
Open Universiteit
www.ou.nl

D1.3 OpenScout Web Portal

Citation for published version (APA):

Pitsilis, V., Vidalis, A., Deng, F., Kawese, R., Holtkamp, P., Pirkkalainen, H., Pawlowski, J., Kalz, M., Dicerto, M.,
Mikroyannidis, A., Parodi, E., Schwertel, U., & Vitkutė-Adžgauskienė, D. (2010). D1.3 OpenScout Web Portal.

Document status and date:
Published: 28/02/2010

Document Version:
Peer reviewed version

Document license:
CC BY

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 08 Sep. 2023

https://research.ou.nl/en/publications/3b932498-cb15-4b21-91fa-84dc265a6a74

D1.3 OpenScout Web Portal

1/36

ECP 2008 EDU 428016

OpenScout

D1.3 OpenScout Web Portal

Deliverable number D1.3

Dissemination level Public

Delivery date 28 February 2010

Status Final

Author(s) Vassilis Pitsilis (NCSR), Aris Vidalis (NCSR), Fan Deng,
Ricardo Kawase (LUH), Philipp Holtkamp, Henri
Pirkkalainen, Jan M. Pawlowski (JYU), Marco Kalz
(OUNL), Michele Dicerto (Giuntilabs), Alexander
Mikroyannidis (OUUK), Elizabetta Parodi (Giuntilabs),
Uta Schwertel (IMC), Daiva Vitkutė-Adžgauskienė (VMU)

eContentplus

This project is funded under the eContentplus programme1,

a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

1 OJ L 79, 24.3.2005, p. 1.

D1.3 OpenScout Web Portal

2/36

Table of Contents
1 INTRODUCTION ...3
2 ARCHITECTURE...3
3 COMPONENTS...5

3.1 CONTENT ACCESS...5
3.1.1 Content access for end-users ...5
3.1.2 Content access for OpenScout components...8
3.1.3 Integration Requirements ..9

3.2 COMPETENCE SERVICES ...10
3.3 TOOL LIBRARY...13

3.3.1 People...13
3.3.2 Stories and Resources ..14
3.3.3 Integration requirements ...17
3.3.4 Next steps ...18

3.4 CONNECTOR / SOCIAL NETWORKS...18
4 IMPLEMENTATION PLAN...24

4.1 SERVICE LAYOUT...24
4.1.1 User Profiles ..25
4.1.2 Tools and services interface ..25

4.2 PLATFORM DESCRIPTION..26
4.2.1 LAMP stack ..27
4.2.2 Portal solutions for LAMP...28
4.2.3 Java application Server ...30
4.2.4 Portal solutions for Java..32
4.2.5 Summary...33

4.3 MACE IMPLEMENTATION..35
5 CONCLUSION AND OUTLOOK ..35
6 REFERENCES...36

D1.3 OpenScout Web Portal

3/36

1 Introduction

OpenScout aims at providing education services in the internet that enable users to easily find,
access, use and exchange open content for management education and training. To make
accessible content of different types from many disciplines of management science
OpenScout inter-connects a large pool of different distributed open content repositories to
form a federated content base on which OpenScout’s web services operate. Access to
OpenScout’s services will be provided through a web portal to interested users. This
document gives a basic description of the OpenScout web portal.

The OpenScout work package 1 (WP1) on Content Federation and Content Maintenance
Infrastructure implements the basis for providing the OpenScout services. The activities and
results of WP1 are the basis for the OpenScout project services provisioning. An integrated
application profile is under development to include all different application profiles of the
content repositories. Access to management related content through a federated infrastructure,
on which value added services will be later integrated, is being analyzed and developed
throughout this work package. Besides all the above mentioned development within this WP,
a presentation layer for the end users is also being designed and applied. This presentation
layer is the web portal which will provide access to OpenScout’s project services to all
interested users. Federated content, professional and open, and tools providing access to and
allowing adaptation of this content will be presented through this web portal. In the following
sections, a description of the total architecture and the integrated components is provided and
accordingly an analysis of the intended technologies to be applied for the portal deployment
are presented.

2 Architecture

The web portal is a single access point where users can use the OpenScout services and tools.
The initial architecture is shown in the following diagram. The architecture might change
during the development and evaluation phase according to specific requirements.

D1.3 OpenScout Web Portal

4/36

Repository 1..n

• Content
• User
• Competencies
• …

Metadata

Indexer / Harvester

External Applications (e.g.)
• Clix, Moodle
• Facebook, Liferay Tools

• Authoring
• Social networking
• …

Connectors

Web Portal / Front End

OAI-PMH

Web-services / widgets / … Services (Examples)
• Federated search
• Competency-based services
• …

Web-services
(SOAP/REST)

Figure 1: Architecture of OpenScoutWeb Portal

The bottom of the diagram shows the federated content infrastructure. The harvester collects
metadata information from the distributed content repositories via OAI-PMH2 protocol and
LOM3 standard, and stores them in a centralized metadata database. The indexer provides a
fast access to the metadata to the connectors, where other components can retrieve metadata
via different technologies such as web services and widgets. Since a related project MACE
has implemented a similar indexer and harvester, the work of trying to reuse part of the
MACE project (mainly the metadata harvesting part) is in progress.

