
Open Universiteit
www.ou.nl

Modelling test-interactions

Citation for published version (APA):

Hermans, H., Van den Berg, B., Vogten, H., Brouns, F., & Verhooren, M. (2002). Modelling test-interactions.

Document status and date:
Published: 02/07/2002

Document Version:
Peer reviewed version

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 16 Jul. 2023

https://research.ou.nl/en/publications/c4328b18-4e0c-4f1a-b54a-2b8a7e557624

Educational Technology Expertise Centre OTEC
Open University of the Netherlands

Modelling test-interactions

COLOPHON

Title:

Modelling test-interactions

Author(s):

Henry Hermans, Bert van den Berg,
Hubert Vogten, Francis Brouns, Marc
Verhooren

Project:

Development Programme WP 2

Project manager:

G. Rodenburg

Project members:

E.J. van den Berg
dr.ir. F.M.R. Brouns
J.H.M. Daniels
drs. H.J.H. Hermans
ing. M. Verhooren
ing. H.F. Vogten

Consultancy:

J.Berkhout
mw.drs. M. Doorten
mw.drs. D. Joosten-ten Brinke
H.G.H. Martens
ing. M. Meex
drs. J.H.A.N. Rikers
mw.drs. D.M.A. Sluijsmans
ir. G.W. van der Vegt

Programme:

Research and Development into
Learning Technologies

Programme chair:

Prof.dr. E.J.R. Koper

Programme assistant:

Mieke Haemers

Report type:

Report

Publication date:

2 July 2002

Distribution:

OTEC

Educational Technology Expertise Centre (OTEC)
Open University of the Netherlands

Modelling test-interactions

OTEC report series

The Open University of the Netherlands develops higher distance education and is a central
partner in a consortium for the renewal of higher education. Educational technological
innovation is one of the main fields of interest. The educational and educational technological
expertise of the Open University of the Netherlands are bundled in the Educational
technology expertise centre (OTEC). This centre is involved with tasks concerning the
development, innovation, research and evaluation of the Open University and its consortium
partners. These tasks are performed in close collaboration with directorates and faculties of
the Open University and/or its consortium partners.

OTEC publishes a report series. This report is part of that series.

Development Programme reports and some documents can be obtained from:

Open University of the Netherlands
Secretary Development Programme
P.O. Box 2960
6401 DL Heerlen
the Netherlands
Tel. +31 45 5762624
Fax. +31 45 5762800

Internet: http://www.ou.nl/otec

 2004, July 2
Educational Technology Expertise Centre, Open
University of the Netherlands

Save exceptions stated by the law no part of this
publication may be reproduced in any form, by print,
photoprint, microfilm or other means, included a
complete or partial transcription, without the prior
written permission of the publisher.

Table of contents

1. Introduction ..7
1.1 Background ... 7
1.1.1 Predefined structured interactions.. 8
1.1.2 Unstructured interaction modelling... 9
1.2 User experiences and problem definition ... 9
2. Design method ...11
2.1 Session overview ...11
2.1.1 Session 1 (11-10-01) ...11
2.1.2 Session 2 (18-10-01) ...12
2.1.3 Session 3 (31-10-01) ...13
2.1.4 Session 4 (08-11-01) ...14
2.1.5 Session 5 (13-11-2001) ..14
2.1.6 Session 6 (15-11-2001) ..14
2.1.7 Session 7 (20-11-2001) ..15
2.1.8 Session 8 (27-11-2001) ..15
2.1.9 Session 9 (29-11-2001) ..16
2.1.10 Session 10 (04-12-2001) ..16
2.1.11 Session 11 (06-12-2001) ..17
2.1.12 Session 12 (13-12-2001) ..17
3. Domain model ..19
3.1.1 Introduction..19
3.1.2 Static test definition model ..19
3.1.3 Dynamic runtime behaviour model ..20
3.1.4 Static test-item definition model...21
4. Conclusions and discussion ..23
4.1 Designing using UML ..23
4.2 The current domain model and steps to be taken...24
Appendix 1: Explanation of UML terms ..25
Appendix 2: Domain model reached on 13-12-01 ..27
Appendix 3: Datadictionary ..29

Modelling test interactions

 7

1. Introduction

This report presents the results of work package 2 (‘Technology’) of the Development
programme of the OUNL. The activities reported upon have been carried out from October
2001 until the first week of December 2001 on the specific area of test-interactions. Initially
the intended scope was to cover the whole process of creating an UML domain model within
the area of test-interactions, validating this model by gathering relevant cases and working
out best practices, and at last translating this model into a XML DTD binding. However,
reallocation of the available human resources in the beginning of December 2001 forced us to
stop the process temporarily. As a result this report does not cover the whole spectrum, but
presents the interim results. The main focus in this report is on the process of constructing a
coherent domain model on interactions. The WP2 handbook on interactions complements this
report.

1.1 Background

One of the major spin-offs from the Development program of the OUNL is EML 1.0 as
published in December 2000 on the EML website (http://www.ou.nl/eml). EML or Educational
Modelling Language in a narrow sense refers to a specific XML DTD binding for creating
educational content. In a broader and preferred sense it refers to a generic model on
learning design with a specific implementation in XML (the EML DTD).
The DTD provides two mechanisms to model interactions:

• Predefined modelling of structured interactions
• Unstructured interaction modelling

Both mechanisms will be described below.

The predefined interaction model was primarily derived from the functional specifications of
the Vespucci project (see Veldmeijer, 09-1999). However, these models have never been
tested extensively. Authors could experiment only with four types of interaction, because
only these were available in the authoring environment (Framemaker+SGML 5.5.6) supplied
to OUNL authors (see table 1). These were the only four types supported by the EML web
player Edubox.

Implemented in player Not implemented in player

Multiple choice question
Multiple response question
Question answer
True-false question

Sequence question
Matching question
Short-answer question
Prompt

Table 1: Supported predefined structured interactions in Edubox

DP2001

 8

1.1.1 Predefined structured interactions

1.1.1.1 EML 1.0 Interactions model

Figure 1: Interactions model

This model exists throughout the EML DTD and is part of the ‘extra-p’ model. This
interactions-model covers eight question-types with a predefined structure (see figure 2 for
an example). The application of this model is primarily in the area of intake, monitoring (self-
assessment e.g.) or evaluation.

Figure 2: Multiple-choice mode in EML 1.0

1.1.1.2 EML 1.0 Questionnaire object

The questionnaire object in EML 1.0 is in fact an extension of the interactions model. It can
be used to group questions and provide additional specifications for the way of presenting
and processing. A typical application of the questionnaire object is within the area of forms
and self-assessment.

Modelling test interactions

 9

Figure 3: Questionnaire object

1.1.2 Unstructured interaction modelling

In EML interactions can also be modelled without making use of predefined structures. These
kinds of interactions are modelled with the use of so-called properties. These properties,
which have to be declared within the role-specification of a unit-of-study can take several
forms and may contain predefined values. The set-property element can be used to provide
the end-user in run-time with possibilities to interact, e.g. to make a choice between given
values, fill in a value or string or upload a document. Other EML structures (e.g. method,
activity-description) can specify actions of the educational system. These actions can differ
according to specific property-values. Property-values can for example influence the study
path or the visibility of particular information.

