A Reference Model for a Service Level Agreement

Citation for published version (APA):

Hofman, C., & Roubtsova, E. E. (2020). A Reference Model for a Service Level Agreement: In domain of
Information Sharing Services. In B. Shishkov (Ed.), Business Modeling and Software Design: 10th International
Symposium, BMSD 2020, Berlin, Germany, July 6-8, 2020, Proceedings (Vol. 391, pp. 55-68). Springer Nature
Switzerland AG. Lecture Notes in Business Information Processing Vol. 391 https://doi.org/10.1007/978-3-030-
52306-0_4

DOI:
10.1007/978-3-030-52306-0_4

Document status and date:
Published: 01/01/2020

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl
providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 16 Jul. 2023

Open Universiteit

www.ou.nl

https://doi.org/10.1007/978-3-030-52306-0_4
https://doi.org/10.1007/978-3-030-52306-0_4
https://doi.org/10.1007/978-3-030-52306-0_4
https://research.ou.nl/en/publications/49326907-d093-43d4-a56b-6dbe5e7b5740

®

Check for
updates

A Reference Model for a Service Level

Agreement
In Domain of Information Sharing Services

C. Hofman! and E. Roubtsova2(®)

! Graduated Master of Science Student of the Open University,
Heerlen, The Netherlands
cor.hofman@gmail.com
2 Open University, Heerlen, The Netherlands
ella.roubtsovaQou.nl

Abstract. Information sharing between government organizations is
regulated by Service Level Agreements (SLA’s). Design and implemen-
tation of an SLA demands involvement representatives of several organi-
zations. They need to communicate with the same concepts and validate
the requirements for the service and quality indicators. In order to sup-
port the design of an SLA and its monitoring, we propose related concept,
goal and protocol reference models. The first conceptual model view is
built using a literature review. The next model views include the details
found by analysis of existing SLA’s. The novelty of our models is that
they compose an SLA from service level objectives (SLO’s), explain the
meaning of SLO’s monitoring, support execution of an SLA and expose
the monitoring logics.

Keywords: Service Level Agreement (SLA) - SLA modelling - SLA
monitoring - Service Level Objective (SLO) - Goal model - Conceptual
model - Executable protocol model

1 Introduction

In order to serve citizens, government organizations provide informational ser-
vices to each other and rely on each other. For example, they share informa-
tion about income of citizens. Government organizations formulate collabora-
tive requirements for information sharing including timeliness and reliability. All
these, mostly non-functional, requirements for the information sharing services
are combined into a Service Level Agreement (SLA).

“A service-level agreement (SLA) sets the expectations between the service
provider and the customer and describes the products or services to be delivered,
the single point of contact for end-user problems, and the metrics by which the
effectiveness of the process is monitored and approved” [3].

Representatives of different organizations should agree on an SLA. For com-
munication, for understanding each other, the professionals need a shared con-
ceptual model of the service and shared understating of its monitoring. As the

(© Springer Nature Switzerland AG 2020
B. Shishkov (Ed.): BMSD 2020, LNBIP 391, pp. 55-68, 2020.
https://doi.org/10.1007/978-3-030-52306-0_4

56 C. Hofman and E. Roubtsova

requirements in an SLA are mostly non-functional, their monitoring and valida-
tion is only possible with specially designed indicators assessing data collected
from a running service process. Because an SLA-contract development process
has so many points of attention from the partners of the contract and an SLA
contains requirements for potential implementation automatic measurements,
this process needs systematic modelling and a supportive system of a SLA life
cycle. Supportive systems for SLA-contract development may share a reference
model.

In this paper, we propose a reference model for a system that supports an
SLA life cycle. It consists of three consistent views: a conceptual, a goal, and
an executable protocol models. It supports an SLA preparation, agreement and
monitoring. Our reference model contains points of changes and can be used for
collecting the variable parts of SLA-contracts.

In order to guarantee methodological triangulation, we use more than one
method [13] for gathering concepts and their relations and understanding of an
SLA.

— Section 2 presents the results of a literature review used to built a first con-
ceptual reference model of an SLA.

— Section 3 discusses the analysis of existing SLA documents and identification
of different types of some concepts of the conceptual reference model.

— Section4 validates the relations of the conceptual reference model by the
strategic goal model of an SLA.

— Section b validates the relations of the conceptual reference model by the
executable protocol model showing SLA development, acceptance and moni-
toring.