The diagram represents example services and tools of OpenScout which can be either
accessed by internal/external components or directly by end users. For example, through
connectors other components can search the federated infrastructure from the metadata
repository and return the result set to the triggering components. Also, end-users can search
the federated infrastructure (metadata repository) and obtain a list of content descriptions via
the web portal. To integrate other components into the web portal, different technologies are
needed depending on the requirements of the components. For example, some external
applications like Facebook provide their own application programming interfaces (APIs)
which enable an easy integration into the web portal. Other tools and services may need

2 OAI-PMH: Open Archives Initiative – Protocol for Metadata Harvesting (http://www.openarchives.org/)
3 LOM: Learning Object Metadata is a data model, usually encoded in XML, used to describe a learning object

and similar digital resources used to support learning. (From Wikipeida)

D1.3 OpenScout Web Portal

5/36

specific techniques like widgets, applets and SOAP4. More technological details can be found
in Chapter 4.

In the next chapter, we will discuss different OpenScout components and the requirements
needed to be integrated into the web portal.

3 Components

3.1 Content access

The content access component provides services to both end-users and developers of other
components to access the underlying integrated content repositories via the OpenScout
federated infrastructure. To further describe this component, we give explanations of the
terms we used.

- End-users: This group of users refer to educators (e.g. business school instructors),
learners (e.g. SME managers), content creators (e.g. e-Learning content producing
companies)

- Developers: In addition to end-users, the federated content can also be accessed by
other components in OpenScout, which are upper layers of the content access
component. For example, WP5 needs to access the content repositories to build the
mashups. Therefore, Content Access needs to provide services to the developers of
other OpenScout components or even external components so that the integrated
content can be easily accessed from a unique interface easily.

3.1.1 Content access for end-users
For end-users, the content access component provides initially four types of access methods:
keyword-based search, category-based search, content recommendation and related content
linkage.

1. Keyword-based search

a. Quick search box

This type of content access provides a standard quick search box similar to the
search in major Web search engines. This type of content access is quick but not
quite targeted. Based on the query, intelligent algorithms will be used to render
the result set: all contents whose metadata contains the given keyword will be
retrieved.

b. Advanced search box

4 SOAP: Simple Object Access Protocol, is a protocol specification for exchanging structured information in the

implementation of Web Services in computer networks.

D1.3 OpenScout Web Portal

6/36

This type of content access provides sophisticated search functionality. It is used
often when the quick search functionality fails. Detailed search criteria can be
specified so that the search can be more accurate and targeted. The trade-off is that
the end-users need to spend time on giving the input to the search box; it also has
the risk that search conditions are over-specified and no results are found.

c. Search example

To visualize the keyword-based search, we give a graphic example5.

Figure 2: Example for keyword-based search

In this example, end-users can specify search terms in the search box; if no option
is checked, the component will continue with a search in the metadata database
and retrieve all records matching the given keyword; then using certain ranking
algorithms, listing the most promising contents on the top of the result list.

If certain search criteria are specified, the search will be restricted within a subset
of the metadata (e.g. Title, Author, Keywords and so on in the figure).

2. Category-based browsing

Different from keyword-based search, category-based browsing provides a
hierarchy of the metadata which enables end-user to check sub-sets of contents
based on topics.

• Advantage:

5 From www.emeraldinsight.com

D1.3 OpenScout Web Portal

7/36

End-users are able to access contents based on repositories, topics,
categories, languages and so on. This is particular useful for those users
who do not know exactly what to look for. This can happen when the users
have limited amount of knowledge about the subject and would like to
know more about the topics.

• Disadvantage:

End-users may have to spend more time to find what they want. This is a
problem especially when there are no contents that interest the user, which
may significantly reduce the credibility of the system. Another potential
problem is that metadata may be difficult to be classified, and it also relates
to the domain knowledge of end-users. For beginners, it is possible that
they fail to find the desired content due to their wrong understanding of the
subject.

3. Content recommendation

Keyword-based search and category-based browsing are two types of content
access methods where end-users actively check content repositories. In contrast,
content recommendation is another type of content access method where end-users
passively accept contents.

• Advantage:

End-users may find contents that are useful but hard to find via regular
keyword based search or category-based browsing. Also, it involves little
effort from the end-users side. In this sense, content recommendation is the
most efficient way for access content repositories.

• Disadvantage:

To provide content recommendation service, the component needs to know
the profile of end-users, potentially from previous accessing history or end-
users’ registration information. Furthermore, it is technically challenging to
find interesting contents only based on user profiles and content metadata.
Active research is being done in the area.