1.2 User experiences and problem definition

During the last two years a large amount of users within the OUNL has become more or less
acquainted with EML and the EML authoring process, in particular via the so-called OUNL
‘pilot projects’ and the HHM-project. In this period many questions were raised on the area of
interactions, both on the modelling part (authoring environment) as on the handling and
delivery part (player). Authors mentioned issues, which could not be addressed with the
current model. It was not possible to specify feedback for specific answer choices. Answers
could not be stored (e.g. in properties) or retrieved. Therefore authors were forced to create
much server-time consuming work-arounds. There was also a lack of certain types of
interaction such as open answer items.
In addition it was not possible to model many aspects of testing like processing of results,
score transformation, adaptive testing, etc.

To guarantee a wide use of EML, it might be relevant to look at existing standards such as
the IMS QTI and incorporate those, if possible. Another important aspect is user acceptance;
meaning that authors needs and expectations should be met. Changes in the interaction
model which take these considerations into account might lead to a better acceptance.
Through this adaptation a better integration and compatibility with other assessment or test
software packages becomes possible.

Thus the ultimate goal of this project was to create an interactions model that is generic and
complete and to derive bindings from it, in particular for future versions of EML. It is not
likely that such a binding will cover the complete model, but rather only focus on parts of it.
However creating such a model will make it easy to understand which components and

DP2001

 10

relationships have to be taken into account when deriving a binding for a particular purpose.
Hence one could see this model as the first steps towards a structured approach in defining a
reference model in the area of interactions.

1.3 IMS QTI

Before starting the design of the interaction model we discussed the possibility of using the
IMS Question and Test Interoperability specification (IMS QTI 1.0) for our purposes. We had
several reasons not to adopt this specification at that moment:
• The QTI is a very technical approach towards describing interactions. The QTI dissects an

interaction into its basic components like content, response types etc. Although from a
systems perspective this seems to be a very powerful approach, allowing numerous types
of items, it misses semantics. EML however incorporates a very semantic view that seems
to conflict with the technical approach QTI has chosen. An example that will illustrate
these differences is a multiple choice item. In EML 1.0 a multiple choice item is modelled
using the Multiple-choice-question tag (see figure 2). For a system (user or computer) it
is therefore immediately clear what the type of item is, when processing it. When using
the QTI standard, the same multiple choice question would be modelled using tags like
presentation, material and response. A system (user or computer) processing these tags
knows how to behave, but is not aware that it is dealing with a multiple choice question.

• It was very difficult to determine whether all situations can be modelled using QTI, or
indeed any modelling specification, due to lacking requirements. We therefore decided
that we had to design our interaction model first, so we had a reference model that we
could use to evaluate the completeness and effectiveness of any exisiting specification.
Indeed we recognised that after having completed the model a re-evaluation of the
usefulness of the QTI would be necessary.

• At the moment the interaction model was conceived it was not clear how EML would be
positioned in IMS. So we had to make sure that the bulk of our efforts would be useful
regardless of the fact if EML would be an integral part of the IMS specifications or not. If
so, we could use the reference model to make suggestions for improvements of the QTI
standards within IMS if necessary. Otherwise we could derive a proprietary specification
from the model.

Modelling test interactions

 11

2. Design method

The Development programme agreed to use the Unified Modelling Language (UML) for object
oriented system analysis to streamline communication processes and to support design
methods. Although this UML is in itself a language and not a design method it is based on the
principles of object oriented software design.

The starting point for object oriented development is domain modelling. The domain model is
a map of the reality in which a system functions and consists of concepts, behaviour and
relations between objects and classes. In a software lifecycle three phases can be
distinguished: analysis, design and implementation. In the timeframe of this project we could
only pay attention to the analysis. The results of the project are described in UML class
diagrams.

The level of proficiency in UML was different among the project team members. The
information technologists were familiar with UML, but for the educational technologists it was
a new experience.

The project team consisted of a domain expert in the field of assessment and testing,
educational technologists and information technologists. Additional domain experts were
invited for the some of the sessions or were consulted on specific issues.

Twelve sessions were organised in all, which are described in the next paragraphs.

2.1 Session overview

The domain model was developed in several sessions. The next paragraphs provide insight in
how this process evolved in time. A short description is given of every session. It provides a
closer look at the development process and reveals some obstacles and pitfalls. For a more
detailed description of the sessions, the Interactions handbook can be consulted.

2.1.1 Session 1 (11-10-01)

Preparation/input
• Each participant received a reader containing the following documents:

- Veldmeijer, F. (1999). VELO - Functional description version 1.0. (pp 39-49)
(confidential report).

- Rikers, J. H. A. N. (1989). Een classificatie van item vormen. Twente: Toegepaste
onderwijskunde.

- Cap Gemini (1998). Objecten model – Open Universiteit. (pp21-30).
- IMS – Question and Test Interoperability specification.
- Hermans, H., Rikers, J. & De Haan, D. (1997). ITEM-TSS Detailontwerp rapport 2:

beschrijving module toetsconstructie en –beheer. (OTEC Werkdocument 97/W15.
• Three test experts were invited.
• Test experts were asked to prepare a presentation providing a full overview of the test

design and development process.
• Brown papers were put on the walls; a digital camera was available; all kinds of auxiliary

aids were available.

DP2001

 12

Process
At the start of this session the general intentions and approach were explained by the
moderator of this session. It was acknowledged that most or all participants were unfamiliar
with their specific role within this new UML approach.

After the general introduction a presentation was held by one of the test experts about test
development. The following four steps were identified in this process:
1. Identifying the objectives.
2. Test construction.
3. Test delivery.
4. Assessment of test results.

This presentation triggered the scope discussion: what is to be modelled? The following can
be stated as the result of this discussion:
• Domain of ‘testing’ is to be modelled.
• Workflow is to be modelled.
• Not the test design or creation process is to be modelled, but the results of this.
• Actors are not to be included.

After this scope discussion a first attempt to identify relevant classes in the testing domain
was made. This resulted in a huge number of potential classes, showing a large overlap. The
next step, the attempt to cluster the classes, triggered much discussion, resulting in the
second scope discussion focusing on testing interactions versus instructional design.
Major conclusions of the discussion were:
• Test construction (later to be called ‘test definition’) should be given a crucial position. In

the modelling of test construction both EML test-items as well as external available test-
items (e.g. from some specific itembank) should be incorporated.

• Also test score processing should belong to the domain.

Results and conclusions
A simple model, containing six classes, along with the first attempt to create a
datadictionary, was the output of this session.
The need for a simple model as a start for modelling the whole domain was evident.
Walking an incremental path seems to be a better approach.
More specific preparation is needed to streamline the discussion.

2.1.2 Session 2 (18-10-01)

Preparation/input
• One of the test experts wrote a document on the processes involved in assessment.
• An intermediate meeting in a smaller group resulted in an adjusted domain model, which

was handed out at the start of the session.
• Less test experts were invited and present in this session.
• It was also decided that less information technologists should be present to prevent that

the focus was too much on implementation aspects.

