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Abstract. We present a generic framework that provides hints on how
to achieve a goal to users of software supporting rule-based problem solv-
ing from different domains. Our approach consists of two parts. First, we
present a DSL that relates and unifies different rule-based problems. Sec-
ond, we use generic search algorithms to solve various kinds of problems.
This solution can then be used to calculate a hint for the user. We present
three rule-based problem frameworks to illustrate our approach: the Ideas
framework, PuzzleScript and iTasks. By taking real world examples from
these three example frameworks and instantiating feedback systems for
them, we validate our approach.

1 Introduction

Many software frameworks and systems support, model, or automate the process
of human problem solving. With a problem we mean anything like a game or a
puzzle, solving an exercise in physics, or search and rescue people in need. Typ-
ical examples of systems supporting problem solving are workflow management
systems, intelligent tutoring systems, and expert systems.

A user of a system supporting problem solving sometimes needs help in mak-
ing a decision or taking a step towards a particular goal. In the case of a game
or a puzzle, a user might get stuck, and need a step in the right direction. For
supporting a student solving an exercise in an intelligent tutoring system, hints
are essential [24]. In search and rescue systems, hints can quickly give insight in
the current situation, and can help a user in understanding why a next step has
to be taken. A user has to take a decision under pressure of time and potential
danger. Automatically suggesting and explaining the best option to perform may
reduce the chance of human error, while still allowing intervention.

In all of the above examples a user follows a potentially flexible process,
and needs information about where she is in the process, where she should go
next, and why she should go there [5]. In this paper, we attempt to answer the
question: how can we construct a generic framework that provides users of rule-
based problem solving systems with feedback? To answer the question, we look
at research performed in the intelligent tutoring community. In this community,
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a lot of research has been performed on how to build frameworks that provide
the user with feedback on how to solve exercises [25], allows teachers to describe
their exercises [17], and deals with different problem-domains [6]. The results
are not directly applicable to the rule-based problems described above, but the
central ideas inspire our approach.

There are many forms of hints and feedback possible. In this paper, we focus
on next-step hints. This kind of hint indicates which of the steps that can cur-
rently be taken, is the best choice. For example, in an intelligent tutoring system,
the next step that a student should apply is returned, for example “Eliminate
constants” or “Remove double negation”. In the case of a puzzle, we want to
inform a player on what to do next, for example “Move left” or “Apply action
x”. In the case of a search and rescue system we want to report what immediate
action needs to be taken, for example “Inform unit x” or “Escalate incident to
level 2”. The best sentence to use when presenting such a next-step hint is prob-
ably best determined by a teacher, but which next step to take is something we
want to and can calculate automatically.

This paper proposes a unified framework to describe processes for problem
solving. For this purpose, we use a domain specific language (DSL). Giving a hint
in an intelligent tutoring system for solving equations often amounts to returning
the next steps prescribed by the solving strategy, where providing a hint for
a more complicated problem such as the traveling salesman problem requires
more involved problem solving techniques. We obtain these different instances
of problem solving processes by interpreting our DSL in different ways. Thus we
have a unified framework for describing problem solving processes, which can
be instantiated for different purposes by selecting different interpretations. The
novelty of our framework is the way in which it relates rule-based problems, to
make them tractable to standard, generic solving algorithms.

This paper is organized as follows. Section 2 discusses some examples for
which problem-solving assistance is desirable. Section 3 introduces a DSL for
describing the rule-based problem solving processes. Section 4 presents several
methods for solving the various problems. In Sect. 5, we validate our approach
and in Sect. 6 we compare our approach to previous work. Section 7 concludes.

2 Examples

This section illustrates and motivates our goal of providing help to people using
a rule-based problem solving system by giving three examples: the Ideas frame-
work [7], PuzzleScript [13], and the iTasks system [18]. Each of these frameworks
can describe a variety of problems. We briefly introduce each framework, show an
example problem described in the framework, and explain what kind of problem
solving assistance is desired.

2.1 Ideas

The Ideas framework is used to develop services to support users when stepwise
solving exercises in an intelligent tutoring system for a domain like mathematics
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dnfStrategy = label "Constants" (repeat (topDown constants))
<�> label "Definitions" (repeat (bottomUp definitions))
<�> label "Negations" (repeat (topDown negations))
<�> label "Distribution" (repeat (somewhere distribution))

Fig. 1. A problem solving strategy in Ideas

or logic. It is a general framework used to construct the expert knowledge of
an intelligent tutoring system (ITS). The framework has been applied in the
domains of mathematics [7], programming [4], and communication skills [9].

The central component of the expert knowledge for an ITS is expressed as
a so-called strategy in Ideas. For example, Fig. 1 gives part of a strategy for
the problem of rewriting a logic expression to disjunctive normal form (for the
complete strategy see Heeren et al. [7]). The framework offers various services
based on this strategy, among which a service that diagnoses a step from a
student, and a service that gives a next step to solve a problem. The student
receives a logic expression, and stepwise rewrites this expression to disjunctive
normal form using services based on the above strategy. At each step, the student
can request a hint, like “Eliminate constants” or “Eliminate implications”, or
ask for feedback on her current expression. If no rules can be applied any more,
the expression is in normal form.