4. Related content linking

Another type of powerful content accessing approach is via related content
linkage. The idea is to link all related contents within the content repositories
together. The relevance can differ depending on applications. For example, slides
discussing similar topics, images with similar titles and videos with similar tags.

Whenever a desired content is found via certain aforementioned accessing
methods, more related content can be easily shown to the end-users. With this
linkage, end-users can go through the content network efficiently without much
difficulty.

• Advantage:

D1.3 OpenScout Web Portal

8/36

Once a useful content is found, more can be accessed easily without much
effort. It provides a unique way to browse the network of useful
information and it is usually efficient.

• Disadvantage:

It may not be easy to define relevance especially if it involves domain
knowledge. Also, if the quality of the relevance is not high enough, it may
discourage the end-users to use this approach since the links may lead to
irrelevant contents. Furthermore, defining relevance itself is a challenging
and perhaps subjective task.

In addition to the above mentioned search mechanisms, we will also implement services
based on competencies and related concepts. As found in the initial user requirement analysis,
user might search rather for problems than for competencies directly – this aspect is described
in chapter 3.2.

Based on the above discussion, we will define our end-user services depending on different
factors like the content types to be shown. For example, related content linking may be easier
to implement compared to linking multimedia contents.

3.1.2 Content access for OpenScout components
In addition to end-users, the content access component also provides services to developers
for them to access the underlying contents. To communicate with the federated infrastructure,
Web services and Google gadgets are two of the options for connecting the federated contents
and other components.

1. Web services

The content access component integrates distributed content repositories and
provides a common interface to other components so that developers of other
components have no need to know the details of distributed contents. The content
access component harvests metadata from distributed contents and manages the
metadata centrally.

With the format of Web services, other components can assess those metadata
following the same standard and interface. Depending on the component
functionalities, contents may or may not be forwarded from the distributed
repositories to the triggering component.

• Advantage:

With Web services, all components can easily access the centralized
metadata storage in a standard way. Also, web services are widely used
and accepted. Thus, tools and information are freely available on the
Internet, which makes the development easier.

• Disadvantage:

D1.3 OpenScout Web Portal

9/36

Using HTTP protocol, the communication may not be so efficient for
transferring large amount of data.

2. Google gadgets

The content access component can provides services for developers to access
contents. Google gadgets are small tools that can be inserted into web pages to
fulfil certain simple functionality. For example, whenever new data become
available in the centralized server, the content access component can communicate
with other components and inform about the update of the centralized database so
that users can monitor the content changes in real-time.

• Advantage:

Being small tools, Google gadgets are efficient for small tasks like
updating simple content statistics. Also, Google gadgets are easy to be
deployed on the upper level components: the developers just need to
embed the gadgets into the Web page and not much programming is
needed.

• Disadvantage:

It is not suitable for heavy tasks such as building complicated social
mashups on top of the federated content repositories. Also, from the
Content Access side, the workload will be heavier since gadgets are more
like and end-user application rather than a programming interface.

The discussion above shows two options for the content access – further access options will
be test in the first prototyping phase. In particular through the connector model, further access
options are developed.

3.1.3 Integration Requirements

Potentially there are two types of services provided by content access component as described
in the previous section: services for end-users and services for other components, which have
different requirements to be integrated into the web portal.

1. Requirements for integrating end-user services

Depending on how closely the services are to be integrated into the OpenScout
Portal, the requirement can be different:

1. Loose integration

In this case, the Content Access component will provide its own user
interface allowing end-users to access the contents. To be integrated into
the web portal, it can be as simple as providing links to the Content Access
user-interface. In this case, there are almost no requirements on the Web
portal side.

2. Tight integration

D1.3 OpenScout Web Portal

10/36

In this case, the end-user interface for Content Access is included as part of
the web-portal. In fact, the Web portal developers may need close
collaboration with the Content Access developers for the technology
selection, user-interface and functionality design. This includes a decision
on what Web development platform (e.g.Joomla, Drupal, PHP etc.) is to be
used, what databases to be used (MySQL, PostgreSQL etc.), where the
application server is located and so on. The requirements will be more
precisely specified after further discussion with the web portal developers.

2. Requirements for integrating component services

The components services from Content Access provide services to other
components inside or outside OpenScout, e.g. Competency-based search, Mash-up
services, widgets in end-users’ personal portal etc. We plan to realize this service
using a Service Oriented Approach (SOA) approach and provide web services. To
integrate the services directly into the web portal and also with other components,
via the connector we foresee the following requirement:

1. The client (either the Web-portal or some other components) needs to
support Web-services, SOAP standard and XML messages.

2. The client needs to develop its own application calling the web-
services.

3. The client needs to understand and agree with the services that Content
Access provides; communication between services and content
providers is needed for this purpose.

