutions (MS)

Correct solutions to a programming exercise are used as input in many tools.

In dynamic analysis they are used for running test cases to generate the ex-

pected output. In this case a single correct solution will su�ce. In static analy-

sis the structure of a correct solution is compared to the structure of a student

solution. To recognise more than one solution variant, some tools accept mul-

tiple solutions that each represent a di�erent algorithm to solve the problem.

2.8.3 Test data (TD)

In older tools testing is done in scripts, for example in Naur64. Figure 2.18

shows a small fragment of its test code. Newer systems accept unit tests as

input, such as in Figure 2.19 that shows one of the unit tests for the factorial

function for WebWork-JAG. The WebWork-JAG system also processes Java
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Figure 2.19: Unit test used in WebWork-JAG (image

from [94]).

re�ection code to test the signature of methods. Other tools require the teacher

to simply provide input/output pairs.

2.8.4 Error data (ED)

A small number of tools accept input containing some form of error data. As

an example, Talus, a debugger for Lisp programs, uses both model solutions

and buggy solutions. If a student program is matched with a buggy solution,

corresponding feedback addressing the misconception is presented to the stu-

dent.

2.8.5 Other

InCourseMarker teachers can con�gure how much feedback should be given.

Some tools let a teacher de�ne custom feedback messages. In Ask-Elle model

solutions can be annotated with feedback messages [90]:

range x y = {-# FEEDBACK Note... #-}
take (y-x+1) $ iterate (+1) x

These messages appear if the student asks for help at a speci�c stage during

problem solving.

AutoStyle provides a user interface for an instructor that visualises paths

consisting of subsequent submissions and their di�erences. The instructor

can in�uence the hints by adjusting thresholds so the changes between sub-

missions become larger or smaller, and can mark hints as helpful or not, as

shown in Figure 2.20.

We found a system that generates exercises instead of having instructors

author them (Shimic), although the resulting exercises seem rather contrived

(‘De�ne private long integer method ‘n’ with integer argument named ‘n’, and

which returns: ‘1022’ if ‘n’ is ‘8142’; ‘963’ if ‘n’ is ‘1261’; ’etc.).

Testovid is a platform and language-independent tool, for which teachers

have to write Apache Ant scripts to build student solutions and run a set of
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Figure 2.20: Instructor UI for AutoStyle (image fragment

from [193]).

(testing, style checking) tools on the programs. Writing these scripts is a time

investment, but they can be reused and adapted later for di�erent exercises

and languages.

In AutoTeach a model solution is gradually revealed (see Figure 2.8 in

Section 2.6.4) The tool o�ers the teacher several options to customise the hints

using ‘meta-commands’, which are special directives embedded in comments.

Using these commands the teacher can specify custom hint messages and con-

trol which parts of the code should (not) be revealed. The system includes a

default revealing mechanism that starts with showing only the basic structure

of the code (classes, functions) and ending at the level that almost shows all

code except for instructions inside conditional statements and loops.

2.9 Quality (RQ4)

This section describes the results of the fourth research question: ‘what is

known about the quality and e�ectiveness of the feedback or tool?’ Figure 2.21

shows for each evaluation method the percentage of tools for which it has been

used, and the number of evaluation methods used per tool. We have found that

15.8% of the tools we examined only provide anecdotal evidence on the success

of a tool, and for 11.9% of the tools we have not found any evaluation at all. Of

all tools, 9.9% have been assessed by an analytical method and 71.3% by some

form of empirical assessment, of which technical analysis is the largest group

with 37.6% of the tools. Not including anecdotal assessment, the majority of

the tools have been evaluated by one method (45.5%), 26.7% of the tools have

been evaluated by at least two methods, 7.9% by 3 methods and 2.0% by 4

methods.

In the next subsections we give some examples and observations regarding

tool evaluation.
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Figure 2.21: Percentage of tools (n=101) with evaluation

method, and combinations of evaluation methods.

2.9.1 Analytical (ANL)

We found a small number of tools that are based on validated approaches,

such as a learning theory. The LISP tutor, Grace and JITS are based on the

ACT-R cognitive architecture [13]. In ACT-R procedural knowledge is de�ned

as a set of production rules that model human behaviour in solving particular

problems. Chang00 is based on the completion strategy for learning program-

ming by Van Merriënboer [267]. This strategy is based on exercises in which

(incomplete) model programs written by an expert should be completed, ex-

tended or modi�ed by a novice programmer.

2.9.2 Empirical assessment

Empirical assessment analyses qualitative data or quantitative data. We dis-

tinguish three types.

Looking at the learning outcome (EMP-LO)

The nature of these experiments varies greatly. For example, ProPL was eval-

uated in an experiment with 25 students. The students were either in the con-

trol group that used a simple, alternative learning strategy, or in the group that
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used ProPL. Students both did a pre-test and a post-test to assess the changes

in the scores. Some tools have used a less extensive method, for instance by

omitting a control group, and comparing the pass rates from the year the tool

was used against previous years. The test group size also varies greatly.

Evaluating the programming game Code Hunt was done by tracking the

activity of 407 users over two weeks. Some users got all hints, some users got

occasional hints, and some users never got any hints. The results show that

the users who got hints played longer and won more levels than the users

who did not get any hints. In addition, users who got occasional hints played

longer than users that always got hints.

Student and teacher surveys (EMP-SU)

We have found that the number of responses in some cases is very low, or

is not even mentioned. Some papers mention a survey, but do not show an

analysis of the results, in which case we do not assign this label.

Technical analysis (EMP-TA)

SIPLeS-II was assessed using a set of 525 student programs, measuring the

number of correctly recognised solutions, the time needed for the analysis,

and a comparison to the analysis of a human tutor. In some cases, this type

of analysis is done for a large number of programs, only counting the number

of recognised programs. In other cases, researchers thoroughly analyse the

content of generated hints, often for a smaller set of programs because of the

large amount of work involved.

The authors of Jin12 analysed 200 student submissions for one simple pro-

gramming problem (‘calculate the pay for mowing the lawn around a house’).

In a �rst experiment the 37 correct solutions from this set were used to gen-

erate hints for 16 randomly selected correct submissions. The hints were ap-

propriate for 14 of these 16 submissions (87.5%). In their second experiment,

the authors manually selected a similar correct solution, ‘which was not nec-

essarily the best match’ for 15 randomly selected incorrect submissions. The

generated hints based on their di�erences were meaningful for 10 (66.6%) of

the 15 incorrect submissions. The authors propose concrete ways to increase

this percentage.

The technique from Jin12 was used in the Jin14 tutor, which has a ‘guided-

planning’ and an ‘assisted-coding’ component. The tutor was evaluated by
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Figure 2.22: Percentage of tools with evaluation method in

the 1990s (n=21), 2000s (n=36) and 2010s (n=31). The legend

and table have the same order as the bars in the chart.

comparing it to three other variants: ‘coding-only’, ‘planning-only’ and al-

ternating between variants. They conducted an experiment with 85 students

who did a pre-test, worked with the tutor for some time and then completed

a post-test. The group that did the ‘planning-coding’ variant had the largest

increase in learning.

Other

Another way to evaluate a tool is to compare it to other related tools based on a

set of criteria or functions (e.g. Java Sensei). The feedback provided by the Fit

Java Tutor was assessed for their appropriateness by experts. The authors of

this tool also did a ‘Wizard of Oz’ experiment to assess if the example-based

feedback helped students to achieve higher scores on their work. Instead of

the ITS, a human expert provided the feedback that students requested. Some

tools were evaluated as part of a course that used the tool, or in the context of

a speci�c didactic method, making it more di�cult to isolate and measure the

e�ect of the tool itself.
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2.9.3 Trends

Figure 2.22 shows how the distribution of evaluation methods changes over

the last three decades. The use of surveys shows a steady increase from 19.0%

in the 1990s, 41.7% in the 2000s and 45.2% in the 2010s. Despite the relapse

to 25.0% in the 2000s, technical analysis is still the method seen most in this

decade with 48.4% in the 2010s, closely followed by surveys and learning out-

come evaluations. The number of tools for which we have not found any type

of evaluation drops from 23.8% to around 6%, but the percentage of tools for

which we only found anecdotal evidence remains nearly the same. It should

be noted, however, that some evaluations of tools from this decade are still to

be published, so this �gure only gives a general impression.

2.10 Discussion

In this review we intend to �nd an answer to our research question concerning

feedback generation for programming exercises: ‘what is the nature of the

feedback, how is it generated, can a teacher adapt the feedback, and what can

we say about its quality and e�ect?’ In this section we take a closer look at the

answers we have found to the four sub-questions, discuss the relation between

these answers, and give some observations and recommendations that follow

from our review.

2.10.1 Feedback types

Looking at the type of feedback given by tools, which we investigated in the

�rst research question, we have found that feedback about mistakes is the

largest type used in tools. In the �rst iteration of our review we found that

feedback on test failures was the largest subtype [145]. After deciding to omit

purely test-based tools in this �nal review, this subtype was still the second

largest. Generating feedback based on tests is a useful way to point out errors

in student solutions and emphasizes the importance of testing to students. It is

therefore a valuable technique, and relatively easy to implement using existing

test frameworks. Most tools that use automated testing support class 3 exer-

cises, because black-box testing does not require using a speci�c algorithm or

design process. The only aspect that matters is whether the output meets the

requirements of the exercise. However, only giving test-based feedback will

not in all cases help a student to �x an incorrect program.
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The largest feedback subtype from our review is solution error feedback.

This type of feedback can be implemented with varying depth and detail. To

really help a student, just pointing at an error may not help. Feedback on how

to proceed is necessary to both �x problems and to progress towards a solu-

tion when stuck. This type of feedback is mostly seen in the form of error

correction hints, and much less as hints on task-processing steps or on pro-

gram improvements. This is especially the case for class 3 tools supporting

exercises that can be solved by multiple (variants of) strategies. Class 2 tools

provide more procedural support, but a disadvantage is that they do not sup-

port alternative solution strategies, and may restrict a student in his or her

problem-solving process. Finally, the very low percentage of tools that give

code examples based on the student’s actions is unfortunate, because study-

ing examples has proven to be an e�ective way of learning. Looking at the

changes over the decades, feedback on test failures and solution errors remain

the most common types. However, the diversity of feedback types in the cur-

rent century has increased, which is a positive development.

Many of the tools we have investigated are AA tools, which are often used

for marking large numbers of solutions. If marking is the only purpose, one

could conclude that more elaborate feedback is not necessary. However, if we

want our students to learn from their mistakes, a single mark or a basic list

of errors only is not su�cient. Moreover, we have noticed that many authors

of AA tools claim that the intention of the feedback their tool generates is

student learning.

Suzuki et al. [254] analysed posts on a programming discussion forum to

identify the di�erent types of hints that teachers give. The authors found 10

types, �ve of which could be generated using program synthesis techniques:

transformation hints (how to correct mistakes), location hints (where to cor-

rect mistakes), data hints (the expected value or type of a variable at some

location), behaviour hints (describing dynamic program behaviour), and ex-

ample hints (explaining how code should work by showing input and output

examples). The authors found that hints teachers give often focus on why the

student’s code failed, and that teachers generally do not provide exact �xes.

There is a vast amount of studies that identify and classify di�culties and

errors that novice programmers encounter in their learning process. Qian and

Lehman [219] have conducted a literature review of such studies of student

di�culties in introductory programming. The authors distinguish between

di�culties in syntactic knowledge, conceptual knowledge (not knowing how
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a programming construct works or how code executes) and strategic knowl-

edge (using code to solve problems), and describe several approaches and tools

to support students in dealing with these di�culties. Considering our classi�-

cation of feedback, misconceptions regarding syntactic knowledge can be ad-

dressed by compiler error feedback. Conceptual knowledge can be addressed

by the two KC (knowledge about concepts) feedback types: explanations on

subject matter and examples illustrating concepts. Strategic knowledge can

be addressed by feedback on solution errors, all feedback on knowledge about

how to proceed and knowledge on task constraints. Feedback on test failures,

style and performance can also help.

O�ering more variety in feedback type in one tool than is currently the

case, and carefully considering the level of detail in a generated feedback mes-

sage would contribute to giving more e�ective feedback, similar to the feed-

back of a human tutor.

2.10.2 Feedback generation techniques

By answering our second research question we came across many techniques

for generating automated feedback, which we can relate to the di�erent feed-

back content types. Well-known ITS techniques such as model tracing and

constraint checking are used in some tools, but not on a very large scale. Model

tracing is strongly related to hints in the ‘knowledge on how to proceed’ cat-

egory, often producing next-step hints. Constraint checking and intention-

based diagnosis mainly produce hints on solution errors and/or error correc-

tion. Automated testing is often combined with static analysis of the abstract

syntax tree, sometimes incorporating transformations to simplify its structure

or to ignore irrelevant details. We observe that automated testing generates

test-based feedback. However, it is also used as a mechanism for recognising

a solution as correct or incorrect before further analysing a program using

another technique. For generating style-related hints, basic static analysis or

external tools (that might also perform static analysis) are used.

An upcoming trend is the use of data-driven technology to base feedback

on historical student data, such as paths students have taken and program-

ming mistakes they have made. Hint generation with data-driven techniques

produces feedback on solution errors, correcting these errors, taking a next

step and providing the student with related examples. Feedback generation

based on recognising plans and errors from a knowledge base is less popu-

lar nowadays. Data-driven techniques, however, require the presence of large



2.10. Discussion 67

sets of data, complicating the authoring of new exercises. We must also �nd an

answer to the question if students learn the right problem-solving strategies

if hints are only based on other students’ past behaviour. Perhaps combining

the successful techniques of the past with new (data-driven) enhancements

will bring new opportunities.

2.10.3 Tool adjustability

The 2014 working group report of the ITiCSE conference by Brusilovsky et

al. [44] discusses the adoption of ‘smart learning content’ (SLC) in computer

science courses on a larger scale. SLC tools are interactive tools o�ering, for

instance, visualisation, simulation, automated assessment, coding support, or

problem-solving support, in which feedback plays a prominent role to help

students in their learning. One of the main problems the authors found among

teachers is not being able to customise tools to their own needs, and that tools

do not match their own teaching methods. The report proposes an architec-

ture that promotes �exible integration and customisation of SLC tools.

In our review, we found that tools use various dynamic and static anal-

ysis techniques. More sophisticated techniques, such as model tracing and

intention-based diagnosis, appear to complicate adding new exercises and ad-

justing the tool. However, the question whether or not a tool can be adapted

easily is di�cult to answer, and depends on the amount and complexity of the

input. We have found that very few papers explicitly describe this, or even ad-

dress the role of the teacher. In the latter case we assume that there is no such

role and the tool can only be adjusted by the developers. When a publication

does describe how an exercise can be added, it is often not clear how di�cult

this is. Some publications mention the amount of time necessary to add an ex-

ercise, such as one person-week for Bridge. We conclude that teachers cannot

easily adapt tools to their own needs, except for test-based AA systems.

2.10.4 Tool evaluation

To answer the last question, we have investigated how tools are evaluated.

Most tools provide at least some form of evaluation, although for 27.7% of the

tools we could only �nd anecdotal evidence, or none at all. The evaluation

of a tool may not be directly related to the quality of the feedback, so the re-

sults only give a general idea of how much attention was spent on evaluation.

The many di�erent evaluation methods make it di�cult to assess the e�ec-

tiveness of feedback. Moreover, the quality (e.g. presence of control groups,



68 Chapter 2. Systematic Literature Review

pre- and post-tests, group size) of empirical assessment varies greatly. Finally,

the description of the method and results often lacks clarity and detail.

Gross and Powers [96] provide a rubric for evaluating the quality of em-

pirical tool assessments, and have applied this rubric to the evaluation of a

small set of tools. Collecting data for this rubric would provide us with more

information, but the e�ort is beyond the scope of this review. Just as Gross and

Powers conclude, the lack of information on assessment greatly complicates

this task. Pettit and Prather also endorse the need for developers of AA sys-

tems to work together instead of creating tools in isolation, and to pay more

attention to evaluating their e�ectiveness [211].

In the future, it would be interesting to compare tools that give di�erent

types of feedback, to assess the e�ectiveness of di�erent (combinations of)

feedback types. Furthermore, extensive technical analyses are needed to verify

to what extent a tool can correctly recognise (in)correct solutions and generate

appropriate hints, and for which subset of exercises.

2.10.5 Classifying feedback

In this section we compare our classi�cation of feedback to another classi�ca-

tion from a recent paper. This paper by Le provides ‘a classi�cation of adap-

tive feedback in educational systems for programming’ [159]. The author de-

scribes ‘adaptive feedback’ as feedback speci�c for the actions of an individual

student, possibly combined with information from a student model. The clas-

si�cation consists of �ve main feedback types: ‘yes-no’, ‘syntax’, ‘semantic’,

‘layout’ and ‘quality’. Although the author states that these types are based on

generic classi�cations of feedback types (including Narciss), we cannot clearly

derive from the paper how the author’s classi�cation relates to these general

classi�cations. If we compare these types to ours, yes-no feedback relates to

Narciss’ ‘knowledge of result/response’, which we do not include in our re-

view. Syntax feedback relates to our ‘compiler errors’ type. Le distinguishes

two levels in the semantic feedback category: intention-based (feedback on

the solution strategy for solving a particular task) and code-based (feedback

on coding errors with respect to a particular task), which are related to ‘so-

lution errors’, both subtypes of ‘knowledge about how to proceed’, and ‘hints

on task-processing rules’. Layout feedback corresponds to ‘style issues’ and

quality feedback to ‘performance issues’. Although we do see similarities be-

tween both categorisations, ours di�ers in three ways: it resembles general
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feedback types at the top level, it includes a broader range of types, and it is

slightly more �ne-grained.

2.10.6 Threats to validity

There are a number of factors that could in�uence the validity of our re-

view during the search for publications and the coding of the tools. We could

have missed some papers because their authors use terms di�erent from our

database search string. We take this into account by inspecting references,

but papers with few references might not have been found this way. For this

reason, we could have missed some recent papers that typically do not have

many references yet.

The substantial amount of work involved in this review, and therefore the

time it took to execute the coding, may have had an e�ect on the interpretation

of labels, in particular the borderline cases. In some cases we could not �nd

clear answers to our research questions and had to speculate on what the cor-

rect label was. However, in these cases a second author was often consulted.

For answering RQ4, we might not have found some evaluations of recent

tools that were conducted at a later date, because we have only included papers

up to 2015. Validation of a tool is usually done by its authors, but in some cases

may be performed by other authors. We did not do a search of these ‘external’

evaluations.

2.11 Conclusion

We have analysed and categorised the feedback generation in 101 tools for

learning programming, selected from 17 earlier reviews and 2 databases. We

have reported �ndings on the relation of feedback content, technique and

adaptability. We have found that, in general, the feedback that tools gener-

ate is not very diverse, and mainly focused on identifying mistakes. In tools

that support class 3 exercises, test-based feedback is most common and very

few of these tools give feedback with ‘knowledge on how to proceed’. Class

2 tools give more feedback on �xing mistakes and taking a next step, but at

the cost of not recognising alternative strategies. O�ering multiple feedback

types in one tool and considering the level of detail would contribute to giving

more e�ective feedback, similar to the feedback of a human tutor. We already

see more diversity of feedback types in tools developed in the 21st century.
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We have found many di�erent techniques used to generate feedback, both

general and speci�c to the programming domain, often strongly related to a

speci�c type of feedback. The upcoming trend of data-driven tutors shows

promising results, but also poses questions for which we need to �nd answers

regarding the e�ectiveness of the hints they produce. Requiring large data

sets also complicates the authoring of new exercises. We observe that teachers

cannot easily adapt tools to their own needs, except for providing test data as

input for a tool. Finally, the quality of the evaluation of tools varies greatly

and is still an area for improvement. Better technical analyses should make it

clearer what the features and limitations of a tool are, and better experiments

that measure learning should give more insight into the e�ectiveness of a tool.

Automated feedback for programming exercises has been an active �eld

of research for many decades. Generating e�ective feedback messages and

making it easy for teachers to adapt tools to their own needs will remain a

challenge, although many useful techniques have already been employed in

practice. New technologies combined with techniques from this review that

have shown to be e�ective will undoubtedly help new students wanting to

learn how to program even better in the future.
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Chapter 3

Code Quality Issues in Student
Programs

This chapter is a published paper [141].

Abstract Because low quality code can cause serious problems in software

systems, students learning to program should pay attention to code quality

early. Although many studies have investigated mistakes that students make

during programming, we do not know much about the quality of their code.

This study examines the presence of quality issues related to program �ow,

choice of programming constructs and functions, clarity of expressions, de-

composition and modularization in a large set of student Java programs. We

investigated which issues occur most frequently, if students are able to solve

these issues over time and if the use of code analysis tools has an e�ect on issue

occurrence. We found that students hardly �x issues, in particular issues re-

lated to modularization, and that the use of tooling does not have much e�ect

on the occurrence of issues.
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3.1 Introduction

Students who are learning to program often write programs that can be im-

proved. They are usually satis�ed once their program produces the right out-

put, and do not consider the quality of the code itself. In fact, they might

not even be aware of it. Code quality can be related to documentation, pre-

sentation, algorithms and structure [249]. Fowler [84] uses the term ‘code

smells’ to describe issues related to algorithms and structure that jeopardise

code quality. A typical example is duplicated code, which could have been put

in a separate method. Another example is putting the same code in both the

true-part and the false-part of an if-statement, even though that code could

have been moved outside the if-statement. Low quality code can cause seri-

ous problems in the long term, which a�ect software quality attributes such as

maintainability, performance and security of software systems. It is therefore

imperative to make students and lecturers aware of its importance.

For a long time, researchers have been interested in how students solve

programming problems and the mistakes that they make. Recently, large-scale

data mining has made it possible to perform automated analysis of large num-

bers of student programs, leading to several interesting observations. For ex-

ample, Altadmri and Brown [12] investigated over 37 million code snapshots

and found that students seem to �nd it harder to �x semantic and type errors

than syntax errors.

Although many studies have investigated the errors that students make,

little attention has been paid to code quality issues in student programs. While

Pettit et al. [210] looked at code quality aspects and found that several met-

rics related to code complexity increased with each submission, their study

does not elaborate on the causes of these high metric scores. Aivaloglou and

Hermans [5] analysed a large database of Scratch projects (a block-based, vi-

sual programming language) by measuring complexity and detecting di�erent

code smells. Although the complexity of most Scratch projects was not high,

the researchers found many instances of these code smells.

In this study we analyse a wider range of code quality issues, and ob-

serve their appearance over time. Our data set, taken from the Blackbox

database [41], contains over two million Java programs of novice programmers

recorded in four weeks of one academic year. First, we investigate the type

and frequency of code quality issues that occur in student programs. Next, we

track the changes that students make to their programs to see if they are able
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to solve these issues. Finally, we check if students are better at solving code

quality issues when they have code analysis tools installed.

The contributions of this paper are: (1) a selection of relevant code quality

issues for novice programmers, (2) an analysis of the occurrence and �xing of

these issues, and (3) insight into the in�uence of code analysis tools on issue

occurrence.

The remainder of this paper is organised as follows: Section 3.2 elaborates

on related studies on student programming behaviour. Section 3.3 describes

the research questions, the data set we used, the code quality issues we have

selected to investigate, and the automatic analysis. Section 3.4 shows the re-

sults for each research question, which are discussed in Section 3.5. Section 3.6

concludes and describes future work.

3.2 Related work

This section discusses previous research into student programming habits re-

lated to code quality. We also consider studies that have analysed student

programming behaviour on a large scale.