— Section 6 discusses the variation points of the reference models.

— Section 7 concludes the paper and proposes future work.

2 Literature Review for Building the First Conceptual
Model of an SLA

The presented literature review has been aimed to identify the concepts used for
description of an SLA and relations of these concepts. We discuss the concepts
and relations named in literature. We cover the works on SLA reported in jour-
nals “Decision support systems”, “Future Generation Computer Systems” and
“Performance evaluation” by Elsevier, “Journal of Network and Systems Man-
agement” and “Distributed and Parallel Databases” by Springer, IEEE Software
journal and the Proceedings of the 16th ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering. In the following text, the concepts
and their relations found in literature are presented in italic and shown in Fig. 1.

The definitions of an SLA found in literature can be classified as external
and internal.

External definitions specify the essential condition for an SLA to exist. Exter-
nal definitions see an SLA as a technical contract that legally binds two parties
being providers and consumers [1,5].

A Reference Model for an SLA 57

Internal definitions define the content of an SLA in form of producer require-
ments and consumer requirements [11], explicitly distinguishing between a
Service, its functional and non-functional requirements, where the latter are
expressed as Service Level Objectives (SLO’s).

The functional part of a Service (Fig.1) consists of a Consumer process
(request) and a Producer process (reply) [9,16]. The consumer sends one or more
key values identifying the data of interest. The producer then sends a reply
containing the requested data or an indication that the data is not available.
The non-functional requirements of the Consumer and Provider are grouped
in Service Level Objectives SLO’s [5]. Each SLO is refined to a set of Quality
Of Service (QoS) with an associated QoS Level constraining the QoS [4]. For
example, a consumer can demand a maximum response time, where a producer
might want to limit the maximum number of service requests per time interval
to a maximum (i.e. maximum throughput). Both of these SLO’s define perfor-
mance constraints that are included into an SLA. For monitoring of quality, the
performance of the real service should be compared with these constraints.

| Service | | Consumer || Provider |

? Isa Isa
Applies to
Specifies Legally ."
SLA binds Party

n n Formulates
Functional Requit <

alty

For

Is specified as 4
Quantifies
s calculated QoS | current Constrains [QoS
- N Qos
using| Indicator Level
Parametrizes

Violation detection

Detects

Violation
Consumer process Causes Causes Provider process

(Request) (Reply)
3

Induces

Originates from Originates from

an,n

Legend

N 0.1
SLA concept | | O‘Zi'na:’;:‘a' | ——% - optional relation

n
n -
— =1to lrelation —p =1ltomanyrelation ~———p =manyto 1 relation

Fig. 1. Concepts defining an SLA in literature

The inability to meet specified SLO’s are the reasons for Penalties, which can
be induced on Consumer and Provider if a Violation is caused [10]. Penalties
are seen as an essential part of an SLA, since they add a stimuli avoiding extra

58 C. Hofman and E. Roubtsova

costs if an SLO is not met [11]. A wviolation can also have a resolution, used to
neutralize the violation. A violation can be sent to “the single point of contact
for end-user problems”[3]. The resolution is not included into our conceptual
model as it often demands investigation and such help desk issues are out of the
scope of an SLA life cycle.

For monitoring of an SLA on a producer process and a consumer process, QoS
indicators are specified. The literature does not differentiate the indicators. It is
mentioned that some process specific measurements are needed to calculate the
indicators, which can originate from producer and consumer process character-
istics [10]. Violation detection is conceptually based on rules, which are decision
functions, parameterized with QoS Indicators and QoS levels for the consumer
and producer related QoS. It signals the current existence of Violations.

Each QoS indicator corresponds to the QoS specified for an SLO and uses
specified QoS level acceptable for the consumer and the producer.

From our conceptual model (Fig. 1), an SLA can be defined as a legal bind-
ing between a producer and a consumer specifying agreed service functionality
(functional requirements) and non-functional requirements split into service level
objectives (SLO’s). Each SLO indicates an aspect of quality of service (QoS),
has specified quality level (Qos level) and corresponding QoS indicators. Each
pair of QoS indicator and (Qos level) is used to calculate a penalty.

