
Open Universiteit
www.ou.nl

Discovering Software Vulnerabilities Using Data-flow
Analysis and Machine Learning
Citation for published version (APA):

Kronjee, J., Hommersom, A., & Vranken, H. (2018). Discovering Software Vulnerabilities Using Data-flow
Analysis and Machine Learning. In Proceedings of the 13th International Conference on Availability, Reliability
and Security Article 6 acm. https://doi.org/10.1145/3230833.3230856

DOI:
10.1145/3230833.3230856

Document status and date:
Published: 01/01/2018

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 08 Sep. 2023

https://doi.org/10.1145/3230833.3230856
https://doi.org/10.1145/3230833.3230856
https://research.ou.nl/en/publications/87e4ec8a-80de-4fd2-86dd-65b4a532cfb9

Discovering software vulnerabilities using data-flow analysis and
machine learning

Jorrit Kronjee
Open University of the Netherlands

Heerlen, The Netherlands
jorrit@wafel.org

Arjen Hommersom
Open University of the Netherlands

Heerlen, The Netherlands
Radboud University

Nijmegen, The Netherlands
Arjen.Hommersom@ou.nl

Harald Vranken
Open University of the Netherlands

Heerlen, The Netherlands
Radboud University

Nijmegen, The Netherlands
Harald.Vranken@ou.nl

ABSTRACT
We present a novel method for static analysis in which we
combine data-flow analysis with machine learning to detect
SQL injection (SQLi) and Cross-Site Scripting (XSS) vulnera-
bilities in PHP applications. We assembled a dataset from the
National Vulnerability Database and the SAMATE project,
containing vulnerable PHP code samples and their patched
versions in which the vulnerability is solved. We extracted
features from the code samples by applying data-flow analysis
techniques, including reaching definitions analysis, taint anal-
ysis, and reaching constants analysis. We used these features
in machine learning to train various probabilistic classifiers.
To demonstrate the effectiveness of our approach, we built a
tool called WIRECAML, and compared our tool to other tools
for vulnerability detection in PHP code. Our tool performed
best for detecting both SQLi and XSS vulnerabilities. We
also tried our approach on a number of open-source software
applications, and found a previously unknown vulnerability
in a photo-sharing web application.

CCS CONCEPTS
• Security and privacy → Vulnerability scanners; Software
security engineering; Web application security; • Comput-
ing methodologies → Supervised learning by classification; •
Software and its engineering → Automated static analysis;

KEYWORDS
Software security, vulnerability detection, static code analysis,
machine learning, data-flow analysis

ACM Reference Format:
Jorrit Kronjee, Arjen Hommersom, and Harald Vranken. 2018.
Discovering software vulnerabilities using data-flow analysis and
machine learning. In ARES 2018: International Conference on

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the au-
thor(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
ARES 2018, August 27–30, 2018, Hamburg, Germany
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to ACM.
ACM ISBN 978-1-4503-6448-5/18/08. . . $15.00
https://doi.org/10.1145/3230833.3230856

Availability, Reliability and Security, August 27–30, 2018, Ham-
burg, Germany. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3230833.3230856

1 INTRODUCTION
Despite the increasing efforts for improving software security,
vulnerabilities in software code are still of major concern. For
instance, 5000 to 8000 newly discovered vulnerabilities have
been reported yearly since 2012 in the National Vulnerability
Database (NVD), and in 2017 more than 14000 vulnerabilities
were reported [18]. Vulnerability discovery is often a tedious
task which requires intimate knowledge of the system, the
programming language, and possible attack scenarios. The
difficulty of these tasks creates a strong demand for new
methods that facilitate vulnerability discovery.

Various methods have been developed for discovering vul-
nerabilities in software code, which can be categorized as
manual inspection, static (code) analysis, and dynamic analy-
sis. Each of these methods has its limitations. As source code
projects grow, manual inspection quickly becomes unfeasible.

Static analysis is performed by analysing the program code
without running it. The main advantage of static analysis
is that all paths in the code can be considered. Typically,
a predefined set of rules is used to find vulnerabilities such
as the use of insecure library functions, buffer overflows, or
insufficient data validation. An obvious limitation is that only
the vulnerabilities covered by the rule set can be discovered.
The first static analysis tools appeared early 2000 (such as
Flawfinder, ITS4, and RATS) [4]. They simply checked the
usage of potentially dangerous functions such as strcpy().
Since then, many more advanced tools have been developed.
Most tools employ taint analysis, which checks the usage
of variables that originate from input that can be modified
(directly or indirectly) by the user. Dynamic languages have
been a challenge for static analysis, since properties such as
run-time source inclusion, usage of eval functions, object
runtime alteration, and reflection can only be fully evaluated
at run-time.

Dynamic analysis is performed by testing the program
code during run-time and can be applied with or without the
availability of source code. Dynamic analysis can be done
by vulnerability scanners that use a defined set of malicious
patterns. Although they are popular for penetration testing,
they cannot guarantee complete code coverage since the code

https://doi.org/10.1145/3230833.3230856
https://doi.org/10.1145/3230833.3230856
https://doi.org/10.1145/3230833.3230856

ARES 2018, August 27–30, 2018, Hamburg, Germany Jorrit Kronjee, Arjen Hommersom, and Harald Vranken

is tested without knowledge of the code structure. Further-
more, they are limited to the set of malicious test patterns
applied. Fuzzers improve this to some extent by generating
semi-random test patterns, and some fuzzers add instrumen-
tation to the code for discovering code branches [13].

In this paper, we combine data-flow analysis with ma-
chine learning to create a novel method for static analysis
to identify vulnerabilities. We created a dataset containing
PHP source code files that each have a SQL injection (SQLi)
or Cross-Site Scripting (XSS) vulnerability, as well as the
patched versions of the files in which the vulnerability is
solved. Next, we generated control-flow graphs (CFGs) for
the code in each file. We extracted features from these CFGs
that relate to data flow, and we applied these features in ma-
chine learning to train various probabilistic classifiers. Given
an input, a probabilistic classifier outputs not only the most
likely class that the input belongs to, but also the probability
distribution considering all classes. In our case, the outputs
are the probabilities that the code contains either a SQLi or
XSS vulnerability.

We provide the following contributions: (1) we show that
relevant features can be extracted from CFGs; (2) we show
that these features can be used successfully to train a prob-
abilistic classifier for detecting SQLi and XSS vulnerabili-
ties with high accuracy; (3) we compare the performance
of various probabilistic classifiers with these features; (4)
we compare the detection accuracy of our approach against
other static code analysis tools; (5) we demonstrate that our
approach can be used to find vulnerabilities in open-source
PHP software code that have not been discovered before.
We implemented our approach in Python and created tool-
ing named WIRECAML, which is available as open-source
software under the MIT license [11].