The dnfStrategy Ideas strategy describes a rule-based process that solves the
problem of converting an expression to disjunctive normal form. It is expressed
in terms of combinators like <�> (sequence), repeat and somewhere, and fur-
ther sub-strategies. Additionally, a label combinator is available, to label sub-
strategies with a name.

2.2 PuzzleScript

PuzzleScript is an open source HTML5 Puzzle Game Engine [13]. It is a simple
scripting language for specifying puzzle games. Its central component is a DSL
for describing a game. PuzzleScript compiles a puzzle described in this DSL into
an HTML5 puzzle game. Using the DSL, the game programmer describe a puzzle
as a list of objects, rules that define the behavior of the game, a win condition,
collision information, and one or more levels.

The hello-world example for PuzzleScript is given in Fig. 2. It describes a
simple crate-pusher game, also called Sokoban. Objects are: background, walls,
crates, the player and the targets for the crates. There is a single rule that states
if a player moves into a crate, the crate moves with the player. Objects appearing
on the same line in the collision layers are not allowed to pass trough each other.
The winning condition is reached when all targets have a crate on them. Finally,
a start-level is specified under LEVELS .

In a difficult game, we want to offer next-step hints to the player on how
to proceed. Based on the state of the game, the RULES , COLLISIONLAYERS
and WINCONDITIONS , an algorithm can calculate a hint for a user [14]. This
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========
OBJECTS

========

Background
Green

Target
DarkBlue

Wall
Brown

Player
Blue

Crate
Orange

======
RULES
======

[>Player | Crate ] → [ > Player | >Crate ]

=============
COLLISIONLAYERS
=============

Background
Target
Player ,Wall,Crate

============
WINCONDITIONS
============

All Crate on Target

===========
LEVELS
===========

#########
# . . . . . . . #
# . . . . . @ . #
# . P . ∗ . O . #
# . . . . . . . #
# . . . . . . . #
#########

=======
LEGEND
=======

. = Background
# = Wall
P = Player
∗ = Crate
@ = Crate and Target
O = Target

Fig. 2. Partial definition of the hello-world example of PuzzleScript

same information can also be used to check if a game can still be solved in the
current state. For example, the game cannot be solved any more if a crate gets
stuck in a corner.

2.3 iTasks

iTasks [18] supports task-oriented programming in the pure functional program-
ming language Clean [19]. It allows for rapid workflow program development, by
using the concept of task as an abstraction. Clean is very similar to Haskell, with
a few exceptions. A data declaration starts with ::, types of function arguments
are not separated by a function arrow (→) but by a space, and class contexts
are written at the end of a type, starting with a |.

An iTasks program is composed out of base tasks, task combinators, and
standard Clean functions. A task is a monadic structure. Its evaluation is driven
by events and handling an event potentially changes a shared state. Tasks can be
combined using combinators. The most common combinators are >>= (sequence),
>>� (step), −||− (parallel) and −&&− (choice). The step combinator can be seen
as a combination of sequence and choice. It takes a task and attaches a list of
actions to it, from which the user can choose. The chosen action receives a result
value from the first task. The action, which is of type TaskStep, is a regular task
combined with an action to trigger it, and a condition that must hold for the
action to be available.

Figure 3 shows the partial source code of an iTasks program for a Command
and Control (C2) system, as illustrated in Fig. 4. The illustration represents a
ship with rooms and doors between them. Alice is a worker on the ship. This
system is a simplified version of the C2 system built by the iTasks team in
cooperation with the Royal Netherlands Navy [23].

The record type ShipState holds the state of the ship and the state of the
worker. shipTask implements the C2 system. First, it uses the standard task for
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shipStore :: Shared ShipState

shipTask :: Task ShipState
shipTask = viewSharedInformation "Ship" [ ] shipStore

>>� [OnAction (Action "Move" [ ]) (always moveTask)
,OnAction (Action "Pick up" [ ]) (ifValue hasInventory

(λst → set (applyPickup st) shipStore >>| shipTask))
,OnAction (Action "Extinguish" [ ]) (ifValue canExtinguish

(λst → set (applyExtinguish st) shipStore >>| shipTask))]

moveTask :: ShipState → Task ShipState

hasInventory :: ShipState → Bool
applyPickup :: ShipState → ShipState
canExtinguish :: ShipState → Bool
applyExtinguish :: ShipState → ShipState

Fig. 3. Example iTasks program, formulated by composing tasks

Alice Extinguisher Fire

Fig. 4. Rendering of an example initial state for the simplified C2 system

viewing information, stored in the Shared Data Sources [18] (SDS), to display
the current state. Then, it uses the step combinator >>� to combine the viewing
task with the tasks offering the possible options.

When running shipTask , the iTasks system renders the shipStore together
with three buttons that allow the worker to move, pick up an item, or extinguish
a fire. If an action is not applicable (for example, an extinguish action when the
worker does not hold an extinguisher), the button is disabled. When a user clicks
an enabled button, the shipStore is updated accordingly.