Process
The domain model was discussed. This model invited the participants to give more precise
the definitions of the terms used. The class test was discussed conceptually. One of the
outcomes of this discussion was to rename the class in Test-definition. The class Test-part
was introduced to allow construction of subtests. Two association-classes with attribute
weight were added to the model, which identify the relation between Item, Test-part and
Test-definition.

Modelling test interactions

 13

Part of the discussion focused on the class Item. The concept of test-item was analysed,
resulting in the following conclusions:
• An item or test-item can be perceived as a stimulus given to a respondent to invoke a

response.
• The response contains the output of the respondent.
• This stimulus contains a context, question and response-mode.
• The response-mode can be divided into constructed responses, where the respondent has

to create a response, and selected responses, where the respondent can choose from a
given set of responses.

• Each item must have (a) learning objective(s).
• Classification of items should be based on the response rather than on the type of

stimulus.

Another discussion focused on how to model the respondent score on a test-item. It was
concluded that this score could be seen as part of the response rather than part of the test-
item. In addition a test-item needs to have a scale, in which this score can be expressed. So
scale was added as an attribute to Item, score as an attribute to Response.

Results and conclusions
An adjusted domain model.
Preparation in small group seems to be more effective than a collective cold start.

2.1.3 Session 3 (31-10-01)

Preparation/input
An adjusted domain model and a report of session 2 were handed out to the participants.

Process
The scope discussion started again. It became clear that the process of test construction
should not be part of the model. Only the relevant results of this process should be modelled.

Furthermore it was becoming clear that the model should reflect a static as well as a dynamic
part. The test definition was being considered as the static part of the model. Based on this
test definition, one or more tests can be generated, which belongs to the dynamic part.
However, this test was not yet one of instantiated objects of the test definition.

In the dynamic part also the class Test-result was added. This class was needed to store the
collected test results. Response is also dynamic, and as such related to the classes Item and
Respondent.

A major part of this session focused on scoring:
• Scoring information was added to the test definition. However, there appeared to be

different opinions on the meaning and positioning of this scoring information (e.g.
caesura).

• It was agreed that normalisation of scores should occur to be able to weigh several
possible scores of for example different test parts. Normalisation was conceived as a
function and as such was added as an operation to the class.

Results and conclusions
An adjusted domain model.
The understanding of the distinction between a static and dynamic part of the model is
essential.
At this moment the scope appeared to be clear to most of the participants.

DP2001

 14

2.1.4 Session 4 (08-11-01)

Preparation/input
An adjusted domain model and report of session 3 were handed out to the participants.
An intermediate meeting with a test expert took place in order to get more insight in aspects
and terms belonging to the scoring process.

Process
The main topic of this session was scoring. A major part of the session was spent on getting
a common understanding of the scoring process and sharpening definitions. Terms like raw
score, true score and standard score were introduced. However, it was not yet clear whether
they should become part of the model.

This session revealed an increasing need for an object model to validate the class model,
especially those aspects related to scoring. An existing prior knowledge test was chosen for
this object model. To be able to investigate the class model more completely the test
specification was modified to some extent. The elaboration of this object model led to several
discussions and resulted in modifications of the domain model. There also appeared to be a
need to fit correction rules (e.g. for guessing) into the model.

Results and conclusions
An adjusted domain model.
Creating and discussing object models were perceived as suitable means for validating the
domain model.

2.1.5 Session 5 (13-11-2001)

Preparation/input
An adjusted domain model and report of session 4 were handed out to the participants.

Process
The session started with a reflection on the object model as developed in the previous
session. In addition correction for guessing was applied within this model.
Based on the resulting discussion several changes were made to the domain model. These
changes all related to scoring issues.
In addition it was agreed that non-response should also be treated as a type of response and
should be modelled the same way.

Results and conclusions
An adjusted domain model.
Again, working out the object model proved its value for modelling the domain.

2.1.6 Session 6 (15-11-2001)

Preparation/input
An adjusted domain model and a report of session 5 were handed out to the participants.
In addition the first draft of the datadictionary was handed out.

Process
The input documents were discussed. The first draft of the datadictionary was welcomed as a
necessary addition to the class diagram (domain model). A terminological discussion
followed. Terms within the dictionary were compared with those used within the class

Modelling test interactions

 15

diagram. Several adjustments are made and an extra column was added to the
datadictionary to indicate related terms.

Scoring issues were subject of discussion again. The problem of initial caesura (in the static
part) and definite caesura (in the dynamic part) was handled. The question how to deal with
different groups of respondents related to the caesura issue was raised.

In the following part of the session the Item class and its directly related classes were taken
into more detailed consideration. This led to several adjustments in the model. In addition
the respondent's actual reaction to an item was added as an attribute to the dynamic
Response class.

Results and conclusions
Major issues like feedback, adaptive testing and item types were still not addressed.
It was decided to postpone adaptive testing and to schedule remaining major issues.
The datadictionary was a valuable, necessary addition.
Classes should be named more precisely.
Psychometric data related to (test) items should not be modelled here.
The distinction between the dynamic and static parts remained a valuable one.

2.1.7 Session 7 (20-11-2001)

Preparation/input
An adjusted domain model and a report of session 6 were handed out to the participants.

Process
The input documents were discussed and several corrections were made. The main discussion
in this session focused on how to classify item types. It was explored whether the
classification should be based on type of question or on type of answer. Conclusions were
made that the type of answer to be given plays a crucial role in the scoring process. As a
result the classification on the basis of answer type seemed to be preferable. The IMS QTI
solution was also discussed. This solution was considered to be too general and abstract.
Almost all semantics (one of the EML's premises) would be lost with this model.

Results and conclusions
No adjustments were made to the model.
Within the current model no workflow or routing can be modelled. This kind of routing is
often used in questionnaires.
Classification of item types should preferably be based on answer types.
IMS QTI is no solution for semantic modelling.
Adaptive testing can probably be modelled within other structures of EML.

2.1.8 Session 8 (27-11-2001)

Preparation/input
A report of session 7 and a preliminary diagram of item types were handed out to the
participants.

Process
Discussion of the input document with the preliminary diagram of item types was the main
topic of this session. In this document items had been divided in two main categories: ‘closed
response’ and ‘open response’. Typical for closed response items is that the respondent either

DP2001

 16

has to choose between given answer options or has to construct an answer (e.g. make a
sequence or a match) by combining a set given building blocks. On the other hand open
response refers to situations where the respondent has to construct the answer herself
without the help of predefined answers to choose from or build with.

Results and conclusions
Closed response versus open response remained the main distinction between item types.
Closed response can be divided into (1) selection, (2) combination and (3) sequence. Open
response is divided into (1) fill in, (2) performance (3) short answer and (4) essay.
It was decided to collect use-cases or cases from several test-experts to validate the model
obtained so far. Case gathering among colleagues was started.
The class model contained terms in multiple languages. For the moment all terms should be
translated into Dutch.