The remainder of the paper is organised as follows: We
first describe related work on the usage of machine learning
for vulnerability detection in Section 2. Next, we present how
we extract relevant features from CFGs in Section 3. We
outline our dataset, experimental setup, and the performance
of the classifiers in Section 4. In Section 5 we compare the
performance of our tool against other tools, and in Section 6
we apply our tool for detecting vulnerabilities in a number
of open-source software applications. We discuss limitations
of our approach and directions for future work in Section 7.
We conclude the paper with Section 8.

2 RELATED WORK
A recent survey by Ghaffarian et al. [8] split work in the area
of machine learning and vulnerability discovery into three
main categories: vulnerability prediction based on software
metrics, anomaly detection, and vulnerable code pattern
recognition. Only very modest results have been achieved so
far with vulnerability prediction based on software metrics
[6, 32, 35, 37]. Vulnerability discovery by anomaly detection
is only effectively applicable for mature software systems, and
is unable to distinguish vulnerabilities from defects [42]. Our

work can be categorised as vulnerable code pattern recogni-
tion, which we consider as the most promising category.

Vulnerable code pattern recognition analyses and extracts
features from program source code, striving to extract models
and patterns of vulnerable code. The common theme is to
gather a large dataset of vulnerable samples, process them to
extract feature vectors from each sample, and utilise machine
learning algorithms to automatically learn a pattern recogni-
tion model for software vulnerabilities. To this end, different
approaches are used to process and extract features from
program source code, such as code parsing, static data-flow
and control-flow analysis, dynamic analysis, and text mining.

Yamaguchi et al. proposed a method for assisted discovery
of vulnerabilities in source code by introducing the concept
of ‘vulnerability extrapolation’ [39, 40]. Their method pro-
ceeds by extracting abstract syntax trees from the code and
determining structural patterns in these trees, such that each
function in the code can be described as a mixture of these
patterns. This representation enables the deconstruction of a
known vulnerability into a graph query and extrapolates it
to a code base, such that functions potentially suffering from
the same flaw can be suggested to the analyst. In later re-
search, these researchers proposed a new graph representation
named ‘code property graph’ for modelling and discovering
vulnerabilities by means of graph traversals [38, 41]. The
code property graph merges concepts of classic program anal-
ysis (abstract syntax trees, control-flow graphs, and program
dependence graphs) into a joint data structure. This data
structure is then stored in a graph database allowing an ana-
lyst to construct template queries to find new instances of a
known vulnerability. Although this is a novel approach to as-
sist a security analyst, it requires a fair amount of knowledge
of both the application that is investigated and the query
language. Moreover, this research was limited to C and C++.

Shar and Tan investigated PHP and proposed a set of 20
static code attributes based on data-flow analysis that can
be used to predict program statements that are vulnerable
to SQLi and XSS attacks [29, 30]. These 20 static code at-
tributes reflect different data-flow aspects of a code segment,
such as the number of statements that input data from vari-
ous sources (e.g., HTTP requests, files, databases), the type
of input data, the number of different output sink statements
(e.g., database queries, HTML outputs), and the number of
different input validation and sanitisation statements. To eval-
uate the effectiveness of the attributes, the authors developed
a tool called PhpMiner and performed experiments on eight
open source web applications written in PHP. The authors
also compared the performance of PhpMiner against Pixy.
On average, Pixy discovered more vulnerabilities but also
produced many more false positives compared to PhpMiner.
(We compared Pixy with our tooling, see Section 5.)

In later research, Shar et al. predicted vulnerabilities us-
ing hybrid code attributes [31]. Dynamic analysis was in-
corporated into static analysis to improve the classification
accuracy. Shar et al. further extended their work by adding
Remote Code Execution and File Inclusion to their vulnerabil-
ity scope and employing a technique called ‘static backward

Discovering software vulnerabilities using DFA and ML ARES 2018, August 27–30, 2018, Hamburg, Germany

program slicing’ in order to extract different execution paths
from program slices [28]. They also modified their feature set
to include 10 static and 22 dynamic attributes and used a
semi-supervised approach alongside the supervised approach
for vulnerability prediction, where the semi-supervised ap-
proach can be used when there is a shortage of labelled
training data. These were then implemented in a new version
of PhpMiner. (We tried to obtain a copy of PhpMiner and
its dataset for comparison, unfortunately without success.)

Medeiros et al. [12] asserted that taint analysis could be
an effective mechanism for vulnerability discovery if machine
learning is used to remedy the high false-positives rate. The
proposed approach was implemented as a tool named Web
Application Protection (WAP), consisting of several steps:
first, taint flow analysis is performed on PHP source code to
identify possible XSS, SQLi, file inclusion, and OS command
injection vulnerabilities. Second, the trained Logistic Regres-
sion classifier was used to exclude false-positive reports based
on 14 manually selected attributes. Third, a fixed set of code
templates was used to correct the detected vulnerable sinks
in the source code. For evaluation, the authors compared the
results of WAP against Pixy and PhpMiner. The reported
results indicate that WAP performs significantly better than
the other tools.

3 EXTRACTING FEATURES
As a first step in our approach, we extract features. We parse
the PHP source code files in our dataset and convert them
into abstract syntax trees (ASTs) using the phply parser
[21]. Next, we derive CFGs from the ASTs, from which we
extract features. Although our research focuses on PHP, we
select language-neutral features as much as possible, so that
our approach can be applied to other dynamic languages in
later research. A CFG represents all paths that might be
traversed through program code during its execution [1]. It
is a directed graph where the nodes represent basic blocks
and edges represent possible transfer of control flow from one
basic block to another. CFGs are commonly used in data-
flow analysis. We apply reaching definitions analysis, taint
analysis, and reaching constants analysis to extract features
from the CFGs, as described in the following subsections.

3.1 Reaching definitions analysis
Reaching definitions analysis is a data-flow analysis technique
which statically determines which definitions may reach a
given point in the code [17]. A definition of a variable 𝑥 is
a statement that assigns, or may assign, a value to 𝑥. A
definition d is said to reach a point p if there exists a path
from d to p such that d is not killed, i.e. not overwritten by
another definition of the same variable, along that path. For
each basic block b in a CFG, four sets are defined: IN[b]
represents all incoming definitions from preceding blocks;
GEN[b] represents the definitions made inside b; KILL[b] rep-
resents the definitions in all other basic blocks of the CFG
that are killed by the definitions in b; OUT[b] represents the
definitions at the output of block b, where OUT[b] = GEN[b]

1:$tainted = $_GET['UserData']

2:$query = 'SELECT * FROM student where id=' . $tainted . ''

3:$conn = mysql_connect('localhost', 'mysql_user', 'mysql_password')

4:mysql_select_db('dbname')

5:echo 'query : ' . $query . '

'

6:$res = mysql_query($query)

7:while ($data = mysql_fetch_array($res))

8:print_r($data)

10:mysql_close($conn)

9:echo '
'

Figure 1: Example of a control-flow graph

∪ (IN[b] - KILL[b]). Once we have constructed the reach-
ing definitions, we determine the use-definition chains (UD
chains) for each definition. A UD chain consists of a use of a
variable, and all the definitions of that variable that can reach
that use without any other intervening definitions. SQLi and
XSS vulnerabilities are typically due to the use of potentially
vulnerable functions and a lack of sanitisation. We use the
UD chain for each line in the program code to determine
which functions may have been used in the paths to that line.
We consider the presence of functions as features.