Pettit et al. [210] have analysed over 45,000 student submissions to pro-

gramming exercises. The authors monitored the progress that students made

over the course of a session, in which students submit their solutions to an au-

tomated assessment tool that provides feedback based on test results. For each

submission they computed several metrics: lines of code, cyclomatic complex-

ity, state space (number of unique variables) and the six Halstead complexity

measures (calculations based on the number of operators and operands of a

program). The authors also distinguish between sessions in which the num-

ber of attempts within a speci�c time frame is restricted. The main conclusion

from the study is that although the metric scores increase with each submis-

sion attempt, restricting the number of attempts has a positive in�uence on

the code quality of students. Second, the authors argue that instructors should

also consider coding style and quality, because focusing solely on testing may

result in ine�cient programs. The study does not elaborate on the particular

problems that cause high complexity scores.

Aivaloglou and Hermans [5] analysed a database of over 230,000 Scratch

projects. Scratch is a block-based programming language that is often used to

teach children how to program. Besides investigating general characteristics

of Scratch programs, the authors also looked at code smells, such as cyclomatic
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complexity, duplicate code, dead code, large scripts and large sprites (image

objects that can be controlled by scripts). Translating to the object-oriented

domain, a large script is comparable to a large class and a large sprite to a

large method. In 78% of over 4 million scripts the cyclomatic complexity is

one. Only 4% of the scripts has a complexity over four. In 26% of the projects

the researchers identi�ed code clones (12% for exact clones), consisting of at

least �ve blocks. It should be noted that Scratch only supports procedure calls

within sprites, leaving copy-pasting code as the only option. Dead code occurs

in 28% of the projects. Large scripts (with at least 18 blocks) are present in 30%

of the projects and large sprites (with at least 59 blocks) in 14% of the projects.

Breuker et al. [39] investigated the di�erences in code quality between

�rst- and second-year students in approximately 8,400 Java programs in 207

projects, using a set of 22 code quality properties. They found that for half of

the properties there were no major di�erences. For the remaining properties,

some di�erences could be attributed to increased project size and complex-

ity for second-year students. Finally, second-year students performed better

because their code had smaller methods, fewer short identi�ers, fewer static

methods and fewer assignments in while and if-statements.

Much more research into code smells exists for professional code. For ex-

ample, Tufano et al. [262] investigated the repositories of 200 software projects,

answering the question when and why smells are introduced. They calcu-

lated �ve metrics related to the size and complexity of classes and methods,

and proper use of object-orientation. They found that most smells �rst oc-

cur when a �le is created and that, surprisingly, refactorings may introduce

smells.

Altadmri and Brown [12] used data from one academic year of the Black-

box database to investigate what common student mistakes are, how long it

takes to �x them, and how these �ndings change during an academic year.

Although there are various other studies that look at these aspects, it had not

been done on such a large scale before. Individual source �les were tracked

over time by checking them for 18 mistakes, and calculating how much time

had passed before the mistake disappeared from the source �le. One impor-

tant observation from the study is that students seem to �nd it harder to �x

semantic and type errors than syntax errors.
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3.3 Method

This study addresses the following research questions:

RQ1 Which code quality issues occur in student code?

RQ2 How often do students �x code quality issues?

RQ3 What are the di�erences in the occurrence of code quality issues be-

tween students who use code analysis extensions compared to students

who do not?

3.3.1 Blackbox database

Our data set is extracted from the Blackbox database [41], which collects data

from students working in the widely used BlueJ IDE
1

for novice Java program-

mers. BlueJ, used mostly in �rst year programming courses, has a simpli�ed

user interface and o�ers several educational features, such as interacting with

objects while running a program.

The Blackbox database stores information about events in BlueJ triggered

by students, such as compiling, testing and creating objects. Blackbox stores

data on sessions, users, projects, code �les and tests, which are linked to these

events. A source �le is a �le of which there may be multiple versions called

snapshots, which are unique instances of the source �le at a certain event.
The database has been receiving data constantly since June 2013, and con-

tains millions of student programs to date. BlueJ users have to give prior con-

sent (opt-in) to data collection, and all collected data is anonymous. Permis-

sion is required to access the database. In this study we have investigated pro-

grams submitted in four weeks of the academic year 2014–2015 (the second

week of September, December, March and June). From the Blackbox database

we extracted data on source �les, snapshots, compile events, extensions and

startup events, which we stored in a local database. We only extracted data on

programs that are compilable.

3.3.2 Data analysis

We performed an automatic analysis of all programs in our data set that com-

piled successfully. To enable replication and checks, we have published the

1www.bluej.org

http://www.bluej.org


76 Chapter 3. Student Code Quality Issues

code online.
2

We counted the source lines of code (SLOC) for each �le using

the cloc tool.
3

Although this metric is sensitive to style and formatting and

therefore not very accurate, it provided us with an indication of the size of a

program.

Issues (RQ1)

Stegeman et al. [249] have developed a rubric for assessing code quality, based

on their research into professional code quality standards from the software

engineering literature and interviews with instructors. The rubric is based on

a model with ten categories for code quality. We omit the categories that deal

with documentation (the names, headers and comments categories) and pre-

sentation (the layout and formatting categories). Our study focuses on the re-

maining �ve categories that deal with algorithms and structure, because they

are the most challenging for students:

● Flow. Problems with nesting and paths, code duplication and unreach-

able code.

● Idiom. Unsuitable choice of control structures and no reuse of library

functions.

● Expressions. Expressions that are too complex and use of unsuitable

data types.

● Decomposition. Methods that are too long and excessive sharing of

variables.

● Modularization. Classes with an unclear purpose (low cohesion) and

too many methods and attributes, and tight coupling between classes.

For each category, we selected a number of issues to investigate by apply-

ing the PMD tool to a limited set of student programs to identify the issues that

occur most frequently. PMD
4

is a well-known static analysis tool that is able

to detect a large set of bad coding practices in Java programs. We also used the

Copy/Paste Detector tool (CPD)
5

included with PMD for duplicate detection.

2github.com/hiekekeuning/student-code-quality
3github.com/AlDanial/cloc
4pmd.sourceforge.io/pmd-5.5.2
5pmd.sourceforge.io/pmd-5.4.1/usage/cpd-usage.html

https://github.com/AlDanial/cloc
https://github.com/hiekekeuning/student-code-quality
https://pmd.sourceforge.io/pmd-5.5.2/
https://pmd.sourceforge.io/pmd-5.4.1/usage/cpd-usage.html
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In PMD a rule de�nes a bad coding practice, and running PMD results into a

report of rule violations. In this paper we use the term issue to refer to a rule

in PMD. The PMD version we used o�ers 26 sets consisting of issues that all

deal with a particular aspect.

We discarded sets of issues using the following criteria:

● An issue is too speci�c for Java, such as issues that apply to Android,

JUnit and Java library classes.

● An issue is too advanced, strict or speci�c for novice programmers,

such as exceptions, threads, intermediate-level OO concepts (abstract

classes, interfaces) and very speci�c language constructs (e.g. the �nal

keyword).

● An issue falls under the documentation or presentation categories.

● An issue points at an actual error.

Our �rst selection consisted of 170 issues in 12 sets. We used the default value

for issues with a minimal reporting threshold, such as the value 3 for reporting

an if-statement that is nested too deeply. Additionally, we added ‘code dupli-

cation’ as three issues that �re for duplicates of 50, 75 and 100 tokens. Our

initial analysis was applied to a smaller set of programs from four di�erent

days throughout the academic year 2014–2015. For each unique source �le we

recorded for each issue if it occurred in some snapshot of that �le.

For a more detailed analysis we made a selection of the 170 issues. For

each issue we decided whether it should be included or not, based on the cri-

teria mentioned above. We also discarded all issues in the ‘controversial’ set,

‘import statements’ set and the ‘unused code’ set, and issues that occurred in

fewer than 1% of the unique �les. Table 3.1 shows our �nal set of issues, now

grouped according to the categories of Stegeman et al.

We ran PMD for these 24 issues on all compilable programs in the �nal

data set of four weeks and stored the results in our local database. We cleaned

the database by removing all data of the �les that could not be processed and

�les with 0 LOC. For each of these 24 issues, we counted in how many unique

source �les it occurred at least once, and how often. We also calculated the

di�erences in occurrence over time.
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Table 3.1: Selected issues (report level) per category. De-

tailed explanations can be found at pmd.sourceforge.io/
pmd-5.5.2/pmd-java/rules.

Flow
CyclomaticComplexity (10) Strict version that counts boolean opera-

tors as decision points.

ModifiedCyclomaticComplexity (10) Counts switch statements as a single deci-

sion point.

NPathComplexity (200)
EmptyIfStmt
PrematureDeclaration

Idiom
SwitchStmtsShouldHaveDefault
MissingBreakInSwitch
AvoidInstantiatingObjectsInLoops

Expressions
AvoidReassigningParameters
ConfusingTernary
CollapsibleIfStmts
PositionLiteralsFirstInComparisons
SimplifyBooleanExpressions
SimplifyBooleanReturns

Decomposition
NCSSMethodCount (50)
NCSSMethodCount (100)

Counts Non-Commenting Source State-

ments, report level in statements.

SingularField The scope of a �eld is limited to one

method.

CodeDuplication (50)
CodeDuplication (100)

Only identi�ed in single �les, not over

projects.

Modularization
TooManyMethods (10) Excludes getters and setters.

TooManyFields (15)
GodClass
LawOfDemeter Call methods from another class directly.

LooseCoupling Use interfaces instead of implementation

types.

pmd.sourceforge.io/pmd-5.5.2/pmd-java/rules
pmd.sourceforge.io/pmd-5.5.2/pmd-java/rules
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Fixing (RQ2)

For RQ2 we examine the changes in a source �le over time. For each issue we

calculated the number of �xes and the number of appearances. As an example,

let us assume that source �le X has 6 snapshots in which the occurrences

of issue Y are 2 1 3 0 4 2. The number of �xes is 6: the total number of

issues that were solved in a subsequent snapshot (1 + 0 + 3 + 0 + 2). The

number of appearances is 8: the total number of issues that were introduced

in a subsequent snapshot (2 + 0 + 2 + 0 + 4 + 0). These metrics are simpli�ed

measures to investigate �xing: we cannot be sure the student really �xed the

problem, or simply removed the problematic code.

Extensions (RQ3)

BlueJ users may install various extensions to support their programming, such

as UML tools, submission tools and style checkers. We generated a list of all

extensions used in the selected four weeks of the year 2014–2015. We selected

extensions related to code quality from the 29 that were active in at least 0.05%

of all BlueJ-startups in those weeks:

● Checkstyle
6

(9,626 start-ups), a static analysis tool for checking code

conventions.

● PMD (3,751 start-ups), the tool used for our analysis.

● PatternCoder
7

(507 start-ups), which helps students to implement de-

sign patterns.

Findbugs
8

translates Java code into bytecode, and then performs static

analysis to identify potential bugs. It is a relevant tool, but with 242 start-

ups not used often enough. We also excluded a small number of extensions

that we could not �nd information about.

For RQ3, we calculated the occurrence of issues for each of the extensions,

and for source �les for which no extensions were used.

6checkstyle.sourceforge.io
7www.patterncoder.org
8findbugs.sourceforge.net

http://www.patterncoder.org
http://findbugs.sourceforge.net
http://checkstyle.sourceforge.io
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Table 3.2: Data set summary.

Initial data set (4 days) Unique source �les 90,066

Snapshots 439,066

Final data set (4 weeks) Unique source �les 453,526

Snapshots 2,661,528

Avg events per source �le 5.87

Median events per source �le 2

Max events per source �le 700

Average LOC per source �le 52.75

Median LOC per source �le 27

3.4 Results

Table 3.2 shows some general information on the data sets taken from the

academic year 2014–2015.

3.4.1 All issues (RQ1)

Table 3.3 shows the summary of checking the initial data set of four days for

170 issues. For each unique source �le we recorded for each issue if it occurred

in some snapshot of that �le. In total we found 574,694 occurrences of 162

di�erent issues (8 issues did not occur in any �le). The top 10 issues is shown

in Table 3.4.

In the controversial set, seven issues were found in at least 5% of the unique

source �les. DataFlowAnomalyAnalysis is at the top of the list with 38.6%. This

issue deals with rede�ning variables, unde�nitions (variables leaving scope)

and references to unde�ned variables, which may not always be a serious

problem. AvoidLiteralsInIfCondition is second with 14.0%. For other issues

such as AtLeastOneConstructor and OnlyOneReturn it is also questionable

whether they are problematic in novice programmer code, therefore we de-

cided to further omit all issues in this set.

The top 10 also includes issues that we omit in the remainder of this study.

The two issues that occur in the most �les, 84.2% for MethodArgumentCould-
BeFinal and 61.3% for LocalVariableCouldBeFinal, are both in the optimiza-

tion set and point at the possibility to use the �nal keyword to indicate that

a variable will not be reassigned. A reason for these high percentages may

be that this language construct is not being taught to novice programmers.
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Table 3.3: Summary of running PMD on the initial data set,

showing per PMD set the number of issues that were seen,

the percentage of unique �les in which at least one issue from

that set occurred, the median of the occurrences in % and the

maximum.

Set Issues
seen

% of �les with
issues from set Median % Max %

Type resolution 4/4 26.04 3.96 20.1

Optimization 12/12 91.75 2.71 84.2

Unused code 5/5 26.86 2.50 16.2

Code duplication 3/3 4.99 2.28 5.0

Code size 13/13 13.69 1.40 8.2

Controversial 21/22 65.10 1.37 38.6

Import statements 6/6 10.61 1.02 8.5

Design 54/57 81.73 0.32 38.0

Unnecessary 8/8 10.25 0.11 9.6

Empty code 10/11 5.18 0.08 2.2

Coupling 3/5 41.98 0.04 39.7

Basic 23/24 2.52 0.02 1.3

UseVarargs deals with the ‘varargs’ option introduced in Java 5, allowing pa-

rameters to be passed as an array or as a list of arguments. UseUtilityClass
points at the option to make a class with only static methods a utility class

with a private constructor. ImmutableField detects private �elds that could be

made �nal.

3.4.2 Selected issues (RQ1)

We now focus on the selection of 24 issues in �ve categories (Flow, Idiom,

Expressions, Decomposition, Modularization), which we applied to our �nal

data set of four weeks. In total we found over 24 million instances of these

issues. Table 3.5 shows in how many unique source �les an issue occurs at

least once, and the average number of occurrences per KLOC. To calculate

this last value, we �rst calculated the average for each source �le, and then the

overall average, so the number of snapshots of a source �le does not in�uence

the total.

LawOfDemeter stands out as an issue with a very high number of occur-

rences. Upon closer inspection, it was not always clear why this issue was
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Table 3.4: Top 10 issues.

Set Issue In % of
�les

Optimization MethodArgumentCouldBeFinal 84.2

Optimization LocalVariableCouldBeFinal 61.3

Coupling LawOfDemeter 39.7

Controversial Data�owAnomalyAnalysis 38.6

Design UseVarargs 38.0

Design UseUtilityClass 36.2

Design ImmutableField 27.8

Type Res. UnusedImports 20.1

Unused Code UnusedLocalVariable 16.2

Controversial AvoidLiteralsInIfCondition 14.0

reported, and it has been suggested online that there might be false positives.

We therefore decided to omit this issue in the remainder of this study.

It is expected that SingularField occurs quite often with 8.2%, because most

of the snapshots in our data set are un�nished programs. CyclomaticComplex-
ity and the more lenient ModifiedCyclomaticComplexity version occur quite

often with 7.7% and 5.2% respectively, which could point to serious problems,

but that depends on the type of code. LooseCoupling occurs in 6.7% of the

�les implying that students do not always have knowledge of the use of in-

terfaces. Duplicate50 occurs much more often than Duplicate100 with 4.7%

against 1.3%. We argue that the lower threshold of 50 tokens is more suitable

for novice programmers, whose programs are relatively short, so duplicates

can be spotted more easily.

Figure 3.1 shows the occurrence of issues by the month in which they

appeared, grouped by category. In the week of September the number of issues

is quite low, probably because most courses had just started and only a limited

set of topics would have been introduced. For the other three months we

cannot see major di�erences, other than an increase in decomposition issues.

In March we see a slight decrease in issues mainly in the �ow and expressions

category, but towards the end of the academic year the values slightly increase.
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Table 3.5: Per issue, column I shows the percentage (%) of

unique �les in which the issue occurs, column II shows the

average number of occurrences per KLOC.

Cat Issue I II
M LawOfDemeter 38.7 42.6

D SingularField 8.2 3.8

F CyclomaticComplexity 7.7 1.5

M LooseCoupling 6.7 2.1

I AvoidInstantiatingObjectsInLoops 6.3 1.6

E AvoidReassigningParameters 5.7 1.7

F Modi�edCyclomaticComplexity 5.2 0.8

M TooManyMethods 5.0 0.3

D Duplicate50 4.7 0.7

E ConfusingTernary 4.4 0.7

D NcssMethodCount50 3.9 0.3

E PositionLiteralsFirstInComparisons 3.5 1.6

F NPathComplexity 3.3 0.3

E SimplifyBooleanExpressions 3.1 0.8

F PrematureDeclaration 2.6 0.4

M GodClass 2.1 0.1

F EmptyIfStmt 2.0 0.3

E SimplifyBooleanReturns 1.9 0.4

I SwitchStmtsShouldHaveDefault 1.7 0.3

I MissingBreakInSwitch 1.4 0.2

D Duplicate100 1.3 0.1

E CollapsibleIfStatements 1.3 0.2

M TooManyFields 1.2 0.1

D NcssMethodCount100 1.0 0.0
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Figure 3.1: Issues over time.

3.4.3 Fixing (RQ2)

Table 3.6 shows our �x metrics for each issue. EmptyIfStmt is solved in almost

half of the cases, which can be expected because an if-statement with no code

in it is probably not �nished. The same can be said for SingularField: a student

might start with de�ning the �eld of a class that is needed for methods that will

be added later. On the bottom of the list we �nd four issues from the modular-

ization category (GodClass, LooseCoupling, TooManyFields, TooManyMeth-
ods) that are �xed in fewer than 5% of the appearances.

Overall the rate of �xing issues is low. Either students do not recognise

these issues in their code, or do not care to �x them. It should be noted that

our data set was not cleaned of source �les that continued to be �xed beyond

the weeks (Monday to Sunday) we investigated, missing some possible �xes.

3.4.4 Extensions (RQ3)

Table 3.7 shows general information on the use of extensions. Figure 3.2 shows

the di�erences in occurrence of issues between source �les for which exten-

sions were and were not active. The �gure shows that there is only a small

di�erence between the use of a tool compared to using no tool. Students us-

ing no tool even have a slightly smaller number of issues with 18.2 issues on

average per KLOC versus 19.7 for students that use some tool.
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Table 3.6: Issue �xes.

Cat Issue Appeared Fixed %
F EmptyIfStmt 18,460 9,064 49.1

D SingularField 103,004 30,152 29.3

F PrematureDeclaration 21,008 5,891 28.0

D Duplicate100 35,033 7,388 21.1

E CollapsibleIfStatements 15,087 2,579 17.1

D Duplicate50 91,951 15,520 16.9

E AvoidReassigningParameters 76,359 10,023 13.1

I MissingBreakInSwitch 9,594 1,033 10.8

F NPathComplexity 20,549 2,129 10.4

E ConfusingTernary 36,391 3,558 9.8

E SimplifyBooleanReturns 12,612 1,162 9.2

E SimplifyBooleanExpressions 48,965 4,347 8.9

F Modi�edCyclomaticComplexity 56,822 4,475 7.9

I AvoidInstantiatingObjectsInLoops 78,588 6,167 7.8

I SwitchStmtsShouldHaveDefault 12,507 961 7.7

D NcssMethodCount50 23,569 1,790 7.6

F CyclomaticComplexity 85,426 6,240 7.3

D NcssMethodCount100 6,178 410 6.6

E PositionLiteralsFirstInComparisons 86,536 4,833 5.6

M GodClass 9,575 437 4.6

M LooseCoupling 57,039 2,056 3.6

M TooManyFields 5,539 175 3.2

M TooManyMethods 23,003 515 2.2
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Table 3.7: Extension use.

Name Snapshots KLOCs Unique
source �les

Checkstyle 73,553 7,756 10,833

PMD 26,126 1,840 4,299

PatternCoder 2,433 113 609
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Figure 3.2: Issues and extension use.

3.5 Discussion

One of our main �ndings is that most issues are rarely �xed, especially when

they are related to modularization. Another �nding is that the use of tools has

little e�ect on issue occurrence. Compared to the study of Scratch projects by

Aivaloglou and Hermans [5], we found lower percentages of �les that con-

tain duplicates, large classes and large methods. Some reasons might be that

block-based code cannot be directly compared to statement-based code and

that block-based programming is targeted at a younger audience. Another rea-

son is that we investigated single source �les instead of projects. Our study

supports the work of Pettit et al. [210] by observing that quality issues are

not often solved, although we cannot con�rm the positive e�ect of restricting

submission attempts, because our data set does not contain information on

submissions.

From working with PMD as a source code analyser we have noticed some

problems with regard to suitability for students. PMD integrates with many

IDEs and also provides an extension for users of BlueJ. We found that many

of the checks PMD can perform are not suitable for novice programmers, and

may cause confusion with students that might result in neglecting the tool.
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We advise educators to customize the tool by selecting a small set of rele-

vant checks and adjusting threshold values. Other recommendations for using

PMD for assessing programming exercises have been proposed by Nutbrown

and Higgins [201].

The main focus of the �eld of automated feedback and assessment of pro-

gramming exercises has been on functional correctness of programs, although

some tools incorporate feedback on quality aspects as well [145]. This is often

done by integrating a lint-like tool or calculating metrics such as cyclomatic

complexity and LOC (e.g. [8], [17]). Many professional IDEs detect code qual-

ity issues and o�er refactorings, but these are often too advanced for novices

and not intended to support learning. We argue that these tools need to be bet-

ter suited to novices, and should be used at various moments during learning

and not only for assessment.

3.5.1 Threats to validity

The designers of the Blackbox project mention some restrictions of their data

set that also a�ect this study [41]. First, BlueJ is often used in courses that use

an ‘objects-�rst’ approach. Second, it is unknown on what task the student is

working, and what the requirements of this task are, such as using a particular

language construct. Third, we know nothing about the users of BlueJ. We

expect them to be novices, but some programs have probably been written by

instructors or more experienced programmers.

We have a limited data set of four weeks in one year. We also cannot be

sure that we have all snapshots, events might be missed because something

went wrong (e.g. no internet connection) or a user continued to edit the code

in another program. Because we store weeks, we miss some snapshots that

were compiled just before or after the week. However, because of its size we

believe our data set has enough information to answer our research questions.

Only tracking single �les and not complete BlueJ projects gives an incomplete

view of the presence of duplicates.

Vihavainen et al. [273] have investigated the e�ect of storing student data

of di�erent granularity: submission-level, snapshot-level (e.g. compiling, sav-

ing), and keystroke-level (e.g. editing text), and found that data might be lost

if only snapshot events are studied. Although the Blackbox data set also stores

keystroke events, we believe that researching compile events provides us with

su�cient information. For a more detailed analysis, investigating keystrokes

could provide more insight into how students �x quality issues.
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Although this study focuses on Java programs, we believe that the �ndings

may apply to other languages too. The issues we investigated are not Java

speci�c and can also be seen in other modern object-oriented languages. For

functional and logic languages some issues are not applicable or should be

adjusted for the paradigm.

3.6 Conclusion and future work

In this study we have explored quality issues in 2.6 million code snapshots

written by novice programmers using the BlueJ IDE. We have composed a list

of issues that are relevant for novices. We found that novice programmers

develop programs with a substantial amount of code quality issues, and they

do not seem to �x them, especially when they are related to modularization.