2.1.9 Session 9 (29-11-2001)

Preparation/input
An adjusted domain model (with respect to item types) and report on session 8 were handed
out to the participants.

Process
A discussion of the documents led to a refinement of the model with respect to the item
classification.
Scoring again was a topic of the discussion. The main issues were correcting for guessing and
how to deal in this respect with incorrect answers.
Another major topic in this session was to what extend existing practical issues e.g. in our
institution should guide the modelling. At several points there appeared to be conflicts
between theory and practice. It was decided that theory should lead.

Results and conclusions
A refined class model.
Not existing practices, but the theory should guide the modelling.
As for scoring, the literature had to be consulted.
The next session should focus on the topic of feedback.

2.1.10 Session 10 (04-12-2001)

Preparation/input
An input document with description of feedback in general.
An adjusted domain model (with respect to item types) and report on session 9.

Process
Some changes were made with respect to the modelling of item types.
The main focus in this session was on how to model feedback, based on the input document.
First the concept of feedback was analysed. It was agreed upon that feedback may contain
the following components: (1) judgement, (2) comments and (3) references.
Feedback is always related to a response or set of responses. This response can be correct,
incorrect or non-response. As a result also hints could be modelled as a particular type of
feedback. Feedback could be given at the level of item, test-part and test.

When trying to elaborate the model some questions remained unanswered, e.g. how to model
feedback in sequence items and how to deal with feedback in questions with open answers.

Modelling test interactions

 17

Results and conclusions
Progress was made in modelling feedback.
Hints are treated as a specific type of feedback.
It was still unclear how to deal with feedback on sequencing and open questions.

2.1.11 Session 11 (06-12-2001)

Preparation/input
An adjusted domain model and report on session 10 were handed out to the participants.

Process
Again the topic feedback dominated the session. The presence of other participants in this
session led to additional insights concerning how to deal with feedback. One particular issue
concerned feedback on open questions. This item-type may contain a standard or default
feedback. As a result standard-feedback was added as an attribute to the class Open.
Another unanswered question was at which point of time feedback can be given on tests or
test-parts. Four situations were identified:
1. Never.
2. Immediately after a response to an individual item.
3. After finishing a test or test-part.
4. Feedback on item level is only provided when the overall test-score is above the test-

caesura.

Results and conclusions
Some changes had been made to the model related to feedback handling.
There was still no satisfying answer to how to model feedback for sequencing questions.
Issues: sequencing of items in a test, (order of) presentation of items in a test, number of
responses that can be given to test-items.

2.1.12 Session 12 (13-12-2001)

Preparation/input
An adjusted domain model and report on session 11 were handed out to the participants.

Process
This was a short session focussing on feedback. A way to model feedback on sequences was
worked out in this session. However, the solution looked rather complex and had not been
tested on its usability.

The hint was discussed again. It was stated that hints do not contain judgements.
Furthermore several hints may be provided, sometimes in a fixed, sometimes in a random
order. The domain model should take these possibilities also into account.

The second part of the session concerned ‘test-instruction’, in which the conditions are
specified under which a test can be taken. However, time-pressure left this issue unresolved.

Results and conclusions
An adjusted domain model with respect to feedback and hints.
This turned out to be the last session, as all human resources were needed for the
specification of the new Edubox system. Unfortunately this left the domain model in an

DP2001

 18

incomplete state. Several issues remained and no validation of the model had taken place.
Also the translation of the model into a binding, or XML DTD remained.

Modelling test interactions

 19

3. Domain model

3.1.1 Introduction

The following sections will give an overview description of the UML class models that have
been derived from the twelve interactive sessions as described above. The goal is to describe
an interaction model containing three major parts:
• static test definition model
• dynamic runtime behaviour model
• static test-item definition model.

Although the class model together with the datadictionary give an in-depth description of the
model, the following paragraphs are intended as a walkthrough for the reader who is new to
the model. The walkthrough will focus on the main issues of the model and is not intended to
cover all details. A complete and detailed description of each class and attribute and
association can be found in the data dictionary (Appendix 2). The walkthrough is divided into
the three major parts of the model.

All literal class, attribute, method names are represented in italic.

3.1.2 Static test definition model

Test-definition forms the main class of the static test definition model. A Test-definition is
the container for a number of attributes determining the behaviour of the test:

• purpose, a derived attribute describing the purpose of this test (what is tested). The
purpose is derived from the purpose of all its Testparts.

• preliminary_caesura, containing the suggested (initial) value of the cut score.
• rating_type, containing the representation of the rating. Typical examples are

fail/pass, positive/negative, sufficient/insufficient.

On the basis of a Test-definition zero or more Tests may be derived. A Test is described in
the dynamic runtime behaviour model. How such a Test should be generated/extracted from
the Test-definition is not modelled yet.

Important for a test is the context surrounding it, as this will determine the environment in
which the test is taken. Therefore a Test-definition contains this context via an association
with the Context class. Next to this context there are two associations with Feedback, one
describing the feedback in case the caesura is matched, the other relates to the Feedback
when the caesura is not met.

A Test-definition is constructed of smaller parts that are represented in the model by the
class Testpart. Testpart also has its own derived purpose attribute. The association between
Test-definition and Testpart has the class Testdefinition.testpart associated with it containing
the weight attribute. The weight attribute determines the relative weight of each Testpart in
the whole Test-definition. The weight is not part of the Testpart itself because the same
Testparts can be reused in different Test-definitions and therefore can have a different
weight in each Test-definition. A Testpart may contain an association with one ore more Test-
definitions, meaning that a Test-definition can act as a Testpart in another Test-definition. A

DP2001

 20

Testpart may consist of or one or more Items. A mixed association relationship of Items and
Test-definitions is not allowed.

An item is the instrument used to measure a learning objective. Item contains a Context
similar to Testpart and Testdefinition. In addition Item has three attributes:

• purpose, defining the purpose of this item (e.g. what is tested by it).
• item_scale, defining the scale the score to the item is expressed.
• stimulus, the presented stimulus (e.g. a question).

The association class Testpart.item determines the association between Item and Testpart.
This association class has a similar function as Testdefinition.testpart. Again the weight
attribute defines the relative weight of each Item in the Testpart.
An Item may have one Hint associated with it, being the default hint for that Item. Hint is a
specialisation of Feedback.
Finally an Item has a Responsemode associated with it. The Reponsemode defines how an
Item is represented and in what form the reaction to it will be. This part of the model is
further described in the static test-item definition model.

3.1.3 Dynamic runtime behaviour model

A Test forms the basis for the dynamic runtime behaviour model. Much of the actual
behaviour of the Test is already modelled in the Test-definition. A Test will be generated
when a test is taken by Respondents. How such a Test is derived from the Test-definition is
not yet part of the model presented. One could think of a Test as being an instance of the
Test-definition, or in a more complex situation a subset of such Test-definition.

The test contains an algorithm for correcting the normalised scale for guessing. Users or
groups of users may take a Test. For this purpose Test has an association with
Respondentgroup. An instance of Respondentgroup can be made up of a single Respondent or
a group of Respondents. For each Respondentgroup there is a final_caesura which is based
on the initial_caesura of the Test-definition.