Figure 1 shows the CFG of an example program that ac-
cepts user input, creates a SQL query with the supplied input,

ARES 2018, August 27–30, 2018, Hamburg, Germany Jorrit Kronjee, Arjen Hommersom, and Harald Vranken

line echo mysql mysql mysql mysql mysql print vuln.
_close _connect _fetch _query _select _r

_array _db

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 0 0 0 0 1 0 0
5 1 0 0 0 0 0 0 0
6 0 0 0 0 1 0 0 1
7 0 0 0 1 1 0 0 1
8 0 0 0 1 1 0 1 1
9 1 0 0 0 0 0 0 0

10 0 1 1 0 0 0 0 0

Table 1: Dataset derived from the CFG of Figure 1

executes the query, and displays the results. The program
contains a SQLi vulnerability as the user input is not sani-
tised. The injected SQL query is executed on line 6, while the
results of the query are used on lines 7 and 8. We therefore
consider lines 6, 7, and 8 as vulnerable.

Using UD chains, we create Table 1 which shows the
functions each line depends upon. For instance, line 7 uses
mysql_fetch_array with parameter $res, which is defined on
line 6 by function mysql_query. The last column indicates
whether a line is marked as vulnerable. This table is an
appropriate input for our probabilistic classifiers, where the
vulnerable column is used as the class and the other columns
(except the first column) are used as the features.

3.2 Taint analysis
Tainted data is data that can be modified (either directly
or indirectly) by potentially malicious users, and thus can
cause security problems at vulnerable points in the program
(called sensitive sinks). Tainted data may enter the program
through unsafe channels, and can spread across the program
via assignments and similar constructs.

We assume that a variable is untainted when its type
is float, int, double, or bool. This also applies when a vari-
able is casted to these types, by functions such as floatval
or intval. Variables that are not untainted are considered
tainted. Variables that are composites of other variables fol-
low the rules shown in Table 2.

By (re)using the reaching definitions (see Section 3.1), we
can identify for each line whether it contains tainted data.
When a line contains multiple variables, the rules in Table 2
are followed. Simply put, if at least one variable is tainted,
the whole line is considered tainted. We use the taintedness
of each line as input feature for our probabilistic classifiers.
In this analysis, we do not take possible sanitisation of the
tainted variables into account.

3.3 Reaching constants analysis
Tainted data can be sanitised, which removes harmful prop-
erties and hence transforms tainted data into untainted data.
Vulnerabilities such as SQLi and XSS can be avoided by
proper input sanitisation. Sanitisation can be done in various
ways in the program code, using predefined filters or dedicated
code. In PHP the function filter_var(𝑣𝑎𝑟, 𝑓𝑖𝑙𝑡𝑒𝑟𝑛𝑎𝑚𝑒,

$a $b Result

untainted untainted untainted
untainted tainted tainted
tainted untainted tainted
tainted tainted tainted

Table 2: Composing tainted variables $a and $b

𝑜𝑝𝑡𝑖𝑜𝑛𝑠) filters the variable specified in the first argument 𝑣𝑎𝑟
with a filter specified by the constant 𝑓𝑖𝑙𝑡𝑒𝑟𝑛𝑎𝑚𝑒. Such filters
can be used for sanitising. For instance, the filter FILTER_
SANITIZE_NUMBER_INT removes all characters except digits,
plus, and minus sign, while FILTER_SANITIZE_STRING strips
all tags and optionally strips or encodes special characters of
a string.

Since identifying all possible sanitisation filters is infeasible
and hard to maintain, we also include all constants as features
using the same method as outlined in Section 3.1. In this
way, the method could straightforwardly be applied to other
dynamic languages where custom sanitisation functions with
filters as parameters are used.

4 TRAINING THE CLASSIFIERS
In this section, we will first describe the dataset that we used
for training and evaluation. Then, we evaluate the perfor-
mance of five different probabilistic classifiers for this problem.
Finally, we study the impact of the three different types of
features that were discussed in the previous section on the
predictive performance.

4.1 Dataset
We assembled a dataset from the NVD [18] and the SAMATE
dataset [26].

The NVD is a vulnerability database maintained by NIST,
containing real-world code snippets of vulnerable code. It
is based upon the Common Vulnerabilities and Exposures
(CVE) [14] standard vulnerability dictionary. The vulner-
abilities contained in the NVD are classified according to
the Common Weakness Enumeration (CWE) [15]. We only
extracted vulnerabilities from the NVD classified as CWE-79
and CWE-89, which relate to XSS and SQLi vulnerabilities
respectively, and selected only those code snippets that are
written in PHP. We used the XML feed as provided by the
NVD to extract relevant information from the years 2002
(when NVD started) to 2016. The NVD unfortunately does
not contain patches, but instead links to the source code
repositories were the code snippets originate from. We manu-
ally followed up these links (if available) and looked for the
patches. In the end, we were able to derive 28 code snip-
pets containing SQLi vulnerabilities and 81 code snippets
containing XSS vulnerabilities from the NVD, as well as
the corresponding patches. In the vulnerable code snippets,
we marked the lines that are removed by the patches as the
vulnerable lines. We consider all other lines as non-vulnerable.

We extended our dataset with test cases from the NIST
Software Assurance Metrics And Tool Evaluation (SAMATE)

Discovering software vulnerabilities using DFA and ML ARES 2018, August 27–30, 2018, Hamburg, Germany

project. This dataset includes synthetic PHP test cases for
SQLi and XSS vulnerabilities that were generated by a
tool [33, 34]. The test cases are separated into safe (non-
vulnerable) and unsafe (vulnerable) categories. We derived
3904 unsafe and 6176 safe XSS test cases, and 912 unsafe
and 8640 safe SQLi test cases. We also derived an XML file
containing the file names and vulnerable line numbers.