2.1 Choice of the Document Analysis as the Next Research Method

The conceptual model (Fig. 1) has been constructed on the basis of the literature
analysis. All the papers on an SLA modelling remain abstract about SLO’s
[2,4,5,10] and this is reflected by our conceptual model. A close look at the found
definition shows that the concept Service Level Objectives (SLO’s) is not ready to
be included into a supportive system for SLA specification and implementation.
The types of SLO need to be discovered and the relations between the SLO types
and QoS Indicators need to be identified. Also the functional requirements can
be made more specific for the type of provided service. To find the types of SLO
used in practice, we initiated a document analysis study.

3 Document Analysis of Existing SLA’s

The document analysis has been fulfilled in the SLA’s used by government orga-
nizations'. We have found the SLO’s of three types:

1. SLO Volume per year with the Volume norm that should not be exceeded;
2. SLO Response Time in hours with

(a) Percentage of the on-time responses per year;

(b) Percentage of the late responses per year;

(¢) Percentage of the too-late responses per year;

1 We are not allowed to name the organizations, however we have the documents for
revision.

A Reference Model for an SLA 59

3. SLO Data quality with the norm of data with faults;

Each of these norms-constraints has similar structure: a name, a norm and a
period of measurement. An SLO presents an aspect of monitoring, i.e. the QoS-
norm. For example, the “Response Time” is specified as one working day (8 h).
It is accepted if the 92% of responses per year are on-time, 7% of late responses
are within five days and 1% of too-late responses are within 10 days.

The SLA’s define also the data formats in requests and replies that can be
controlled both on the provider and on the consumer sides.

The document analysis of existing SLA’s shows that an SLA is related with
three aspects of service support: (1) security, (2) data controls, and (3) monitor-
ing of Quality of Service (QoS).

The security deals with concept Request. Data controls are related to one pair
of concepts Request-Reply. The security and data format controls are internal
for the service producer. The consumer recognizes them as delays and delays are
included into QoS of an SLA.

The monitoring of SLOs with QoS concerns both the producer and the con-
sumer, it should be understood by both parties.

3.1 Choice of Goal and Protocol Modeling as the Next Research
Method

The logic of QoS measurement cannot be exposed in a reference model. The logic
of QoS measurement combines the strategic agreements, operations of measure-
ment and monitoring and decision about penalties.

In order to combine the strategic agreements, operations of measurement and
monitoring and decision about penalties, we define a pair of corresponding goal
and executable protocol models. Both models use the concepts of the conceptual
reference model of an SLA (Fig.1). The choice of the modelling techniques is
motivated by the observed resemblance between the monitoring KPI’s and SLO’s
with QoS. The KPI's have been already successfully modelled with pairs of
semantically related goal and executable protocol models [12,14]. We use this
experience for modelling of monitors for SLO’s with QoS.

4 Goal Model of an SLA Life Cycle

Any service based business needs a supportive system for an SLA preparation
and monitoring. This is the main goal of the goal model. G1.Support system for
a Service Level Agreement (SLA) preparation and monitoring.

Now we present a description of the goal model depicted in Fig. 2.

G1 is refined by the following sub-goals:

— G1.1. Support of an SLA preparation;
— G1.2. Support of a service with an SLA instance generation
— G1.3. Support of an SLA instance monitoring a calculation of penalties

60

C. Hofman and E. Roubtsova

| G1: Support system for a Service Level Agreement (SLA) preparation and monitoring

G1.1: Support of an SLA
preparation

AND,

G1.2: Support of an SLA
instance generation

G1.1.1: Provider creates different
types of Service Level Objectives
(SLOs) of types Volume, Response
time, Data quality with Norm and
Penalty attributes

G1.2.1. Customer
accepts an SLA

AND

G1.3. Support of an SLA instance
monitoring a calculation of penalties

G1.2.2. An instance of an

G1.1.2: Provider composes an SLA SLA monitor is generated

from SLOs

RT.3.1. If the number (volume) of request-
response pairs during the SLA specified
time exceeds the Norm, the penalty volume
is counted

G1.2.3. An instance of a
request-response Volume
monitor is generated

G1.2.4. An instance of a R1.3.2. If the number of response time

|~ | Response Time Faults

monitor is generated

faults during the SLA specified time
exceeds the Norm, the response penalty is
counted

G1.2.5. An instance of a

L_| R1.3.3If the number of data quality faults

during the SLA specified time exceeds the
Norm, the quality penalty is counted.

| Data Quality Faults
monitor is generated

Fig. 2. Goal model of an SLA life cycle

(1.1 is refined with sub-goals

G1.1.1. Provider creates different types of Service Level Objectives (SLOs) of
types Volume, Response time, Data quality with Norm and Penalty attributes;
G1.1.2. Provider composes an SLA from SLOs.