3.2 Competence services

In compliance with the IEEE Standard for Learning Object Metadata (LOM)6, we propose to
store the metadata related to competencies for each learning object (LO) in the classification
section of the LOM (example given). Each LO can have any number of competencies
associated to it. For each competency of a LO, the minimum and maximum proficiency scale
values, defined according to the European Qualification Framework (EQF), are included.
<classification>

<purpose>
<source>LOMv1.0</source>
<value>competency</value>

</purpose>
<taxonPath>

<source>
 <string language="en">Classification System</string>
</source>

6 IEEE Standard for Learning Object Metadata 1484.12.1-2002 (http://ltsc.ieee.org/wg12/par1484-12-1.html)

D1.3 OpenScout Web Portal

11/36

<taxon>
<id>Domain Identifier</id>
<entry>

<string language="en">Domain Title</string>
</entry>

</taxon>
<taxon>

<id>Competence Identifier</id>
<entry>

<string language="en">Competence Title</string>
</entry>

 <mineqf>Minimum EQF Level</mineqf>
 <maxeqf>Maximum EQF Level</maxeqf>
</taxon>

</taxonPath>
</classification>

To collect, catalogue, manage, and maintain the competence metadata a toolset has been
created. The core of the toolset is the competence catalogue. It contains competence domains
and their related competencies as well as external resources, experts, and a proficiency scale
description related to these competencies. On top of this catalogue different applications and
widgets can be used for displaying, dynamic updating, and editing competence metadata as
well as for the administration of the competence catalogue.

The competence catalogue is an object-oriented application written in Java and is able to
output the data in several output formats such as XML and JSON. It provides functionality to
administrate domains and competences.

The competence services are an abstraction layer to the competence catalogue to provide
access and administer it. We provide initially two web services, one for accessing the data
(Competence Service) and one for the administration of the data (Competence Admin
Service).

• Competence Service: Introduction to the service and its functionality as well as the
relationship to the available clients (e.g. Competence Widget).

The Competence Service can be accessed using a SOAP API and provides the following
methods:

Method Description

getVersion Get the current version of this webservice

getStatus Get the current status of this webservice

getDomains Get a list of all the available domains

getCompetence Get one competence from the database
and all the related experts and resources

getBasicCompetence Get a basic competence from the system

getCompetenceListFromDomain Get a basic list of competences from the
databasefor a specific domain

D1.3 OpenScout Web Portal

12/36

getResourcesFromCompetenceId Get all the resources for a certain
competence

getExpertsFromCompetenceId Get all the experts for a certain
competence

getProficiencyScalesForCompetence Get a proficiency scale for a competence
from the database

getCompetenceList Get the full list of competences from the
database

getBasicCompetenceList Get a basic list of competences from the
database

 Table 1: Competence Service methods

• Competence Admin Service: Introduction to the service and its functionality as well as
the relationship to the available clients (e.g. Competence Admin).

The Competence Admin Service can also be accessed using a SOAP API and provides the
following methods:

Method Description

getVersion Get the current version of this webservice

getStatus Get the current status of this webservice

createDomain Create a domain

updateDomain Update a domain

deleteDomain Delete a domain

createCompetence Create a new competence

updateCompetence Update the competence

deleteCompetence Delete a competence

createResource Add a resource

updateResource Update a resource

deleteResource Delete a resource

createExpert Add an expert

updateExpert Update an expert

deleteExpert Delete an expert

updateProficiencyScale Create/Update/Delete proficiency scale

Table 2 Competence Admin Service

D1.3 OpenScout Web Portal

13/36

3.3 Tool Library

According to the DoW, a significant aspect of the OpenScout service portfolio regards tools
for improvement and republishing of contents and materials. In order to achieve this, access to
authoring technologies needs to be given to stakeholders so that they can add content,
repurpose content or re-aggregate content to new learning objects. These authoring
technologies range from easy to use tools to more elaborate ones, depending of the format of
the original content. Within the consortium, many tools are available, so that the most content
formats can be supported without new technology development. These tools include services
such as collaborative authoring, blogging, experience sharing, re-using and integrating (cross-
border) learning scenarios, using accessibility tools, course creation and management, re-
authoring, podcasting, metadata tagging, annotation services, etc.

We perceive the OpenScout Tool Library as an ecosystem of people, stories, and resources
(Figure 3). The purpose of this ecosystem is to bring together people that are developing or
using learning resources and provide them with the ability to share their stories and resources.
These people come from diverse backgrounds and are involved in various stages of the
lifecycle of learning resources. We have identified four major stakeholder clusters: content
developers, educators, content providers and brokers, collaborators and social learners. Their
stories include completed or running case studies and learning scenarios, their experiences
with learning resources, as well as their future expectations from them. Finally the learning
resources involved are either learning tools or content, such as Open Educational Resources
(OER). The following sections describe in more detail the people, stories and resources of the
OpenScout Tool Library.