We assembled our dataset by including all of the vulnerable
code snippets from the NVD and SAMATE. Since the number
of non-vulnerable code snippets was much larger, we only
included a random sample of the non-vulnerable code snippets
in our dataset (20% of non-vulnerable files for SQLi, and 7%
of non-vulnerable files for XSS). This sampling also allowed
us to reduce the size of the dataset, which prevented memory
issues for our tooling. The proportion of vulnerable to non-
vulnerable code lines in our sampled dataset is 1 to 80 for
SQLi and 1 to 67 for XSS.

4.2 Experimental setup
We split our dataset into three parts: a training set, a tuning
set, and a test set, where the split was 70%, 10% and 20%
respectively. Table 3 shows the sizes of these sets. We used the
training set to train our classifiers, the tuning set to tune their
parameters, and the test set to evaluate our classifiers. As a
performance criterion, we chose the area under the precision-
recall curve (AUC-PR), which works well in cases where the
dataset is highly skewed [5], such as in our dataset. Given a set
of predictions from a classifier that outputs a probability, we
can obtain a deterministic classifier by classifying an example
as vulnerable if the classifier outputs a probability 𝑝 > 𝑐
for the vulnerability class, where 𝑐 is a particular threshold.
Suppose 𝑡𝑝 is the number of true positives, 𝑓𝑝 is the number
of false positives, and 𝑓𝑛 is the number of false negatives,
then precision is defined as:

𝑃 𝑟𝑒𝑐 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝

and recall or true-positive rate is defined as:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛

The precision-recall (PR) curve shows the trade-off between
precision and recall by varying the threshold 𝑐.

Based on the extracted features, we trained five basic
classifiers: decision tree, random forest, logistic regression,
naive Bayes, and tree augmented naive Bayes (TAN). See
e.g. [7] for an overview of these techniques. Naive Bayes
classifiers and TANs model a joint probability distribution
over the features and the class variable (vulnerable / not

SQL XSS
non-vuln. vuln. non-vuln. vuln.

training 153,011 1,898 189,312 2,848
tuning 23,418 311 27,230 390
testing 45,523 568 5,7468 841
total 221,952 2,777 274,010 4,079

Table 3: Number of lines included in datasets

Classification method Vulnerability AUC-PR
Decision tree SQLi 0.88
Random forest SQLi 0.85
Logistic regression SQLi 0.87
Naive Bayes SQLi 0.64
TAN SQLi 0.75
Decision tree XSS 0.82
Random forest XSS 0.82
Logistic regression XSS 0.79
Naive Bayes XSS 0.69
TAN XSS 0.81

Table 4: Comparison of several probabilistic classifiers in
terms of AUC-PR values

vulnerable), with different underlying assumptions. Decision
trees and logistic regression model a conditional distribution
for the class variable given the features. Finally, random
forest is an ensemble learning method where predictions
from multiple decision trees are combined to improve their
individual performance.

We used the tuning set to determine the best hyperparam-
eters, which are the parameters of a model training algorithm
and are set prior to the learning process. To optimise these
hyperparameters we used grid search, which is an exhaustive
search through the space of the hyperparameters. As we are
trying to optimise our models for the AUC-PR value, we use
the AUC-PR value on the tuning set as a performance met-
ric. This was implemented using the Python scikit-learn [20]
library which contains various probabilistic classifiers as well
as tools for feature extraction and normalization, choosing
features, model selection, and validation.

4.3 Classifier performance
Table 4 shows the performance of the different probabilistic
classifiers for detecting SQLi and XSS vulnerabilities. The
first observation is that the AUC-PR is generally better for
the SQLi than for the XSS vulnerabilities. Considering that
XSS attacks are more diverse (stored vs. reflected, multiple
sinks), it is possible that the performance of the XSS classifiers
was affected by this extra complexity. Secondly, the decision
tree classifier outperforms the other methods for detecting
SQLi vulnerabilities, although the difference with the random
forest and logistic regression classifiers is small. For XSS, all
methods show a similar performance, except for the naive
Bayes classifier.

Since the decision tree classifier outperforms the other
methods in these experiments and is simpler than the random
forest, we selected this classifier for further evaluation, which
is described in the remainder of this paper. The precision-
recall graphs of this classifier are shown in Figure 2 and
Figure 3 respectively for both types of vulnerabilities.

4.4 Feature performance
To get a better feeling for which features are most relevant for
the performance, we have looked at the contribution of the

ARES 2018, August 27–30, 2018, Hamburg, Germany Jorrit Kronjee, Arjen Hommersom, and Harald Vranken

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

SQLi DecisionTreeClassifier AUC-PR=0.88

PR curve

Figure 2: PR curve of decision tree classifier for SQLi

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

XSS DecisionTreeClassifier AUC-PR=0.82

PR curve

Figure 3: PR curve of decision tree classifier for XSS

three types of features that were introduced in the previous
section, i.e., functions, taint analysis, and constants. To see
their contribution, we have built models where we leave out
one of these feature types to establish their contribution to
the model’s performance.

The results are shown in Figures 4 and 5. The PR-curve
named ‘all’ is the combination of all feature types and is
considered the baseline. Although all feature types seem to
add to the model’s performance, the taint feature seems to
have little to negligible impact. This may have to do with the
method used as our taint analysis does not take into account
sanitisation functions, which means that most variables are
tainted. It could also be because the information encoded by
the taint feature is highly dependent on the other features.

5 COMPARISON TO OTHER TOOLS
Over the years various static code analysis tools have been
created for PHP. Some of these tools are nothing more than

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Feature performance (SQLi)

all AUC-PR=0.88
w/o taint AUC-PR=0.85
w/o constants AUC-PR=0.77
w/o functions AUC-PR=0.25

Figure 4: Contribution of feature types for SQLi

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Feature performance (XSS)

all AUC-PR=0.82
w/o taint AUC-PR=0.82
w/o constants AUC-PR=0.78
w/o functions AUC-PR=0.32

Figure 5: Contribution of feature types for XSS

a glorified ‘grep’, while others do some form of data-flow
analysis. NIST maintains a curated list of source code secu-
rity analysers [19]. In this section, we look at a comparison
between our tool and these existing tools.

5.1 PHP static analysis tools
For our comparison, we selected candidate tools on complete-
ness (is it able to find SQLi as well as XSS vulnerabilities?),
implementation (can it do more than just searching for names
of potentially vulnerable functions?), and output (does it
show where the vulnerability is?). Based on these criteria, we
selected four tools (Pixy [9], RIPS [24], WAP [12, 36], and
Yasca [27]) to compare with our own tool.