The use of tools has little e�ect on the occurrence of issues. Educators should

pay attention to code quality in their courses, and automated tools should be

improved to better support students in understanding and solving code qual-

ity issues. Further research is required to better understand how students deal

with quality issues, for example by investigating the changes made in snap-

shots. Also, it is of importance to examine the reasons why students produce

low-quality code: they may be unaware of it, or they simply do not know how

to �x their code. Paying attention to code quality in education is vital if we

want to keep improving our software systems.
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Chapter 4

How Teachers Would Help
Students to Improve Their
Code

This chapter is a published paper [142].

Abstract Code quality has been receiving less attention than program cor-

rectness in both the practice of and research into programming education.

Writing poor quality code might be a sign of carelessness, or not fully un-

derstanding programming concepts and language constructs. Teachers play

an important role in addressing quality issues, and encouraging students to

write better code as early as possible.

In this paper we explore to what extent teachers address code quality in

their teaching, which code quality issues they observe and how they would

help novices to improve their code. We presented student code of low quality

to 30 experienced teachers and asked them which hints they would give and

how the student should improve the code step by step. We compare these

hints to the output of professional code quality tools.

Although most teachers gave similar hints on reducing the algorithmic

complexity and removing clutter, they gave varying subsets of hints on other

topics. We found a large variety in how they would solve issues in code. We

noticed that professional code quality tools do not point out the algorithmic

complexity topics that teachers mention. Finally, we give some general guide-

lines on how to approach code improvement.
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4.1 Introduction

An increasing number of studies have focused on the quality of programs writ-

ten by novices, as opposed to the correctness of student programs, which has

had quite some attention in research the past decades [42], [219]. These studies

show that student programs contain a substantial amount of various quality

issues, which often remain unsolved [62], [141], [210]. While there has not

been much research into the reasons why quality issues remain unsolved, one

can imagine that students are satis�ed once their solutions pass all tests. They

might not even be aware of quality aspects such as maintainability, perfor-

mance and testability, or simply do not know how to satisfy them. Although a

wealth of tools exists to analyse and refactor code, they are often not targeted

at novices. Therefore, teachers play an important role in raising awareness of

quality issues and encouraging students to improve functionally correct code.

There is little information on how to support students with improving the

quality of their code, and what teachers consider to be a high-quality program.

We conducted a study in which we collected this knowledge from experts. We

asked 30 experienced educators who teach programming how they perceive

the role of code quality in their courses. We showed them a number of func-

tionally correct programs that have several issues related to quality, and asked

them which hints they would give to help improve the program. We also asked

them to describe the steps they would want the student to take to refactor the

program into an improved version.

This paper (1) gives insight into how teachers assess the quality of novice

programs, (2) shows how their hints compare to feedback generated by tools,

(3) analyses how teachers would rewrite poor student code, and (4) describes

how they would approach this rewriting in a stepwise way. These insights can

be used to improve the development of courses and tools.

Section 4.2 gives some background and discusses related work. Section 4.3

describes the research questions, and how we collected and analysed the data.

Section 4.4 shows the results for each research question, which are discussed

in Section 4.5. Section 4.6 concludes and describes future work.

4.2 Background and related work

This section establishes the meaning of central terms used in this paper and

summarizes related work on code quality in education.
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4.2.1 Code quality terms and de�nitions

Code quality deals with the directly observable properties of source code, such

as algorithmic aspects (�ow, expressions, language constructs) and structure

(decomposition, modularization). Some examples of code quality issues are (1)

duplicated code, (2) an expression that could be shortened, and (3) unnecessary

conditional checks. Although layout and commenting are certainly indicators

of code quality, these aspects are beyond the scope of our study.

Fowler [84] uses the term code smells to describe characteristics in code

that might indicate that something is wrong with the design of functionally

correct code, which can have an impact on its quality. In the long term, low

quality code may a�ect software quality attributes such as maintainability,

performance and security. There are many tools available (e.g. PMD, Sonar-

Qube, Resharper, linters) to automatically detect quality issues and code smells

in a program.

Code refactoring is improving code step by step while preserving its func-

tionality. The well-known work by Fowler [84] describes a collection of refac-

torings, mainly focused on the structure of the code. Code Complete [188],

a well-known handbook for software construction, describes refactorings on

multiple levels: data-level (e.g. inline an expression), statement-level (e.g. use

return instead of a loop control variable), routine-level (e.g. extract method),

class implementation, class interface and system-level. Some IDEs o�er sup-

port for refactorings, such as renaming variables and extracting methods. These

IDEs execute a refactoring in a single step, which would not give novices much

insight into how refactoring works.

An ITiCSE working group [37] investigated which quality aspects are con-

sidered important by teachers, students and developers. In our study we zoom

in on how teachers assess the quality of student code, focussing on data-,

statement- and routine-level refactorings, which are most relevant for the pro-

grams that beginners write.

4.2.2 Code quality in education

Multiple studies have investigated the quality of student programs. Pettit et

al. [210] analysed submissions to an automated assessment system and found

that several complexity metrics increased with every submission. Keuning

et al. [141] detected many quality issues in over 2 million student programs,

which were hardly ever �xed. Whether the student used a quality tool or not

did not decrease the amount of issues. Breuker et al. [39] found no clear quality
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improvement between the code of �rst- and second-year students. De Ruvo et

al. [62] investigated a set of 19.000 code submissions on 16 semantic style indi-

cators, which address small issues such as unnecessary return statements, and

too complex if-statements. They found instances in both code of novices and

more experienced students. Luxton-Reilly et al. [174] investigated di�erences

between correct solutions to programming exercises, identifying variation in

structure, syntax and presentation. The authors found that even for simple

exercises there are numerous variations in structure, and in some instances

the teacher’s solution was not the most popular one among students.

Although professional code quality analysers and refactoring tools are be-

ing used in education (e.g. [201]), there are also some tools designed specif-

ically for education that give feedback on code quality, such as Style++ [8],

FrenchPress [32], and AutoStyle [288]. AutoStyle gives stepwise feedback on

how to improve the style of correct programs, based on historical student data.

Educators have designed several projects that teach students about refac-

toring, usually for more advanced students [2], [68], [243], [250]. Experi-

enced educators studied the quality of object-oriented examples in Java text-

books [36]. They found several issues, in particular related to object-oriented

thinking.

4.3 Method

The research questions this study addresses are:

RQ1 To what extent do teachers address code quality in their programming

courses?

RQ2 What kind of hints related to code quality do teachers give to students,

and how do these hints compare to the output of code quality tools?

RQ3 Which (stepwise) approach do teachers suggest to help students im-

prove their programs, and what does the �nal improved program look

like?

4.3.1 Study design

We designed a questionnaire (see Appendix A) in which participants answer

�ve questions about themselves and four short questions on the role of code

quality. Next, we give our de�nition and scope of code quality and present
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three student programs of poor quality (see Section 4.3.1). We ask (1) how

they would assess the program, (2) which hints they would give, and (3) how

they would want the student to improve the program step by step, by typing

the code after each step. We tested the questionnaire with a teacher who is

not involved in this research, and adjusted the questionnaire according to his

feedback.

We invited university teachers with at least two years of experience in

teaching CS/programming-related courses to participate in our study. We did

not ask professional programmers, because they do not necessarily have expe-

rience with teaching programming. We sent our invitation to 66 teachers from

various institutes and countries, and asked them to forward the invitation to

colleagues and other acquainted teachers.

Programs

The �rst exercise was taken from another study, including the most popular

student solution (see Program 1) [174]. Its description is: ‘Implement the sum-

Values method, which adds up all numbers from the array parameter, or only

the positive numbers if the positivesOnly boolean parameter is set to true.’

We designed the second exercise ourselves: ‘Write the code for the method

unevenSum. This method should return the sum of the numbers at an uneven

index in the array that is passed as a parameter, until the number -1 is seen

at an uneven index.’ We collected 78 solutions from an institution one of us

works at. We composed the �rst solution (Program 2a) by mixing a number

of actual student solutions. Program 2b is an actual correct student solution

(with variable names translated into English).

We ran three well-known static analysis tools on the three programs: PMD

with the full set of rules
1
, Checkstyle

2
, and SonarLint

3
with default checks and

full checks. Because Checkstyle always reported a subset of the PMD and/or

SonarLint messages (besides layout), we omit Checkstyle messages from this

paper.

4.3.2 Data analysis

We analysed the answers to the open question on which hints a teacher would

give both qualitatively and quantitatively. We labelled the hint topics using an

1pmd.github.io/pmd-6.9.0
2checkstyle.sourceforge.io (version 8.14)

3www.sonarlint.org/eclipse (version 4)

checkstyle.sourceforge.io
www.sonarlint.org/eclipse
pmd.github.io/pmd-6.9.0
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open coding method, and categorized them using the rubric by Stegeman et

al. [249]. This rubric has been developed for assessing student code quality,

based on a model with ten criteria. We assigned each topic to one of the four

criteria that deal with algorithms and structure, which are �ow (nesting, code

duplication), idiom (choice of control structures, reusing library functions),

expressions (complexity, suitability data types) and decomposition. The open

coding was performed by one author. Another author checked the labelling

of a randomly chosen 10% of the hints (with 89% agreement), and di�erences

were discussed.

For the question on improving the program stepwise we performed a se-

ries of actions on the submitted programs. First, we removed steps in which

the code was not changed (possibly a copy-paste issue). Next, because most

participants probably did not use a compiler, we corrected syntax errors such

as missing brackets and misspelled names, and converted to Java syntax (all

given programs were written in Java, although we did not explicitly mention

this). We also corrected some other small errors that were clearly uninten-

tional. All programs were tested with a set of test cases. We assigned each

program to a cluster based on the control �ow of the program (loops, condi-

tionals, branching and methods), because control �ow shows the main struc-

ture and complexity of a method (the scope of the programs in our study).

Clustering allows us to investigate similarities and di�erences without being

distracted by details. We identi�ed transformations as the add/edit/delete steps

between two adjacent program states in a sequence.

4.4 Results

4.4.1 Background of teachers

In total, 30 participants took part in our study. All participants teach program-

ming and other CS-related courses at university level in 3 di�erent countries:

The Netherlands (27), Sweden (3) and China (1). The 28 participants that re-

ported their institute, teach at 15 di�erent institutes: 10 in The Netherlands,

4 in Sweden and 1 in China, with between 1 and 5 teachers per institute. A

few teach at more than one institute and country. The teachers have between

2 and 33 years of teaching experience, with an average of 11.4 years, and a

median of 9 years. A total of 90% teach �rst year courses, 80% teach second

year courses, and 70% teach courses for students in their third year or higher.
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Figure 4.1: Responses to questions ‘Do you pay attention

to code quality while teaching programming to �rst- and

second-year students?’ and ‘Do you explicitly assess/grade

code quality aspects in programming assignments?’.
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Figure 4.2: Responses to question ‘How would you assess

this solution in a formative situation (e.g. feedback during a

lecture or lab)?’ for all three programs.

4.4.2 Role of code quality (RQ1)

We asked teachers if code quality appears in the learning goals of their �rst-

and second-year programming courses, to which 23 replied with ‘yes’ and 7

with ‘no’. Figure 4.1 shows to what extent teachers address and assess code

quality aspects. Code quality clearly has a smaller role in assessment than in

teaching.

A total of 11 out of 30 teachers do not advise or prescribe tools that deal

with code quality/refactoring to their students. The 19 that do advise or pre-

scribe tools, mostly mention static analysis tools (e.g. SonarQube, Checkstyle,

linters) and IDE functionality or their plugins (e.g. Resharper). To a minor
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Program 1: Most popular solution to exercise 1: ‘the sum-

Values method adds up all numbers from the array parame-

ter, or only the positive numbers if the positivesOnly boolean

parameter is set to true.’

1 int sumValues(int [] values ,
2 boolean positivesOnly) {
3 int sum = 0;
4 for (int i = 0;i < values.length;i++) {
5 if (positivesOnly == true) {
6 if (values[i] >= 0) {
7 sum += values[i];
8 }
9 }

10 else {
11 sum += values[i];
12 }
13 }
14 return sum;
15 }

extent testing and code reviewing is mentioned. All tools mentioned are pro-

fessional tools, and not explicitly intended for education.

4.4.3 Program hints and steps (RQ2 and RQ3)

Program 1

Running PMD on Program 1 reports that the for could be replaced by a foreach,

and that unnecessary comparisons in boolean expressions should be avoided.

SonarLint only reports on the equals true. Figure 4.2 shows how the teach-

ers would assess this solution in a formative situation. Most teachers (25)

answered ‘acceptable, but could be improved’.

We asked the teachers to describe all hints they would give to a student

to improve this program. Table 4.1 shows all hint topics and the number of

mentions. For the issue that was pointed out the most, the �ow inside the

loop, some participants focussed more on the duplication, and others more on

the complex if-structure.

Next, we asked the teachers how they would want the student to edit

(refactor) the program step by step. In total 3 teachers did not provide any

steps: 1 found the method speci�cation itself problematic, the others did not
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Table 4.1: Hint topics for program 1, as reported by 30 teach-

ers. Indented topics are more speci�c.

Category Description Count
Expressions Remove equals true (line 5) 20

Do not add 0 to sum (line 6) 2

Flow Improve �ow in loop 1

Improve nested ifs (line 5–12) 17

Remove duplicated sum += .. (line 7 and 11) 11

Idiom Change type of loop (line 4) 11

Use a higher-level function 3

Decomposition Move common code to method 2

positivesOnly check to method (line 5) 2

Other General 2

Misc. mentioned once (various categories) 5

give a reason. The remaining 27 teachers provided 2.8 steps on average, with

a median of 3 (min 1, max 5) and a total of 76 program states, of which 11 were

incorrect.

Regarding the type of loop, 10 teachers transformed the for into a foreach

at various stages of the process, always as a single step in which nothing else

was done. As a last step, 2 teachers replaced the loop by a functional style so-

lution, calling a higher-level sum function on the array. Teachers mentioning

this approach mostly said that they would only suggest it to more advanced

students.

Regarding the �ow in the loop, in 8 �nal programs the duplicated sum in-

crement was still present. Removing the duplication by merging the ifs into a

single statement, was often done as an early step, after removing the ==true.

In 2 cases a continue was used to skip a value that should not be added. How-

ever, we noticed merging the ifs was problematic: all 11 incorrect programs

contained a merging mistake. Some of those mistakes were �xed in a next

step.

We assigned each (intermediate) program to a cluster based on its control

�ow, identifying 13 clusters. The �nal programs were distributed over 10 clus-

ters; excluding 4 incorrect �nal programs, we counted 9 clusters, as shown in

Table 4.2.
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Table 4.2: Correct end clusters for program 1.

Start:

for
if

if
else

return

12x:

for/foreach
if

return

3x:

for/foreach
if

if
else

return

2x:

for/foreach
if

continue
return

6x:

Others

Table 4.3: Hint topics for program 2a.

Category Description Count
Expressions Remove self assignment (line 14) 12

Remove equals false (line 6) 7

Use compound operator += (line 5) 2

Flow Exit from loop when done 20

Improve �ow in loop 6

Remove redundant if (line 9) 10

Remove unnecessary else (line 13–15) 7

Reverse if-else (line 6–15) 2

Idiom Change type of loop (line 5) 8

Other Fix functional error stop condition 13

General hints 9

Add tests 3

Misc. mentioned once (various categories) 7

Program 2a

PMD reports three ‘data�ow anomalies’ for the total and stop variables in

Program 2a. PMD considers this a low-priority issue that might not be prob-

lematic. PMD also points out equals false and the self-assignment. SonarLint

with default settings also reports on equals false and even gives two messages

on the self-assignment. With full checks, it mentions that the if-else if (lines

7–11) should end with an else, and a constant should be used for magic number

2.

The program contains a functional error regarding the stop condition. We

instructed participants to ignore this error when answering the questions.

However, the �rst 10 participants did not see this note and read that it was a

correct solution. Figure 4.2 shows the response to the question on formatively
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Program 2a: Solution to exercise 2: ‘the method unevenSum

should return the sum of the numbers at an uneven index in

the array that is passed as a parameter, until the number -1

is seen at an uneven index.’

1 int unevenSum(int [] array) {
2 int total = 0;
3 boolean stop = false;
4

5 for (int i = 1;i < array.length;i = i + 2) {
6 if (stop == false) {
7 if (array[i] >= 0) {
8 total += array[i];
9 } else if (array[i] < 0) {

10 stop = true;
11 }
12 }
13 else {
14 total = total;
15 }
16 }
17 return total;
18 }
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assessing the solution, to which most teachers (23) answered it was unaccept-

able. The fact that the solution was incorrect could have contributed to this

score.

Table 4.3 shows the hint topics for this program. Teachers often men-

tioned improving the complex �ow in the loop, exiting from the loop when

the stop condition was met, changing the loop type and removing clutter in

the expressions.

Looking at the edit steps, 28 teachers provided 3.0 steps on average (min 1,

max 5), with a median of 3 steps and a total of 83 program states. Two teachers

did not provide any steps (they did not know what to suggest or what a student

would have to do). Of the 83 program states, 8 were not functionally correct

according to either stop condition (-1 or negative). We excluded 1 of the 28

sequences from the analyses below because it had unclear steps.

Although we did not explicitly ask this, 15 teachers tried (sometimes un-

successfully) to �x the functional error. Most of them (11) started �xing in the

�rst step; 3 of the others �rst removed clutter. In general, almost all clutter

(the else with self-assignment, the redundant if) was removed by everyone

mostly in the �rst or second step. The ==false was mostly removed as part

of another step.

The loop type was changed into a while 8 times at various stages of the

process, and 1 teacher replaced the loop by recursion. Almost all participants

changed the program to exit from the loop when the stop condition was met:

5 used a break, 5 used a return, and a majority of 14 added a stop condition to

the loop header. Exiting from the loop was also done at various stages. The

stop variable was eliminated from 20 sequences, and 7 kept it.

In total 20 clusters were identi�ed, and the �nal programs were in 12 clus-

ters. Table 4.5 shows the 10 �nal clusters if we exclude the 5 incorrect �nal

programs.

Program 2b

Running PMD on the body of Program 2b reports multiple data�ow anomalies,

and reports that the variable number could be made ‘�nal’. SonarLint with full

checks mentions magic number 2 on line 7. Figure 4.2 shows the formative

assessment.

The hint topics for this program are shown in Table 4.4. The main topics

were exiting from the loop when the stop condition is met, improving the



4.4. Results 101

Program 2b: Actual student solution to exercise 2: ‘the

method unevenSum should return the sum of the numbers

at an uneven index in the array that is passed as a parame-

ter, until the number -1 is seen at an uneven index.’

1 int unevenSum(int[] array) {
2 int answer = 0;
3 int index = 0;
4 boolean value = true;
5

6 for(int number: array) {
7 if(index % 2 == 0) {
8 index ++;
9 } else {

10 if(number == -1) {
11 value = false;
12 }
13 if(value) {
14 answer = answer + number;
15 }
16 index ++;
17 }
18 }
19 return answer;
20 }

Table 4.4: Hint topics for program 2b.

Category Description Count
Flow Exit from loop when done 14

Improve �ow in loop (line 7–16) 5

Remove value variable 3

Reorder conditionals (line 7–16) 3

Improve �ow in else (line 10–16) 2

Duplicated increment (line 8 and 16) 9

Skip even indices 6

Idiom Change type of loop (line 6) 14

Other General hints 9

Rename variable 7

Misc. mentioned once (various categories) 9

complex �ow in the loop, removing the duplicated increment, and replacing

the foreach by another type of loop.

For the steps, 26 teachers provided 2.9 steps on average (min 1, max 5),
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with a median of 3 steps and a total of 76 program states. Of the 4 teachers

that did not provide steps, 2 teachers advised that the student should start over

instead of rewriting the program. The other 2 did not give a reason.

Teachers made multiple mistakes rewriting this program: of the 76 pro-

gram states, 21 functionally incorrect programs were created by 10 teachers.

The majority of the mistakes were related to incorrect indexing (not looping

through only the odd indices). This mistake was often made in a step that also

transformed the foreach into a for. We excluded 2 sequences from the analyses

below because they had unclear steps, leaving 24 valid sequences.

Although in 2a the for-loop was mostly kept, followed by a few while-

loops, in 2b we only counted 9 for-loops and 2 while-loops. The foreach was

kept 13 times. Transforming the foreach into a for was mostly done in the �rst

step, transforming to while was always done after a transformation into a for.

Of the 11 that used a for or while, 6 skipped the even indices by incrementing

the index by 2. For the remaining, 14 kept the modulo check, 2 introduced a

boolean that switched between true and false, and 2 made a mistake.

Exiting from the loop was solved rather di�erently than in program 2a:

more teachers used a break (10 vs. 5) and fewer teachers (6 vs. 14) added a

stop condition to the loop header. This step was usually done somewhat later

in the sequence.

All but 1 teacher removed the duplicated increment, mostly in an early

step. Sometimes this was done in 2 steps: �rst moving the increment outside

the if-else, followed by reversing the if-else and removing the then empty else.

Transforming the foreach into a for also eliminates the duplication by moving

the increment to the loop header.

Variables were renamed in a few cases: 4 renamed answer to sum or total,

and value was occasionally renamed to done or stop if it was still used. Re-

naming was done at various stages.

In total we identi�ed 31 clusters, and the �nal programs were in 14 clus-

ters. Excluding 8 buggy �nal programs, we counted 11 clusters, as shown in

Table 4.5. We would expect that the �nal programs after improving 2a match

those of 2b (the error from 2a does not have to a�ect the cluster). However,

only 5 participants ended in the same cluster for program 2a and 2b.
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Table 4.5: Correct end clusters for program 2a and 2b.

Program 2a (n=22)
Start:

for
if

if
else

if
else

return

6x:

for/while
return

4x:

for/while
if
else

return

2x:

for
if
else
break

return

2x:

for
if

return
else

return

2x:

for
if
else

return
return

2x:

for
if

break
return

4x:

Others

Program 2b (n=16)
Start:

for
if
else

if
if

return

4x:

foreach/for
if

if
break

return

2x:

foreach/for
if

if
if

return

2x:

for/while
return

8x:

Others

4.5 Discussion

In this section we answer the research questions and discuss the results in

more depth.

RQ1. The results of RQ1 show that while code quality is certainly an im-

portant topic for most teachers, its role is smaller in the summative assessment

of student code.

RQ2. Based on teacher feedback on three low-quality implementations of

simple methods, the hints that teachers would give deal with improving con-

trol �ow, choosing representative names, using suitable language constructs,

removing clutter, and optimising the algorithm. Although some hint topics are

mentioned by a majority, other topics are only mentioned by much smaller
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subgroups, implying that teachers do not consider the same things impor-

tant. This �nding contradicts Nutbrown and Higgins’ claim that their asses-

sors were in agreement on assessment criteria [201].

Regarding the form of the feedback, we noticed several aspects. Hints were

often formulated as a question, such as ‘Is there any code duplication that you

could remove?’ The amount of detail considering why something should be

improved varied: for transforming a for into a foreach, an example with more

motivation is: ‘If we are traversing all values in the array, couldn’t we use

another type of loop?’ Other hints mention that the ‘other type of loop’ is a

foreach, and some even provide the syntax of the foreach header.

When comparing teacher hints to what professional tools report, we see

many di�erences. Tools do not give feedback with increasing detail as teachers

would do. Issues related to control �ow and algorithmic optimisations are

not pointed out by tools. A main reason is that tools do not know what the

code they analyse should do. Also, default tool settings usually have high

thresholds, so minor issues such as small duplicated blocks are usually not

reported. Our �ndings support and complement the �nding of Nutbrown and

Higgins that static analysis tools miss context-speci�c issues [201].

RQ3. While others have already shown the great diversity in student so-

lutions (e.g. [174]), our study also shows this diversity in teacher solutions.