The goal of this system is to extinguish a fire on the ship. We want to extend
the functionality of our program to give a user a next-step hint if she does
not know how to proceed. We could implement this in an ad-hoc fashion by
developing hint functionality for each iTask program for which we want to give
hints to the end user. Alternatively, we will use the same framework as we want
to use in the previous examples. By using this framework, we do not have to
reimplement the hint functionality for every iTask program from scratch.
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:: Rule a = Rule Name (Effect a)
:: Name :== String
:: Effect a :== a → a
:: Goal a :== Predicate a
:: Predicate a :== a → Bool

:: RuleTree a
= Seq [RuleTree a ]
| Choice [RuleTree a ]
| Parallel [RuleTree a ]
| Condition (Predicate a) (RuleTree a)
| Leaf (Rule a)
| Empty

Fig. 5. Types of the components of our DSL

3 Problem Formalization

Russell and Norvig [21] define a well-defined artificial intelligence (AI) problem
as consisting of the following components:

Initial state. The state of the problem that you want to solve.
Operator set. The set of steps that can be taken, together with their effects.
Goal test. A predicate that is True if the problem is solved.
Path Cost function. A function that describes the cost of each operation.

We use a slightly simplified definition of an AI problem. If there is a cost associ-
ated with a certain operation, we encode this as an effect on the state. Therefore,
we do not need a path cost function. We have an initial state, represented by a
value of type a, and an operator set, represented by a RuleTree, and a goal test,
represented by the predicate Goal a.

Figure 5 gives the types of the components of our DSL. A Rule consists of a
Name and an Effect . The Name is used to identify the rule to the end user in a
given hint. Therefore, these names should be informative and unambiguous. The
Goal can be reached by performing one or more rules after each other to arrive
at a state where the Goal condition is met. The solution depth is the number of
rules that have to be applied to reach the Goal .

The components in the DSL follow naturally from the Russell and Norvig
definition, except for the RuleTree. The design of the RuleTree is loosely based
on strategy languages from the Ideas framework [7], iTask combinators [18], and
the strategy language presented by Visser and others [26].

We implement the DSL as an embedded DSL in Clean. This allows us to use
standard Clean functions to construct for example a rule tree. We chose not to
implement recursion in our DSL, but instead make use of recursion in the host
language. The advantage of this is that we can keep our DSL simple and small.
Implementing recursion in the DSL requires adding abstraction and application,
making the DSL significantly more complex. Another notable omission is support
for multiple users, for example by means of an assign combinator. This restricts
the set of rule-based problems that can be encoded to single-user problems.
Apart from multi-user problems, any rule-based problem can be encoded in this
DSL, and as long as there is an appropriate solving algorithm available, our
framework can generate hints for it.
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shipSimulation :: RuleTree ShipState
shipSimulation = Seq

[Choice [Choice (map (λx → Condition (isValidMove x)
(Leaf (Rule (toName x)

(applyMove x ))))
[1 . .maxRoomID ])

,Condition hasInventory (Leaf (Rule "Pickup" applyPickup))
,Condition canExtinguish (Leaf (Rule "Extinguish" applyExtinguish))]

, shipSimulation ]

shipNotOnFire :: ShipState → Bool
shipNotOnFire {ship} = (foldr (∧) True (map (notOnFire) (flatten ship)))

Fig. 6. C2 in our DSL

3.1 C2 in Our DSL

To build intuition on how to translate a rule-based problem into our DSL, we
have taken the iTasks example program from Sect. 2, listed in Fig. 3 and trans-
formed it. First we build the RuleTree for our problem. We do this by using the
constructors as combinators. At the top-level of the tree structure, we have two
subtrees in sequence. The first subtree allows a choice between three options,
namely the three actions the user can take: Move, Pick up, and Extinguish. In
the case of Move, we construct the list of possible rooms that Alice can move to,
by mapping a function that constructs a Condition over the list of rooms. This
condition validates the move, before allowing this rule to be offered and applied.
The Condition constructor is also used in the case of Pick up and Extinguish.
The condition makes sure that there is something to pick up and something
to extinguish, respectively. The second subtree is a recursive call to the whole
tree. As mentioned earlier, we use the recursion from Clean here to construct
recursive RuleTrees, recursion is not part of our DSL.

Now that we have our RuleTree, we need to construct the goal condition.
This is simply a predicate over the state, which indicates if we have achieved our
goal. In this case, we don’t want the ship to be on fire, so we do a foldr over the
rooms of the ship to check that none of the rooms are on fire.