Pixy is a static code analysis tool that scans PHP applica-
tions for security vulnerabilities. More precisely, flow-sensitive,
interprocedural, and context-sensitive data-flow analysis are
used to discover vulnerable points in a program. In addi-
tion, alias and literal analysis are employed to improve the

Discovering software vulnerabilities using DFA and ML ARES 2018, August 27–30, 2018, Hamburg, Germany

correctness and precision of the results. Pixy was originally
developed by Nenad Jovanonic. The current maintainer is
Oliver Klee [10], although there has been no active develop-
ment since 2014. We are using the version with commit ID
3f81106 for our comparison.

RIPS is the self-proclaimed most popular static code anal-
ysis tool to automatically detect vulnerabilities in PHP appli-
cations. By tokenising and parsing all source code files, RIPS
is able to transform PHP source code into a program model
and to detect sensitive sinks that can be tainted by user
input during the program flow. Besides the structured out-
put of found vulnerabilities, RIPS offers an integrated code
audit framework. RIPS was originally written by Johannes
Dahse and released as open-source software. In 2016, a new
and rewritten version of RIPS was released as a commercial
software product by RIPS Technologies [25] to overcome the
technical limitations of the open-source version. We only
evaluated the open-source version (version 0.55).

As explained in Section 2, WAP is a source code static
analysis and data mining tool that detects and corrects input
validation vulnerabilities in web applications written in PHP
by semantically analysing source code. WAP was written by
Ibéria Medeiros in 2014 and has been part of the OWASP
project since 2015. We used version 2.1 for our comparison.

Yasca is an open source program written by Michael Scov-
etta which looks for security vulnerabilities, code quality,
performance, and conformance to best practices in program
source code. It leverages external open source programs, such
as FindBugs, PMD, JLint, JavaScript Lint, PHPLint, Cp-
pcheck, ClamAV, Pixy, and RATS to scan specific file types,
and also contains many custom built-in scanners developed
for Yasca. It can generate reports in HTML and JSON. We
used version 3.0.5 for our comparison.

5.2 Preparation
Since none of these tools output probabilities, we will be
using an 𝐹1-score to compare the tools. 𝐹1 can be calculated
with

𝐹1 = 2 · 𝑃 𝑟𝑒𝑐 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐 +𝑅𝑒𝑐𝑎𝑙𝑙
The 𝐹1-score is in fact a weighted average over both the
vulnerable and the (much larger) non-vulnerable classes.

As our tool does output a probability of the vulnerable
class, we determine the threshold that maximises the 𝐹1-
score of the classifier’s predictions using the tuning set (i.e.,
beforehand). In other words, if 𝑌 represents the probability
of the vulnerable class for the tuning set and we use 𝑌 > 𝑐
to determine the class label, we will find the threshold 𝑐 that
maximises the 𝐹1-score. This threshold 𝑐 will then be used
to determine the 𝐹1-score for the test set.

We only used the SAMATE dataset for our evaluation, as
we noticed that none of the tools were able to cope with the
larger NVD dataset. (Although the number of code snippets
taken from the NVD is smaller, as indicated in Section 4.1,
all dependent files have to be included as well to provide
a complete code base.) After the transformation step, the
SAMATE dataset consists of 28,268 non-vulnerable lines and

3,904 vulnerable lines for XSS, and 99,338 non-vulnerable
lines and 2,736 vulnerable lines for SQLi. Our tool is trained
for these experiments with a training set that is extracted
from this dataset. The test set is not used during training.

Although all tools report a line number for a vulnerability,
not every tool considers the vulnerability to occur in the
same place. Some tools, such as Pixy, report the vulnerability
at the sink, while other tools, such as RIPS, report all the
lines between source and sink. To do a fair comparison, we
decided to only compare files and ignore the line number.
Since the SAMATE dataset only contains one vulnerability
per file, this does not skew the results.

Some of the tools allow configuration (Yasca, for instance,
has the possibility to disable or enable plug-ins). We assume
that the default configuration generates the best results. We
ignored any additional vulnerabilities that are reported other
than SQLi and XSS in the results.

5.3 Results
Table 5 shows the results (weighted averages) for the SQLi
dataset. It shows that our WIRECAML tool scored the best
with an 𝐹1-score of 0.94 with WAP and RIPS as runner-ups.
When looking at the ‘vulnerable’ class results (Table 6) it
becomes clear that both RIPS and WAP were struggling to
find the vulnerable samples. Yasca scored extremely low in
these results. Upon manual inspection we discovered that
Yasca reported vulnerabilities in all samples, despite the fact
that most of the samples were not vulnerable. This is why
Yasca has an 𝐹1 score of 0.00 for the non-vulnerable class
(Table 7).

Table 8 shows the results (weighted averages) for the XSS
dataset. As we have seen in Section 4.3, our classifier scores
lower for XSS than for SQLi. This apparently also applies
to other tools (see Table 8), and our WIRECAML tool still
scores the best overall. We note that for the non-vulnerable
class RIPS scores better (see Table 10). This is because RIPS
was not able to detect any XSS vulnerabilities at all (hence,
𝐹1 = 0.00 for the vulnerable class in Table 9).

6 EVALUATION IN PRACTICE
Given the good results with our dataset, we decided to see if
our tool could detect vulnerabilities in some existing open-
source software projects. In this section, we discuss the ap-
proach for the field experiment and a description of the
vulnerability that we found.

6.1 Approach
We used the latest versions of the following projects: Joomla!
(3.8.3), Kajona (6.2), moodle (3.4), MyBB (1.8.14), ownCloud
(10.0.4), phpMyAdmin (4.7.7), Piwigo (2.9.2), Tiki Wiki CMS
Groupware (17.1), Typo3 (9.0.0), WordPress (4.9.1), and Zen
Cart (1.5.5f).

For each project we trained two decision tree classifiers:
one for XSS vulnerabilities and one for SQLi vulnerabilities.
The output of our tool was a CSV file containing the file
name, line number, and probability for each sample. We used

ARES 2018, August 27–30, 2018, Hamburg, Germany Jorrit Kronjee, Arjen Hommersom, and Harald Vranken

Precision Recall 𝐹1-score

WIRECAML 0.94 0.94 0.94
Pixy 0.86 0.61 0.69
RIPS 0.83 0.80 0.82
WAP 0.83 0.84 0.83
Yasca 0.01 0.10 0.02

Table 5: Weighted averages (SQLi)
(SAMATE SQLi dataset; 𝑐 = 0.97)

Precision Recall 𝐹1-score

WIRECAML 0.78 0.57 0.66
Pixy 0.15 0.61 0.24
RIPS 0.14 0.21 0.17
WAP 0.11 0.09 0.10
Yasca 0.10 1.00 0.18

Table 6: 𝐹1-scores for class ‘vulnerable’ (SQLi)

Precision Recall 𝐹1-score

WIRECAML 0.95 0.98 0.97
Pixy 0.94 0.61 0.74
RIPS 0.91 0.87 0.89
WAP 0.90 0.92 0.91
Yasca 0.00 0.00 0.00

Table 7: 𝐹1-scores for class ‘not vulnerable’ (SQLi)

this for manual inspection to confirm whether or not they
are exploitable.