A Test will have zero or more Testresults associated with it. A Testresult can be thought of as
being the container for storing the end result of the Test taken by a Respondent.
Furthermore a Test has an association with Item. This relation makes up the actual Test, in
the sense that it determines which Items are selected from the associated Test-definition.
How the Items are structured into Testparts can be derived form the Test-definition.

A Testresult is always associated with one and only one Test. Furthermore, each Testresult is
also associated with one and only one Respondent. A Respondent however may or may not
have a Testresult. Several calculations may be performed on the Testresult:

• grade
• normalise_score
• score_corrected_for_guess_chance
• testscale_score.

The Respondent has an association with all the Items that have been presented to him in any
Test. This association is important when tracking the Item history for each individual
Respondent. Finally, each Respondent has zero or more Responses.

A Response is associated with the Item it is a response to. The Response keeps track of the
Respondent’s itemscore for that Item and the reaction (e.g. answer) of the Respondent on
the Item. Furthermore, it is possible to calculate the normalised score of the item for the

Modelling test interactions

 21

Respondent. The weight factors for calculating the normalised score can be derived from the
Test-definition via the Test.

Each response may lead to a number of Hints. These Hints are not defined in the Test-
definition because they are not pre-determined when designing the Test-definition, but are
created in reaction to that Response at runtime. One could think of a reaction of a tutor to a
response. Besides the association with Hints, there is also an association with a Verdict.

A Response may have one association with a special form of Feedback, called Verdict. The
Verdict encompasses a judgement about the Response being correct or incorrect. Typically
such Verdicts are given in situations where there is no standard method of determining a
verdict, like e.g. oral examinations.

3.1.4 Static test-item definition model

The static test-item definition model focuses on the responsemode for different types of
items. The model presented is in its early design stage and far from complete.
The main categories of Responsemode are Closed and Open. Items with a closed
responsemode have only a limited or fixed number of answer options. This characteristic
makes these types of items very suitable for automated processing. With some of the closed
responsemodes a user has the possibility of guessing the answer. The chance the answer is
guessed correctly depends on the number of possible answers. Therefore, the attribute
chance_guess_correct contains the chance the correct answer is obtained by guessing.
Responses to items with an open responsemode are products created by the respondent that
cannot be selected from a limited set of answers. It is very hard to process these types of
items in an automated manner. The attribute scoring_procedure contains a prescription (e.g.
template) how such items should be scored. Furthermore, an Open responsemode item may
have a default_feedback, which will be given regardless of the response to the item.

Closed responsemode items can be divided into three main types:
• Selection: at least 2 Choices are presented to the Respondent to choose from. A Choice

may be correct or not. This is represented by the correct attribute of the Choice class.
Because more than one choice can be correct, Selection has an attribute
required_number_of_correct_responses to indicate how many correct responses have to
be provided to have a 100% correct score. A Choice can have at most two specialisations
of Feedback associated with it, the first being a Hint and the second being a Verdict.
Selection is divided into two categories:
 True-False: the responses on the stimulus situation may be generated from one or

more Statements. All possible combination of the statements and their negations
form the Choices. E.g. when there are two statements the result would be:
• Statement 1 is true and Statement 2 is false.
• Statement 1 is true and Statement 2 is true.
• Statement 1 is false and Statement 2 is true.
• Statement 1 is false and Statement 2 is false.

 Multiple-choice: a multiple-choice item has a number of Choices associated with it of
which some may be correct and others may be incorrect. If the
required_number_correct_responses is greater than one, we are effectively dealing
with a multiple response item.

• Combination: the answers are constructed of matched pairs or classification(s). This is
achieved by having an association with two or more Topics and one or more Category,
thus forming a potential matrix of Topics and Category(ies) with a minimum size of 2 by
1. The type attribute of Combination indicates if the expected Responsemode is a match
or classification. The major differences between the two types are the dimensions of the

DP2001

 22

matrix and uniqueness of the association between Topic and Category. The association
class Pair maps the Topic and Category(ies) which each other. The attribute true indicates
if this combination is ‘correct’ or not. If the type of Combination is match, there should
be one and only one Category for each Topic and vice versa. If the type of Combination is
classify then each Topic has one ore more Category(ies). A Feedback may be associated
with each Pair.

• Sequence: the answers are constructed of re-ordered lists of the answer options
presented. For this purpose a Sequence is made up out of 2 or more Elements. Each
Element is aware of its successor if there is one. Only the last Element does not have a
successor. Furthermore a Sequence has one or more Series associated with it. A Series
itself has a two or more Elements associated with it, forming a subset of all Elements
associated with Sequence. The Elements themselves are aware of their Sequence using
the next association. In principle a Series is a correct sequencing of the Item. A Feedback
may be associated with a Series.

Open responsemode items are divided into four categories:
• Fill-in-the-blanks: for this item class the respondent has to complete a phrase by entering

the missing words or numbers. The attribute number_of_blanks contains the number of
blanks in the Item;

• Performance: for this item part of the Response is the process how products like journals,
essays, etc. are produced;

• Short-answer: the Response only consists out of a short answer (max. 10 words or so);
• Essay: the Response consists of an essay of multiple paragraphs.

Modelling test interactions

 23

4. Conclusions and discussion

4.1 Designing using UML

Reflecting on the sessions as described in chapter 2 of this report, the process resulting in
the domain model as described in chapter 3 appears to consist of three main parts:
1 The first three sessions were used to define the scope of the model, to produce a basic

model for interactions and to determine definitions.
2 In de following sessions (4 to 6) this basic model was refined, the definitions became

more or less fixed and described in a data dictionary and the model was tested
(checked) with a case study.

3 In the last sessions the test-items were modelled and a start was made with the
modelling of feedback.

One of the problems encountered very early on in the process was determining the scope. It
proved to be very difficult to state the exact boundaries of the relevant domain. This was
probably strengthened by the fact that the team had a secondary goal in mind. They wanted
to have a kind of reference model as well as an outcome of this process, which eventually
could be used to analyse emerging standards in a structured and controlled manner. Using
this reference domain model would make it easy to determine for example which parts of the
domain are covered by e.g. IMS-QTI and which parts are not. Depending on the needs
identified, this could lead e.g. to improvement suggestions or to a new binding.

The figure above shows this approach. From top to bottom there are three phases being
analysis, design and finally implementation. The width of each parallelepipidum represents
the scope covered by each layer. On the left hand side one can see the input needed to come
to the output at the right hand side. In order to use the analysis for verification and creation
of multiple designs, the scope must be wider than that of the individual design. The same

Design described
using UML Design(s)

Analysis

Implementation(s)

Test and
interaction domain

Domain model
described using UML

Scope

Requirements

Target binding
Binding

DP2001

 24

applies to the design scope itself when deriving multiple implementations (bindings) for it,
each with their own limitations.