4 Solving Implementations

The DSL introduced in the previous section offers a uniform approach to describe
rule-based problems. Different classes of problems require different approaches
to solving such problems. This section describes how we can view the DSL as an
interface for which we can provide different interpretations to obtain different
ways to approach a problem, and to obtain various services, in particular for
providing hints.
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allFirsts :: (RuleTree a) a → [Name ]
allFirsts t s = map toName (topRules s t)

topRules :: a (RuleTree a ) → [Rule a ]
topRules Empty = [ ]
topRules (Leaf r ) = [r ]
topRules (Seq [ ] ) = [ ]
topRules s (Seq [rt : rts ] ) = case rt of

Condition c t | c s = topRules s (Seq [t : rt ])
| True = [ ]
= case topRules s rt of

[ ] = topRules s (Seq rts)
x = x

topRules s (Choice rts ) = flatten (map (topRules s) rts)
topRules s (Parallel rts ) = flatten (map (topRules s) rts)
topRules s (Condition c rt) | c s = topRules d rt

| True = [ ]

Fig. 7. Definition of the allFirsts hint service

This section shows the implementations of four services for giving hints for
different classes of problems. All implementations take the strategy RuleTree, the
current state in the form of a value of type a and the goal test Goal , and return
the names of zero or more steps that can be taken at this point in solving the
problem. As will become clear in the coming sections, not all implementations
require a goal test. Some implementations require an additional scoring function
like fitness or a heuristic. We also state what guarantees can be given for the
implementation.

The implementations we give in this section all use Clean syntax.

4.1 All Firsts

allFirsts, listed in Fig. 7, returns the first steps that can be taken given a state
and a RuleTree value. Since it does not take the goal into account, these steps
are only relevant for problem domains where it is possible to precisely describe
the next step to be taken in a solution towards a goal using a RuleTree value.
Examples of such domains are mathematical and logic exercises. The allFirsts
service is used if the tree describes only the steps that are always on a path to
the goal. This is the case for example in the Ideas framework.

For the allFirsts algorithm, we cannot give any guarantee about the given
hint. Since it simply returns all steps a user can take, it is completely up to the
programmer to guarantee that only steps towards the goal can be taken.
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fitnessHint :: (a → Int) (RuleTree a) a → [Name ]
fitnessHint f rt s =

map toName (findBest (map (λ(Rule n e) → ((Rule n e), f (e s))) (topRules s rt)))

findBest :: [(Rule a, Int)] → [Rule a ]
findBest [ ] = [ ]
findBest [(r ,n) : xs ] = fst (helper ([r ],n) xs)

helper :: ([Rule a ], Int) [(Rule a, Int)] → ([Rule a ], Int)
helper a [ ] = a
helper (rs,n) [(r ,n2 ) : xs ] | n ≡ n2 = helper (rs ++ [r ],n) xs

| n < n2 = helper (rs,n) xs
| n > n2 = helper ([r ],n2 ) xs

Fig. 8. Definition of the fitness-based hint service

4.2 Fitness Scoring

Just as allFirsts, fitnessHint , listed in Fig. 8, only looks at the immediate next
steps specified by the RuleTree. From these next steps, it selects the best by
calculating the fitness of each step, and taking the step with maximum fitness.
A fitness function is defined as a function from a to Int , where a lower score
is better. The algorithm assumes that the fitness function ensures that a user
gets closer to the goal if she follows the hints, but of course this depends on the
relation between the fitness function and the goal. If a programmer passes a good
fitness function as argument, that is, a step selected by the fitness function brings
a user closer to the goal and not to a local optimum, then the step returned by
fitnessHint is part of a sequence of steps that leads to the goal.

4.3 Brute Force

Figure 9 gives a brute force algorithm bfHint . It takes a Goal , a state a and a
RuleTree, and returns a list of first steps that can be taken. It uses the function
bfStep, which returns all paths that reach the goal. Since we only need the first
step to produce a hint, we map the traceToName function over it. bfStep works
recursively. It first takes the previous expansions, and checks if there are any
states that fulfill the goal condition. If so, we return the traces of these expansions
as a solution. If no expansions fulfill the goal, all states are expanded and bfStep is
called recursively. This means that we search breadth-first. If multiple solutions
are found at the same depth, all of these solutions are returned. Therefore, the
return type of bfHint is a list of Name. We only give the type of expand .

If bfHint returns a hint, then by definition this is a step in a sequence of steps
that achieves the goal. Not only that, but since it searches breadth-first for a
solution, it is guaranteed to be the first step on the shortest path to the goal.

We have also implemented a special version of bfHint that allows the pro-
grammer to pass an additional pruning function called a TraceFilter . This special
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bfHint :: (Goal a) (RuleTree a) a → [Name ]
bfHint g rt s = map traceToName (bfStep g [([ ], rt , s)])

bfStep :: (Goal a) [([Name ],RuleTree a, a)] → [ [Name ] ]
bfStep g items = case [h \\ (h, , d) ← items | g d ] of

[ ] → bfStep g (flatten (map expand items))
x → x

expand :: ([Name ],RuleTree a, a) → [([Name ],RuleTree a, a)]

traceToName :: [Name ] → Name
traceToName [ ] = ""

traceToName [x , ] = x

bfHintFilter :: (TraceFilter a) (Goal a) (RTree a) a → [Name ]

Fig. 9. Brute force algorithm

version, bfHintFilter , applies the filter to the list of expansions after every expan-
sion to prune the search space. Some uses for this are limiting the search depth,
pruning duplicate expansions or removing expansions that will never lead to a
solution.