Remarkable is the di�erence in �nal states for program 2a and 2b that solve

the same problem. Program 2b was probably the most problematic, and this

starting point could have in�uenced the �nal program. For example, about

half of the teachers kept the foreach in 2b, but a foreach is never introduced in

2a. Perhaps there are simply multiple ways that are equally �ne, however, not

all hints seem to be addressed in the �nal programs for program 2b. Finally,

some teachers could have lost their focus for the last program, which would

also explain the number of mistakes.

The large variety in steps and �nal programs makes it di�cult to give

an approach on how to improve a problematic program. General guidelines

we can extract from the data are: remove clutter �rst, �x errors early, keep

testing along the way (even teachers make mistakes), rename to meaningful

names, and do larger refactorings later one step at a time. Starting over could

sometimes be advisable. However, learning why a program has �aws, and how
to address those �aws step by step could be a valuable learning experience. We

provide some examples of stepwise improvement sequences with hints for the

programs discussed in Appendix B.
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If educators want to assess code quality, there should be agreement on

what a high-quality program is. Code quality should not be a teacher’s per-

sonal preference. One could argue that quality is not that important for novices,

however, we argue that several issues pointed out in the previous section are

caused by misunderstanding certain language constructs. Improving a solu-

tion may be a valuable way of learning more about how a programming lan-

guage works. Although the issues mentioned in this paper are of a low level,

and the topic of ‘refactoring’ is mostly associated with restructuring complex

object-oriented software, we advise to start refactoring early with the state-

ment/method level, to the class level later in a study program.

4.5.1 Threats to validity

Because we only discussed three programs, we cannot generalise to all novice

programs. However, the programs cover a broad set of constructs, and in this

study we particularly aimed to make code quality, a potentially vague topic,

more concrete by working with actual code. Conducting interviews could give

us higher-quality data, but would not have given us insight into the diversity

of the responses. It would be an interesting next step to discuss the various

responses with the teachers to arrive at a more general view of which hints to

give and which steps to take.

This study does not consider the responses of students to hints. A teacher

would possibly adapt and give a more concrete hint when a student does not

understand the initial hint. This was even mentioned by some participants

in their responses. There might also be some di�erences between the type of

hints for absolute beginners and second-year students.

4.6 Conclusion and future work

This paper describes a study in which we asked teachers for their opinion on

the quality of student code and how they would help students to improve it.

While teachers �nd the topic of code quality important, they have di�erent

views on how to improve code. Teachers mostly agree on issues related to

reducing algorithmic complexity and removing clutter, but they give di�erent

subsets of hints. Professional code quality tools do not point out these algo-

rithmic complexity topics that teachers mention. We also discussed the great

diversity in the �nal programs, which is in�uenced by the initial state of the
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code, and derived some general guidelines in how to approach an improve-

ment sequence.

In future work we intend to use our �ndings to build better tools that help

students improve the quality of their code. This research also calls for more

debate on what a high-quality solution would look like for a novice. Exper-

iments in the classroom with students are required to further study how we

should learn students to improve their code, to which this study contributes.
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Chapter 5

A Tutoring System to Learn
Code Refactoring

A modi�ed version of this chapter has been submitted for publication [143].

Abstract In the last few decades, numerous tutoring systems and assess-

ment tools have been developed to support students with learning program-

ming, giving hints on correcting errors, showing which test cases do not suc-

ceed, and grading their overall solutions. The focus has been less on helping

students write code with good style and quality. There are several professional

tools that can help, but they are not targeted at novice programmers.

This paper describes a tutoring system that lets students practice with im-

proving small programs that are already functionally correct. The system is

based on rules that are extracted from input by teachers collected in a prelim-

inary study, a subset of rules taken from professional tools, and other litera-

ture. Rules de�ne how a code construct can be rewritten into a better variant,

without changing its functionality. Rules can be combined to form rewrite

strategies, similar to refactorings o�ered by most IDEs. The student can ask

for hints and feedback at each step.

We evaluate the tutoring system by comparing it to existing tools, and

demonstrating that the functionality of the system closely matches how teach-

ers would help students with improving their code.
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5.1 Introduction

Student misconceptions have always had much attention in studies on stu-

dent programming [42], [219]. The focus has been mostly on programming

mistakes resulting in functionally incorrect code. At the same time, there may

be numerous functionally correct solutions to the same programming exer-

cise [174], which are not always equally good. In 2017 an ITiCSE working

group investigated how professionals, educators and students perceive code

quality, �nding a great diversity in its de�nition [37]. Their study also con-

cluded that the topic of code quality is underrepresented in education. Re-

cently, there has been increased attention to the style and quality of student

solutions. Poor coding style and quality may lead to incomprehensible code

that has low maintainability and testability, which is an issue even for profes-

sional software developers, not to mention novices. While one might argue

that novice programmers should not be bothered too much with style and

quality, these quality issues might point at underlying misconceptions. Also,

refactoring code is an important skill that every programmer should possess,

and novices are usually confronted early with code analysis and refactoring

tools, which are increasingly a part of modern IDEs.

Teachers play an important part in how critically students view their code,

but large class sizes prevent them from giving personalised feedback on stu-

dent solutions. In a previous study we have investigated how teachers would

help students to improve their code [142]. We showed experienced teachers

a number of functionally correct, but imperfect student solutions and asked

them which hints they would give and how they would want a student to

refactor code. We compared the teacher hints with the output of professional

static code analysis tools, and concluded that these tools are not suitable for

giving meaningful feedback to novices.

This paper describes a tutoring system to complement human tutoring,

giving hints and feedback on exercises in which students improve code. The

contributions are (1) the design of a tutoring system that helps students learn

about code improvement that better suits the requirements for novice pro-

grammers, and (2) the validation of this system based on a comparison to ex-

isting tools and teacher input. The system is available online.

Section 5.2 provides background and describes related tools. Section 5.3

describes the method. Section 5.4 shows an example session. Section 5.5 shows

the design, which is evaluated and discussed in Section 5.6. Section 5.7 con-

cludes and describes future work.
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5.2 Background and related work

This section provides some background on the topic of code quality and code

refactoring, and discusses professional tools and their use in education, as well

as tutoring systems speci�cally intended for education.

5.2.1 Code quality and refactoring

The aim of our system is to teach students about code quality in the context of

small programs, which are mostly single methods. The de�nition of code qual-

ity we employ revolves around the directly observable properties of source

code, such as algorithmic aspects (�ow, expressions, language constructs) and

structure (decomposition, modularization). Layout and commenting are also

relevant aspects, but are beyond the scope of our research because they are not

that complex and existing tools are often good enough to support students.

Several terms are used to indicate problems with code quality, such as

�aws, issues, violations and the well-known code smells as introduced by

Fowler [84]. Code smells are characteristics in code that might point at a

problem with the design of the code, although it is functionally correct. These

problems can have an impact on quality attributes such as maintainability,

performance and security.

Code refactoring is improving code step by step while preserving its func-

tionality. Fowler [84] provides a collection of refactorings, mainly focused

on the structure of the code. Code Complete [188], a well-known handbook

for software construction, describes refactorings on multiple levels: data-level,

statement-level, routine-level, class implementation, class interface and system-

level. Our study focusses on data-, statement- and routine-level refactorings,

which are most relevant for the programs that beginners write. Examples of

such issues are code duplication, overly complex or unnecessary constructs,

and unsuitable language constructs.

Multiple studies have investigated the presence of �aws in student code

that are not functional errors [39], [62], [72], [141], [210]. These studies show

that �aws are abundantly present, and there is not a great deal of improvement

for certain issues. Because studies show varying results, �xing issues and pre-

venting them in future tasks seems to be highly dependent upon the context.

There is also some evidence that the presence of �aws that may point at actual

bugs during the process correlates with submitting incorrect code [72].
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5.2.2 Professional tools

Relevant professional tools are either static analysis tools or refactoring sys-

tems. Both are often integrated in IDEs; static analysis tools are usually also

available as a stand-alone tool. Static analysis tools automatically detect qual-

ity issues and code smells in code, and generate a list of issues as output, which

are usually violated rules. Examples are FindBugs, Checkstyle, PMD, Sonar-

Qube, Resharper, and linters. Several IDEs o�er support for refactoring code,

either as integrated functionality or as an extension that can be installed. Some

examples are Visual Studio, Eclipse, and IntelliJ (including IDEs from the same

company, such as PyCharm and PHPStorm). A 2012 study showed that refac-

toring tools are being used infrequently, and that programmers perform quite

a lot of low-level refactorings (at the block-level) [195].

Some research exists on the use of professional tools in education. Nut-

brown and Higgins [201] have studied whether static analysis tools can be

used for summative assessment of student programs. The authors designed

a grading mechanism based on the ratings of PMD rules, and compared the

automated grades to the grades of instructors. They conclude that the correla-

tion was not strong enough and some manual assessment was still needed, in

particular for context-speci�c issues. Edwards et al. [73] explored whether the

FindBugs tool can be used to help struggling students, and found a subset of

tool warnings that correlate with incorrect code. However, the authors have

not used the tool with students yet.

5.2.3 Tutoring systems

A systematic literature review of tools that generate automated feedback for

programming exercises shows there has been a lot of work focussing on the

mistakes that students make, but less work on the style and quality of student

programs [147]. The study also found that there is much more emphasis on as-

sessment than on guidance to help students improve their programs. Many of

these tools are automated assessment tools, which are usually more focussed

on grading �nished programs. Another type of tool is the Intelligent Tutoring

System (ITS), which helps students by guiding them step by step towards a

solution [268]. VanLehn [269] found in his experiments that ITSs were nearly

as e�ective as human tutoring. Several ITSs exist for the programming do-

main [58], o�ering adaptive feedback (the ‘inner loop’), navigational support

(the ‘outer loop’) and several additional features such as programming plan

support, reference materials and worked examples.
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There are also some tools designed speci�cally for education that analyse

code quality. FrenchPress [32] is a plugin that reports student-friendly mes-

sages for a small set of programming �aws. Style++ generates a report with

style issues such as commenting, naming and code size [8]. WebTA [265] is

a programming environment that reports on failed tests, common errors, and

also more stylistic issues. AutoStyle [52] gives stepwise feedback on how to

improve the style of correct programs. An experiment with students using

AutoStyle has shown improvements, but students also still struggled with im-

proving style [288]. AutoStyle is di�erent from our tool because it relies on

historical student data.

5.2.4 Teachers’ perspective and conclusion

We recently conducted a study with 30 experienced CS teachers, investigating

how they address code quality in general, and having them assess student

code of low quality [142]. We asked which hints they would give and how the

student should improve the code step by step. We compared their suggestions

to the output of PMD, Checkstyle and SonarQube. Based on these �ndings,

other literature, and some of our own observations, we generally consider

professional tools in their current form problematic for novice programmers.

We summarize the reasons:

i) The terminology and phrasing of messages can be too hard to understand

by novices.

ii) All issues are reported at once, which may overwhelm the student and

cause cognitive overload.

iii) Not all reported issues are relevant for novices.

iv) Because these tools do not know what the programmer is working on,

feedback is not tailored to the current task and its requirements, and the

level of the student.

v) IDEs execute a refactoring in a single step, which does not give novices

much insight into how a refactoring works.

vi) IDEs may o�er code changes that are possible, but not necessarily useful.
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5.3 Method

We address the following research questions:

RQ1 How do we design a tutoring system to learn code refactoring with hints

and feedback that closely match how teachers would help students?

RQ2 How does the system compare to related professional tools?

RQ3 To what extent does the system recognise edits to programs?

Our method is based on the ‘design science’ approach, which is described

by Wieringa [287] as ‘design and investigation of artifacts in a context’. A de-

sign cycle is composed of problem investigation, treatment design and treat-

ment validation, and is part of a larger engineering cycle, in which the treat-

ment is implemented and evaluated in the real world. A design cycle will

typically be executed multiple times in a project.

This paper focuses on the initial design cycle, for which problem inves-

tigation has mostly been done in our preliminary study (see Section 5.2.4).

Section 5.5 describes the design of our tutoring system (RQ1). Throughout

the design and validation we use two exercises for which we have teacher

data: SumValues (Program 1) and OddSum (Program 2a) from our previous

study [142].

We evaluate the system in three ways. First, in Section 5.4 we introduce

the exercises and show two �ctional tutoring sessions, using the actual out-

put of the system. Second, in Section 5.6.1 we compare the system with two

professional tools (RQ2): PMD
1
, a well-known static analysis tool mostly used

for Java, and IntelliJ
2
, an increasingly popular Java IDE that provides many

code analysis and refactoring options. We ran PMD with the full ruleset on

the two starting programs for the exercises, and identi�ed which analyses and

suggestions IntelliJ gave on those programs. We compared that output to what

teachers suggested in our preliminary study. Additionally, in Section 5.6.1 we

show to what extent the behaviour of the system matches with data for the

two exercises on how teachers would want the student to solve an exercise

step by step (RQ3). For each intermediate step we let our system generate a

set of hints, and then checked if the teacher step was in this set. Third, in

Section 5.6.1 we disclose some �ndings on a large group of students using the

tutoring system.

1pmd.github.io/pmd-6.9.0
2

IntelliJ IDEA Community Edition 2019.2, www.jetbrains.com/idea

https://www.jetbrains.com/idea
pmd.github.io/pmd-6.9.0
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Figure 5.1: Web application for the tutoring system.

5.4 A tutoring session

In this section we demonstrate how our system works by showing two tu-

toring sessions for di�erent exercises. The tutoring system can be accessed

online.
3

The target audience are students in higher education who already

know the basics of programming (control structures, loops, arrays, methods,

classes, etc.), who would typically be CS majors. The system o�ers exercises

in which an exercise speci�cation and a functionally correct, but inelegant

program is given. It is the student’s task to improve (refactor) the program to

make it more elegant/e�cient/readable. Currently there are six exercises, and

new similar exercises can be added easily.

Figure 5.1 shows a screenshot of the web interface of the system. For

the code editor we used the open source Ace editor
4
, which supports syn-

tax highlighting, automatic indentation, highlighting matching parentheses,

code folding and more. The student has two ways to ask for feedback during

programming: check progress and get hints. The check progress button

3www.hkeuning.nl/rpt
4ace.c9.io

www.hkeuning.nl/rpt
https://ace.c9.io/
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checks the current state of the program and reports on mistakes (syntax er-

rors, failed test cases, known incorrect steps) or successful steps. The system

presents hints in a tree structure, of which the �rst option is shown by default.

The student can click on explain more (denoted by the Ç symbol) to get a

more detailed hint, or click on another hint (denoted by the ; symbol). In

the examples below we show parts of the hint tree and fold certain branches

for clarity (the Ç and ; symbols indicate there are more hidden hints), and

we only show a�ected code fragments, omitting details and highlighting the

major changes. We show the output of the system as text in a sans-serif font.

5.4.1 Example 1: Sum of values

The �rst exercise was originally taken from another study [174], with the most

popular student solution as the starting program.

Tutor The sumValues method adds up all numbers from the array parame-
ter, or only the positive numbers if the positivesOnly boolean parameter is set
to true. The solution is already correct, but can you improve this program?

1 int sumValues(int [] values , boolean positivesOnly) {
2 int sum = 0;
3 for (int i = 0;i < values.length;i++) {
4 if (positivesOnly == true) {
5 if (values[i] >= 0) {
6 sum += values[i];
7 }
8 }
9 else {

10 sum += values[i];
11 }
12 }
13 return sum;
14 }

Student The student asks for a hint right away.

Tutor The tutor responds with a tree of hints that the student expands step

by step by clicking on theÇ icon.

Can you simplify a boolean expression? ;
== true may be removed.
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Try to use this example code: positivesOnly

Student The student removes the equals true and asks the tutor to check

her step, and then asks for a new hint.

1 for (int i = 0;i < values.length;i++) {
2 if (positivesOnly) {
3 ..
4 }
5 ..
6 }

Tutor That was a correct step, well done!

Can you simplify the condition in the if? ;

Student The student notices that when values[i] contains 0, addition has

no e�ect.

1 if (values[i] > 0) {
2 sum += values[i];
3 }

Tutor That was a correct step, well done!

There is some duplication, can you simplify the if-statements to remove
it? ;

Can you combine the conditions, so you only need 1 if? Ç

Student The student incorrectly combines the conditions.

1 if (! positivesOnly && values[i] > 0) {
2 sum += values[i];
3 }

Tutor The tutor recognises this step as an incorrect attempt to combine two

conditions.
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Student The student expands the last hint, uses the code example for the

�rst step and asks for the next hint.

1 if(( positivesOnly && values[i] > 0) || !positivesOnly)
2 sum += values[i];

Tutor Can you shorten the expression between the brackets?

1 if (values[i] > 0 || !positivesOnly)
2 sum += values[i];

Tutor

Can you replace the for-loop by a foreach-loop? Ç

Student The student rewrites the for-loop.

1 for (int i: values) {
2 if (i > 0 || !positivesOnly)
3 sum += i;
4 }

Tutor Well done, no more improvements le�.

5.4.2 Example 2: Odd sum

The starting program for this exercise is composed by mixing a number of

actual student solutions collected at the university one of us works at.

Tutor The method oddSum returns the sum of the numbers at odd indices
in the array parameter, until the number -1 is seen at an odd index. The
solution is already correct, but can you improve this program?

1 int oddSum(int [] array) {
2 int total = 0;
3 boolean stop = false;
4

5 for (int i = 1;i < array.length;i = i + 2) {
6 if (stop == false) {
7 if (array[i] != -1) {
8 total += array[i];
9 } else if (array[i] == -1) {

10 stop = true;
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11 }
12 }
13 else {
14 total = total;
15 }
16 }
17 return total;
18 }

Student The student explores her options by clicking on alternative ;, and

makes three edits.

Tutor

Do you know a shorter way to write a calculation? Ç
You’re assigning a variable to itself, is that useful? Ç
Can you simplify a boolean expression? Ç ;

1 for (int i = 1;i < array.length;i += 2) {
2 if (!stop) {
3 ..
4 }
5 // removed the else -block
6 }

Tutor All test cases still pass.

Can you find an else-if condition that is not necessary?

We don’t need the check in the else-if, because we know it will be
true. Ç

Can we immediately exit from the loop once we’re done?

1 if (array[i] != -1) {
2 total += array[i];
3 } else {
4 stop = true;
5 }
6 }



118 Chapter 5. Refactoring Tutoring System

Student The student removes the if.

Although there are more hints left, we omit the remainder of this session.

5.5 Design

This section describes a technical view of the design of the tutoring system.

The tutor supports refactoring strategies consisting of multiple steps, which

transform an imperfect solution into an improved solution. Appropriate feed-

back messages are attached to the steps in the strategy. The tutor supports

exercises of class 3 according to the classi�cation of Le and Pinkwart [164],

implying the student can follow multiple solution strategies to solve an exer-

cise. The supported programming language is a subset of Java, however, the

system uses an internal data type of a fairly generic object-oriented language,

so using another language should be feasible.

Sections 5.5.1 and 5.5.2 focus on the implementation of the domain knowl-

edge, and Section 5.5.3 on how the system generates its output.

5.5.1 Implementation

We have developed our tutoring system on top of the Ideas
5

framework for

developing ITSs. Tutors built with Ideas (Interactive domain-speci�c exer-

cise assistants) can provide stepwise automated hints for exercises in various

domains, such as mathematics and programming [109]. Various feedback ser-

vices are o�ered, such as next-step hints, validation of steps, and showing

complete solution paths. Rules and strategies have to be speci�ed to provide

these services. Rules are transformations on the data type of the domain, such

as re�ning or rewriting (parts of) a student program. In the refactoring con-

text, a simple example of such a rule is rewriting x==true into x (more in

Section 5.5.2). Each rule or refactoring should preserve the functionality of

the program.

We use normalisations to transform (parts of) a program to a normal form,

by applying a large set of rewrite rules that are not necessarily refactorings,

such as changing the order of a calculation (y+1+x ≈ 1+x+y) and removing

syntactic sugar (x+=2 ≈ x=x+2).

5hackage.haskell.org/package/ideas

http://hackage.haskell.org/package/ideas
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Normalisation has been used before in programming tutors, such as in the

work of Xu and Chee [290], Rivers et al. [225] (using the term ‘canonicaliza-

tion’), and others [88], mainly to recognise more variants of the same program.

In the context of refactoring, it also simpli�es the de�nition and implementa-

tion of these refactorings, because fewer variants have to be considered. As

an example, consider the following contrived code example:

if (p) {
x++;

}
else

x = x + 1;

Our tool would normalise the {x++;} and the x = x + 1; from the if-else,

recognising they are similar, making the if-else obsolete altogether. To gener-

ate feedback speci�c for a student’s implementation, normalisations have to be

‘undone’ [225], which we currently have not implemented, causing the hints

with code examples to not exactly match with the student’s code at times.

5.5.2 Rules and strategies

The rules are the main building blocks of the tutoring system. We have based

the rules on several sources from the literature as well as best practices from

software engineering:

● Rewrite steps suggested by teachers, identi�ed in our previous study [142].

● Semantic Style Indicators (SSIs) identi�ed in student programs by DeRuvo

et al. [62]. An SSI is de�ned as ‘a pattern of a short sequence of state-

ments that in some circumstances could be considered sub-optimal’.

Currently 10 of their 16 SSIs are implemented in our system.

● Semantics-preserving variations (SPVs) that occur in student programs,

of which Xu and Chee [290] distinguish 13 types. An SPV changes the

computational behaviour of a program while preserving the computa-

tional results. We account for several of these variations in our rules

and other normalisations (see previous section).

● Rules from professional tools, in particular the code suggestions from

PMD and IntelliJ (see Section 5.6).

● Equality rules from arithmetic and logic (e.g. absorption or identity op-

erations).
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The Ideas framework also supports the de�nition of buggy rules, which

describe transformations that are not valid and change the computational se-

mantics of the code. At the moment we have only implemented a small set of

these buggy rules.

Rules are combined to de�ne more elaborate strategies, which describe the

step-by-step solution to a problem. In strategies, rules can be combined in se-

quences, chosen as (prioritised) options, and navigation rules can traverse the

abstract syntax tree to apply rules at speci�c locations. From our teacher in-

put we derived that teachers advise to clean-up code �rst before moving on to

more complex refactorings; we implemented this in the strategy by enforcing

cleanup rules before enabling certain other rules.

5.5.3 Feedback services

The system o�ers the following feedback services:

Hint tree Hints are generated by calculating the �rst possible steps of the

strategy. The hint tree contains all available hints in a hierarchical structure,

as described in Section 5.4. A feedback script is used to store the hint messages

attached to each step. The script contains key-value pairs that can easily be

adjusted by a teacher.

Hints remaining This function calculates the current number of top-level

hints.

Diagnosis This function checks the current state of the student program.

First, our internal parser processes the program. If that causes an error, the

Java compiler from the Oracle JDK is called to get a better error message. Next,

the system tries to recognise if a known buggy rule has been applied. If not,

test cases are used to verify that the program still has the required functional

behaviour. If the system detects that a known rule has been correctly applied,

we report that the student just successfully applied that rule. If multiple rules

have been applied, or unknown edits have been done, we just report that the

program is correct.
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Table 5.1: All hints reported by more than one teacher, and

if they are suggested ( ), partially (G#), or not (#).

Description Refactor Tutor PMD IntelliJ
Expressions
Remove equals true/false    
Do not add 0 to sum  # #
Use compound operator +=  #  
Remove self-assignment    
Conditionals
Improve nested if-structure  # #
Remove redundant conditional check  # #
Remove empty if/else  G#  
Loops
Change for-loop into foreach    
Change for-loop into while  G#  
Exit loop when done  # #

5.6 Evaluation and discussion

Section 5.6.1 compares the tutoring system to two professional tools and shows

to what extent the system aligns with how teachers would teach students

about their code. We also give some preliminary results of an evaluation with

students. In Section 5.6.2 the results are discussed and threats to validity are

described in Section 5.6.3.