G1.2. is refined with

G1.2.1. Customer accepts an SLA;

G1.2.2. An instance of an SLA monitor is generated;

G1.2.3. An instance of a request-response Volume monitor is generated;
G1.2.4. An instance of a Response Time Faults monitor is generated;
G1.2.5. An instance of a Data Quality Faults monitor is generated.

G1.3. is refined with requirements for the monitoring

R1.3.1. If the number (volume) of request-response pairs during the SLA spec-
ified time exceeds the Norm, the penalty volume is counted;

R1.53.2. If the number of response time faults during the SLA specified time
exceeds the Norm, the response penalty is counted;

R1.3.3. If the number of response time faults during the SLA specified time
exceeds the Norm, the response penalty is counted.

All concepts in requirements are countable and comparable, the norms can be
built into the SLA monitors in correspondence with the SLA.

A Reference Model for an SLA 61

5 Protocol Model of an SLA

5.1 The Behaviour of the Information Sharing Service

The behaviour of the information sharing service is a request and the correspond-
ing reply, where both the request and reply are specified with a data structure.

— Each request structure contains request identifier, request time stamp, key
field name for information search and name of requested data item. For exam-
ple, (request identifier, day-month-year, identification number of a citizen,
citizen related data (year-1)).

— Each reply structure contains reply identifier, initiated request identifier,
request time stamp, reply time stamp, key field for information search from
the request name of data item wn the request and value of the requested data
item.

— The attributes of these data structures are used to measure the data quality,
data volume and response time. Each field of a request and a reply has type
quality borders and the quality checks are implemented in the service.

e The number of faults of quality checks of replies indicates Data Quality
of the service.

e The number of requests in a given time period is called Volume of the
service.

e For each reply, the difference between the “reply time stamp” and the
“request time stamp” is called Response Time.

5.2 What Is a Protocol Model?

The executable form of a protocol model is textual [15]. It specifies concepts as
protocol machines presenting OBJECTS (concepts) and BEHAVIOURS (con-
straints) with their attributes, states, recognised events, transitions and call-
backs for updates of attributes and derived states. Because a protocol model is
an executable model of an information exchange service behaviour with data, it
is a suitable model to illustrate and demonstrate the monitoring logic of quality
indicators.

The graphical form of a protocol model is used for communication and model
explanation. It illustrates the protocol machines (concepts and constraints),
recognised events, states and transitions. It does not show the data structures
of protocol machines and events.

A protocol machines are composed using the CSP composition for machines
with data defined in [6,8]. The CSP composition means that all protocol
machines are synchronised, i.e. an event is accepted by a protocol model only
if all protocol machines recognizing this event are in the state to accept it. The
state of each protocol machine is a data structure. Any event in a protocol model
is another data structure. The data from the event-instance is used to update
the state of protocol machines accepting this event.

62 C. Hofman and E. Roubtsova

Specification

Provider Cre CLA Service
Provider

Create SLA

Consumer ~ CreatellA Agree to SLA

Created

Consumer

Add SLO Max Response Time, | | 51O Data Quality
Add SLO Volume, Start

Add SLO Data Quality itori
Add SLO Created Momtormg Monitored
Data Quality Data Quali

SLA Contract

Create SLA SLO Volume
Start
Agree to SLA Add SLO @ Monitoring —
Volume Volume
Procure SLA SLO Max Response Time
Based Service Start

Add SLO Max Monitoring
Monitored Response Time Max ResponSe

Time

Monitoring

SLA Contract Monitor SLO Data Quality Monitor RequestReply Measurement
Start Monitoring Response Time, Start

Start Monitoring Volume, Monitoring
Start Monitoring Data Quality Data Quality
SLO Volume Monitor

Start Add
Add RequestReply

Based Service

Monitoring L RequestRepl
r
'olume Measurement =ty

SLO Max Response Time Monitor

Measurement
Start
Procure SLA Based Service Monitoring -
callback generates the Start Monitoring
Monitoring Data Quality, Max Resporfse

Volume and Response events. Time

Fig. 3. Protocol model of SLA life cycle

5.3 Protocol Model of an SLA

In Fig. 3, the reader can see the graphical presentation of protocol machines
Provider, Consumer and Service corresponding the concepts of the conceptual
model (Fig. 1) and presenting behaviour of objects of those concepts. All these
concepts should be in state Created to enable event Create SLA contract.