4.4 Heuristic Search

A potential problem with the brute force algorithm is that it expands every
state until a state fulfills the goal predicate. This might be computationally very
expensive. We can try to reach the goal using fewer resources by using a heuristic.
A heuristic is a function hr :: a → Int , with ∀s : hr s � 0, and hr s ≡ 0 if and
only if s fulfills the goal condition. This heuristic function is used in the search
algorithm to search for a solution in a more informed way. A heuristic function
differs from a fitness function in the sense that it is no longer required that the
function does not lead to a local optimum. The implementation takes this into
account by keeping track of states that have already been observed. These states
are considered to be closed, and will not be expanded twice.

Figure 10 gives our heuristicHint algorithm, which implements a best-first-
search algorithm using a heuristic function.

heuristicHint initializes the arguments for hDecide.
hDecide looks at the highest scoring expansion. If it fulfills the goal condition,

hDecide returns the trace of that expansion. If not, it checks if the RuleTree in
the expansion is empty. If so, the expansion cannot be expanded further and
is discarded. hDecide is called on the remaining list. If the expansion does not
fulfill the goal and has a non-empty RuleTree, hStep is called to perform the
next expansion.

hStep then performs an expansion step. It expands the states that have the
lowest score. It then checks if any of the new states have already been observed
before. If so, then they are discarded as the expansion is redundant. It adds the
new states to the list of observed states, and scores them. Now, the whole list of
scored states is sorted, and hDecide is called.



182 N. Naus and J. Jeuring

heuristicHint :: (a → Int) (Goal a) (RuleTree a) a → Name
heuristicHint f g rt s =

traceToName (hDecide f g [(0, ([ ], rt , s))])

hStep :: (a → Int) (Goal a) ([a ] , [(Int , ([Name ],RuleTree a, a))]) → [Name ]
hStep ( , [ ] ) = [ ]
hStep h g (obs, [(n, t) : xs ]) =

hDecide h g (obs ++ newObs, (sortScore ((map (λ(his, t , d) → (h d , (his, t , d)))
(filteredCnds)) ++ tail)))

where
candidates = [t : (map snd (takeWhile (λ(i , ) → i ≡ n) xs))]
tail = filter (λ(i , ) → i �≡ n) xs
filteredCnds = filter (λ( , , d) → ¬ ◦ (isMember d obs)) (flatten (map expand candidates))
newObs = map (λ( , , d) → d) closedExpansion

hDecide :: (a → Int) (Goal a) ([a ], [(Int , ([Name ],RuleTree a, a))]) → [Name ]
hDecide h g ( , [( , (his, , d)) : xns ] ) | g d = his
hDecide h g (obs, [( , ( ,Empty , )) : xns ] ) = hDecide h g (obs, xns)
hDecide h g x = hStep h g x

Fig. 10. The heuristicHint algorithm

When hDecide encounters an expansion that fulfills the goal condition, the
trace of this expansion is returned, and heuristic takes the first step in the trace
and returns it as a hint.

heuristicHint differs from bfHint in two ways. First, heuristicHint performs
only one expansion at a time and does not do this in a breadth-first manner,
but best-first. A consequence of using best-first search is that the result trace
we get, is not guaranteed to be the shortest path to the goal.

Second, in order to be able to escape local optima, heuristicHint prunes away
expansions that lead to states already observed. This prevents cyclic expansions,
something bfHint does not take into account. However, this has no effect on the
result of the algorithm since two states will have the same solution.

4.5 Other Algorithms

The algorithms described in this section have been implemented in our frame-
work. There are many other algorithms that support solving problems of the kind
described in Sect. 3. A programmer can implement these once, and then solve mul-
tiple problems using the same implementation in our framework. Some common
algorithms not listed above are A*, Hill climbing, and probabilistic annealing.

dnfRT :: RuleTree Expr
dnfRT = Seq [rptRule constantsR, rptRule definitionsR

, rptRule negationsR, rptRule distributionR ]

rptRule rule = Choice [Condition (canApply rule) (Seq [Leaf rule, rptRule rule ])
,Condition (¬ ◦ (canApply rule)) Empty ]

canApply (Rule n e) s = (e s) �≡ s

Fig. 11. DNF exercise in our DSL
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5 Validation

Sections 3 and 4 fully describe our method for generating feedback systems.
To summarize, we first describe the rule-based problem in our DSL. Once the
problem is uniformly described, we get a hint function for free by means of the
generic solving algorithms. In this section, we validate our approach.

We take real-world examples from each of the three rule-based problem frame-
works introduced in Sect. 2, including the examples presented in that section and
two new problems, and instantiate feedback systems for them using our proposed
approach of first describing the problem using our DSL, and then applying a
generic solving algorithm. By doing this, we validate that our approach indeed
allows easy instantiation of a feedback system for different rule-based problems.

5.1 Ideas

The Ideas framework introduced in Sect. 2.1 is used to build intelligent tutoring
systems. We have taken two examples, with different domains and problems, of
actual systems implemented in Ideas: calculating the disjunctive normal form
of a logic expression (see Fig. 11), and reducing a matrix to echelon form (see
Fig. 12).