Figure 3: The OpenScout Tool Library connects people with stories and resources

3.3.1 People
The following clusters of people are involved in the OpenScout Tool Library, in accordance
with D7.1.1 “First Dissemination Plan”:

D1.3 OpenScout Web Portal

14/36

:

1. Content providers and brokers: This cluster includes Professors, Lecturers, Learning
Designers and team leaders who aim to develop new courses, workshops or training
sessions and authoring new learning materials. They are interested in selecting and
integrating new media and content from different repositories for new learning scenarios.
Their needs might also be services and tools for analyzing existing content for
repurposing and re-authoring tools for content manipulation.

2. Educators: This cluster involves high schools, academic higher education institutions and
universities as content users for education, plus Instructors (Professors and Teachers) &
Trainers. The stakeholders of this cluster are interested in integrated services and
recommendation mechanisms for rating and evaluating content.

3. Collaborators: This cluster includes Students/Learners within education that are
interested in establishing partnerships and co-authoring learning resources internationally
with other partners, developing research and expanding their existing communities. They
might be interested in publishing remixed content, including multicultural resources in
different languages for large scale and also contribute to the open content movement.

4. Social Learners: This cluster is interested in tools and social services (social metadata
information).These tools and social services provide mechanisms for personal networks
with users from different learning environments who may have similar learning interests.

3.3.2 Stories and Resources
Open Educational Resources (OER) are of particular importance for the OpenScout Tool
Library. OER can be described as “teaching, learning and research resources that reside in the
public domain or have been released under an intellectual property license that permits their
free use or repurposing by others depending on which Creative Commons license is used”7.
OER are freely available on the web and can be accessed through common web sites, Virtual
Learning Environments (VLEs), or Personal Learning Environments (PLEs). They can be
used, edited and shared by any interested party, such as learners, teachers, institutions, and
learning communities.

In order to facilitate the collection of resources and stories about them, we have created the
web-based repository shown in Figure 4, which is publicly accessible at:
http://news.kmi.open.ac.uk/rostra/news.php?r=87. In this repository, users submit learning
resources, describe their functionality and the settings the tools have been used at. The
repository supports both textual and multimedia descriptions of resources and stories,
including hyperlinks, screenshots, presentations, and videos. Users can provide feedback on
existing resources and stories in the repository by rating them within a 5-star scale and
commenting on them.

7 Atkins, D. E., Brown, J. S. & Hammond, A. L. (2007) A Review of the Open Educational Resources (OER)

Movement: Achievements, Challenges, and New Opportunities. The William and Flora Hewlett Foundation.

D1.3 OpenScout Web Portal

15/36

Figure 4: A web-based repository for collecting stories and resources

The following paragraphs present two cases of resources and their related stories, derived and
adapted from the repository.

• Resource: FlashMeeting (http://flashmeeting.open.ac.uk/) is a browser-based
videoconferencing tool. It provides a user-friendly interface for simultaneous
video/audio/text conferencing, plus some more advanced features, including the
ability to work collaboratively through a whiteboard, exchange files, replay meetings,
view statistical analyses of meetings, create meeting minutes, as well as create and
manage groups and contacts.

• Story: Figure 5 shows an OER in FlashMeeting, concerning learning styles in a digital
scenario in the Portuguese language. The OER was developed by a member of the
Colearn Community within the OpenLearn project and lecturer at a university in
Portugal. She was invited by a lecturer from a Brazilian university to present and
discuss the topic through FlashMeeting with a group of graduate students interested in
Knowledge Technologies for professional training. The recording of this presentation
and discussion is accessible here: http://fm-openlearn.open.ac.uk/fm/982a5a-8691.

D1.3 OpenScout Web Portal

16/36

Figure 5: Learning styles OER in FlashMeeting

• Resource: Compendium (http://compendium.open.ac.uk/) is a tool for building maps
of information, ideas and arguments. It has been designed as a sensemaking tool to
link, interpret and annotate resources on the web, with a default visual language of
icons and connections designed to provoke reflection on the differences between
questions, ideas, and challenging or supporting evidence and arguments. Compendium
has been employed in a wide variety of domains and case studies, such as mapping
literature surveys, mapping learning design patterns, transcribing argumentation and
group memory from a meeting, and more.

• Story: The Project Management OER shown in Figure 6 was created with
Compendium. It comprises a set of maps that represent an integrated overview (Figure
6, label 5) of seven offices of the fictitious company called Y Call. The main goal of
this OER is to develop a business project using the Y Call resources that are made
explicit in the first map's description (Figure 6, label 1). Each office is, in fact, a map
that presents a variety of information (Figure 6, label 3): text, images, audio and video
files. In addition, learning activities (Figure 6, label 2) can be accessed in the
associated Word-based workbooks. Y Call's office maps offer learners and educators
an opportunity to experience first-hand the issues that can arise from project
management. They are encouraged to work through the various clues (Figure 6, label
4) useful for developing their business project by following a recommended trail
(Figure 6, label 6) that has seven pre-defined stages.