The described approach has the drawback that the scope determination of the domain
analyses is not very strict and this became obvious during the initial sessions. The
advantages however are clear as well. These means that:
• The analysis can be used for several purposes, which in the longer term will be economic.
• Discussions in each design phase will be cleaner due to the fact that the issues regarding

the domain, design and implementation are clearly separated.
• Adoptions in standards and bindings will require less work because the analysis and the

design will not be influenced by these and can be reused.

In conclusion, it is fair enough to say that UML is a powerful tool to support communication.
The fact that we used it for the first time has had its drawback on the project. Things took
more time because of this. This is not caused by the difficulty of the language itself but by
the fact that UML forces one to work in a very structured and systematic way. It forces one
to be very explicit about what is meant. The sessions revealed that several times experts did
not agree and there was confusion about definitions and differences in opinion sometimes
leading to unnecessary long conversations and spending too much time on details.
Uncertainty about the scope of the project in the starting phase created the opportunity to
talk about everything relevant in the domain.

4.2 The current domain model and steps to be taken

As stated in the introduction section the current domain model has not been finished yet and,
seen in the perspective of the overall aims of the project, is an interim product. What
remains to be done is:
1 Finish the domain model.
2 Gather use cases.
3 Validate the models by creating object models based on the cases to be gathered.
4 Refine the model based on the results.
5 Externally validate the model (CITO).
6 Translate the model into an XML-binding (DTD and/or schema).
7 Dry-test the binding and if necessary adjust it.
8 Implement the binding in an authoring environment.

Modelling test interactions

 25

Appendix 1: Explanation of UML terms

Object
An object is an independent unit that can exhibit certain behaviour (functions, operations)
and represent a certain state (static properties or data). An instance of a class.
Notation: rectangle with one or two compartments. Top one contains name of object and
class, all underlined. Second compartment contains attributes and values, type may be
omitted.

Responsibility
Every object has its own responsibility. It should perform all actions required by that
responsibility without fault. The actions that an object can perform are an indication of its
responsibility

Class
A class is a description of objects with the same features, i.e. all properties and operations
for every object in the class are the same.
Notation: box with 3 compartments. Top contains name of class, it can contain a property list
{} and a stereotype. Second compartment contains attributes, third contains operations.
Name of class starts with capital, is centred and bold.

Object identity
Every object has a unique identity. Two instances of the same class with the same state are
still different identifiable objects.

Attribute
An attribute is a named property of an object. Anything that is worthwhile to keep up to date
could be an attribute. Attributes represent the state of the object. The values are a precise
representation of the state of an object at a certain moment.
Notation: visibility name : type-expression = initial-value{property-string} Specified in
second compartment. Class attributes are underlined. Name starts with lowercase, left
justified. Initial value and property-string may be omitted.

Methods and operations
An operation is a service provided by an object.
A method is the implementation of an operation.
The difference between both is that the requesting object needs to know the operations it can
call, but does not need to know the method that is executed to perform the requested
operation. An operation usually gives information on the state or transforms the state.

Operation notation
visibility name (parameter-list) : return-type-expression {property-string}

Class attributes and operations
Class attributes are attributes whose value is common to a class rather than to a particular
instance(e.g. defaults and constants).
Class operations are operation on a class (e.g. create a new instance).
Notation: underlined.

Association
An association is a structural relationship between the instances of two or more classes.

DP2001

 26

A link is a relationship between objects. Is an instance of an association.
Notation: solid line from one class to another. May have a name.

Association role
Indicates the role played by the class attached to the end of the path.

Association class
An association can be so meaningful that it can be represented as a class. Connected to the
association via dashed line.

Aggregation/Composition
An object can be composed of other objects.
Composition can be nested. If you remove the whole, you remove the parts (lifetime
dependency). Notation: filled diamond at 'whole'-end.
Aggregation. Parts can exist without the whole. Notation: open diamond.

Inheritance
Commonalties are defined at higher level: superclass.
More specific classes are subclasses.
A subclass inherits all features from its superclass.
At any place where you can use an instance of a class you can always use any instance of
any subclass.
Notation: open arrow pointing to superclass

Dependency relationship
Is a relation between model-elements, not between the instances. Indicated by a dashed
arrow from the depending element to the dependant element.

Modelling test interactions

 27

Appendix 2: Domain model reached on 13-12-01

+/purpose
+preliminary_caesura
+rating-type
+testscale
+transformation_method
+correct_score_for_guessing : boolean
+item_feedback_option
+provide_item_hints
+provide_response_hints : boolean
+number_of_trials : int
+time_limit_to_hint : int

Test-definition

+/purpose
Testpart

+weight
Testdefinition.testpart

1..*
1..*

-contains

0..*

1

+purpose
+item_scale
+stimulus

Item

+weight
Testpart.item

1..*

1..*

Responsemode

1

1

+correct_scale_for_guessing()

Test

1

*

*

1..*

1*

+normalise()

+itemscore
+reaction

Response

*

1

+grade()
+normalise_score()
+testscale_score()
+score_corrected_for_guess_chance()

Testresult

Respondent

* *

1
*

1

*

*

*

+final_caesura
Respondentgroup

1

1..*

Context

* 0..1

*

0..1

*

0..1

Friday 7-6-2002
based on 13-12-2001

(dutch)

+explanation
+reference

Feedback

1

0..1

less_than_caesura

1

0..1

1

0..1

equal_or_greater_than_caesura

+decision
Verdict Hint

1
*

default_hint <<ordered>>

*

*
<<ordered>>

DP2001

 28

Responsemode

+chance_guess_correct
Closed

+scoring_procedure
+default_feedback

Open

+required_number_correct_responses
Selection

+type
Combination Sequence

+number_of_blanks
Fill-in-the-blanks Performance Short_answer Essay

True-False Multiple-choice

+correct : boolean
ChoiceStatement

1

1..*

Category

1

1..*

Topic

1

2..*

{Als Sequentie}

Friday 7-6-2002
based on 13-12-2001 (dutch)

1

2..*

Element

1

0..1

next {If Combination.type =
 "Classify"
then Topic and
Category should be unique}

+explanation
+reference

Feedback

1

0..2

+true : boolean
Pair

1..*
1..*

1

0..1 {If Combination.type='match' then the multiplicity of the association between
Topic and Category is 1 at both ends
If Combination.type='classify' then the multiplicity of the association between
Topic and Category is 1 .. * at both ends}

0..1

1

default_feedback

1..*

0..1

Series

1

1..*

1

2..*

1

2..*

collection

Hint
+decision

Verdict

Choice can have at most one association
with Hint and one with Verdict

{The Elements associated with Series should
be subsets of the elemements associated
with Sequence.}

Modelling test interactions

 29

Appendix 3: Datadictionary

Class
Association

Attributes Operations Definition Alias

Test-definition A test-definition is the blueprint of weighed testparts, from
which one or more assessments can be determined.

 /purpose Derived attribute that represents the purpose of the test-
definition. The purpose is composed of the purposes of the
individual testparts, which in turn are composed of the
purposes of the individual items.

 +preliminary_caesu
ra

 The preliminary caesura is the initial value on which the
cut score is based. The caesura can be adjusted for every
test, when necessary.
The caesura value is a value on the test score scale.