We ignored the samples where the probability that they
are vulnerable is 0. This resulted in 487,548 possible positives.
Although this is a lot, it is only 9% of the in total 5,183,277
code lines (non-comment lines of code (NCLOC) as mea-
sured by phploc [3]). During our inspection we started with
analysing the samples most likely to be vulnerable. We lim-
ited our effort for manual inspection of the possible positives
to 3 days, in which we were able to inspect 1,646 samples. Of
these, we identified 28 samples as suspicious, originating from
Joomla!, moodle, Piwigo, Tiki Wiki CMS Groupware, and
Zen Cart. To verify if these were actual vulnerabilities, we
installed these projects on a virtual machine running Apache
and MySQL, and tried to find a suitable exploit. We limited
our effort for this task to 2 days.

We quickly discovered that, even though at first glance
input parameters seemed to be taken directly from the web
browser, these input parameters were actually being sanitised
by a preprocessing function. This was not obvious during
manual inspection as the samples themselves were still using
the $_GET, $_POST, and $_REQUEST arrays, but these were
apparently being overwritten with sanitised versions. This
sanitisation could not have been picked up by our tooling,
as array operations are not supported yet. After further
examination, we discovered that for most samples some form
of sanitisation is in place making them false positives, except
for one sample of Piwigo.

Precision Recall 𝐹1-score

WIRECAML 0.79 0.71 0.71
Pixy 0.61 0.61 0.61
RIPS 0.37 0.61 0.46
WAP 0.51 0.58 0.51
Yasca 0.24 0.25 0.24

Table 8: Weighted averages (XSS)
(SAMATE XSS dataset; 𝑐 = 0.83)

Precision Recall 𝐹1-score

WIRECAML 0.58 0.93 0.71
Pixy 0.50 0.51 0.51
RIPS 0.00 0.00 0.00
WAP 0.36 0.12 0.18
Yasca 0.00 0.00 0.00

Table 9: 𝐹1-scores for class ‘vulnerable’ (XSS)

Precision Recall 𝐹1-score

WIRECAML 0.93 0.57 0.70
Pixy 0.69 0.68 0.68
RIPS 0.61 1.00 0.76
WAP 0.61 0.86 0.71
Yasca 0.39 0.41 0.40

Table 10: 𝐹1-scores for class ‘not vulnerable’ (XSS)

6.2 The Piwigo vulnerability
Piwigo also uses a generic sanitisation mechanism using
PHP’s addslashes() function, which returns a string with
backslashes added before characters that need to be escaped.
These characters are: single quote (’), double quote ("), back-
slash (\), and NUL (0x0). Although addslashes() is often
used as a filter to prevent SQL injections, it does not provide
complete protection against it.

In listing 1 we see how input parameter $_POST[‘tags’]
is processed without validation, even though it was sanitised
by addslashes() earlier. It is assumed that $_POST[‘tags’]
contains an array of integers, and therefore it is not encap-
sulated within quotes in the SQL query string. This means
that we can inject arbitrary SQL code using the POST pa-
rameter. For instance, we could send an array with a single
element containing the string -1) UNION (SELECT password
FROM piwigo_users for injection. This would create a result
set consisting of all the hashed passwords of the users of the
system. This result set would then be part of the page output
as evident from line 18-22 in listing 1.

The security risk of this vulnerability is estimated as low
with a CVSS1 score of 3.8 because exploitation requires the
attacker to be authenticated as administrator. We reported
the vulnerability to the Piwigo team [16], who subsequently

1Common Vulnerability Scoring System (CVSS) is a free and open
industry standard for assessing the severity of computer system security
vulnerabilities.

Discovering software vulnerabilities using DFA and ML ARES 2018, August 27–30, 2018, Hamburg, Germany

1 if (isset($_POST ['delete ']) and isset($_POST ['tags ']))
2 {
3 if (! isset ($_POST ['confirm_deletion ']))
4 {
5 $page ['errors '][] = l10n('You need to confirm

deletion ');
6 }
7 else
8 {
9 $query = '

10 SELECT name
11 FROM '. TAGS_TABLE .'
12 WHERE id IN ('. implode (',', $_POST ['tags ']).')
13 ;';
14 $tag_names = array_from_query ($query , 'name ');
15

16 delete_tags ($_POST ['tags ']);
17

18 $page ['infos '][] = l10n_dec (
19 'The following tag was deleted ', 'The %d

following tags were deleted ',
20 count ($tag_names)
21)
22 .' : '. implode (', ', $tag_names);
23 }

Listing 1: Piwigo tag deletion snippet

released a fix. We also tried a commercial vulnerability scan-
ner, which did not reveal this vulnerability.

7 DISCUSSION AND FUTURE WORK
There are several directions for improving our current results.
During the evaluation of our tool in practice, as outlined
in Section 6, it became clear that not being able to recog-
nise array elements in an array is a shortcoming of our tool.
For PHP all input from a browser is passed on using pre-
defined, global arrays ($_GET, $_POST, $_REQUEST, $_COOKIE,
and $_SERVER). Not parsing these arrays properly generated
many of the false positives we have seen. Jovanovic et al.
described how array variables can be tracked [9].

Another area of improvement is regular expressions. Reg-
ular expressions are commonly used for either validation or
sanitisation. Our classifiers flagged lines containing functions
related to regular expressions, such as preg_match() and
preg_replace(). However, in most cases, these regular ex-
pressions were formed correctly and could not be exploited.
Testing these regular expressions automatically with a set
of strings commonly used in SQLi and XSS vulnerabilities
and using the results of these tests as extra features, could
provide an interesting set of new features.

Up to now, we focused on the manual construction of rele-
vant features. In machine learning, representation (feature)
learning has shown promising results [2]. Comparing such
automatically-learned features to the features derived from
data-flow analysis would be very interesting.

Besides improving the results, we also aim to generalise our
tool to other dynamic languages and to other vulnerabilities.
The latter may for instance be achieved by including tech-
niques such as Remote Code Execution and File Inclusion,
as reported by Shar et al. [28].

During our research, we faced two major challenges: acquir-
ing a suitable dataset with vulnerable and non-vulnerable
cases, and evaluating our approach. A significant contribution
of our work is the construction of a dataset for training clas-
sifiers, using data from the NVD and the SAMATE project.
Obtaining patches for the NVD vulnerabilities was a tedious
task. We also discovered some issues with the SAMATE
dataset: some XSS samples were miscategorised as ‘unsafe’,
and in the SQLi samples the sink was mislabelled. We re-
ported both issues, including patches [22, 23] to fix them, to
the author of the test case generator.