D1.3 OpenScout Web Portal

17/36

Figure 6: Project Management OER in Compendium

3.3.3 Integration requirements
The integration of the Tool Library with the web portal is dictated by a set of requirements for
sharing data between the Tool Library and other components of the portal. The purpose of
these requirements is to establish a common infrastructure for storing data that will be
accessible by all components of the web portal. In particular, the data that the Tool Library
will share with the portal components are the following:

• Common authentication: The user of the Tool Library should have a single
authentication point with the rest of the portal. In this way, the user will not be
required to have different accounts for different services offered by the web portal, but
only a central one that will automatically authenticate her to all individual components
of the portal.

• Shared user profiles: The data kept about the profile of the Tool Library user should
be shared across all components of the web portal. For example, the Tool Library
keeps information regarding which resources someone uses and in what context
(stories). This information can be useful for the Content Access component and in
particular for offering content recommendation services to the user, based on the
resources that she already uses. In addition, user profile information from other

D1.3 OpenScout Web Portal

18/36

components can facilitate building the user’s connections with resources, stories, and
other people in the Tool Library.

• Shared resources: The resources of the Tool Library will also need to be shared with
other web portal components. In this way, related content linking performed by the
Content Access component can be facilitated with information derived from the Tool
Library about related resources.

• Shared stories: The stories (case studies and scenarios) of the Tool Library should be
available to be reused within other components of the web portal.

3.3.4 Next steps
The next steps towards the design and implementation of the OpenScout Tool Library
concern the refinement of its current specifications. This will be accomplished via gathering
additional requirements from the OpenScout Future scenarios that are currently under
development. The input derived from these scenarios will mainly address specific needs of
stakeholder clusters, relevant functionalities of the tools (which tools are necessary and
needed) derived from the users’ needs as well as potential integration methodologies, e.g. in
the form of workflows of tools. In addition, our web-based repository will be enriched with
further submissions of stories and resources, so that a critical mass of data is brought together
for the construction of the Tool Library.

3.4 Connector / Social Networks

Mash-up technologies enable the integration of OpenScout services (search for open
management content, upload content,…) into other applications, e.g. Social networks,
personal portals or Learning Management Systems. This requires the generation of embed
codes/widget codes, which are then integrated into the HTML-code of the respective website
or application. The functionalities are thus directly brought into the familiar target
applications of the users. The content itself will reside in the respective original repository it
can however be accessed from all applications where the modular code is embedded.

The OpenScout portal architecture should therefore achieve as one major goal the possibility
of reusing and combining (mashing up) the services that OpenScout delivers

Different OpenScout services should be exposed to the users in several ways

• Call services directly on the OpenScout portal with an OpenScout specific user
interface, the results are rendered within the OpenScout system. (cf. section Error!
Reference source not found.).

• Make the portal functionality and services accessible from other systems and
platforms (e.g. access from LCMSs like CLIX, or external social network platforms
like iGoogle, Facebook or Netvibes). In this case user interaction with OpenScout is
taking place via the external system. (cf. section Error! Reference source not
found.)

OpenScout work package 5 connects OpenScout services with external applications, LCMS
and other external applications like Social applications Network. Hence, the focus will be

D1.3 OpenScout Web Portal

19/36

how to realize the access of the services from external systems. WP5 presupposes the
existence of a federated content base that exposes its metadata in a standard format. (cf.
chapter Error! Reference source not found.).

To be able to connect the OpenScout services to external applications the OpenScout
architecture needs to offer interfaces to its services on the internet. In order for the services to
read information from external users and to transfer information to external users the
OpenScout system needs to be based on a service-oriented architecture (SOA), which
conforms to existing standards for internet based services (Web services).

Requirements for the user-interface of the external target application

In order to make it possible for end-users to access the OpenScout services from external
systems, each service needs to be integrated into a graphical user interface (GUI). Since the
OpenScout Services will be offered through standardized interfaces the integration of the
services can in principle be done using different graphical user interfaces. We consider it
however a key requirement for the OpenScout system architecture that the services have a
modular character so that they can be integrated – without much additional development
effort – in diverse target applications and platforms. Additionally, it should be possible that a
user of the target applications is able to subscribe to the services.

Widget Technology

There is a wide variety of APIs and sharing mechanisms to make OpenScout portal
functionality accessible from external applications. The approaches are generally based on a
widget like approach, which is used to implement the export filters [Error! Reference source
not found.].

In order to guarantee the above described modularity and flexibility the OpenScout system
should offer the possibility to deliver so-called widgets to the end-user with which the user
can access the Webservice interface of OpenScout. Widgets in this context mean small,
client-side applications allowing the access or manipulation of remote data. Widgets can be
integrated into existing Web applications or into desktop environments. The target platform
into which a widget is integrated is often called a widget engine or a widget container.