Disjunctive Normal Form. Figure 11 lists the description of the disjunctive
normal form exercise in our DSL. This is almost a direct translation from the
Ideas strategy listed in Sect. 2.1, Fig. 1.

Figure 11 lists the RuleTree for the DNF strategy. In order to encode it
compactly, an additional combinator function is used called the rptRule. This
function checks if the rule applies. If so, the rule can be applied, after which
rptRule rule is called again. If not, the Empty RuleTree is returned and this will
end the recursion. This means that the rule that rptRule is applied to, should
have an effect on the condition, otherwise this recursion will never terminate.

The RuleTree is all that is required to build the hint-function. Since all steps
offered by the RuleTree are on a path to the goal, we can just return them by
using the allFirsts algorithm.

toReducedEchelon = label "Gaussian elimination" (forwardPass <�> backwardPass)

forwardPass = label "Forward pass" (
repeat ( label "Find j-th column" ruleFindColumnJ

<�> label "Exchange rows" (try ruleExchangeNonZero)
<�> label "Scale row" (try ruleScaleToOne)
<�> label "Zeros in j-th column" (repeat ruleZerosFP)
<�> label "Cover up top row" ruleCoverRow))

backwardPass = label "Backward pass" (
repeat (label "Uncover row" ruleUncoverRow <�> label "Sweep" (repeat ruleZerosBP)))

Fig. 12. Gaussian elimination strategy in Ideas
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The hint function below takes an expression in the domain, and returns steps
that can be taken at this point. If no steps are returned, the exercise is solved.

hint :: Expr → [Name ]
hint = allFirsts dnfRT

Gaussian Elimination. Our second example is in the domain of linear algebra.
The exercise at hand is to reduce a matrix to echelon form, using Gaussian
elimination.

Figure 12 lists the strategy of Gaussian elimination that is used in the Ideas
framework. It describes what steps must be applied to a matrix in order to
transform it to the reduced echelon from, by means of Gaussian elimination.

The forward pass is applied to the matrix as often as possible. When this
procedure no longer applies, the backwards pass is applied exhaustively. If no
rules from either two phase apply, the matrix has been reduced. We leave out the
exact details of what each rule in the passes does, they are available elsewhere [7].

In order to transform this description into our DSL, we need to introduce two
new combinator-functions. Namely to deal with the repeat and the try . Figure 13
lists the complete description of Gaussian elimination in our DSL, together with
these combinator-functions.

Since we are again dealing with a RuleTree where all the offered steps are on
a path to the goal, no goaltest function is needed to build the hint-function.

hint :: Expr → [Name ]
hint = allFirsts toReducedEchelonRT

As with the DNF example, applying the RuleTree to the allFirsts algorithm
instantiates the hint-function.

toReducedEchelonRT :: RuleTree Expr
toReducedEchelonRT = Seq [forwardPassRT , backwardsPassRT ]

forwardPassRT = rptRT Seq [Leaf ruleFindColumnJ , tryRule ruleExchangeNonZero
, tryRule ruleScaleToOne, rptRule ruleZerosFP
,Leaf ruleCoverRow ]

backwardPassRT = rptRT Seq [Leaf ruleUncoverRow , rptRule ruleZerosBP ]

rptRT rt = Choice [Condition (done rt) Empty
,Condition (¬ ◦ (done rt)) (Seq [rt , rptRT rt ])]

tryRule rule = Choice [Condition (canApply rule) (Leaf rule)
,Condition (¬ ◦ (canApply rule)) Empty ]

Fig. 13. Gaussian elimination exercise in our DSL
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5.2 PuzzleScript

PuzzleScript, as introduced in Sect. 2.2, is a puzzle game framework. We have
taken the most well known puzzle game implemented in PuzzleScript, Sokoban,
and built a hint system for it.

Sokoban. Figure 2 in Sect. 2.2 lists the source code for Sokoban, written in
PuzzleScript. Since PuzzleScript is written in JavaScript and not in Clean, we
cannot directly reuse auxiliary functions, like we did when transforming the C2
program.

Figure 14 lists the RuleTree for Sokoban. We first define GameState which
models our state. It contains the LevelState, as well as the position of the player
pX , pY . sokobanRT defines the RuleTree. In sequence, it offers choice from one
of the four moves, and then recurses. All moves are conditional, they can only be
chosen if they can actually be applied. We only supply the types of the functions
validMove and applyMove.

On first attempt, we take the brute force algorithm, and use it to construct
our hint-function. For trivial levels, this suffices, but once we have a solution
depth of 15, we have to explore 315 ≈ 1.4 × 107 states, assuming that there are
on average three valid moves per state.

Brute force clearly will not work. We have to come up with something a bit
more clever. Literature on Sokoban [10] points to heuristics and search space
pruning to help us order and restrict the search space, and construct a hint-
function. Lim and Harrell have generalized these Sokoban heuristics to apply to
most PuzzleScript games [14].