A Reference Model for an SLA 63

The protocol machine SLA Contract in state Composition allows one to Add
SLO Volume, Add SLO Max Response Time and Add SLO Data Quality. Each
SLO is a protocol machine that can be in the state “does not exist” (depicted
as a small black circle), in state Created or in state Monitored.

When a Provider and a Consumer accept event Agree to SLA, the SLA
contract goes to state Agreed. State Agreed reflects the agreement and fixes the
SLA Contract preventing further SLO’s to be added. In the state Agreed, event
Procure SLA Based Service is enabled. This event transits the SLA Contract to
state Monitored.

An SLA Contract Monitor is automatically created by the event Procure
SLA Based Service. The SLA Contract Monitor delegates SLO specific mon-
itoring to several SLO specific monitors. This event also triggers submitting
event instances Start Monitoring Data Quality, Start Monitoring Volume and
Start Monitoring Max Response Time. These events create the specialised SLO
monitors. To simulate service utilisation, the object instances of RequestReply
Measurement are created with events Add RequestReply Measurement.

Providers and Customers should implement monitors of SLO’s. We model
the executable monitors of SLO’s to show them to Producers and Customers
before actual implementation. This helps to prevent unexpected penalties and
misunderstandings. Each SLO is monitored by successively calculating an Indi-
cator Value, the occurrence of a Violation and a Payable Penalty.

The executable textual form of the protocol model is available to be down-
loaded from [15], be executed in the Modelscope tool available online and the
monitors are generated from the model. We show the three types of monitors
and the callbacks code used by monitors to update data.

5.4 Monitoring SLO Max Response Time

The values to monitor the SLO Max Response Time are shown in Fig.4. It is
monitoring the last measured response time, the maximum response time is 1
day and the penalty of 3,000, 00, if violated.

The monitoring logic for the SLO Max Response Time is shown in the code
fragment below. Function SLA Contract Monitor.getIndicator Value() returns
the Response Time attribute specified by the youngest RequestReply Measure-
ment instance. Function getViolation()evaluates the relation Response Time >
Norm Value. Function getPayablePenalty() calculates the Payable Penalty.

public class SLOMaxResponseTime extends Behaviour {
public int getPayablePenalty(){
// 1f no violation return no Penalty, i.e. zero
if (! this.getBoolean("Violation")) return O;
// Return penalty specified by SLO
return this.getInstance("SL0").getCurrency("Penalty Value");
¥
public boolean getViolation(){
// Get the last response time
String duration = this.getString("Indicator Value");
// No last measurement, no violation
if (duration == null) return false;
// Create classifier: > response norm and classify the current response time

64 C. Hofman and E. Roubtsova

Events

Add SLO Data Qu ~

Add SLO Max Re,

Add SLO Respon
SLO Name :Max Response For C String
Norm Value :1 String
Norm Unit :Lasl response time String

Penalty Value [300D.00 x Currency

SLO Max Response Time [(new SLO Max Response Time) v] SLO Max Response Time
; Add SLO Max Response Time

reset form

Fig. 4. Adding the SLO Max Response. Generated from the protocol model [15] in
Modelscope tool [7].

return new ClassifierDurationFromSLO(this.getInstance("SLO"), ">").classifies(duration);
}
public String getIndicatorValue(){
// Get the last request/reply measurement

Instance measurement =

this.getLastMeasurement (this.getInstance("SLA Contract Monitor"));

// Return the response time, formatted as: days (HH:mm:ss.sss)?

if (measurement == null) return null;

return measurement.getString("Response Time");

3

5.5 Monitoring SLO Volume

Figure5 shows a monitor for the SLO Volume. It evaluates the number of
requests over the last 365 days. During this period a maximum of 12,500 data
items may be requested. As long as

(Indicator Value <= Norm Value)istrue,

no violation exists. If violated, an extra 100.00 is paid as a Penalty for every
excess data item requested.