Examples for widget environments are among others the Apple Dashboard or the Yahoo
widget engine. Examples for Web applications or widget containers are among others iGoogle
[Error! Reference source not found.], NetVibes [Error! Reference source not found.] or
Facebook [Error! Reference source not found.]. In order to guarantee re-usability and inter-
operability of the widgets the implementation of the widgets should conform to existing
standards. For the interaction with social network platforms the OpenSocial APIs [Error!
Reference source not found.] should be used. Applications that use the OpenSocial APIs can
be embedded within a social network itself, or access a site’s social data from anywhere on
the web.

Using these and other standards for the widget implementation makes it possible that widgets
need to be programmed just once and can then be integrated into different platforms,
applications or different social networks.

In [Error! Reference source not found.] an alternative option to achieve modularity of the
services is discussed. This approach provides the ability to build new applications by selecting
and combining specific parts of already existent applications, thus emerging new

D1.3 OpenScout Web Portal

20/36

functionalities. Under this approach different alternatives for fragment selection and
composition have to be analyzed and a JavaScript library could be developed for making
composition of code fragments easier.

OpenScout currently prefers a web widget based approach where the implementation of the
widgets uses JavaScript and HTML technologies. HTML offers various tools to create user
interfaces while JavaScript is used to make those interfaces dynamic.

Required central functionality of the OpenScout portal beyond widgets

Widgets usually run on the client side, and in most cases define presentation and interface
aspects. Widgets do not cover other important issues of the OpenScout envisaged web
applications, e.g. user management or data persistence. This has to be managed by the central
OpenScout Portal.

Requirements how to offer services for external applications

In order for developers of external applications to integrate the OpenScout widgets into their
applications the OpenScout services and tools collections could offer the following
possibilities:

OpenScout widgets designated for use in external systems could be organized in a searchable
repository. Each widget could be accompanied with information for the developers who
integrate the widget into the target system (description of used standards, service description
etc.). Testing of the widgets directly on the OpenScout platform should be possible before
developers download the widget for their own use. The system could enable download of the
widgets and should define appropriate terms and conditions of use.

Regarding the integration of external systems with the OpenScout infrastructure the following
(modular) functionalities are expected:

The OpenScout platform could integrate for example the following search services as modular
widgets.

Search for Open Content in the federated OpenScout content repository from external
systems

Scenario 1: Search from Social Network Application

1. User adds the OpenScout search widget as a social application to his personal portal or
social network.

2. User is offered a simple keyword based search or advanced access as described in
section Error! Reference source not found.

3. Results of the search are rendered in the target application (e.g. the social network or
the personal platform) through a widget.

The search widget to be embedded could look be abstracted as follows:

D1.3 OpenScout Web Portal

21/36

Figure 7: OpenScout simple seach widget

Scenario 2: Search from within LCMSs

1. Teacher/instructor searches for suitable learning materials to add to the material for his
new project management course.

2. From the search interface of his Learning Management system he is offered the
OpenScout search button. The search criteria offered by the standard / extended search
of the LCMS are connected to OpenScout search criteria and are transported to the
OpenScout portal.

3. The results of the OpenScout search are added within to the search results the LCMS.

4. The teacher/instructor can select suitable learning objects and view them, add them to
his personal bookshelf or add it to the course material of his Project Management
course. The learning object resides in the original repositories and is not downloaded
locally; it is just linked into the LCMS together with certain metadata information.

D1.3 OpenScout Web Portal

22/36

Figure 8: Access OpenScout from within LCMSs

In addition to the above examples the OpenScout architecture has to realize further modular
services that facilitate access from external systems. Following are examples for additional
services:

• Collect usage data: collect the number of views, downloads, bookmarks etc. Report
usage data from the external system to the OpenScout portal where metadata of
learning objects are updated with usage data and are reported back to the external
repositories.

• Recommendation services. It should be possible to add comments and user ratings to
the learning object. This requires implementing a rating functionality (widget) that can
be used on the OpenScout web portal but that should also be integrated into the
external applications. The ratings should be stored and further processed as additional
metadata on the central site. A more advanced possibility would be to connect existing
rating functions in external system with the OpenScout rating functions. This would
require application specific translation functions/plugins for the respective external
system to be provided by OpenScout

• Score: Both usage data and ratings (and additional data like quality of the repository)
can be used to calculate an overall score for the learning object.

• Sharing and other social services: If a user embeds the OpenScout search widgets
into his/her social network application the social graph of the user should be accessed,
e.g. to search which OpenScout contents your friends recommend, bookmark, share
with friends, download, or use/adapt for their personal use (increase trust). To
implement sharing services OpenScout needs to connect certain profile information
(user data), friends information (social graph) and activities (things that happen on an

D1.3 OpenScout Web Portal

23/36

external social network, news feeds, bookmarks, etc.) with its services using the
OpenSocial standard.