5.6.1 Evaluation

Comparison to professional tools

Table 5.1 shows for each hint mentioned by more than one teacher for the

SumOfValues and OddSum exercises, if our tool, PMD, and IntelliJ also give

that hint. IntelliJ gives similar suggestions as PMD for SumValues by high-

lighting the associated code fragments. IntelliJ also gives contextual sugges-

tions for code changes when clicking on a particular code fragment, proposing

a total of 37 changes for these 12 lines of code, of which 26 are unique. Finally,

a set of refactorings are o�ered for which the programmer has to provide ad-

ditional input.

Although PMD does not suggest it for OddSum, it does have a rule that

can transform a for into a while, but only under stricter conditions. What
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PMD suggests and is not mentioned by teachers are three ‘data�ow anomalies’

for the total and stop variables, which is considered a low-priority issue that

might not be problematic. Additionally, IntelliJ o�ers numerous other code

edits with no clear goal: 49 changes (26 unique), of which two are concrete

warnings: the self-assignment and the ==false.

Teacher data evaluation

In our preliminary study we asked teachers how they would want a student

to refactor programs step by step. We derived high-level rules and hints from

these steps, as seen in Table 5.1. In this section we do a more technical evalu-

ation to check if edits to actual program states are recognised.

We analysed data of 27 teachers who provided 76 new program states (ex-

cluding the start state) for SumValues. We excluded 11 functionally incorrect

programs that our tutor rightly identi�ed, 5 programs that used language con-

structs our tutor does not support, and 3 other invalid states. We let our system

generate all available hints for the remaining 57 programs: for 43 the edits the

teacher did in the step were in this hint set (75.4%), for 3 some edits were in

the set but some were not (5.3%), and for 11 none of the edits were in the set

(19.3%).

For the OddSum exercise 27 teachers provided 66 valid program states. We

found that for 41 programs the teacher edits were in the hint set (62.1%), and

for 16 the edits were partially in the set (24.2%). We noticed that some teachers

solved some issues di�erently from the concrete hints the system gave, but we

mark these edits as successful because the hint does not appear any more.

We can conclude that the hints generated for the majority of the states

lead to what the teacher would suggest to do next. Usually multiple hints are

available for a state (even for �nal states), allowing for the various solution

paths we saw in the teacher data.

Student evaluation

Because this paper is primarily a software report describing a tool, we have

focussed on the functional and technical evaluation of the system. However,

we have recently conducted an experiment with 133 students using the system

and have performed a detailed analysis of the �ndings [144]. We can report

that the hints help students to solve refactoring exercises and that they value

working with the system. We also derive several improvements from this anal-

ysis to be incorporated in the next cycle of our design science process.
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5.6.2 Discussion

In this section we summarise and discuss how our tool attempts to solve the

problems listed in Section 5.2.4:

i) Terminology and phrasing are targeted at novices, and can be adjusted by

teachers. Most high-level hints are phrased as questions, which teachers

often did as well.

ii) Issues can be shown gradually by letting the student ask to make a hint

more speci�c, or to request a di�erent hint.

iii) We have selected a subset of issues relevant for novices. In future work

teachers should be able to switch o� certain rules they may �nd unsuitable

for a particular group of students or course.

iv) Although the issues we support go beyond what professional tools detect,

we consider exercise- and student-speci�c feedback to be future work.

v) Our system can guide a student through more complex refactorings step

by step.

vi) Our system does not o�er edits with no particular goal, instead we o�er

edits based on the input of experienced teachers.

The proposed system is a practice tool encouraging students to critically

assess code and think of alternative solutions. It provides an opportunity to

explore other language constructs, and more carefully consider control �ow

and structure. The hints are suggestions that should trigger further discus-

sion among teachers, and between teachers and students. Although novices

often produce verbose code, because they might �nd it easy to understand (or

perhaps it just worked), at a certain time they should move beyond that. We

therefore advice the system to be used by students with some programming

experience who are ready for the next step.

5.6.3 Threats to validity

We have evaluated the system using two exercises, which may raise questions

on the generalisability of the feedback mechanism of the system. However,

the majority of the rules are not speci�c to an exercise, and can be reused

for other exercises as well. We do need to expand the set of rules, and also
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implement a more dynamic way of devising rules, which is described as future

work in Section 5.7. Our future work analysing how students use the tutoring

system will give us more insight into the e�ectiveness of the system from their

perspective.

5.7 Conclusion and future work

This paper describes the functionality and design of a tutoring system that

teaches students about improving code. We have shown a tutoring session in

which students receive hints on how to improve an already correct piece of

code, and get feedback on the correctness of their steps. We have shown that

the behaviour of the tutor matches with how teachers want students to im-

prove their code. We also show that the tutor goes beyond what professional

static analysis tools and IDEs do, and better meets the needs of students.

We already conducted an experiment in which students used the system,

logging their interactions. We have analysed this data to see if students ask

for hints, if they follow up the hints, and if that leads to a good solution. Stu-

dents also �lled out a survey to give their perspective on code quality and the

helpfulness of hints, and their opinion of the system.

As part of our design science process, we will iteratively improve the sys-

tem based on the �ndings. We plan to add new features, such as having the

teacher provide model solutions, from which additional improvement rules

can be extracted and dynamically used in the system. Also, we want to add

more buggy rules. Future experiments could compare the e�ects of using the

tutoring system to those of professional tools, and study the e�ect on student

code quality in the long run.
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Chapter 6

Student Refactoring
Behaviour in a
Programming Tutor

A modi�ed version of this chapter has been submitted for publication [144].

Abstract Producing high-quality code is essential for professionals working

on maintainable software. However, awareness of code quality is also impor-

tant for novices. In addition to writing programs meeting functional require-

ments, teachers would like to see their students writing understandable, con-

cise and e�cient code. Unfortunately, time to address these qualitative aspects

is limited. We have developed a tutoring system for programming that teaches

students to refactor functionally correct code, focussing on the method-level.

The tutoring system provides automated feedback and layered hints. This pa-

per describes the results of a study of 133 students working with the tutoring

system. We analyse log data to see how they approach the exercises, and how

they use the hints and feedback to refactor code. In addition, we analyse the

results of a student survey. We found that students with some background in

programming were generally able to identify issue in code and solve them (on

average 92%), that they used hints at various levels, and we noticed occasional

learning in recurring issues. They struggled most with simplifying complex

control �ow. Students generally valued the topic of code quality and working

with the tutor. Finally, we derive improvements for the tutoring system to

strengthen students’ comprehension of refactoring.
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6.1 Introduction

Learning to program has been a major area of research for many decades [173],

[228]. Researchers have studied the mistakes that students make [42], the mis-

conceptions they have [219], and how we could help them solve their mistakes

and correct misconceptions using various teaching approaches [272]. While

a major goal is to write code that is functionally correct, it is also important

that the code is understandable, concise and e�cient. These aspects have been

receiving less attention, although we have noticed an increase in studying the

non-functional aspects of code.

Studies have found numerous qualitative issues in student code [62], [72],

[141], [210]. If we assess students solely based on functional behaviour through

test cases, they might not see the importance of writing high-quality code.

However, at a certain point, students will have to write larger programs to-

gether with other students, for which they need to use and adjust existing

code. The need to analyse and refactor low-quality code will then become ap-

parent. It is therefore vital to introduce students to the concept of code quality,

raise awareness of its importance, and introduce them to code improvement

in an accessible way.

Unfortunately, it is well-known that universities and other learning insti-

tutes struggle to give each student the personal attention and feedback they

need, due to growth in enrolment �gures and limited sta�ng means [47].

Tools can give students some complementary support. We have designed a

tutoring system for programming that teaches students to refactor function-

ally correct programs. The system focuses on method-level refactorings, such

as rewriting a complex expression, removing unneeded code, and replacing

a language construct by a more suitable alternative. The functionality of the

tutoring system is based on input from teachers and how they would want stu-

dents to rewrite their code, which we investigated in an earlier study [142].

The system o�ers refactoring exercises: it is the student’s task to rewrite func-

tionally correct code. The student can check the program against test cases to

ensure it still works correctly, and ask for hints with increasing detail if he or

she does not know how to proceed.

This paper describes the results of a study of 133 students working with

the tutoring system. The students are more experienced novices who have

already taken programming courses before. We analyse log data to �nd out

how they use the system, and if they are able to identify issues and rewrite the

programs. We also describe the results of a student survey on the tutor. We



6.2. Background and related work 127

discuss the �ndings on how students refactor and how the system can help

them, as well as future improvements and implications for its use.

The contributions of this work are: (1) a �rst exploration of how students

refactor code; (2) an analysis of the issues they struggle with and which hints

they need to deal with those issues; (3) insight into how students value code

quality.

This paper is organised as follows: Section 6.2 discusses related work. Sec-

tion 6.3 describes the tutoring system. Section 6.4 describes the method of this

study. The results are shown in Section 6.5, and discussed in Section 6.6. Sec-

tion 6.7 concludes and describes future work.

6.2 Background and related work

6.2.1 Code quality in education

Our goal is to make students who already have some basic programming

knowledge aware of the qualitative aspects of their programs, and teach them

how to refactor their programs to make them easier to understand, more ef-

�cient, and to make the best use of language constructs. We de�ne code

refactoring as improving code step by step while preserving its functional-

ity [84]. We focus on single methods and how to improve their directly ob-

servable properties such as control �ow, expressions, and choice of language

constructs. Layout, naming and commenting are outside our scope.

Maintaining high-quality code is a major topic in the �eld of software en-

gineering. There is evidence of the persistence of code smells in large software

systems (e.g. [262]). For programmers to produce good code it is vital that they

learn to be aware of �aws and refactor code as soon as possible. We should

therefore incorporate this into our Computer Science curricula, which has not

always been done [37]. Kirk et al. [149] studied learning outcomes of 141 in-

troductory programming courses, and found that for 71% of these courses code

quality is not part of the learning outcomes. For the courses that do mention

code quality in learning outcomes, it is unclear what exactly is being taught.

We also argue that writing code of good quality is closely related to thor-

oughly understanding the mechanisms of programming. Programming mis-

conceptions can relate to syntactical, conceptual, and strategic knowledge [219].

The latter two categories, conceptual misconceptions (misunderstanding how

programming constructs work and how a program is executed) and strategic
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misconceptions (problems with applying syntactical and conceptual knowl-

edge to a speci�c task) can be the cause of delivering functional, but incom-

prehensible or ine�cient code.

Several studies investigated non-functional problems in student code [39],

[62], [72], [141], [210], from which we learn they are evident and often remain

un�xed. Studies show mixed results regarding whether students address is-

sues, which is apparently more the case when they are being assessed on it.

In cases where they are not, issues remain present (e.g. [141]).

6.2.2 Tutoring systems for programming

There has been a wealth of studies describing digital tools and environments

that help students with learning programming [58], [119], [147]. These tools

enable students to learn whenever and wherever they want, and alleviate

teacher workload. Many of these systems support the student with (auto-

mated) feedback. Feedback is an essential aspect in teaching [107], [239], hav-

ing the potential to exert great in�uence on learning, assuming it is delivered

in an appropriate manner. Feedback can be summative (focused on the out-

come) or formative, the latter de�ned by Shute as ‘information communicated

to the learner that is intended to modify his or her thinking or behavior for

the purpose of improving learning’ [239]. While assessment tools are mainly

focussed on grading programs and giving summative feedback on �nal sub-

missions, (intelligent) programming tutors help students during the stepwise

process of solving exercises.

Intelligent Tutoring Systems (ITSs) have been studied extensively for var-

ious domains [268]. VanLehn found that ITSs were nearly as e�ective as hu-

man tutors [269]. ITSs have an inner loop, giving stepwise hints and feedback,

and updating the student model; some ITSs also have an outer loop, selecting

a suitable next task. Focussing on the inner loop, several aspects are impor-

tant for o�ering feedback and hints [268]. A hint should preferably be given

when a student really needs it, but it can be tricky to predict and control this.

The suggested step should be analogous to what the teacher would advise,

but should also support the student if he or she has already embarked on a

certain solution path. The manifestation of hints is often gradual: a general

hint, followed by a more descriptive hint, and �nally a bottom-out hint, which

is the actual step to be taken. Feedback usually consists of simply indicating

correctness or incorrectness, and error-speci�c messages. For the domain of

programming, several ITSs have been developed that o�er features supporting
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both the inner loop and the outer loop [58]. These Intelligent Programming

Tutors often teach a speci�c aspect (such as recursion), or support building

small programs.

6.2.3 Automated feedback on code quality

In a paper that describes the details of the design of our tutoring system, we

argue why professional code quality tools are unsuitable for novice program-

mers [143]. One type of such a tool is the static analyser that reports on vio-

lated issues in source code, which can be run inside an IDE or standalone. Ex-

amples are PMD, Checkstyle, SonarQube, and linters. Problematic for novices

are the technical terminology used by those tools, and the possibly very long

lists of reported issues that are not always relevant in the context of novice

programs. Other types of tools are refactoring tools and other code transform-

ing tools, often integrated in IDEs. These tools execute refactorings in one

step, giving little insight into the inner workings. Some IDEs o�er numerous

code edits, often without a clear goal. Our tutoring system aims to overcome

these problems by o�ering a student-friendly introduction to code refactor-

ing, using understandable language, and layered feedback for a selection of

relevant issues.

Professional tools have been used in the context of education though, and

are surely relevant for the more experienced programmer [73], [171], [201].

Jansen et al. [125] have used the Better Code Hub (BCH) tool in education. This

tool checks a codebase in GitHub against 10 software engineering guidelines,

such as ‘write short units of code’ and ‘write code once’. They found some

evidence of increased student code quality, whereas the opinions of students

about using the tool varied.

There are also systems analysing code quality speci�cally aimed at stu-

dents. FrenchPress [32] is an Eclipse plugin that points students at �aws in

their Java programs. The plugin checks code for seven issues related to misuse

of �elds, the public modi�er, booleans, and loop control variables, and presents

student-friendly messages. The tool was used in a trial by around 45 students

for four exercises, with the result that between 36% and 64% self-reported that

they would change their code according to the feedback received.

The Style++ tool provides students with a report on style issues such as

commenting, naming and code size [8]. The tool has been used and evaluated

by a great number of students, but how students use the tool has not been

studied. The authors have seen an increase in the quality of programs, but
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that could also be partly attributed to the fact that submitted programs had to

be approved by the tool.

WebTA [265] is a programming environment for students in which they

can receive feedback continuously, both during programming and as a grading

system for �nal submissions. The feedback can point to failed tests, common

errors, and more stylistic issues referred to by the authors as ‘antipatterns’.

Examples of the latter that are most related to our system are useless language

constructs, and declaring variables or resources inside a loop. The issues are

based on what the authors have seen in student submissions. We cannot derive

from the paper how feedback on these patterns is presented to students, and

the e�ect of using the tool has not been measured yet.

Qiu and Riesbeck [220] have developed the Java Critiquer, a system that

points students to quality problems in their code. The rules in the system

have to be incrementally authored by teachers by writing and re�ning regular

expressions and other necessary scripts. We could not �nd a study on how

students used the system.

AutoStyle [52] gives stepwise, data-driven feedback on how to improve

the style of correct programs, consisting of teacher-written hints on clustered

programs and automatic hints on features that could be added or removed.

An experiment with students using AutoStyle has shown improvements, es-

pecially in recognising good coding style, but students also still struggled with

improving code [288]. AutoStyle is di�erent from our tool because it relies on

historical student data, which has the disadvantage that this data is not always

available, and requires teachers to write hints beforehand. Moreover, di�er-

ent from the AutoStyle studies, we have performed a quantitative study of log

data on how students approach code improvements at the method level. We

are not aware of any other such study.

6.3 The Refactor Tutor

This section describes the tutoring system for refactoring. The target audience

of the system are students (typically CS majors) who already know the basics

of programming (control structures, loops, arrays, methods, classes, etc.). The

system o�ers exercises in which a problem speci�cation and a functionally

correct, but problematic program is given. The student’s task is to improve

(refactor) the program to make it more concise, e�cient, and understandable.
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Figure 6.1: Web application for the tutoring system.

Figure 6.1 shows a screenshot of the web interface of the system. To im-

plement the code editor we used the open source Ace editor
1
, which supports

syntax highlighting, automatic indentation, highlighting matching parenthe-

ses, code folding, and more. The student has two ways to ask for feedback

during programming: check progress and get hints. The check progress

button checks the current status of the program, resulting in one of the fol-

lowing diagnoses:

● Expected. The student has just executed a step recognised by the sys-

tem, as shown in Figure 6.2.

● Correct. The submitted program is functionally correct, but the system

does not know what the student has done.

● Similar. The student has not changed anything, or went back to the

previous state after doing an incorrect edit.

● Buggy. The student has taken a known incorrect step.

1ace.c9.io/

https://ace.c9.io/
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Figure 6.2: Feedback acknowledging a correct step and an

indicator of the number of improvements left, shown after

clicking the check progress button.

Figure 6.3: Error message for a failed test case.

● Failed test case. The student has changed the functionality of the pro-

gram. The �rst failed test case is shown, as can be seen in Figure 6.3.

● Compiler error. The student has used an unsupported language con-

struct or made a syntax error. In the latter case we show the number of

errors and the �rst error message from the Oracle Java compiler.

For the �rst three diagnoses (dealing with a correct program) the system

also shows how many improvements there are left (see Figure 6.2).

The get hints button generates hints for the current program state, after

checking that the program is still correct by executing a progress check in

the background. If it is not correct, the diagnosis is shown, otherwise hints

are generated. The system presents hints in a tree structure, of which the �rst

option is shown by default. The student can expand a hint (by clicking explain

more) to get a more detailed hint, or click on another hint to get a di�erent

hint. An example of a partly collapsed hint tree is shown in Figure 6.4.

The hints the system gives are based on rules, derived from teacher sug-

gestions for a set of imperfect student programs, collected in our earlier study

that investigated how teachers would give feedback on improving code [142].

Other rules are based on other studies [62], [290], a subset of rules from profes-

sional static analysis tools considered suitable for novices, and equality rules

from arithmetic and logic. The system also contains some ‘buggy rules’ that
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Figure 6.4: Partly collapsed hint tree.

describe common mistakes. The tutoring system, its motivation, design and

example sessions are described in more detail elsewhere [143].

The system can be accessed online
2
, and consists of a web-based interface

and a backend that processes JSON requests and replies with JSON responses.

All requests and responses are logged in a database on the server. These re-

quests are: retrieving the exercises, loading an exercise, checking progress,

asking for hints, and expanding a hint. The current state of the code is at-

tached to the requests. The system was tested before the experiment by two

teachers and one teaching assistant.

Six exercises are o�ered with varying di�culty. The programs to be refac-

tored for each exercise contain between two and four quality issues at the

start, as shown in Table 6.1. These issues correspond to the rules described

earlier. Some issues become apparent after dealing with initial issues. Certain

issues reappear in a later exercise, sometimes in a slightly di�erent way.

For the last exercise (exercise 6) no starting code is given, only a descrip-

tion of its functionality and a set of test cases. Feedback and hints are available

for all exercises, and are generated dynamically for the current state of the stu-

dent code. Programs 1–5 show the start code and description for the �rst �ve

exercises. Exercise 2 is taken from another study [174], exercise 1 and 6 are

from the Codingbat website
3
, and exercise 3, 4 and 5 are our own.

2www.hkeuning.nl/rpt
3codingbat.com/java

www.hkeuning.nl/rpt
https://codingbat.com/java
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Table 6.1: The issues that appear (●) or may appear later (○)
in the exercises.

Ex1 Ex2 Ex3 Ex4 Ex5
Expressions
Simplify boolean expression - ● ● - -

Use compound operator ● - ● ● -

Optimise calculation - ● - - -

Remove self-assign ● - ● - -

Improve odd/even check ● - - - -

Branching
Remove duplication - ● - - -

Remove useless else if - - ● - ●
Remove empty statement ○ - ○ - -

Extract from if else - - - ● -

Loops
For to foreach ● ● - - -

For to while - - - - ●
Exit loop early - - ○ - ○
Replace loop by calculation - - - ● -

6.4 Method

Our research questions are:

RQ1 How do students solve refactoring exercises? Which steps do they take,

and which mistakes do they make?

RQ2 When do they ask for a hint? For which issues do they need hints? How

do they respond to a hint?

RQ3 What do students think about working with a refactoring tool?

6.4.1 Study design

We conducted the experiment at Windesheim University of Applied Sciences

in the Netherlands in the week of 14 October 2019. This week was the �nal

week of the term for (mostly) second-year IT-students specialising in Software

Engineering, who were all doing a C# programming course. All students had

followed at least two previous programming courses: web programming in
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PHP, and object-oriented programming in Java. A minority of the students

are specialising in other �elds, such as embedded systems or business IT.

The C# programming course consists of 7 lecture weeks, followed by a

practical exam (programming exercises on a laptop). During the course the

students work on a large assignment that they must complete in order to pass

the course. The course assumes the programming knowledge from the PHP

and Java courses, in which all basic language constructs (variables, branching,

loops, methods, object-oriented concepts, etc.) are discussed. The C# course

transfers to the C# language, �rst discussing the C# equivalents for known

language constructs, and then handling more advanced topics such as dele-

gates and events, generics, LINQ/functional programming constructs and unit

testing.

The course was taught in groups of approximately 25 students. There

were seven groups that were taught by four di�erent lecturers. One of the

researchers is a colleague of these lecturers, but did not teach the course that

year. The experiment required one hour per group, in which the lecturer and

one researcher were present.

In this experiment all students worked with the system. We did not o�er

a pre- and post-test, because we want to focus on how students use the tool,

how they respond to feedback and hints, and how they edit the code.

The experiment consisted of three parts: the �rst 15 minutes were used

to introduce the topic of code quality, to demonstrate the tool, and to explain

the experiment. The students were asked to �ll in a form to provide consent

for using their data, and to give some general information such as age, gen-

der and previous knowledge. All students were given a unique ID to login to

the system. If they did not give consent to use their data, they could log in

anonymously and still do the exercises.

In the next 30 minutes the students individually worked on six exercises in

the system on their own laptop. The students received an information sheet

with some notes on how the system works, and the Java syntax for certain

language constructs supported by the system. The interface of the tutoring

system and its feedback is in English. This is not the students’ native lan-

guage, but the students use other English study material as well. The re-

searcher helped with questions on how the tool works, but not with questions

on how to solve the exercises. The students were also asked not to consult

other students.

The �nal 15 minutes were spent to �ll in a short survey with questions

about their experience with the system. The survey had three Likert-scale
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questions and three open questions.

6.4.2 Analysis

After the experiment the log database was cleaned by removing records from

anonymous IDs and IDs that did not give consent. We also removed activity

from outside the 30 minutes of the experiment, extended with an overrun of

10 minutes. We checked the dataset for abnormal activity and removed log

sequences with more than 50 identical actions per minute. We suspect some

of those sequences are not from the user interface, but were �red by a script.

Because the number of program states in this study is large, we performed

an automated analysis. To check whether our system correctly identi�es pro-

grams as ‘ready’, we manually inspect a random subset of 10% of the ready

end states for each exercise.

We analysed the open survey questions in which we asked for pros and

cons of the system by grouping similar comments. The end of the survey had

a text �eld for additional comments that often contained pros and cons as well.

We moved those answers to either the pro or con section, depending on their

content. The literal texts we show in the results section are translated from

the students’ native language.

6.5 Results

In total 143 students (of around 200 enrolled, and some who had to retake

the course) attended the lecture in which the experiment took place, of which

135 students gave consent to use their data, and 8 did not. For 1 of the 135

students that gave consent we could not �nd log data, and all records from 1

student were removed from the data set due to abnormal behaviour (sending

an excessive number of requests), resulting in 133 students for the analysis.