:: GameState = { lvl :: LevelState, pX :: Int , pY :: Int }
:: LevelState :== [[[GameObject ]]]

sokobanRT :: RuleTree GameState
sokobanRT =

Seq [Choice [Condition (validMove LeftMove)
(Leaf (Rule "Move Left" (applyMove LeftMove )))

,Condition (validMove RightMove)
(Leaf (Rule "Move Right" (applyMove RightMove )))

,Condition (validMove UpMove)
(Leaf (Rule "Move Up" (applyMove UpMove )))

,Condition (validMove DownMove)
(Leaf (Rule "Move Down" (applyMove DownMove)))]

, sokobanRT ]

sokobanGoal :: GameState → Bool

validMove :: GameMove GameState → Bool
applyMove :: GameMove GameState → GameState

Fig. 14. Sokoban in our DSL
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We implement a simple deadlock pruning filter to improve performance. A
simple deadlock occurs when a crate is in an unsafe position, from where it will
never reach a target. Removing these states reduces the search space.

Implementing heuristics for sokoban, like the mentioned work suggests, can
be quite involved. This is beyond the scope of this paper, but could be imple-
mented using the heuristicHint algorithm.

To perform simple deadlock detection, we first build a list of unsafe positions.
To do this, we find all the corners in the game. After locating the corners, we
generate a list of all horizontal and vertical paths from corner to corner. Paths
that are not along a wall, or that have walls or targets on them, are removed.
The cells on the remaining paths, together with the corners, form the list of
unsafe positions. To determine if a state has a deadlock, we simply inspect all
unsafe positions. If a state has a crate on an unsafe position, it is removed and
thus not further expanded.

Below, the hint function is implemented. For the simple deadlock pruning
function, we only provide the type.

noDeadlock :: GameState → Bool

hint :: GameState → Name
hint = bfHintFilter (λ( , , b) → noDeadlock b) sokobanGoal sokobanRT

5.3 iTasks

The iTasks framework introduced in Sect. 2.3 is used to build workflow systems
using a notion of task as an abstraction. We have taken two examples, with dif-
ferent domains, of actual systems implemented in iTasks: a C2 workflow system
(see Fig. 3), and a sliding puzzle game (see Fig. 16).

:: GameState = {board :: [Int ], dim :: Int , hole :: Int }
:: Dir = North | East | South | West
boardStore :: Shared GameState

slidePuzzle :: Task GameState
slidePuzzle =

viewSharedInformation "Sliding Puzzle" [ViewWith viewBoard ] boardStore
>>� map (λdir → OnAction (Action (toName dir) [ ]) (ifValue (checkStep dir)

(λst → set (applyStep dir st) boardStore
>>| slidePuzzle)))

[North,East ,South,West ]

viewBoard :: GameState → HtmlTag
checkStep :: Dir GameState → Bool
applyStep :: Dir GameState → GameState

Fig. 15. Sliding puzzle program written in iTasks
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ShipAdventure. Figure 3 in Sect. 2.3 lists the partial source code of a C2 sys-
tem written in iTasks. We already explored what this problem would look like
in our DSL in Sect. 3.1. The RuleTree and shipNotOnFire-goal-test are listed in
Fig. 6.

If we now want to build the hint-function that takes the state of the system
and returns a hint for the user how to keep the ship from burning down, we can
take the brute force algorithm from Fig. 9 and give it the RuleTree and goal-test
as shown below.

hint :: (SimulationState → [Name ])
hint = bfHint shipNotOnFire shipSimulation

Sliding Puzzle. To demonstrate and experiment with iTasks, we implemented
a simple sliding puzzle (also called n-puzzle). Figure 15 gives the (partial) source
code of the iTasks program that we constructed. In this puzzle, the player
arranges all tiles in order, by using the hole to slide the tiles over the board,
as shown in Fig. 16.

The record type GameState holds the board configuration, the dimension of
the puzzle, and the position of the hole. Dir defines the kind of moves a player
can perform and slidePuzzle implements the puzzle.

As with the C2 system, slidePuzzle uses the standard task for viewing infor-
mation to display the current state. Then, it uses the step combinator >>� to
combine the viewing task with the tasks offering the possible options. We use a
map to generate the four options a player can choose from.

The goal of the puzzle is to move all tiles in positions so that they appear in
order, as shown in Fig. 16b. We now want to add hints to the iTasks program.
If the player gets stuck, we want to help out by providing a hint step.

Figure 17 lists the RuleTree and goalTest for the sliding puzzle. The functions
checkStep and applyStep are the same Clean functions used by the iTasks imple-
mentation. The only additional function needed is the goalTest , that compares
the current board to the solution-state.

4 8 6

1 7

2 5 3

(a) Initial state

1 2

3 4 5

6 7 8

(b) Goal state

Fig. 16. Instance of a block sliding puzzle, of dimension 3 × 3
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slidePuzzle :: RuleTree GameState
slidePuzzle = Seq

[Choice [Condition (checkStep North) (Rule "Move up" (applyStep North))
,Condition (checkStep South) (Rule "Move down" (applyStep South))
,Condition (checkStep West) (Rule "Move left" (applyStep West))
,Condition (checkStep East) (Rule "Move right" (applyStep East))]

, slidePuzzle ]

goalTest :: GameState → Bool
goalTest {board , dim } = [0 . . ((dim ∗ dim) − 1)] ≡ board

Fig. 17. Sliding puzzle in our DSL

The n-puzzle problem is too complex to apply a brute force algorithm. An
8-puzzle for example has an average branching factor of 2.67 [15], and an average
solution length of 21.97 [20]. We can calculate that we have to visit 2.6721.97 ≈
3.39 × 108 states on average before a solution is found using brute force search.