Function getindicatorValue() calculates the cumulative number of data items
requested during a period defined by the Period Value attribute of the SLO. This
is calculated as the sum of the RequestReply Measurement, found in its Volume
attribute. Only request volumes are cumulated that fall within the specified
period. Function getPayablePenalty() identifies every excess data over the Norm
and calculates Payable Penalty, proportional to the excess volume measured for
the period.
public class SLOVolume Time extends Behaviour {

public int getPayablePenalty() {
// If no violation, then no Penalty

A Reference Model for an SLA 65

Events

Add SLO Respon

Agree To SLA

SLO Name [Volume For C String
Period Value 365 | string
Norm Criterla <= | String
Norm Value | 12500 | integer
Norm Unit Data items String

Penalty Value |100{00 Currency

SLO Volume |(new SLO Volume) | SLO Volume
[Add SLO Volume |

[reset form |

Fig. 5. Adding the SLO Volume. Generated from the protocol model [15] in Modelscope
tool [7].

if (! this.getBoolean("Violation")) return O;
// Get the associated SLO specification and
// Calculate excess volume and proportional penalty
Instance slo = this.getInstance("SLO");
return (this.getInteger("Indicator Value") - slo.getInteger("Norm Value"))
* slo.getCurrency("Penalty Value");
}
public int getIndicatorValue() {
// Get only measurement for a specific SLA within the period and sum the measured volumes.
return sum(this.getInstance("SLA Contract Monitor"),
this.getInstance("SLO").getString("Period Value"),"Volume");
}
protected int sum(Instance slaMonitor, String period, String
measurementObjectName, String measurementAttributeName) {
// The every individual attribute value to the totalValue.
int totalValue = 0;
for (Instance measurement: this.getMeasurementsInPeriod(slaMonitor,
period, measurementObjectName))
totalValue += measurement.getInteger(measurementAttributeName);
// Return the sum calculated in totalValue
return totalValue;
}
//
protected List<Instance> getMeasurementsInPeriod(Instance slaMonitor,
String period, String measurementObjectName) {
// For every measurement that matches the SLA Contract Monitor
long periodStart = System.currentTimeMillis() - new Duration(period).getTime();
List <Instance>measurements = new ArrayList<Instance>();
for (Instance measurement:
slaMonitor.selectByRef (measurementObjectName,"SLA Contract Monitor")){
// If the measurement is within the period add it to the list
if (periodStart <= AbstractMeasurement.getTimeMillis(
measurement.getString("Time Stamp"))) measurements.add(measurement);
¥
// Return the list of measurements for the SLA Contract monitor within the period
return measurements;

3}

66 C. Hofman and E. Roubtsova

5.6 Monitoring SLO Data Quality

Figure 6 shows the example SLO Data Quality specification. A monitor instance
for an SLO Data Quality is calculated over a period of 365 days. A maximum of
1% data quality issues are allowed for the data items delivered by the provider.
The SLO is violated if the percentage of data quality issues exceeds 1% during
the period. If violated, a Penalty of 1,000.00 has to be paid once.

Events

Add SLO Data Q

Add SLO Max Re'

Add SLO Respon
SLO Name Data Quality For C] String
Period Value 365 String
Norm Criteria <= String

Norm Value 1 Integer

Norm Unit % data quality issues String

Penalty Value | 1000{00 Currency

SLO Data Quality | (new SLO Data Quality) vl SLO Data Quality
[Add SLO Data Quality |

[reset form |
Fig. 6. Adding the SLO Data Quality. Generated from the protocol model [15] in
Modelscope tool [7].

Function getIndicatorValue() in this monitor calculates the percentage of
data quality issues during the monitoring period. The data quality issues and
the entire data population are cumulated a to calculate this percentage.

public class SLODataQuality extends Behaviour {

public int getIndicatorValue() {
// Get the related SLO specification, Get the SLA that is being monitored and
// get the period that is monitored

Instance slo = this.getInstance("SL0");
Instance sla = monitor.getInstance("SLA Contract Monitor");
String period = slo.getString("Period Value");

// Get the measurements for the SLA within the period and
// sum the value of attribute Data Quality Issues

int value = sum(sla, slo.getString("Period Value"), "Data Quality Issues");
// Sum the total volume of data items requested

if (value == 0) return 0;

int total = sum(sla, period, "Volume");

// Calculate percentage of data quality issues
return Math.round(100f * (float)value / (float)total);
1

A Reference Model for an SLA 67

6 SLO-Concept as a Model Variation Point

In Sect. 3 we mentioned our study of existing SLA’s and their SLO’s. Almost
all SLO’s fit in three types SLO Response Time, SLO Data Quality and SLO
Volume. Some of them can be seen as composition of several SLO’s of a given
type. For example, we have found SLO Classified Response Time, which is com-
posed from four SLOs Response time. Response times in this SLO are classified
into four categories: on time, late, too late, and far too late. Response times of
requests are collected over a period of time and a category are expressed as a
percentage of responses. We have used this compositional SLO to validate our
reference model. The reference model with this SLO remains the same, but the
monitoring logic is specified for each category of response times.