The students were between 17 and 31 years old (average 20.5, median 20,

1 student did not provide age). A total of 86% identi�ed as male, 8% as female,

and 5% did not provide their gender. All but 1 student attended the web pro-

gramming course and 130 (98%) passed. All but 4 students attended the Java

programming course and 122 (92%) passed. Of all students, 10% reported they

had no programming experience besides school, 60% had a little, 13% had a

lot, and 23% had experience from a previous education. A total of 122 students

(92%) are in their second study year and have chosen a software engineering
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Table 6.2: Summary of tutor events, between parentheses

the number of unique students.

Exercise Startups Diagnoses Generated
hint trees

Hint ex-
pansions

1 Even 228 (133) 1537 (133) 205 (97) 122 (53)

2 SumValues 222 (133) 2539 (133) 456 (112) 573 (99)

3 OddSum 167 (123) 1329 (118) 261 (86) 226 (59)

4 Score 120 (103) 775 (97) 121 (51) 88 (30)

5 Double 93 (76) 402 (69) 55 (27) 26 (10)

6 HaveThree 75 (60) 376 (44) 18 (11) 14 (6)

Total 905 6958 1116 1049

pro�le, 2 students (2%) are retaking the course, and 9 students (7%) are IT stu-

dents with a di�erent pro�le that are taking the course as part of an elective

minor.

The students produced 12,254 log entries. The main events are summarised

in Table 6.2. Adding up all diagnose-events produces a total of 6,985 program

states submitted by students.

6.5.1 Solving exercises (RQ1)

Figure 6.5 shows the number of students who started and completed the exer-

cises. We only include attempts for an exercise with at least one action (such

as check or hint request). We de�ne ‘ready’ as the system not having any

hints left, ‘gave up’ as students who performed at least one action for an ex-

ercise, but did not deal with all issues and moved on to a new exercise, and

‘time up’ as working on the exercise when the experiment stopped. For ‘gave

up’ we also calculated the number of hints remaining for the last known and

valid program state. The �rst two exercises were started by all students, with

a gradual decline for the subsequent exercises. In total 52% of the students got

to exercise 5, and exercise 6 was attempted by only 33%. We can see from Ta-

ble 6.2 that a larger percentage (45%) started exercise 6, but because students

had to write code from scratch, they probably did not have enough time left

to do a check or hint action. Exercise 2 and 3 have by comparison the most

students that did not complete it.

Table 6.3 shows for each exercise how much time students spent work-

ing on them, excluding timeups. For all exercises except exercise 6, students
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Figure 6.5: For each exercise the number of students that

solved all issues (green), did not solve all issues and contin-

ued with another exercise (yellow/orange/red, depending on

the number of open issues), and were working on an exercise

when their time was up (blue).

Table 6.3: Time on task.

Exercise Min Max Mean Median
1 Even 1:33 17:55 7:06 6:44

2 SumValues 1:38 27:34 10:12 9:33

3 OddSum 1:54 16:15 6:41 6:23

4 Score 1:11 14:06 4:41 4:14

5 Double 1:05 13:45 3:49 3:20

6 HaveThree 3:41 14:39 7:43 6:58

worked on it a minimum of between 1 and 2 minutes. Exercise 2 stands out

because students spent more than average time working on it.

Next we zoom in on the diagnoses students received while working on the

exercises. A diagnosis is calculated when a student clicks on check progress,

but also when a student asks for a hint, because hints are only generated once

the current program state is functionally correct. Again, we only include ses-

sions in which the student has performed at least one action. We exclude

timed-out sessions because their diagnose count would not be representative

for a full session. Figure 6.6 gives insight in how many diagnoses a student

receives, which varies per exercise with a median between 4 and 17. We also

identify several outliers. We manually inspected some of these sessions, in
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Figure 6.6: For each exercise a boxplot showing the distri-

bution of the number of diagnoses per student.

which we often noticed a large number of identical error diagnoses given in a

short time frame, giving the impression the student kept clicking the button

again and again.

Figure 6.7 shows the distribution of the various types of diagnoses for all

sessions. Table 6.4 shows the diagnoses with a functionally correct result, and

Table 6.5 the diagnoses with a problematic result. For exercises 1 to 4 we see a

fair amount of expected (a single recognised step) diagnoses in relation to cor-

rect diagnoses (multiple or unknown steps resulting into a correct program).

This is much less the case in exercises 5 and 6. Exercise 6 shows a rather dif-

ferent distribution with many more failed diagnoses, which is to be expected

because this exercise required writing code from scratch.

Considering problematic diagnoses, failed tests was a major category (22%)

for exercise 2. Failed tests can be an actual test case failing, the inability to

execute a test because the student changed the method header, or some other

runtime error such as a suspected in�nite loop. Although failed tests is a major
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Figure 6.7: For each exercise the distribution of diagnoses.

category for all exercises, compiler errors are also pervasive. Note that one

compiler error instance could contain multiple compiler errors. The number of

compiler errors is the largest for the �rst exercise, which could be attributed to

getting used to the Java syntax. We inspected the most common compiler error

messages and noticed that the message generated when accidentally using the

C# syntax for a foreach-loop was at the top of the list. Exercise 5 also has quite

a large number of compiler errors compared to the other exercises, with the

main error being a variable that ‘might not have been initialized’.

We also noticed students using language constructs unsupported by our

Table 6.4: For each exercise the total number of diagnoses

for functionally correct solutions, and between parentheses

the number of unique students receiving that diagnosis.

Exercise Expected Correct Similar
1 Even 152 (98) 382 (132) 367 (115)

2 SumValues 213 (103) 307 (120) 700 (116)

3 OddSum 172 (93) 349 (113) 388 (98)

4 Score 107 (61) 214 (92) 185 (62)

5 Double 5 (3) 107 (63) 114 (44)

6 HaveThree 9 (7) 42 (24) 26 (15)

Total 6589 1401 1780
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Table 6.5: For each exercise the total number of problematic

diagnoses.

Exercise Failed
Test

Compiler
error

Unsup-
ported

Other

1 Even 140 (45) 361 (101) 4 (3) 131 (46)

2 SumValues 567 (108) 226 (82) 22 (19) 63 (28)

3 OddSum 233 (68) 158 (71) 0 (0) 29 (16)

4 Score 157 (46) 92 (48) 1 (1) 19 (9)

5 Double 53 (27) 108 (44) 6 (3) 9 (5)

6 HaveThree 209 (40) 66 (28) 9 (5) 15 (6)

Total 1359 1011 42 266

Table 6.6: For each exercise the failed test case seen by most

students, and its possible cause.

Exercise Failed test Students
1 Even [{1, 2, 3, 4, 5}] should return 2, but your method

returns 0

23 (17%)

2 SumValues [{1, 2, 3, 4, -5}, true] should return 10, but your

method returns 5

92 (73%)

3 OddSum [{44, 12, 20, 1, -1, 3, 5, -1, 99, 4}] should return 16,

but your method returns 0

20 (20%)

4 Score [2, 7] should return 8, but your method returns 5 24 (28%)

5 Double [1000.0, 4] should return 18, but your method re-

turns 0

10 (19%)

tutoring system. For example, in six events a student used the ?: ternary oper-

ator, which is a shorthand for an if-statement. There were also 20 events with

a program using the & operator, which is an unusual choice and not needed

for any of the exercises. Other examples were calling Java library methods,

casting, and de�ning multiple methods.

The ‘other’ category are diagnoses that were less clear, and contained some

internal errors caused by bugs. Students using constructs such as return
sum+=1 and if(x=1) with assignments in (boolean) expressions received mes-

sages that should have been clearer: the system dealt with these constructs

insu�ciently. We also noticed that students often (mostly in the �rst exercise)

mixed a foreach with standard array indexing, causing an error message not

suitable for the actual problem. The ‘buggy’ category for exercise 2, account-

ing for 17% of the diagnoses, will be explained in Section 6.5.2.
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6.5.2 Hint seeking (RQ1 and RQ2)

Figure 6.8 shows how many hints students have seen for each exercise, in-

cluding the top-level hint of the initial hint tree, and hint expansions and al-

ternatives. Timed-out sessions and sessions with no activity were excluded.

The most hints were seen for the second exercise, with a median of 7.5. The

medians for the other exercises are at most 2, but there are quite some outliers

with students viewing many more hints. We observe a decreasing number of

hints for the last four exercises.

Next, we focus on the individual exercises to investigate which hints were

shown and if students were able to solve issues with or without help. We

exclude students whose time was up for a particular exercise. Tables 6.7 to 6.11

show the main hints for exercises 1 to 5, and are discussed in detail in the next

subsections. Recurring issues (sometimes in a slightly di�erent manifestation)

are indicated with the ↻ symbol. Issues that might come up later during

the exercise are marked with the ⋆ symbol. For these later issues we only

look at students who received a hint for it. Some other issues that came up

incidentally because of undesirable student edits are omitted from the tables.

Table 6.6 shows the failed test case (input/output pair) that was seen by the

largest number of distinct students. We investigate causes in the next few

sections.

Exercise 1

Table 6.7 shows the main hints associated with the �rst exercise, organised in

the tree structure in which the hints were shown to the students. All hints

in this table are known issues and form the complete hint tree generated for

the start program. We omitted four additional hints that were dynamically

generated for students who made undesirable adjustments. The table shows

the number of students that have seen the hint, and how many students have

solved the issue (not including those whose time was up). The issue for which

most hints were generated is replacing the for-loop by a foreach-loop, which

was seen by 61% of the students. Almost a third of those students expanded

that hint to see the code example. Some students did not make this change to

the code in the end. A total of 43% of the students saw the hint on rewriting the

even check, for which more than half expanded to see more detail, and almost

a third of those saw the code example. A small number of students did not

solve the issue. Removing a self-assignment statement and using a compound

operator was easier to do for students without help.
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Figure 6.8: For each exercise a boxplot showing the distri-

bution of the number of hints seen per student.

Our manual inspection of 10% of the ready programs con�rmed that all

issues were dealt with, although one student used +=1 instead of ++ and one

program contained an unnecessary declaration, something the system cannot

detect yet. The most common failed test case was often caused by replacing the

statement count=count by return count, which is a curious misconception.

We also saw some students using %2==2, which can never be true.

Exercise 2

Table 6.8 shows the main hints for the second exercise, for which we already

noticed in the previous section that students struggled more. We omit hints

that were only seen by one student. Most of the main hints were seen by more

than half of the students, except replacing the for-loop by a foreach-loop. This

was a recurring issue that, compared to the previous exercise, twice as many

students changed without seeing a hint. In particular, students struggled a

lot with the duplicated addition. More than two thirds of the students viewed

some hint on this topic, and the majority of those students clicked all the way

through to the code example. Those students were most likely (88%) to deal
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Program 1: Start code for exercise 1.

1 int countEven(int [] values) {
2 int count;
3 count = 0;
4 for (int i = 0; i < values.length; i++)
5 {
6 if (values[i] % 2 != 1) {
7 count = count + 1;
8 }
9 else {

10 count = count;
11 }
12 }
13 return count;
14 }

Description: The countEven method returns the number of even

integers in the values-array.

Example test case: {1,2,3,4,5} returns 2. You don’t have to deal with

negative numbers.

The solution is already correct, but can you improve this program?

with the issue, but in the end only 75% of all students did. The test case that

failed the most was seen by 73%, and was related to this problem.

The tutoring system contains a ‘buggy rule’ related to merging the two

conditions for adding the array value (lines 5–12). This buggy rule detects

the common mistake of incorrectly combining the conditions, resulting in the

code below:

if (positivesOnly && values[i] >= 0) {
sum += values[i];

}
else {

sum += values[i];
}

We implemented this buggy rule because even teachers made this mistake,

which we noticed when studying their refactoring sequences. However, our

system reported the name of this issue (‘buggycollapseif’) instead of a more
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Table 6.7: Hints seen and solved for exercise 1 (n=132). The

‘solved by’ column calculates the percentage based on the

‘seen by’ column.

Type of the most detailed hint seen Seen by Solved by Total solved
Replace for by foreach-loop (line 4-12)
No hint 52 (39%) 49 (94%) ⎫⎪⎪⎬⎪⎪⎭

121 (92%)Top-level hint 54 (41%) 48 (89%)

→ Code example 26 (20%) 24 (92%)

Rewrite the even check using ==0 (line 6)
No hint 75 (57%) 73 (97%) ⎫⎪⎪⎬⎪⎪⎭

128 (97%)

Top-level hint 19 (14%) 19 (100%)

→ Detailed hint 26 (20%) 25 (96%)

→ Code example 11 (8%) 10 (91%)

Remove useless else with self-assign (line 9-11)
No hint 119 (90%) 118 (99%) ⎫⎪⎪⎬⎪⎪⎭

130 (98%)

Top-level hint 6 (5%) 5 (83%)

→ Detailed hint 4 (3%) 4 (100%)

→ Code example 3 (2%) 3 (100%)

Use the compound ++ operator (line 7)
No hint 124 (94%) 123 (99%) ⎫⎪⎪⎬⎪⎪⎭

130 (98%)

Top-level hint 4 (3%) 4 (100%)

→ Detailed hint 2 (2%) 2 (100%)

→ Code example 2 (2%) 1 (50%)

informative message, which caused confusion by students that we noticed dur-

ing the experiment and while reading the surveys. Excluding timed-out ses-

sions, we counted 415 diagnoses of this issue for 80 distinct students, who saw

the message between 1 and 40 times with a median of 3. Of these students, 49

(61%) solved the issue, which is lower than the 75% of all students. We suspect

that showing an explanatory message would increase the number of students

solving the issue by understanding what went wrong, and is high on our list

of improvements.

Many students also saw some hint on improving a boolean expression,

such as removing ==true, which most students did without a hint. Another

issue in this category that came up during refactoring, was simplifying a com-

plex expression, usually appearing after merging the two conditions for adding
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Program 2: Start code for exercise 2.

1 int sumValues(int [] values ,
2 boolean positivesOnly) {
3 int sum = 0;
4 for (int i = 0;i < values.length;i++) {
5 if (positivesOnly == true) {
6 if (values[i] >= 0) {
7 sum += values[i];
8 }
9 }

10 else {
11 sum += values[i];
12 }
13 }
14 return sum;
15 }

Description: The sumValues method adds up all numbers from

the values-array, or only the positive numbers if the positivesOnly

boolean parameter is set to true.

Example test case: calling sumvalues with {1,2,3,4,-5} and true re-

turns 10.

the array value. Students probably used the code example from the duplica-

tion hint, which �rst showed the disjunction of the two cases. Most students

needed the code example to see how the expression could be simpli�ed, which

involved applying logic rules. Of all students, 63% saw the hint on using > in-

stead of >=, often also expanding to the code example. Students that only saw

the top-level hint were least likely to address the issue. In the end 90% changed

the operator.

The manual inspection of 10% of the ‘ready’ programs revealed that two

students chose an alternative solution by always adding a value to the sum,

and either setting that value to 0 in certain cases, or later subtracting the value

if it should not have been added. We have seen this type of solution in teacher

solutions as well, and it would be a good candidate to discuss its pros and cons.

In two cases the >= was still present but should have been detected, and one of

those cases still contained the duplication in a di�erent construct. The other

5 programs contained no issues.
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Table 6.8: Hints seen and solved for exercise 2 (n=126). * We

do not calculate total solved for incidental issues, because

not all students had to deal with them.

Type of the most detailed hint seen Seen by Solved by Total solved
Remove duplication by simplifying ifs (line 5-12)
No hint 35 (28%) 26 (74%) ⎫⎪⎪⎬⎪⎪⎭

94 (75%)

Top-level hint 10 (8%) 5 (50%)

→ Detailed hint 12 (10%) 2 (17%)

→ Code example 69 (55%) 61 (88%)

Boolean expression issues
No hint 43 (34%) 40 (93%)

Top-level hint 14 (11%) 13 (93%)

→ Detailed hint for remove ==true (line 5) 11 (9%) 11 (100%) } 123 (98%)→ Code example 0 (0% ) –

→ Detailed hint for complex expression ⋆ 5 (4%) 4 (80%) } n.a.*→ Code example 54 (43%) 51 (94%)

Use > to avoid useless calculations (line 6)
No hint 47 (37%) 43 (91%) ⎫⎪⎪⎬⎪⎪⎭

114 (90%)

Top-level hint 23 (18%) 18 (78%)

→ Detailed hint 18 (14%) 17 (94%)

→ Code example 38 (30%) 36 (95%)

Replace for by foreach-loop (line 4-13)↻
No hint 113 (90%) 99 (79%) ⎫⎪⎪⎬⎪⎪⎭

109 (87%)Top-level hint 5 (4%) 4 (80%)

→ code example 8 (6%) 6 (75%)

Exercise 3

Table 6.9 shows the hint-seeking behaviour for exercise 3. The issue not dealt

with by the largest number of students (8) was removing a useless check in

the else-if part of an if-else. All but one of the students that saw a hint for that

issue �xed it, and for half of those students the top-level hint was su�cient.

The code for the exercise also contained multiple recurring issues, such as

a useless else with a self-assignment similar to the code for exercise 1. How-

ever, a slightly smaller percentage (95% versus 98%) dealt with it. A possible

reason for fewer students solving it might be that the code for exercise 3 was

much more complex, distracting from these useless lines of code. However,
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Table 6.9: Hints seen and solved for exercise 3 (n=102).

Type of the most detailed hint seen Seen by Solved by Total solved
Remove useless else with self-assign (line 15-17)↻
No hint 83 (81%) 78 (94%) ⎫⎪⎪⎬⎪⎪⎭

97 (95%)

Top-level hint 15 (15%) 15 (100%)

→ Detailed hint 0 (0%) –

→ Code example 4 (4%) 4 (100%)

Use the compound += operator (line 4)↻
No hint 50 (50%) 45 (90%) ⎫⎪⎪⎬⎪⎪⎭

95 (93%)

Top-level hint 18 (18%) 17 (94%)

→ Detailed hint 18 (18%) 18 (100%)

→ Code example 16 (16%) 15 (94%)

Replace ==false by not (!) operator (line 6)↻
No hint 82 (80%) 75 (94%) ⎫⎪⎪⎬⎪⎪⎭

95 (93%)

Top-level hint 12 (12%) 12 (100%)

→ Detailed hint 5 (5%) 5 (100%)

→ Code example 1 (1%) 1 (100%)

Remove useless check in else-if (line 11)
No hint 83 (81%) 76 (92%) ⎫⎪⎪⎬⎪⎪⎭

94 (92%)

Top-level hint 10 (10%) 10 (100%)

→ Detailed hint 4 (4%) 4 (100%)

→ Code example 5 (5%) 4 (80%)

Exit loop when done ⋆
Top-level hint 22 (21%) 21 (95%)

⎫⎪⎪⎬⎪⎪⎭
n.a.

→ Detailed hint for solution with variable 2 (2%) 1 (50%)

→ Code example 15 (15%) 12 (80%)

→ Detailed hint for solution with condi-

tion

0 (0%) –

→ Code example 2 (2%) 0 (0%)

Replace break by loop condition ⋆
Top-level hint 4 (4%) 4 (100%) } n.a.→ Code example 8 (8%) 8 (100%)
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Program 3: Start code for exercise 3.

1 static int oddSum(int [] array) {
2 int total = 0;
3 boolean stop = false;
4 for (int i=1; i < array.length; i=i+2)
5 {
6 if (stop == false) {
7 if (array[i] != -1) {
8 total += array[i];
9 }

10 else
11 if (array[i] == -1) {
12 stop = true;
13 }
14 }
15 else {
16 total = total;
17 }
18 }
19 return total;
20 }

Description: The method oddSum returns the sum of all numbers

at an odd index in the array parameter, until the number -1 is seen

at an odd index.

Example test case: {44, 12, 20, 1, -1, 3, 5,-1, 99, 4} returns 16 (12+1+3)

we also observe that the top-level hint was more often helpful compared to

exercise 1. The ==false is also changed less often than the ==true from ex-

ercise 2, but that might be because this change is slightly more di�cult. The

compound operator += hint was seen by 50% of the students, which could also

be due to the fact that this hint appeared early in the ordering of hints. Stu-

dents asked for various levels of detail, and managed to use the operator in all

but 2 cases. We expect that students are less familiar with this operator than

the more common ++ operator.

The loop in this exercise can terminate once -1 is seen, on which hints are

given once all clutter has been removed. Of all students, 38% have seen a hint

for this. The system o�ers two alternative solutions, of which the �rst (adding

the stop-variable to the condition of the loop) has been seen by more students

than the second (directly checking if the current array value contains -1 in the
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loop condition). The majority of students seeing these hints have also dealt

with the issue.

The manual inspection of 10% of the ‘ready’ programs showed that all is-

sues were dealt with, except some issues with exiting from the loop once -1

was seen. Some students used a return or break, which is a good alterna-

tive to the suggestions of the system. In a few of those cases the student still

maintained the stop variable, which is not strictly necessary. There was also

a solution with two continue statements, which we consider a somewhat far-

fetched solution. We noticed that the for-loop was transformed into a while

in one of these programs, which is good also considering the more complex

loop condition. One student used a foreach while maintaining a counter for

skipping even indices: we would consider converting this into a buggy rule.

Exercise 4 - 6

Table 6.10 shows the hint usage for exercise 4. The start code for this exercise

contains an unnecessary for-loop that can be replaced by a simple calculation.

Almost half of the students saw the top-level hint for this exercise, and quite a

few also requested the code example. All of these students managed to replace

the loop by a calculation. The code also contained an if-else statement with

the same code at the end of both the if-part and the else-part, which can be

moved after the if-else. Around a quarter of the students viewed the hint, of

which the majority needed more detail. Only one student did not �x it despite

the hints. The recurring compound -= operator was now replaced more often

than in the previous exercise, and a much smaller percentage needed a hint

for this issue. The most failed test case was often caused by inverting day==6
∣∣ day==7 to day!=6 ∣∣ day!=7.

In a manual inspection of 8 ready end states we noticed some calculations

that can be combined, on which we do not give hints yet. This is not a major

issue (calculating in steps can be clearer in certain cases), but we will con-

sider adding this. We also saw 2 solutions in which calculating and returning

could have been simpler, and we do not give hints on a composed negated

expression. The other issues for this exercise were all solved.

Table 6.11 shows the hints for exercise 5. The start code contains a re-

curring issue: the useless check in the else-if that also appeared in exercise

3. For this exercise, a larger percentage of students solved it, and the same

percentage viewed a hint (it was the �rst available hint), but only 1 student

requested more detail for this exercise. Earlier exercises suggested to use a
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Program 4: Start code for exercise 4.

1 public static int calculateScore
2 (int changes , int day) {
3 int score = 10;
4 for (int i = 0; i < changes; i++) {
5 score = score - 1;
6 }
7 if (day == 6 || day == 7) {
8 return score;
9 }

10 else {
11 score = score - 3;
12 return score;
13 }
14 }

Description: The calculateScore method calculates the score for a

train trip. The highest score is 10. The score is based on the number

of changes and the day of the week (Monday is 1, Sunday is 7).

The Railway Company has designed the following calculation:

Base score: 10

For each change: -1

Trip on a weekday: -3

Example test case: for a trip with 2 changes on a Wednesday (day 3),

calculateScore(2, 3) returns a score of 5 (10-2-3).

foreach instead of a regular for-loop, whereas this exercise suggests using a

while because of the unknown number of iterations and the more complex

stop condition (however, solving it with a for with only the calculation inside

would not trigger that hint anymore). In the end, 87% changed the loop. A

few students (3) later received a hint on eliminating the break by using a suit-

able while condition; students not receiving the hint probably did this straight

away.

We found no problems with 3 of the 5 end states we inspected manually.

The other 2 contained extra checks that could have just been the loop condi-

tion.

For the �nal exercise 6 students had to write the solution from scratch

for a slightly more complex problem requiring a loop and some conditionals.
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Program 5: Start code for exercise 5.