This calls for a more informed algorithm. Russell and Norvig propose two
heuristics for the n-puzzle problem [21]. The first, h1, is the number of tiles out
of place. h2 is the sum of the (Manhattan) distances of the tiles from their goal
positions. With help of h1, we can construct the following hint function.

hint :: GameState → [Name ]
hint = heuristicHint h1 goalTest slidePuzzle

h1 :: GameState → Int
h1 {board , dim } = bDiff board [0 . . ((dim ∗ dim) − 1)]

where
bDiff [ ] [ ] = 0
bDiff [x : xs ] [y : ys ] | x �≡ y = 1 + bDiff xs ys

| True = bDiff xs ys

We use the heuristic search function instead of brute force. This expands the state
space in an ordered way. When we now run the original program, in parallel with
the hint function, we indeed get a hint for each possible state of the game.

6 Related Work

We follow in a long tradition of creating (domain specific) languages that allow
uniform description of rule-based problems, such as planning problems. Some of
the early languages written for this purpose are STRIPS [2], PLANNER [8] and
SITPLAN [3]. Most of these are based on the same principles as our approach,
namely to describe state, operator set and goal test. For example, a STRIPS
problem is defined as 〈P,O, I,G〉, where P is the set of states the problem can
be in, O the set of operators, I is the initial state, and G the goal state [1].
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A more recent language is PDDL [16]. Version one of the language, from
1998, consists of a domain description, action set, goal description and effects.
Again, these ideas coincide with our notion of a problem formalization. The
PDDL standard has been updated several times [11], and there are many variants
currently in use. These variants include MA-PDDL [12], which can deal with
multiple agents, and PPDDL [27], which supports probabilistic effects.

The language we present is different from all of the aforementioned languages
in several ways. Our language is a DSL, embedded in Clean. This means that
the programmer can use the full power of Clean when constructing the problem
description in our DSL. The languages mentioned above are not embedded in
any language and therefore the programmer is limited to the syntax of the DSL
in constructing the problem description. Another big difference is the fact that in
all of the other languages mentioned, except PDDL, the state-space is finite. For
example, in SITPLAN, part of the problem description is a finite set of possible
situations, and in STRIPS, the set of states is defined as finite a set of conditions
that can be either true or false. In our DSL, we do not limit the set of possible
states. This allows us to describe many more problems in our DSL, but at the
same time makes solving them harder.

The second part of our approach is to solve the problem described in our
DSL. When comparing to other approaches, both SITPLAN and PDDL rely on
general solvers, just like our approach. In fact, PDDL was initially designed as
a uniform language to compare different planning algorithms in the AIPS-98
competition [16]. STRIPS and PLANNER however, do include a specific solving
algorithm.

For each of the frameworks that we discussed in this work, there has been
some research on generically solving problems. Lim and Harrell [14] present a
generic algorithm for evaluating PuzzleScript that discovers solutions for differ-
ent PuzzleScript games. From these solutions, one could take the first step in the
sequence as a hint. The Ideas framework includes a set of feedback services to
generate hints for the user. For example, the basic.allfirsts service generates all
steps that can be taken at a certain point in the exercise [6]. For the iTasks frame-
work, a system was developed to inspect current executions by using dynamic
blueprints of tasks [22]. It can give additional insight in the current and future
states, but does not act as a hint-system and does not take a goal into account.

7 Conclusions

With this paper, we set out to answer the question of how to construct a generic
feedback framework for rule-based problems. Ideas from the intelligent tutoring
community inspired our approach. We first construct a DSL that provides a
uniform way to describe many different rule-based problems. Then we can use a
generic algorithm to generate feedback, in the form of hints. In order to validate
our approach, we have demonstrated that it is indeed possible to encode and
instantiate a feedback system for many different problems.
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7.1 Future Work

In the future we would like to extend our approach in several ways. First, we
would like to extend our DSL to support multiple users. When dealing with for
example workflow systems, it is almost always the case that there is more than
one user. Secondly, we would like to extend the kind of feedback that we can
give to the user. At this point, our system only returns one or more steps that
serve as a hint. Other kinds of feedback could for example include a sequence
of steps towards the goal or contextual information about where the user is in
the greater system. When our DSL would support multiple users, we also need
to offer other kinds of feedback. Imagine the situation where a user has to wait
on a different user in order to reach her goal, or that a certain step has priority
because other users are waiting on that step to be performed.

We are also very interested to see what questions and challenges would come
up when our system would be integrated into one of the aforementioned rule-
based frameworks. We think that the iTasks framework would be the most inter-
esting candidate, since it allows for a vast amount of completely different prob-
lems to be encoded in it.
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