A cut score is a specified point on a score scale, such that
scores at or above that point are interpreted differently
from scores below that point.

cut-off score

cut score

 transformation_met
hod

 Attribute holding In the transformation method the way to
convert a normalised score to the testscale, is laid down. A
major distinction is 'linear' vs. 'non-linear'. The latter
needs to be expanded further.

The transformation method contains the formulae
according to which the derived score is calculated.

 testscale Attribute testscale is the scale that has to be used when
converting from normalised score to the score on the
testscale.
Examples of testscales: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or
A, B, C, D, E, F or 0 t/m 15.

 correct_score_for_g A boolean attribute indicating whether the score needs to

DP2001

 30

Class
Association

Attributes Operations Definition Alias

uessing be corrected for the effects of guessing.

 rating_type Attribute rating-type is the representation of the
rating/grade. Valid types can be 'pass/fail',
'positive/negative', 'sufficient/insufficient', etc, and always
occur as tupel.

 item_feedback_opti
on

 Attribute indicating when feedback for all items in a
testpart should be given. Possible values are:
- none: no feedback
- immediately: feedback is provided after every item has
been answered
- after completion of (sub)test: feedback is given after all
items in a (sub)test have been answered or when the
(sub)test has been submitted. (It is possible to complete
or submit a test without answering every item.)
- after score above caesura: feedback on item level is
provided only when the score is above the caesura (i.e.
answer key is released only then).

 provide_item_hints

 Attribute indicating when hints at item level are given.
Values are:
- none
- on request
- after time limit
- both on request as after time limit

 provide_response_h
ints

 Boolean attribute indicating whether hints are given in
reaction to a response.

 number_of_trials Attribute indicating how often a question may be
answered.

 time_limit_to_hint Attribute holding time in milliseconds that need to lapse,
before a hint is shown, when hints are displayed
automatically. This attribute is not needed when no hints
are provided.

Modelling test interactions

 31

Class
Association

Attributes Operations Definition Alias

Testpart A testpart is a (logical) grouping of components of a test.
The constraint that a testpart can consist only of one or
more items or one or more testdefinitions applies, because
both testdefinitions and items have weights.

 /purpose A derived attribute representing the objective of a testpart
composed of the sum of objective of all children in the
hierarchy.

Testdefinition.testp
art

 Association class determining the weight of the testparts
in the testdefinition. The weight is given in the attribute
weight. This is a relative measure from all testparts at the
same level.

 weight Attribute representing the relative weight of the testpart in
the testdefinition.

contains Association between testpart (1) and testdefinition (0..*),
named 'contains', indicating that every testpart can
contain testdefinitions.

Testpart.item This association class determines the relative weight of the
individual items in a testpart. This is noted in the attribute
weight, which represents a relative weight of the total
weight of all items in the testpart.

 weight Attribute containing the relative weight.

Item An instrument to measure a learning objective.
An item is characterised by a context, question and
responsemode. The conversion of the measurement into a
discrete value is determined via the scale.

 purpose Attribute containing the description of the intended
measurement of the item.

 stimulus Attribute holding the request which directs the efforts of
the user to formulate a response.

Question

 item_scale Attribute containing the scale in which the score of the
respondent is expressed.

DP2001

 32

Class
Association

Attributes Operations Definition Alias

Context The environment in which an item, testpart or
testdefinition is being taken.
The context largely determines the response of the user.
Every item has a context. This context can be linked
directly to the item or be inherited from testpart or
testdefinition.

Responsemode Defines the expected form of reaction by a user. Major
categories are open response and closed response.

Closed Closed response allows the user to select from an
enumerated set of answers.

Closed response

 chance_guess_corr
ect

 Attribute holding the chance that the correct answer is
obtained via guessing.

corrective scoring

Selection An item for which answer(s) consists of a choice from an
enumerated set.

 required_number_c
orrect_responses

 Attribute holding the number of correct answers which has
to be provided to obtain a 100% score, when multiple
correct answers are possible.
In case of single response items, the number is 1, with
multiple response items more than 1 is possible.

Choice Possible response a participant might select. There should
be a minimum of 2.
Choices contain correct answer(s) and distracters.

 correct Boolean (right/wrong) attribute indicating whether the
choice is right or wrong.

True-False A response style where the participant indicates whether a
statement is correct or incorrect.

Statement A declaration.
Minimum of 1

Multiple-choice A response mode where the participant selects a choice as
being the correct answer.

Combination An item type for which the answer consists of matched Match

Modelling test interactions

 33

Class
Association

Attributes Operations Definition Alias

pair(s) or classification(s). Classify
Classify disjunct

 type Attribute indicating the type of combination: match or
classify.

Topic The elements, including their description, of the first
(given) category.
There are at least 2 Topics in a Series.
Every Topic is related to 1 Category and every Category is
related to 1 Topic.

A multiplicity at both ends of the association between
Topic and Category of 1 implies disjunct classified items
There are 2 constraints.
- If Combination.type='classify', then the names for Topic
and Category have to be unique.
- If Combination.type='match', then multiplicity of
association between Topic and Category at both ends is 1.
If Combination.type='classify' then the multiplicity of the
association between Topic and Category is 1..* (at both
ends) (or 1 in case of disjunct classify).

Category Second category.
A combination consists of 1 or more categories.
There is a constraint in case of classify items, where
names of Topic and Category have to be unique. This does
not apply to matching items.
A Topic can belong to multiple categories and every
Category can consist of multiple topics.

Pair Association class used to determine whether pairs
(Cartesian product) to be made are correct

 true Boolean attribute indicating whether the pair is correct.

Sequence A response mode where the participant has to order the

DP2001

 34

Class
Association

Attributes Operations Definition Alias

answers.

Series A succession of elements as part of a Sequence. A
Sequence consists of 1 or more Series; every Series
belongs to 1 Sequence.
Every Series consists of a minimum of 2 Elements. Every
Element belongs to 1 Series.

Element Part of the order that must be arranged in a Sequence
item.
There is an association 'next' which determines the next
Element.
Every Sequence consists of a (aggregate) collection of 2 or
more Elements, determined via the association 'collection'.

next Association with Element to determine the next Element.

collection Association between Sequence and Element indicating that
there may be a collection of possible combinations.

Open Items with a response mode in which participants must
create their own product or response rather than choose
from an enumerated set.

open response
construct response

 scoring_procedure Attribute holding the criteria to be used when evaluating
the responses. Is related to feedback model.

scoring formula
scoring rubric
answer key
key

 default_feedback Attribute holding feedback that will be provided regardless
of the response.
This feedback is created in advance.
There is no judgement passed whether the response is
correct or incorrect.

Fill-in-the-blanks A response mode where the participant completes a
phrase by entering a word(s) or number(s).

 number_of_blanks Attribute holding the number of spaces which are left

Modelling test interactions

 35

Class
Association

Attributes Operations Definition Alias

blank.

Performance Type of item in which the response mode holds the
process. If the process results in products, like journals,
essays, then these products often are evaluated using
different criteria than used for e.g. essays.