The second challenge is in the evaluation of our approach.
Our dataset may contain a sampling bias as it only includes
samples from open-source applications. Samples from com-
mercial applications are missing, due to the fact that both
the code as well as the vulnerability data of commercial
applications are not publicly accessible. Assuming that all
application code is available is a general limitation in our
approach as an application may use third-party plug-ins and
components for which the source code may be unavailable.
There is also a bias in the comparison to other tools, as we
limited ourselves to freely available open-source versions of
SQLi/XSS vulnerability scanners. Considering that commer-
cial tools use sophisticated rule sets, they are likely to score
better than their free counterparts. We call upon vendors of
commercial vulnerability detection to make statistics about
their detection rate public.

8 CONCLUSIONS
In this paper, we combine machine learning and static code
analysis to detect vulnerable code, focusing on code written
in the dynamic programming language PHP. Our results show
that using machine learning in combination with features
extracted from control-flow graphs and abstract syntax trees
is an effective approach for vulnerability detection in dynamic
languages, in particular PHP applications.

We applied five basic machine learning methods (decision
tree, random forest, logistic regression, naive Bayes, and tree
augmented naive Bayes). We observed that they offer similar
predictive performance on this problem, where decision tree
performed slightly better and naive Bayes performed worse.
This suggests that using the right features is more important
than the machine learning algorithm that is employed. We
show that the most important class features are the usage
of certain functions in code snippets. Features related to
constants (that may identify sanitisation filters) and taint
analysis further boost the performance.

To demonstrate the effectiveness of our approach, we built
a tool called WIRECAML, and compared our tool to other
tools for vulnerability detection in PHP code. For both the
SQLi and XSS datasets our tool scored best. Our tool has
already shown impact in the real world, as within a limited
amount of time, we found a vulnerability in the photo-sharing
web application Piwigo. This vulnerability has been reported
[16] and the Piwigo team has released a fix, which will be
included in Piwigo 2.9.3.

ARES 2018, August 27–30, 2018, Hamburg, Germany Jorrit Kronjee, Arjen Hommersom, and Harald Vranken

REFERENCES
[1] Frances E. Allen. 1970. Control Flow Analysis. In Proceedings

of a Symposium on Compiler Optimization. ACM, 1–19. https:
//doi.org/10.1145/800028.808479

[2] Yoshua Bengio, Aaron Courville, and Pascal Vincent. 2013. Repre-
sentation learning: A review and new perspectives. IEEE transac-
tions on pattern analysis and machine intelligence 35, 8 (2013),
1798–1828.

[3] Sebastian Bergmann. 2018-02-09T09:54:03Z. Phploc: A Tool for
Quickly Measuring the Size of a PHP Project. https://github.
com/sebastianbergmann/phploc

[4] Brain Chess and Garry McGraw. 2004. Static Analysis for Security.
IEEE Security & Privacy 2, 6 (2004), 76–79.

[5] Jesse Davis and Mark Goadrich. 2006. The Relationship between
Precision-Recall and ROC Curves. In Proceedings of the 23rd
International Conference on Machine Learning. ACM, 233–240.

[6] Maureen Doyle and James Walden. 2011. An Empirical Study
of the Evolution of PHP Web Application Security. In Third
International Workshop On Security Measurements and Metrics
(Metrisec). IEEE, 11–20.

[7] Peter Flach. 2012. Machine learning: the art and science of
algorithms that make sense of data. Cambridge University Press.

[8] Seyed Mohammad Ghaffarian and Hamid Reza Shahriari. 2017.
Software Vulnerability Analysis and Discovery Using Machine-
Learning and Data-Mining Techniques: A Survey. Comput. Sur-
veys 50, 4 (2017), 1–36. https://doi.org/10.1145/3092566

[9] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. 2006.
Pixy: A Static Analysis Tool for Detecting Web Application
Vulnerabilities. In IEEE Symposium on Security and Privacy
(S&P’06). IEEE. http://ieeexplore.ieee.org/xpls/abs_all.jsp?
arnumber=1624016

[10] Oliver Klee. 2012. Pixy Is a Scanner Static Code Analysis Tools
That Scans PHP Applications for Security Vulnerabilities. https:
//github.com/oliverklee/pixy Accessed 2017-06-19.

[11] Jorrit Kronjee. 2018. WIRECAML: Weakness Identification Re-
search Employing CFG Analysis and Machine Learning. https:
//github.com/jorkro/wirecaml

[12] Ibéria Medeiros, Nuno F Neves, and Miguel Correia. 2014. Auto-
matic detection and correction of web application vulnerabilities
using data mining to predict false positives. In Proceedings of the
23rd international conference on World wide web. ACM, 63–74.

[13] Michal Zalewski. 2016. Technical "Whitepaper" for Afl-Fuzz.
http://lcamtuf.coredump.cx/afl/technical_details.txt

[14] MITRE. 2016. CVE - Common Vulnerabilities and Exposures
(CVE). https://cve.mitre.org/

[15] MITRE. 2017. CWE - Common Weakness Enumeration. https:
//cwe.mitre.org/

[16] MITRE. 2018. CVE - CVE-2018-6883. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2018-6883

[17] Steven S. Muchnick. 1997. Advanced Compiler Design and Im-
plementation. Morgan Kaufmann.

[18] National Vulnerability Database. 2018. NVD - Statistics Search.
https://web.nvd.nist.gov/view/vuln/statistics

[19] NIST. 2017. Source Code Security Analyzers - SA-
MATE. https://samate.nist.gov/index.php/Source_Code_
Security_Analyzers.html Accessed 2017-07-02.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. 2011. Scikit-Learn: Machine Learning in Python.
Journal of Machine Learning Research 12 (2011), 2825–2830.

[21] Stanisław Pitucha. 2010. Phply: PHP Parser Written in Python
Using PLY. https://github.com/viraptor/phply Accessed 2017-
09-10.

[22] Pull Request #1 2018. Stivalet/PHP-Vuln-Test-Suite-Generator.
https://github.com/stivalet/PHP-Vuln-test-suite-generator/
pull/1 Accessed 2018-03-17.

[23] Pull Request #2 2018. Stivalet/PHP-Vuln-Test-Suite-Generator.
https://github.com/stivalet/PHP-Vuln-test-suite-generator/
pull/2 Accessed 2018-03-17.

[24] RIPS 2018. Free PHP Security Scanner Using Static Code Analy-
sis. http://rips-scanner.sourceforge.net/ Accessed 2018-03-28.

[25] RIPS Technologies 2017. RIPS - Static Code Analysis for PHP
Security Vulnerabilities. https://www.ripstech.com/ Accessed
2017-07-01.