1 public static int hasDoubled
2 (double savings , int interest) {
3 double target = 2 * savings;
4 int years;
5 for (years = 0; ; ) {
6 if (target > savings) {
7 savings *= interest / 100.0 + 1;
8 years ++;
9 }

10 else
11 if (target <= savings) {
12 break;
13 }
14 }
15 return years;
16 }

Description: Write a program that calculates in how many years

your savings have doubled with the given interest (as a percentage).

An example: if your savings are 1000 and the interest is 4%, it will

take you 18 years to double your savings (then you’ll have more than

2000).
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Table 6.10: For exercise 4, hints seen and solved by students

(n=87).

Type of the most detailed hint seen Seen by Solved by Total solved
Replace unneeded loop by calculation (line 4-6)
No hint 48 (55%) 44 (92%) ⎫⎪⎪⎬⎪⎪⎭

83 (95%)Top-level hint 23 (26%) 23 (100%)

→ Code example 16 (18%) 16 (100%)

Move statement from if + else outside (line 8+12)
No hint 67 (77%) 62 (91%) ⎫⎪⎪⎬⎪⎪⎭

82 (94%)

Top-level hint 6 (7%) 6 (100%)

→ Detailed hint 10 (12%) 9 (90%)

→ Code example 4 (5%) 4 (100%)

Use the compound -= operator (line 11)
↻
No hint 71 (82%) 69 (97%) ⎫⎪⎪⎬⎪⎪⎭

84 (97%)

Top-level hint 8 (9%) 8 (100%)

→ Detailed hint 6 (7%) 5 (83%)

→ Code example 2 (2%) 2 (100%)

Cleanup empty if or else ⋆
Top-level hint 0 (0%) –

⎫⎪⎪⎬⎪⎪⎭
n.a.

→ Detailed hint for empty if 3 (3%) 3 (100%)

→ Detailed step 1 (1%) 1 (100%)

→ Code example 3 (3%) 3 (100%)

→ Detailed hint for empty else 2 (2%) 2 (100%)

→ Code example 0 (0%) –

The exercise was attempted by only 44 students of which 20 �nished it. There

were no more hints left for the �nished programs. The hints that were seen

the most revolved around optimising the return statement for constructs such

as if(condition) return true; else return false; that can be written

as return condition;. A total of 7 students saw at least one of the hints for

this program; the other hints were only seen by single students. We manually

examined three �nal programs for which there were no more hints left, and

found that one contained an unreachable statement (a bug in the system) and

a return statement could have been optimised, which would require a quite

sophisticated analysis of the control �ow.
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Table 6.11: For exercise 5, hints seen and solved by students

(n=54).

Type of themost detailed hint seen Seen by Solved by Total solved
Remove useless check in else-if (line 11)↻
No hint 44 (81%) 43 (98%) ⎫⎪⎪⎬⎪⎪⎭

52 (96%)

Top-level hint 9 (17%) 8 (89%)

→ Detailed hint 0 (0%) –

→ Code example 1 (2%) 1 (100%)

Replace for by while-loop
No hint 40 (74%) 35 (88%) ⎫⎪⎪⎬⎪⎪⎭

47 (87%)

Top-level hint 11 (20%) 10 (91%)

→ Detailed hint 1 (2%) 1 (100%)

→ Code example 2 (4%) 1 (50%)

Replace break by loop condition ⋆
Top-level hint 3 (6%) 3 (100%) } n.a.→ Code example 1 (2%) 1 (100%)

6.5.3 Student evaluation (RQ3)

All 133 students �lled in a short survey at the end of the tutoring session. First

we asked ‘what do you think about paying attention to code quality’ on a 5-

point Likert scale ranging from ‘not important at all’ to ‘very important’, to

which 24% of the students answered very important, 67% answered important

and 9% answered neutral. The next question was ‘how di�cult did you �nd

the exercises’ from ‘very easy’ to ‘very di�cult’. Of the 131 students who gave

a valid answer, 3% found the exercises very easy, 14% easy, 68% were neutral

and 15% found them di�cult. The last closed question was ‘how useful did you

�nd the hints’, from ‘not useful at all’ to ‘very useful’. A total of 13% answered

very useful, 64% said useful, 13% were neutral and 3% did not �nd the hints

useful. Ten students answered that they did not use the hints.

The remaining subsections discuss the responses to the questions ‘what

did you like about the system’ and ‘what would you want to see di�erent in

the system’. These aspects can be broadly categorised under ‘learning about

code quality’, ‘feedback and hints’, ‘user interface’, and ‘exercises’.
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Learning about code quality

We were pleased that multiple students said something along the lines of ‘fun’,

‘challenge’ and ‘good initiative’. Four students commented on the topic of code

quality and its importance. One student wrote: ‘Code quality is one of the most

important things in a team. It should be stimulated more and the tool helps

with that.’ More than 40 students said something they liked about what they

took away from working with the system. Some examples of responses are:

‘That you can see that the code looks simpler when you changed something

and it is correct’, ‘You learn to look out for code that is unnecessarily complex

or long’, and ‘It o�ers a good challenge in the available time for experienced

programmers, and at the same time it is very accessible’.

Several students used the phrase ‘making you think’, such as ‘It lets you

think about solutions that you normally wouldn’t think of’ and ‘You really

have to think and act yourself. A pleasant way of learning.’ One student had

an interesting idea: ‘It would be cool if there really was an app or website for

the cleanliness of code (this but then with waaaay more exercises), because it

is really good for learning code.’ Three students mentioned as an improvement

that it would be useful to better explain what the bene�t is of a certain sug-

gestion. Four students gave concrete examples of constructs about which they

doubted if they were actually ‘better’, such as i += 2 instead of i = i + 2,

two checks combined with && in the condition of a for-loop, or a foreach-loop

instead of a for-loop.

Hints and feedback

About 48 students positively mentioned the hints and feedback the system

gives. Most comments were about the usefulness and clarity of the hints, such

as ‘the hints make you think’. Six students appreciate that hints can be gradu-

ally revealed and do not give away the solution straight away: ‘Often, the �rst

was su�cient’ and ’Hints only point in the right direction, so you’ll come up

with improvements yourself, unless you really can’t.’ Multiple students also

mention that they like that you can track your progress by seeing how many

improvements can be made. Two students would have liked to see that right

at the beginning of an exercise.

There are also some issues with the feedback that several students pointed

out. This seems to be the case for a few speci�c instances, such as the ‘buggy

if collapse’: a common mistake many students made, for which they did not
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get a clear error message. This particular issue was pointed out by seven stu-

dents. Other students also mentioned in general that feedback could have been

clearer, which was mentioned more often for error messages than for hints.

Some students gave suggestions on how to improve the feedback system, such

as clearly indicating the location of errors. Students also pointed out some un-

expected behaviour from the system, such as ‘Errors where there should not be

an error.’ We had encouraged students to write down unexpected behaviour so

we could look into it and �x it at a later stage. We also suspect some students

were confused by the messages from the Java compiler. The e�ectiveness of

compiler error messages has been a major research area for a long time, but is

still a persistent problem causing confusion and frustration for students [24].

User interface

A total of 28 students mentioned the user interface in a positive way, mention-

ing its simplicity, usability and speed (7 times), or simply that it worked well.

A total of 22 students were not happy about the fact that the current state for

an exercise is not saved, so they lose their progress if they go to another ex-

ercise or accidentally leave the page. Nine students express their satisfaction

with the code editor and its syntax highlighting, code formatting and useful

shortcuts. The responses also contain several suggestions for improving the

editor, such as a dark mode, auto-completion features and underlining syntax

errors similar to what IDEs do.

There were also multiple suggestions about improving the interface in

general. Five students requested smoother transition between exercises. Other

comments mentioned more than once suggested undo/redo functions, and

keep showing the hints even after a subsequent step with an error.

Exercises

Eleven students particularly mention the exercises in a positive way: they

were clear and not too big. Nine students would like to see some changes:

three students found some exercises unclear and the other students all had

their own requests, such as more (variety in) exercises and di�erent levels of

di�culty.

The topic of language support was discussed in the improvement com-

ments. Seven students would like to see C# support (or even other languages),

the language they were mostly using at that moment. Four students requested

support for language features such as functions and ternary operators.
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6.6 Discussion

In this section we refer back to the research questions and discuss the �ndings

in Section 6.6.1. We re�ect on the implications for teaching code refactoring

in Section 6.6.2 and the quality of the system’s ruleset in Section 6.6.3, and

discuss the threats to validity in Section 6.6.4.

6.6.1 Student refactoring behaviour

Howdo students solve refactoring exercises? Which steps do they take,
and which mistakes do they make? (RQ1) The students in our study,

who had already learned the basics of programming, managed quite well solv-

ing refactoring exercises. However, because the second exercise showed signs

of struggle, fewer students completed the exercises after the second. On av-

erage, 92% of the quality issues that were present at the start were dealt with.

Students regularly used the Check diagnosis function, which we view pos-

itively because a central aspect of refactoring is to maintain functional be-

haviour. We can see from the proportion of expected diagnoses that students

also regularly took small steps. Compiler errors and failed tests are both still

pervasive, even though the students started with functionally correct code.

We want to decrease the number of failed tests by adding more buggy rules

to provide speci�c feedback on incorrect steps. For the �rst few exercises, the

majority of the students saw at least one hint. In the subsequent exercises,

fewer students saw hints.

When do they ask for a hint? For which issues do they need hints?
How do they respond to a hint? (RQ2) The majority of the students reg-

ularly requested hints. For all issues in the code that were known at the start,

on average 34% received a hint (mean 22%). It varied per issue whether a stu-

dent expanded the hint to get more detailed information. Even though some

researchers warn against providing progressive hints ending with the correct

answer [239], we did not see negative e�ects of this. We told students to just

ask for the hints when needed, and noticed from the data that they requested

hints at various levels. For only a few complex issues the bottom-out hint

was also the most requested. The fact that the participants were second-year

students might have contributed to this behaviour.

Not surprisingly, students had no real trouble with simple edits, such as

using compound operators and removing self assignments. Students had the
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most trouble with complex control �ow (nested if statements and breaking out

of a loop) and composed expressions. These are the more algorithmic issues

that are usually not �agged by professional static analysis tools, acknowledg-

ing the need for educational tools that do provide support for these issues.

For recurring issues we see progress in some cases. More students man-

aged to solve them, or they needed a hint with less detail. Not in all cases we

noticed an e�ect, which could be due to a di�erent context and the student’s

inability to transfer what they had done before.

What do students think about working with a refactoring tool? (RQ3)
All study participants answered questions on how they perceived code qual-

ity and working with the tool. We noticed the positive attitude of students

towards code quality, which might be expected from students in their second

year that have chosen the software engineering pro�le. They found the level

of the exercises to be appropriate for the amount of time given and their skills,

and considered the hints to be useful.

Overall, the students gave a positive evaluation of the tutoring system and

appreciated working with it. We also noticed this in the classrooms, where al-

most all students worked on the exercises with focus, even though it was their

last lecture week and there were other topics to discuss and a programming

assignment to �nish around that time.

Making students aware and letting them think about code quality instead

of just writing code to meet the requirements of an assignment seems to be

a valuable e�ect of using the tool. However, from the feedback we also learn

that discussing the improvements the tool suggests is important. This could

be done by either expanding the tool with explanations, but also by discussing

these topics in the classroom (see Section 6.6.2).

Students generally value the functions the systems o�ers: the hints, checks

and the progress indicator, although some bugs and unclear (error) messages

understandably confused them. We should be aware that these negative ex-

periences could cause resistance to the system.

It stood out that students valued features of our tutoring system that are

often seen in IDEs, and they suggested adding more of those features. This

particular group of students had been working in the Visual Studio IDE for

some time, an environment o�ering many functions. However, we want the

tutoring system to be free from distraction and only o�er relevant UI features,

so we will carefully consider which requests we will meet.
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6.6.2 Teaching code refactoring

We have shown that students were able to solve refactoring exercises in the

tool, and from the student comments we can derive it has made them think

about a topic they normally do not spend much time on. From the survey

we infer that these students, who are a bit more experienced than novices,

do think it is an important topic. However, we think a greater e�ect can be

reached by accompanying the tool by a lesson on code quality, and by dis-

cussing the suggestions of the tool afterwards. A few students mentioned that

they did not agree with certain ‘improvements’. We should discuss that some

of them are more stylistic, such as using the compound operator *=, but it

might not be wise to use it when they do not fully understand how it works.

We should emphasise that the system will also introduce them to alternative

language constructs that they might not have encountered yet. For example,

using a foreach-loop instead of a for-loop (if possible) has bene�ts and can

protect the programmer from accidentally doing something unwanted. We

would both like to incorporate this in the tool, as well as make it a part of the

programming lessons.

Research on students working with educational code quality tools is scarce.

The study by Wiese et al. [288] is the most relevant to our work. This study

had a control group receiving only a quality metric (the ABC-metric [83]),

and an experimental group receiving feedback from their AutoStyle tool. Both

groups performed a pre-test and a post-test, and the authors described some

case studies of particular student types. Because their students started out

with their own code, and our study focusses more on how students worked in

the tutor, we cannot directly compare results. However, both studies support

the potential for using these kinds of systems, the call for more in-depth help

for students, and more studies evaluating the results.

6.6.3 Quality of the rule set

We inspected some end states manually to explore the soundness and com-
pleteness of our rule set. Although we do not strive for completeness, because

it is impossible to foresee every single solution to a programming problem,

we want to minimise cases in which our system tells the student there are no

hints left, while their solution is imperfect. Although we do not formally prove

soundness, we believe the rules are sound because they represent mathemat-

ical and logical rules, and adhere to the semantics of programming language
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constructs. Continually checking a program against a set of test cases also

ensures that the behaviour of the program is preserved.

We derive the following improvements from our manual inspections in

which we identi�ed some deviating solutions:

● Extending certain existing rules with more normalizations so that they

�re for a larger number of cases. This is mostly the case for (nested)

control �ow.

● Adding rules related to the use of variables. We should take care design-

ing these rules, as clarity is most important and arriving at the fewest

number of lines of code is not.

● Implementing more buggy rules to intercept undesirable code edits.

In cases in which our analysis fails to detect a certain issue because it de-

viates too much from the base case, we might have to resort to high-level met-

rics, such as counting language constructs or nesting levels. We will further

explore this in future work.

6.6.4 Threats to validity

The system contained some bugs at the time of the experiment, which con-

fused some students and might have slowed down their progress. The fact

that the students were learning a di�erent programming language at the time

of the experiment could have taken up some valuable time to recollect Java

syntax for certain language constructs.

The granularity of the log data we analysed is at the snapshot-level, which

is the middle level between submission-level and key-stroke-level, as identi-

�ed by Vihavainen et al. [273]. The snapshots were recorded when students

performed a check activity or hint request, implying that we do not have de-

tailed information on all of their steps, and our analysis could have missed

relevant edits that were undone before taking an action. Solving an issue is

measured by calculating hints for subsequent program states, and determining

the di�erences. Some issues might be solved in unexpected ways for which

our system does not generate a hint, which could mean in some cases there

was no actual improvement.
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Another threat to validity is that fewer students worked on the last few

exercises, which are probably the ‘better’ students. This could cause an over-

estimation on how well students performed on these exercises, and would

explain the fact that fewer students received hints for these exercises.

The novelty of a new tutoring system could also have an e�ect on the

enthusiasm of the students.

6.7 Conclusion and future work

This paper describes the results of an exploratory study of log data from stu-

dents working on refactoring exercises, and the students’ personal experiences

thereof. The students worked for 30 minutes on 6 exercises at their own pace,

in which they had to improve imperfect example solutions. All participants

had at least a basic background in programming, and were mostly able to do

the exercises, with regular checks to verify correctness. However, they also

struggled with complex control �ow. The students regularly requested hints,

at various levels of detail. After seeing a hint about a particular issue, most

students solved the same issue without a hint when they encountered it again.

Overall, students valued the topic of code quality and working with the sys-

tem, but also proposed valuable enhancements.

These results contribute to focussing the attention of teachers and tool de-

signers, by incorporating the discussion of refactoring rules in education (in

particular those related to complex expressions and control �ow), paying at-

tention to alternative language constructs, and providing feedback at various

levels to meet the needs of individual students.

We will continue to improve and validate the system with students to make

them more aware of the quality of code and the importance of refactoring.

We intend to extend the ruleset and add more buggy rules. We also want to

re�ne feedback messages and hints with more explanations on why an edit is

useful. Support for methods could present new opportunities to improve code.

It would be useful to present these considerations to students when they try

to implement such a feature, making them think about the implications. Self-

re�ection questions after doing an edit (‘why did you just replace the for by a

foreach?’) could be an e�ective addition to the system. Finally, we will work

on further enhancing the UI while maintaining a focused environment that

does not distract from the system’s learning goals.
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After incorporating improvements, we intend to conduct a di�erent type

of experiment with a control group and experimental group, and a pre- and

post-test to determine learning gains. We also want to study the e�ect of using

di�erent types of feedback.
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Chapter 7

Epilogue

In this �nal chapter, we re�ect on the work in this thesis, look at some emerg-

ing trends in the �eld of automated feedback, and describe implications for

future work. We started this research by exploring the state of the art of au-

tomated feedback for programming exercises. We then focussed on the topic

of code quality and style, investigating to what extent student code exhibits

quality issues. To investigate the role of teachers, we studied their opinions

and the concrete feedback they would give on student code. Our �ndings re-

sulted in the design of a programming tutoring system that helps students to

refactor code step by step. Finally, we discussed how students perceived this

tutoring system, and how they approached the exercises.

7.1 Conclusions

We now revisit and answer the central research question of this thesis by an-

swering the corresponding subquestions:

How can automated feedback support students learning code refactoring?

RQ1 What are the characteristics of existing tools that give automated feed-

back on programming exercises?

We found that the most common feedback category was, unsurprisingly,

about mistakes. This type of feedback is often in the form of showing failed

tests, or pointing to incorrect constructs in the code. Feedback that helps stu-

dents progress or improve is less common, in particular for exercises that re-

quire writing a solution from scratch. Many di�erent techniques are being
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used for generating feedback in tools, often tied to a particular kind of feed-

back. The role of teachers in authoring exercises and feedback messages is

limited. How rigorously a tool and its feedback are validated varies greatly,

and leaves room for improvement.

RQ2 Which code quality issues occur in student code, and are these issues

being �xed?

This study provided us with insight into quality issues in student code.

We found various instances of all kinds of issues �agged by a professional

static analysis tool, which often remained un�xed after emerging for the �rst

time. We did not see a di�erence with students who had some type of code

analyser installed. Although some related studies, published after our study,

did �nd e�ects of using these tools, we argue that it very much depends on

the context. In our large data set, students worked in many di�erent settings,

both controlled and non-controlled, so the need to �x issues was probably less

than in settings in which students were being graded on quality issues.

RQ3 How would teachers help students to improve their code?

Teachers �nd code quality an important topic, but acknowledge its minor

role in summative assessment. Most teachers could name improvements for

the three imperfect student programs we showed them. We noticed, however,

that professional analysis tools generally point to di�erent issues than teach-

ers do. Between teachers there were also various di�erences, although they

generally agreed on algorithmic issues.

RQ4 How do we design a tutoring system giving automated hints and feed-

back to learn code refactoring?

We have designed a tutoring system that is based on rules derived from ex-

perts, the literature, and logic/maths. The rules capture rewrite steps for func-

tionally correct programs, preserving the programs’ semantic meaning. These

steps are hierarchically combined into larger rewrite strategies, describing the

ordering and prioritisation of substeps. Automated hints are derived by cal-

culating next steps for a particular program state, using layered hint labels.

Correctness feedback is calculated by running test cases, calling a compiler,
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and checking whether a student has performed an expected step, or a buggy

step.

RQ5 What is the behaviour of students working in a such a tutoring system?

A large group of students worked on refactoring exercises in the tutoring

system, in which they had to improve correct, but imperfect code. The stu-

dents already had some background in programming from two earlier courses,

and were able to identify most issues in the programs and rewrite them into

improved programs. They requested hints at various levels, and regularly

checked the correctness, as required when refactoring. Students struggled

most with complex control �ow, an aspect professional static analysis tools

do not always deal with. We also noticed the students’ positive attitude to-

wards the topic and the system, although we observed some confusion about

unclear feedback messages.

7.2 Recent trends

It has been four years since the most recent paper from our systematic litera-

ture review was published. Pasting our search query from the literature review

in the ACM library search box returns hundreds of papers published after 2015,

showing that the �eld has continued to develop. We have noticed in particular

that the trend of using data-driven feedback has persevered (e.g. [173], [183],

[218]). There also seems to be a renewed interest in creating ITSs for program-

ming. The e�ect of (di�erent types of) hints has also been studied more exten-

sively. For example, Marwan et al. [183] have evaluated data-driven next-step

hints in a programming tutor for a block-based language, studying the e�ect

of textual explanations and self-explanation prompts. Price et al. [218] have

developed a method for evaluating the quality of data-driven next-step hints,

and have applied this method to di�erent hint generation algorithms. Data-

driven techniques are also being used for other types of feedback, such as

program repair hints and example feedback. By contrast, Yang et al. [118] use

refactoring rules to transform a program with the goal of �nding the closest

match to a single correct solution, before identifying �xes for incorrect blocks.

We have also observed an increased focus on feedback generation at scale for

large, MOOC-style courses about programming (e.g. [254], [278]). In some

new hint generation techniques, teachers have an authoring role [182].
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In their 2018 literature review on introductory programming [173], Luxton-

Reilly et al. identify the following trends in tools for programming: the use of

data-driven techniques and intelligent tutoring techniques to improve feed-

back, and ‘addressing skills other than code-writing’. Our work relates to two

of those trends: the use of intelligent tutoring techniques such as next step

hints, and addressing a di�erent type of skill, namely refactoring functionally

correct code.

Our tutoring system is a rule-based system, mostly based on rules of ex-

perts, which is rather di�erent from the current data-driven trend. We argue

that when it concerns a topic such as code quality, for which there are no clear

rights and wrongs, the role of the expert (teacher) is vital. The expert’s role

may take the form of authoring hints for clusters of similar programs, as seen

in the data-driven AutoStyle tutor [52]. However, our research has shown that

using a set of expert-devised rules is appropriate and useful for introducing

students to the topic of refactoring. We do acknowledge the need to put teach-

ers in charge more, through authoring feedback messages and explanations,

and disabling and ordering certain rules. We consider this to be future work.

The introductory programming review mentioned earlier also found that

papers on tools to support learning and teaching is a major category. Their

concern, which is shared by others (e.g. [81], [211]), is related to the evaluation

and dissemination of these tools, which is not always of high quality. The main

focus of this thesis has been on the motivation and design of the tutoring

system. We have also studied log data from the system to get more insight

into how students approach refactoring and how they use feedback and hints.

We have yet to study the learning e�ect of using the system, which is future

work and is not a part of this thesis. Regarding dissemination, we have made

the system available online for others to use, and we welcome studies with

students from other countries and institutes. We have also planned to publish

the code soon.

7.3 Future work and �nal thoughts

The work discussed in this thesis is merely a starting point. In the near future

we will initiate the second design cycle [287], improving the tutoring system

by incorporating �ndings from our studies. We will validate the system with

a group of students who are less experienced than the group from our study,

with an increased focus on studying learning e�ects. In this thesis we have
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also argued for the need of accompanying lessons to explain and discuss the

rewrite rules from our system, as well as explaining the importance of code

refactoring in general. The role of the student, and his or her rationale for

improving code, is also a topic to be explored.

At a later stage, we would like to expand to higher-level refactorings. Au-

tomated feedback at the class level is still rare, and will probably test the limits

of the techniques we are currently using.