Short_answer Item type where requested response mode consists of a
short answer (max. 10 words).

Essay Item type where requested response mode consists of an
essay (multiple paragraphs).

Response The registered reaction of a user to an item, including his
score on the item_scale.

Answer

 reaction Attribute holding the registered reaction of the user to an
item.

 itemscore Attribute holding the score of the reaction on the
item_scale.

 normalise() Operation that normalises the score value. A normalised
score is necessary to compare scores of individual items.
The following provides an example of a possible
normalisation. It assumes a linear item_scale and a linear
normalised scale.
min_value = minimum value on item scale
max_value = maximum value on item scale
normalised_score = (itemscore / (max_value –
min_value) * 100

scale score
derived score

Feedback Feedback is term used when stimulus is given to a
participant according to their responses. Feedback can be
provided at item, testpart and test level.
Feedback can occur in two forms. Positive feedback is
given after correct answers, hint is provided after incorrect
and correct answers or when no answer has been given.
This implies 2 specialisations of the class Feedback: Hint

DP2001

 36

Class
Association

Attributes Operations Definition Alias

and Verdict.

These classes are used in both parts of the UML model
(Test-definition and Responsemode). In the upper part,
feedback occurs at the level of test and response, in the
lower part at item level. Feedback at test level is given
based on the caesura.
Every Feedback belongs to 1 Test-definition; every Test-
definition has 0 to 1 Feedback.
The association equal_or_greater_than_caesura applies to
Feedback on tests that have been scored successfully; the
association 'less_than_caesura' applies to test that have
been failed.

For open items, Feedback occurs via Hint or Verdict to the
Response. Every Response has 0 or 1 Verdict; every
Verdict belongs to 1 Response. Every Response can have
multiple, ordered Hints. These Hints can be inter-
dependent.
Feedback at this level is constructed only after Response
has been given. It is also related to the scoring_procedure
(attribute of class Open).

There is an order association name 'default_hint' between
Item and Hint, which is given as expansion of the
stimulus-situation. So, this hint is not dependent on
response.

In the lower part of the UML model (Responsemode)
Feedback occurs in several manners.

Modelling test interactions

 37

Class
Association

Attributes Operations Definition Alias

For Selection, there is an association between Choice and
Feedback. Every Choice has 0 .. 2 Feedback in the form of
either Hint or Verdict; every Feedback belongs to 1 Choice.
A constraint is applied: there can be at max 1 Hint plus 1
Verdict, but not 2 Hint or 2 Verdict.
For Combination, Feedback is defined via the association
class Pair, indicating that Feedback is possible both for
correct as incorrect pairs. Every Pair has 0 ..2 Feedback,
as Hint or Verdict, every Feedback belongs to 1 Pair.
For Sequence, default_feedback occurs on the whole
sequence, but can also happen as Hint or Verdict on
Series.

 explanation Attribute holding the actual description of the feedback.
This could be an explanation why an answer is correct or
incorrect, or could contain an example of how to complete
the answer.

 reference Attribute holding a reference to the location where the
explanation is given, e.g. textbook.

equal_or_greater_t
han_caesura

 The association equal_or_greater_than_caesura applies to
Feedback on tests that have been scored successfully.

less_than_caesura The association 'less_than_caesura' applies to Feedback on
tests that have been failed.

default_feedback Association between Sequence and Feedback, providing
default feedback on the whole sequence, without
commenting on parts of the Sequence. This Feedback is
defined in advance.

Hint Extension of the stimulus situation, often because no or an
incorrect answer has been given.

default_hint Association between Item and Hint for a default hint which
is independent of given response.

Verdict Feedback which encompasses a judgement about the

DP2001

 38

Class
Association

Attributes Operations Definition Alias

answer being correct or incorrect.

 decision Attribute detailing whether answer is correct or incorrect,
or right or wrong, etc.

Test A test as taken by respondents. A test is derived from a
Test-definition, which forms a blueprint.

 correct_scale_fo
r_guessing()

This operation calculates the corrected normalised scale
incorporating the guess factor. The algorithm is:

Determine the guess chance for every item. This chance is
0% for closed items.
Determine the guess chance for a testpart by weighing the
guess chance of its items.
Determine the guess chance for the test-definition by
weighing the guess chance of the testparts.

The result is the starting point (0) of the normalised scale.

corrective scoring

Respondent A persons participating in a test by answering questions.

Respondentgroup A population of respondents with specific properties. It
contains 1 or more Respondents.

 final_caesura Attribute final_caesura is the caesura that is applied to the
Respondentgroup.
Initially the final_caesura equals the initial_caesura of the
Test-definition.
The final_caesura is a value on the testscale.

Testresult The Testresult contains all actions by a Respondent. Every
Testresult belongs to 1 Respondent.

 score_corrected
_for_guess_cha
nce()

Operation to calculate a normalised score corrected for
chance of guessing the correct answer. The algorithm is:

Determine for every selected response item which has
been answered incorrectly by the respondent, the chance

Modelling test interactions

 39

Class
Association

Attributes Operations Definition Alias

of guessing the correct answer (this chance is 0 for
correctly answered items).
Determine the normalised chance of guessing correctly for
the test, by weighing above-mentioned values, according
to the score-procedure.
Subtract the chance of guessing from the normalised
score.
If this results in a negative value, the score equals 0.

 normalise_score
()

Operation to calculate the normalised score for the test.
The algorithm is:

Determine the items of the test.
Calculate the normalised score for every item_score.
Determine the weighed normalised score of every testpart
using the weight of every item.
Determine the weighed score of every test-definition on
the basis of each testpart.

 testscale_score(
)

Operation to transform the normalise_score() or the
score_corrected_for_guess_chance() to the testscale as
defined in the Test-definition.
When attribute correct_score_for_guessing is true
score_corrected_for_guess_chance() is used. Then the
normalised scale is also adjusted by means of
score_corrected_for_guess_chance().
If attribute correct_score_for_guessing is false, the
normalised score is used, but not the corrected scale.

The algorithm is:

is Test-definition.correct_score_for_guessing true

DP2001

 40

Class
Association

Attributes Operations Definition Alias

than
 is Test-definition.transformation_method ‘linear’
 then
 increments = number of discrete increments on Test-
definition.testscale
 correction = Test.correct_scale_for_guessing()
 max_score = maximum on the normalised score scale
 testscalescore = increments / (maximum – correction)
* Testresult.score_corrected_for_guess_chance()
 else
 ?????
 si

else
 is Test-definition.transformation_method ‘linear’
 then
increments = number of discrete increments on Test-
definition.testscale
 max_score = maximum on the normalised score scale
 testscalescore = increments / (maximum – correction)
* Testresult.normalised_score()
 else
 ????
 si
si

 grade() Operation to determine the value of the score on the basis
of the Testresult.testscale_score() and
Respondentgroup.final_caesura.

The grade is determined by testscale_score being above or

Modelling test interactions

 41

Class
Association

Attributes Operations Definition Alias

below the caesura, and is expressed in the terms defined
in Test-definition.rating_type.

OTEC 2002/25