[26] SAMATE 2018. Software Assurance Metrics And Tool Evaluation
Project Main Page. https://samate.nist.gov/Main_Page.html

Accessed 2018-03-28.
[27] Michael Scovetta. 2017. http://www.scovetta.com/yasca.html

Accessed 2017-05-17.
[28] Lwin Khin Shar, Lionel C. Briand, and Hee Beng Kuan Tan.

2015. Web Application Vulnerability Prediction Using Hybrid
Program Analysis and Machine Learning. IEEE Transactions
on Dependable and Secure Computing 12, 6 (2015), 688–707.
https://doi.org/10.1109/TDSC.2014.2373377

[29] Lwin Khin Shar and Hee Beng Kuan Tan. 2012. Predicting
Common Web Application Vulnerabilities from Input Valida-
tion and Sanitization Code Patterns. In Proceedings of the 27th
IEEE/ACM Automated International Conference On Software
Engineering (ASE). IEEE, 310–313.

[30] Lwin Khin Shar and Hee Beng Kuan Tan. 2013. Predicting
SQL Injection and Cross Site Scripting Vulnerabilities through
Mining Input Sanitization Patterns. Information and Software
Technology 55, 10 (2013), 1767–1780. https://doi.org/10.1016/j.
infsof.2013.04.002

[31] Lwin Khin Shar, Hee Beng Kuan Tan, and Lionel C. Briand. 2013.
Mining SQL Injection and Cross Site Scripting Vulnerabilities
Using Hybrid Program Analysis. In Proceedings of the 2013
International Conference on Software Engineering. IEEE Press,
642–651. http://dl.acm.org/citation.cfm?id=2486873

[32] Yonghee Shin, Andrew Meneely, Laurie Williams, and Jason A.
Osborne. 2011-11. Evaluating Complexity, Code Churn, and De-
veloper Activity Metrics as Indicators of Software Vulnerabilities.
IEEE Transactions on Software Engineering 37, 6 (2011-11),
772–787. https://doi.org/10.1109/TSE.2010.81

[33] Bertrand Stivalet. 2014. PHP-Vuln-Test-Suite-Generator: PHP
Synthetic Test Cases Generator. https://github.com/stivalet/
PHP-Vuln-test-suite-generator Accessed 2016-04-12.

[34] Bertrand Stivalet and Elizabeth Fong. 2016. Large Scale Gen-
eration of Complex and Faulty PHP Test Cases. In IEEE In-
ternational Conference on Software Testing, Verification and
Validation (ICST). IEEE, 409–415. http://ieeexplore.ieee.org/
abstract/document/7515499/

[35] James Walden, Jeff Stuckman, and Riccardo Scandariato. 2014.
Predicting Vulnerable Components: Software Metrics vs Text
Mining. In IEEE 25th International Symposium On Software
Reliability Engineering (ISSRE). IEEE, 23–33.

[36] WAP 2018. Web Application Protection. http://awap.sourceforge.
net/ Accessed 2018-03-28.

[37] Dumidu Wijayasekara, Milos Manic, and Miles McQueen. 2014.
Vulnerability Identification and Classification via Text Mining
Bug Databases. In IECON 2014-40th Annual Conference of the
IEEE Industrial Electronics Society. IEEE, 3612–3618. http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7049035

[38] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
2014. Modeling and Discovering Vulnerabilities with Code Prop-
erty Graphs. In IEEE Symposium On Security and Privacy (SP).
IEEE, 590–604.

[39] Fabian Yamaguchi, Felix Lindner, and Konrad Rieck. 2011. Vul-
nerability Extrapolation: Assisted Discovery of Vulnerabilities
Using Machine Learning. In Proceedings of the 5th USENIX
Conference on Offensive Technologies (WOOT’11). USENIX
Association, 13–13.

[40] Fabian Yamaguchi, Markus Lottmann, and Konrad Rieck. 2012.
Generalized Vulnerability Extrapolation Using Abstract Syntax
Trees. In Proceedings of the 28th Annual Computer Security
Applications Conference. ACM, 359–368.

[41] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
2015. Automatic inference of search patterns for taint-style vul-
nerabilities. In IEEE Symposium on Security and Privacy (SP).
IEEE, 797–812.

[42] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and
Konrad Rieck. 2013. Chucky: Exposing missing checks in source
code for vulnerability discovery. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security.
ACM, 499–510.

https://doi.org/10.1145/800028.808479
https://doi.org/10.1145/800028.808479
https://github.com/sebastianbergmann/phploc
https://github.com/sebastianbergmann/phploc
https://doi.org/10.1145/3092566
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1624016
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1624016
https://github.com/oliverklee/pixy
https://github.com/oliverklee/pixy
https://github.com/jorkro/wirecaml
https://github.com/jorkro/wirecaml
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://cve.mitre.org/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6883
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6883
https://web.nvd.nist.gov/view/vuln/statistics
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html
https://github.com/viraptor/phply
https://github.com/stivalet/PHP-Vuln-test-suite-generator/pull/1
https://github.com/stivalet/PHP-Vuln-test-suite-generator/pull/1
https://github.com/stivalet/PHP-Vuln-test-suite-generator/pull/2
https://github.com/stivalet/PHP-Vuln-test-suite-generator/pull/2
http://rips-scanner.sourceforge.net/
https://www.ripstech.com/
https://samate.nist.gov/Main_Page.html
http://www.scovetta.com/yasca.html
https://doi.org/10.1109/TDSC.2014.2373377
https://doi.org/10.1016/j.infsof.2013.04.002
https://doi.org/10.1016/j.infsof.2013.04.002
http://dl.acm.org/citation.cfm?id=2486873
https://doi.org/10.1109/TSE.2010.81
https://github.com/stivalet/PHP-Vuln-test-suite-generator
https://github.com/stivalet/PHP-Vuln-test-suite-generator
http://ieeexplore.ieee.org/abstract/document/7515499/
http://ieeexplore.ieee.org/abstract/document/7515499/
http://awap.sourceforge.net/
http://awap.sourceforge.net/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7049035
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=7049035

	Abstract
	1 Introduction
	2 Related work
	3 Extracting features
	3.1 Reaching definitions analysis
	3.2 Taint analysis
	3.3 Reaching constants analysis

	4 Training the classifiers
	4.1 Dataset
	4.2 Experimental setup
	4.3 Classifier performance
	4.4 Feature performance

	5 Comparison to other tools
	5.1 PHP static analysis tools
	5.2 Preparation
	5.3 Results

	6 Evaluation in practice
	6.1 Approach
	6.2 The Piwigo vulnerability

	7 Discussion and future work
	8 Conclusions
	References