The introduction of this thesis started with the debate whether program-

ming is really that hard. This thesis does not aim to answer that complex ques-

tion. However, we contribute by providing more insight into quality aspects

of student programs, the helpfulness of the feedback students get from tools,

the perceptions of teachers, and by delivering a tutoring system that helps stu-

dents refactor code. It is unlikely that programming will ever be easy, but if

we keep on studying how we can best support students, we should have more

realistic goals for students to reach after their �rst courses.
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Samenvatting

Een bekend probleem voor docenten in het programmeeronderwijs: een stu-

dent schrijft een functioneel correcte oplossing, maar de code is ine�ciënt,

onnodig complex of onleesbaar. Helaas is het binnen het onderwijs niet altijd

mogelijk om voldoende tijd en aandacht te besteden aan de kwaliteit van code.

Uit onderzoek blijkt dat zelfs de code van professionele programmeurs veel

‘code smells’ bevat, met als gevolg dat kwaliteitskenmerken zoals onderhoud-

baarheid in gevaar komen. De vele professionele tools die helpen bij het op-

sporen en verbeteren (‘refactoren’) van problematische code zijn meestal niet

geschikt voor beginners. Dit proefschrift gaat over codekwaliteit in de con-

text van studenten die leren programmeren en de kleine programma’s die zij

schrijven, onderzoekt hoe studenten en docenten met codekwaliteit omgaan,

en hoe tools en softwaretechnologie kunnen worden ingezet om ze hierbij te

ondersteunen. Om studenten vroeg te leren hoe ze hun (functioneel correcte)

code kunnen verbeteren, hebben we een tutorsysteem ontwikkeld die studen-

ten leert hoe ze code kunnen refactoren. De tutor geeft automatische feedback

op de stappen die de studenten nemen, en geeft hints als ze vastlopen.

De volgende vraag staat centraal in dit proefschrift:

Hoe kan automatische feedback studenten helpen bij het refactoren van code?

In dit proefschrift zoeken we naar een antwoord op deze vraag, waarbij elk

hoofdstuk één van de vijf subvragen beantwoordt.

RQ1 Wat zijn de kenmerken van bestaande tools die automatische feedback

geven op programmeeropgaves?

We hebben een systematisch literatuuronderzoek gedaan naar het automa-

tisch genereren van feedback op programmeeropgaves. Het onderzoek heeft

een brede scope: we bekijken het vroegste werk uit de jaren 60 tot en met ar-

tikelen uit 2015. Van 101 tools is onderzocht welk type feedback ze genereren,
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welke technieken ze daarvoor gebruiken, in hoeverre de feedback aanpasbaar

is, en op welke manier de tools zijn geëvalueerd. Om de feedbacktypes te cate-

goriseren, hebben we een bestaande classi�catie van Narciss (2008) gebruikt,

die we hebben uitgebreid voor het programmeerdomein.

Uit het onderzoek blijkt dat feedback zich meestal richt op het identi�-

ceren van fouten in code, bijvoorbeeld door het tonen van mislukte test cases

of het aanwijzen van incorrecte statements. Feedback is veel minder gericht op

het oplossen van fouten, het helpen van studenten op weg naar een oploss-

ing voor een programmeerprobleem, en het verbeteren van code die al cor-

rect is. We zien een toenemende diversiteit in de technieken die worden ge-

bruikt om feedback te genereren, zoals data-gedreven technieken gebaseerd op

grote hoeveelheden historische studentdata. Deze technieken bieden nieuwe

mogelijkheden, maar zorgen vaak ook voor nieuwe uitdagingen. Verder zijn

tools en de feedback die ze genereren vaak lastig aan te passen door docenten.

De mate waarin tools zijn geëvalueerd op hun gebruik en e�ectiviteit wisselt

sterk, en blijft een belangrijk aandachtspunt.

RQ2 Welke kwaliteitsissues komen voor in studentcode, en lossen studen-

ten deze issues op?

Er zijn vele studies gedaan naar fouten die studenten maken in hun code.

Daarentegen is er veel minder aandacht geweest voor de kwaliteit van de code.

Om uit te zoeken in welke mate studentcode kwaliteitsissues bevat, hebben we

een analyse gedaan van meer dan 2,5 miljoen codefragmenten in Java met be-

hulp van de professionele statische analysetool PMD. We hebben een subset

met checks (regels) van PMD geselecteerd op basis van een bestaande rubric

voor het beoordelen van de kwaliteit van studentcode. Deze regels hebben te

maken kwaliteitsissues op het gebied van de �ow van code, de keuze voor pro-

grammeerconstructies, duidelijkheid van expressies, decompositie en modula-

risatie. We hebben diverse instanties van deze issues gevonden, die nauwelijks

werden opgelost in latere submissies van hetzelfde codefragment. Dit laat-

ste gold met name voor issues met betrekking tot modularisatie. We zagen

geen e�ect van geïnstalleerde kwaliteittools op het aantal gevonden issues.

In gerelateerd onderzoek dat na dit onderzoek verscheen was dit e�ect soms

wel zichtbaar. We stellen dat dit e�ect sterk afhankelijk is van de context

waarin een dergelijke tool wordt ingezet; in onze dataset werkten studenten

in diverse settings (zowel gecontroleerd als niet-gecontroleerd), waardoor het
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e�ect waarschijnlijk minder was dan in settings waarin studenten beoordeeld

werden op kwaliteitsissues.

RQ3 Hoe helpen docenten studenten hun code te verbeteren?

Docenten spelen een belangrijke rol bij het onder de aandacht brengen

van codekwaliteit. Idealiter zou elke student persoonlijke feedback moeten

kunnen krijgen van een docent op de kwaliteit van zijn of haar code. Helaas is

dit lastig vanwege grote studentaantallen en beperkte tijd van docenten. We

hebben door middel van een enquête onderzocht hoe docenten naar het on-

derwerp codekwaliteit kijken. Dertig docenten van diverse instituten hebben

geparticipeerd, door hun mening te geven over codekwaliteit, en feedback te

geven op drie imperfecte studentoplossingen voor een programmeerprobleem.

Uit de resultaten bleek dat docenten codekwaliteit een belangrijk onderwerp

vinden, maar dat het in de praktijk een beperkte rol speelt bij het summatief

beoordelen van code. Bij de codefragmenten van studenten gaven de meeste

docenten vergelijkbare hints over het verminderen van de algoritmische com-

plexiteit en het opruimen van ‘clutter’. Over andere aspecten gaven ze wisse-

lende combinaties van hints. We zien een grote diversiteit in hoe ze de pro-

gramma’s zouden herschrijven naar een verbeterde versie. We zien veel ver-

schillen bij het vergelijken van de hints die docenten geven met de uitvoer

van professionele statische analysetools, met name rondom de algoritmische

complexiteit waar deze tools voor dit soort kleine programma’s geen feedback

over geven.

RQ4 Hoe ontwerpen we een tutorsysteem dat automatische hints en feed-

back geeft bij het leren van code refactoring?

Op basis van de bevindingen uit de voorgaande onderzoeken hebben we

een tutorsysteem ontworpen. Het systeem biedt refactoropgaves aan, waarin

de student kleine programma’s, die al functioneel correct zijn, moeten her-

schrijven naar een versie die beter, leesbaarder en/of e�ciënter is. De stu-

dent kan bij elke stap vragen om feedback en hints. Hints worden gegeven op

verschillende niveaus: van een globale aanwijzing tot een concreet codevoor-

beeld. Het is een regelgebaseerd systeem, waarbij de regels zijn gebaseerd op

de input van docenten uit de voorgaande studie, een voor studenten geschikte

subset van regels vanuit professionele tools, en regels uit de wiskunde/logica

en andere bronnen uit de literatuur. We hebben het systeem geëvalueerd door
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het te vergelijken met professionele tools, en door te laten zien hoe het sys-

teem overeenkomt met hoe docenten studenten zouden helpen refactoren.

RQ5 Hoe gedragen studenten zich in een tutorsysteem voor refactoring?

In de herfst van 2019 heeft een groep van 133 studenten gewerkt met de

refactoring tutor. De tweedejaars studenten, die allen al een basis in program-

meren hadden, werkten aan zes refactoropgaves, waarbij hun activiteiten wer-

den gelogd in een database. Na a�oop van het werken aan de opgaves werden

ze gevraagd naar hun bevindingen via een enquête.

De studenten kwamen over het algemeen vrij goed uit de opgaves, hoewel

ze zeker niet allemaal aan alle opgaves toe kwamen. In gemiddeld 92% van de

gevallen waren ze in staat om de issues op te sporen en te refactoren, al dan

niet met behulp van de hints. Uit de data maken we op dat de studenten hints

op verschillende niveaus gebruiken, en geregeld kleine stappen nemen die ze

veri�ëren met de diagnose-functie die de functionele correctheid checkt, zoals

gewenst bij het refactoren. De opgaves bevatten issues die, soms in aangepaste

vorm, terugkomen in latere opgaves; voor bepaalde issues hadden de studen-

ten dan minder hulp nodig ze op te lossen, hoewel dit e�ect niet altijd zicht-

baar was in andere gevallen. De studenten hadden de meeste moeite met het

versimpelen van complexe control �ow. Aan dit aspect besteden professionele

statische analysetools beperkt aandacht, wat in het bijzonder geldt voor kleine

studentprogramma’s.

De studenten geven aan dat ze over het algemeen waren te spreken over

het werken met het systeem. Ze vinden het onderwerp van codekwaliteit

belangrijk. Ze waarderen de hints en feedback van het systeem, maar noe-

men ook enkele kritische punten met betrekking tot onduidelijke feedback-

berichten.

Het werk van dit proefschrift is slechts een startpunt. In diverse iteraties zal

de tutor verbeterd worden, en gevalideerd worden met groepen studenten,

waarbij we met name naar leere�ecten willen kijken. Ook willen we kijken

naar hoe minder ervaren studenten met refactoropgaves omgaan. Daarnaast

benadrukken we in dit proefschrift dat het erg belangrijk is om aanvullende

instructie te geven over het nut van refactoren en de betekenis van de diverse

regels die in het systeem zitten. Op de lange termijn zal het waardevol zijn
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te kijken naar refactorings op een hoger niveau, zoals dat van klassen en in-

terfaces. Daarnaast is het bestuderen van de motivatie van de student voor

refactoren een interessant onderwerp.

Dit proefschrift draagt bij aan het verder verbeteren van het program-

meeronderwijs, door het geven van inzicht in de kwaliteitsaspecten van pro-

gramma’s geschreven door studenten, de mate waarin feedback van tools bij-

draagt aan die kwaliteit, de visie van docenten daarop, en door het aanbieden

van een tutorsysteem waarin studenten worden geholpen code te refactoren.
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Appendix A

Code Refactoring
Questionnaire

Introduction

Why?
We are interested in how lecturers teach code refactoring: improve the quality

of code that is functionally correct, but not the most elegant/short/e�cient

implementation.

Who?
Lecturers that have been teaching programming and other computer science-

related courses for at least 2 years.

How?
First we ask some general questions. Next, the questionnaire presents three

code fragments and asks how you as a lecturer would help a student to improve

the code. The questionnaire should take you between 15 and 20 minutes to

complete.

Con�dentiality

To help protect your con�dentiality, you do not have to reveal information

that will personally identify you. The results of this study will be used for

research purposes only.
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I give permission to use my responses for research purposes *
1

◯ Yes

◯ No

[new section]

General information

What is your current occupation/job title? * [short answer]

In which country do you teach computer science-related courses? * [short an-

swer]

At which institute(s) do you teach computer science-related courses? You can

leave this �eld empty if you do not want to answer this question. [short an-

swer]

How many years of experience in teaching computer science-related courses

do you have? * [number > 0]

What courses do you teach? *

◻ First year courses

◻ Second year courses

◻ Third year+ courses

◻ Other: [short answer]

[new section]

Role of code quality

Code quality deals with the directly observable properties of source code, such

as algorithmic aspects and structure. Some examples of code quality issues are:

1

Fields marked with an asterisk (*) are required.
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● Duplicated code.

● An expression that could be shortened.

● Putting the same code in both the true-part and the false-part of an if-

statement instead of outside the if-statement.

Although layout and commenting are certainly indicators of code quality, these

aspects are beyond the scope of our study.

Code refactoring is editing code step by step while preserving its functionality.

Does code quality appear in the learning goals of your �rst- and second-year

programming courses? *

◯ Yes

◯ No

Do you pay attention to code quality while teaching programming to �rst-

and second-year students? *

◯ Yes, it is a major aspect

◯ Yes, but it has a minor role

◯ No

Do you explicitly assess/grade code quality aspects in programming assign-

ments? *

◯ Yes, it is a major aspect

◯ Yes, but it has a minor role

◯ No

If you advise or prescribe tools that deal with code quality/refactoring to your

students, which ones are they? [short answer]

[new section]
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Exercises

The following programming exercises are targeted at novice programmers in

higher education. We assume that the code is written on a computer with the

use of a compiler, and not on paper.

[new section]

Exercise 1

Given the following programming exercise:

‘Implement the sumValues method that adds up all numbers from the array

parameter, or only the positive numbers if the positivesOnly boolean param-

eter is set to true.’

1 int sumValues(int [] values , boolean positivesOnly) {
2 // sumValues(new int [] {1, -2, 3, -4, 5}, false)
3 // should return 3
4 // sumValues(new int [] {1, -2, 3, -4, 5}, true)
5 // should return 9
6 }

The listing below shows the method body of a common, functionally correct

student solution.

1 int sum = 0;
2 for (int i = 0;i < values.length;i++) {
3 if (positivesOnly == true) {
4 if (values[i] >= 0) {
5 sum += values[i];
6 }
7 }
8 else {
9 sum += values[i];

10 }
11 }
12 return sum;

How would you assess this solution in a formative situation (e.g. feedback

during a lecture or lab)? *

◯ Acceptable, does not need to be improved

◯ Acceptable, but could be improved



Appendix A. Code Refactoring Questionnaire 183

◯ Unacceptable, should be improved

Describe all hint(s) you would give to a student to improve this program. Pri-

oritise the hints by numbering the hints and ordering them from important to

less important. [long answer]

How would you want the student to edit (refactor) this program step by step?

Type the code after each step by copying the code and applying edits. Leave

the remaining �elds empty after your �nal step.

Type the code after the �rst step. The original code has already been copied

below and can be edited. [long answer]

Type the code after the second step. [long answer]

Type the code after the third step. [long answer]

Type the code after the fourth step. [long answer]

Type the code after the �fth step. [long answer]

Type the code after the sixth, seventh, eight, .., �nal step. Put the number of

each edit step before the code. [long answer]

[new section]

Exercise 2 - Solution 1

Given another programming exercise for novice programmers:

‘Write the code for the method unevenSum. This method should return the

sum of the numbers at an uneven index in the array that is passed as a param-

eter, until the number -1 is seen at an uneven index.’

1 public int unevenSum(int[] array) {
2 // unevenSum(new int [] {44,12,20,1,-1,3,5,-1,99,4})
3 // should return 16
4 }

The listing below shows the body of a solution, based on actual student solu-

tions. This solution contains a functional error regarding the stop condition.
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You may ignore this error when answering the questions.

1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (stop == false) {
6 if (array[i] >= 0) {
7 total += array[i];
8 } else if (array[i] < 0) {
9 stop = true;

10 }
11 }
12 else {
13 total = total;
14 }
15 }
16 return total;

[repeat exercise questions]

Exercise 2 - Solution 2

Given the programming exercise from the previous question:

‘Write the code for the method unevenSum. This method should return the

sum of the numbers at an uneven index in the array that is passed as a param-

eter, until the number -1 is seen at an uneven index.’

The listing below shows the body of an actual correct student solution (with

some variable names translated into English):
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1 int answer = 0;
2 int index = 0;
3 boolean value = true;
4

5 for(int number: array) {
6 if(index % 2 == 0) {
7 index ++;
8 } else {
9 if(number == -1) {

10 value = false;
11 }
12 if(value) {
13 answer = answer + number;
14 }
15 index ++;
16 }
17 }
18 return answer;

[repeat exercise questions]

[new section]

Completion

After completing these �nal questions, click below to submit your response.

Do you have any further remarks? [long answer]

If you would like to receive an update on the results of the study, please pro-

vide an email address. [short answer]
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Appendix B

Stepwise improvement
sequences with hints

Minor errors by teachers are corrected

Program 1

Example 1 (participant #163020)

1 int sum = 0;
2 for (int i = 0; i < values.length; i++){
3 if (positivesOnly == true) {
4 if (values[i] >= 0) {
5 sum += values[i];
6 }
7 } else {
8 sum += values[i];
9 }

10 }
11 return sum;

Hint: could ‘== true’, at the end of a boolean expression, be removed always?

→
1 int sum = 0;
2 for (int i = 0; i < values.length; i++){
3 if (positivesOnly) {
4 if (values[i] >= 0) {
5 sum += values[i];
6 }
7 } else {
8 sum += values[i];
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9 }
10 }
11 return sum;

Hint: Would iterating over values be more readable? (f.i. ‘for (int i : values)

{...’)

→
1 int sum = 0;
2 for (int i : values ){
3 if (positivesOnly) {
4 if (i >= 0) {
5 sum += i;
6 }
7 } else {
8 sum += i;
9 }

10 }
11 return sum;

Hint: Does it make sense to add 0 to a number?

→
1 int sum = 0;
2 for (int i : values) {
3 if (positivesOnly) {
4 if (i > 0) {
5 sum += i;
6 }
7 } else {
8 sum += i;
9 }

10 }
11 return sum;

Hint: We have duplication, in ‘sum += values[i]’. How could we eliminate

it, using a binary operator connecting the 2 boolean expressions? Would this

make your code more readable or less? Would this make your code more

maintainable or less?

→
1 int sum = 0;
2 for (int i : values ){
3 if (i > 0 || !positivesOnly) {
4 sum += i;
5 }
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6 }
7 return sum;

Done.

Program 2a

Example 1 (participant #162208)

1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (stop == false) {
6 if (array[i] >= 0) {
7 total += array[i];
8 } else if (array[i] < 0) {
9 stop = true;

10 }
11 }
12 else {
13 total = total;
14 }
15 }
16 return total;

Hint: Remove lines that does not change the current state (total = total).

→
1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (stop == false) {
6 if (array[i] >= 0) {
7 total += array[i];
8 } else if (array[i] < 0) {
9 stop = true;

10 }
11 }
12 }
13 return total;

Hint: Use break or return instead of the boolean stop.

→
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1 int total = 0;
2

3 for (int i = 1; i < array.length; i = i + 2) {
4 if (array[i] >= 0) {
5 total += array[i];
6 } else if (array[i] < 0) {
7 break;
8 }
9 }

10 return total;

Hint: Replace the else if with else, since it always happens.

→
1 int total = 0;
2

3 for (int i = 1; i < array.length; i = i + 2) {
4 if (array[i] >= 0) {
5 total += array[i];
6 } else {
7 break;
8 }
9 }

10 return total;

Hint: Reduce the number of nested statements.

→
1 int total = 0;
2

3 for (int i = 1; i < array.length && array[i] >= 0; i=i+2) {
4 total += array[i];
5 }
6 return total;

Hint: [introduced a method for isPositiveNumber]

→
1 int total = 0;
2

3 for (int i=1; i < array.length && isPositiveNumber(array[i])
4 ;i = i + 2) {
5 total += array[i];
6 }
7 return total;
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Done.

Example 2 (id #105352)

1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (stop == false) {
6 if (array[i] >= 0) {
7 total += array[i];
8 } else if (array[i] < 0) {
9 stop = true;

10 }
11 }
12 else {
13 total = total;
14 }
15 }
16 return total;

Hint: Line 13: does nothing.

→
1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (stop == false) {
6 if (array[i] >= 0) {
7 total += array[i];
8 } else if (array[i] < 0) {
9 stop = true;

10 }
11 }
12 }
13 return total;

Hint: Never use (expression == false), use (!expression) instead.

→
1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (!stop) {
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6 if (array[i] >= 0) {
7 total += array[i];
8 } else if (array[i] < 0) {
9 stop = true;

10 }
11 }
12 }
13 return total;

Hint: Line 8: is this boolean expression useful?

→
1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length; i = i + 2) {
5 if (!stop) {
6 if (array[i] >= 0) {
7 total += array[i];
8 } else {
9 stop = true;

10 }
11 }
12 }
13 return total;

Hint: You can add the stop-criterion to the for-statement.

→
1 int total = 0;
2 boolean stop = false;
3

4 for (int i = 1; i < array.length && array[i] >= 0; i=i+2) {
5 total += array[i];
6 }
7 return total;

Done.

Program 2b

Example 1 (participant #111046)

1 int answer = 0;
2 int index = 0;
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3 boolean value = true;
4

5 for(int number: array) {
6 if(index % 2 == 0) {
7 index ++;
8 } else {
9 if(number == -1) {

10 value = false;
11 }
12 if(value) {
13 answer = answer + number;
14 }
15 index ++;
16 }
17 }
18 return answer;

Hint: If you are keeping an index for the even/uneven numbers, wouldn’t it

be easier to use a regular FOR loop instead of a FOREACH?

→
1 int answer = 0;
2 boolean value = true;
3

4 for(int index = 1; index < array.length; index += 2) {
5 if(array[index ]== -1) {
6 value = false;
7 }
8 if(value) {
9 answer = answer + array[index];

10 }
11 }
12 return answer;

Hint: If we encounter a -1, can’t we just return the answer?

→
1 int answer = 0;
2 boolean value = true;
3

4 for(int index = 1; index < array.length; index += 2) {
5 if(array[index ]== -1) {
6 return answer;
7 }
8 if(value) {
9 answer = answer + array[index];

10 }
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11 }
12 return answer;

Hint: If the number is not -1, can’t we just assume we can add the number to

the sum?

→
1 int answer = 0;
2

3 for(int index = 1; index < array.length; index += 2) {
4 if(array[index ]== -1) {
5 return answer;
6 } else {
7 answer = answer + array[index];
8 }
9 }

10 return answer;

Hint: Can we rewrite x = x + y to something shorter?

→
1 int answer = 0;
2

3 for(int index = 1; index < array.length; index += 2) {
4 if(array[index ]== -1) {
5 return answer;
6 } else {
7 answer += array[index];
8 }
9 }

10 return answer;

Done.

Example 2 (participant #144022)

1 int answer = 0;
2 int index = 0;
3 boolean value = true;
4

5 for(int number: array) {
6 if(index % 2 == 0) {
7 index ++;
8 } else {
9 if(number == -1) {
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10 value = false;
11 }
12 if(value) {
13 answer = answer + number;
14 }
15 index ++;
16 }
17 }
18 return answer;

Hint: Factor out index++ and negate condition.

→
1 int answer = 0;
2 int index = 0;
3 boolean value = true;
4

5 for(int number: array) {
6 if(index % 2 == 1) {
7 if(number == -1) {
8 value = false;
9 }

10 if(value) {
11 answer = answer + number;
12 }
13 }
14 index ++;
15 }
16 return answer;

Hint: Use a “classical” for-loop.

→
1 int answer = 0;
2 boolean value = true;
3

4 for(int index = 0; index < array.length; index ++) {
5 int number = array[index];
6 if(index % 2 == 1) {
7 if(number == -1) {
8 value = false;
9 }

10 if(value) {
11 answer = answer + number;
12 }
13 }
14 }
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15 return answer;

Hint: Redundant variable value (poorly chosen name btw).

→
1 int answer = 0;
2

3 for(int index = 0; index < array.length; index ++) {
4 int number = array[index];
5 if(index % 2 == 1) {
6 if(number == -1) {
7 return answer;
8 }
9 answer = answer + number;

10 }
11 }
12 return answer;

Hint: Cosmetics.

→
1 int answer = 0;
2

3 for (int i = 0; i < array.length; i++) {
4 int number = array[i];
5 if (i % 2 == 1) {
6 if (number == -1) {
7 break;
8 }
9 answer += number;

10 }
11 }
12 return answer;

Done.
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