We also have found one SLA that includes an SLO Mean Time To Repair
used to monitor resolving service disturbances reported by the consumer to the
single point of contact of the service. The concept disturbance is outside of our
reference model. This SLO can be included into an SLA only if the service
provider is able to repair disturbances.

7 Conclusion

The information exchange services are often used by non-technical businesses
and they need a reference model for preparation, monitoring and reviewing. In
this paper, we have presented a version of a reference model that shows the con-
cepts, the goals and the executable protocol of an SLA monitoring. The reference
concepts, goals and an executable model contribute to the understanding of the
designed SLA.

The concepts and their relations have been found via a literature review.
The concepts of Service Level Objectives (SLO’s) have been refined using the
document analysis of the existing SLA’s in domain of information exchange ser-
vices. In the domain of Information Sharing Services, three main types of SLO’s
(Volume, Response Time and Data Quality) have been identified. These types
of SLO’s are used to structure the process of SLA preparation and monitoring.
The logic of SLO’s indicators, violation and penalty calculation can be reused
and composed for different SLO’s.

Keeping an SLA alive is considered as one of the issues in organizations.
The goal and protocol models can be used for demonstration of an SLA for
the customers and providers both before their agreement, and during the service
utilizing. The models show the logic of the SLO measures, indicators and penalty
calculation. An executable protocol model transforms an SLA documentation
into a part of management process and, therefore, contributes to active use of
the SLA for reviews, assessment of targets and planning.

In the future work, our reference model, built for the information exchange
services, can be validated in different service domains. The reference model can
be also useful in context of help desk processes in organizations, as SLA’s are
often guaranteed by several departments and the customer expects the declared
quality of service provided by several departments.

68 C. Hofman and E. Roubtsova
References
1. Blake, M.B., Cummings, D.J., Bansal, A., Bansal, S.K.: Workflow composition

10.

11.

12.

13.

14.

15.

16.

of service level agreements for web services. Decis. Support Syst. 53(1), 234-244
(2012)

Emeakaroha, V.C., et al.: Towards autonomic detection of SLA violations in Cloud
infrastructures. Future Gener. Comput. Syst. 28(7), 1017-1029 (2012)

Gartner Glossary: Gartner (2019). hitps://www.gartner.com/en/information-
technolog/glossary /sla-service-level-agreement

Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage. 11(1), 57-81 (2003)
Leitner, P., Ferner, J., Hummer, W., Dustdar, S.: Data-driven and automated
prediction of service level agreement violations in service compositions. Distrib.
Parallel Databases 31(3), 447-470 (2013)

McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: AOM
2008, pp. 13—18 (2008)

McNeile, A., Simons, N.: (2011). http://www.metamaxim.com/

McNeile, A.T., Simons, N.: State machines as mixins. J. Obj. Technol. 2(6), 85-101
(2003)

Menascé, D.A., Ruan, H., Gomaa, H.: QoS management in service-oriented archi-
tectures. Perform. Eval. 64(7-8), 646663 (2007)

Paschke, A., Bichler, M.: Knowledge representation concepts for automated SLA
management. Decis. Support Syst. 46(1), 187-205 (2008)

Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
SLAs. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pp. 170-180. ACM (2008)

Roubtsova, E.: Interactive Modeling and Simulation in Business System Design.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-15102-1
Roubtsova, E.: Categories of research methods and types of research results illus-
trated with a continuous project. In: 21st International Conference on Enterprise
Information Systems, pp. 634—-641 (2019)

Roubtsova, E., Michell, V.: KPIs and their properties defined with the EXTREME
method. In: Shishkov, B. (ed.) BMSD 2013. LNBIP, vol. 173, pp. 128-149. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-319-06671-4_7

SLA protocol model: Protocol Modelling (2019). https://newprotocolmodelling.
weebly.com /uploads/2/8/7/6/28769871 /sla4_20191010.zip

Zimmermann, O.: Architectural decisions as reusable design assets. IEEE Softw.
28(1), 64-69 (2011)

https://www.researchgate.net/publication/342713355