• Competency profiles: If a user already has a competency profile e.g. from his LCMS,
it should be possible to export this profile and use it for a competency based search on
OpenScout. Hence some relation/translation between the competencies of the LCMS
and the OpenScout central competencies (WP2) need to be defined. As an advanced
option a real time connection (without prior export/import) of the competencies in the
external system with the OpenScout competence hierarchy could be considered. Again
application specific plugins would help to perform the translation between the
competency hierarchies.

• Upload: A user should be enabled to upload (changed) learning objects from within
LCMS or within Social network to one of the OpenScout federated content
repositories.

• User profiles: OpenScout could consider to relate general user profiles within social
network with OpenScout’s competencies.

• Application specific plugins: For a number of connection to external system
additionally application specific plugins should be provided by OpenScout to enable
developers of the target system to access the services without much additional
programming effort.

D1.3 OpenScout Web Portal

24/36

.

4 Implementation Plan

Based on the concepts and descriptions provided in the previous sections about the
architecture of the system and the demands and possibilities for content access a thorough
study about the best web portal implementation has been carried out. Possible technologies
were investigated and their suitability for the most efficient implementation of our web portal
is estimated. In the following sections the layout of the service to be provided is described and
possible technology solutions are analyzed.

4.1 Service Layout

A basic aim for the proposed portal is to keep the layout as clean and straightforward as
possible offering the user the possibility to immediately realize most of its functionalities.
Figure 9 is presenting the proposed layout. The drafted layout is divided into three logical
sections providing the user with a meaningful interface. These three sections are the user
menu, the tool and services full view (main content page) and the tools compact view section.
The implementation of the tool can be chosen from a variety of technologies as are for
example widgets loaded externally, interface to an external web service or possibly even a
collection of data such as web links to external resources or local content.

D1.3 OpenScout Web Portal

25/36

Figure 9: Tools/services main UI

A brief description of the portal layout is following.

4.1.1 User Profiles
Each user will have a specific user profile. Users will be able to process their profile details in
the user menu. Every user has a profile page; this page holds accounting information as well
as learning related information. Possible fields of information presented here can be skills,
competencies, progress log of previous sessions, preferred learning content types, rankings
etc. Profile data will be stored at the connector side in order to keep profiles from being
centric to the web portal. A profile tool can be used to manipulate profile data, this tool will
be implemented in the same manner as any of the other tools. Part of the profile data will be
shared in a web service manner as this will enable us to employ user specific data and
preserve a state among our tools.

4.1.2 Tools and services interface
According to the described design every tool will be presented in two ways. These two ways
are the Full view and the Compact view. In the full view the tool is displayed with all
available options whilst the second one displays minimal options. In terms of usability this
makes the portal more pleasing since every tool is made visible and usable directly rather than
having a simple link to it. For example the “Search tool” in its compact view can just display

D1.3 OpenScout Web Portal

26/36

an input field for the search terms and a search button whilst in its full view will display more
advanced capabilities as various filtering options, amounts of search-able data, available
repositories, statistics and/or previous search queries.

Tools can be enabled, disabled or parameterized (whenever this choice is available) through
the tool manager. Managing of our tools ensures that the user is presented only with the
desired functionality and also keeps the portal interface from being bloated.

4.2 Platform description

The main architectural strategy for the portal implementation is to keep it as modular as
possible ensuring that it can scale and that it can be modified and changed as the requirements
will dictate during the OpenScout project progress. For the realization of the above concept
the most widespread technologies in the web application world have been selected and
studied. The implementation approach has been chosen to be based either on LAMP8
technology or on a java middleware stack based on application servers such as tomcat or
glassfish. Both approaches are made entirely from open source components, from the
operating system to the databases to portal itself. Criteria for the choice of the components
have been the existence of a support community behind them thus ensuring continuous
development and help; a very important factor is also the size of active deployments of the
components, a fact that ensures the previous well known behaviour and implementation of the
solution.

The envisioned platform architecture is depicted on Figure 10.

8LAMP is an acronym for a solution stack of free, open source software, originally coined from the first letters
of Linux (operating system), Apache HTTP Server, MySQL (database software), and PHP, Python or Perl.

D1.3 OpenScout Web Portal

27/36

Figure 10: envisioned platform layout

As depicted in figure 10 at the base of each platform resides an open operating system. On top
of it databases, required by the portal; and the portal itself are deployed. Depending on the
platform used modules or portlets are integrated in the portal which exposes their
corresponding methods for presenting the tools as they are exposed and served by the
connector. The connector will provide an interface for each tool and service based on any of
the previously mentioned technologies, thus the portal will consume and display the data
accordingly. Interoperability between the tools is also guaranteed at the connector side
through the use of the shared profile data.

4.2.1 LAMP stack
LAMP technology is the most widespread and fast solution for building web applications. It is
widely used for a huge number of applications even mission critical applications all over the
web-world. This can ensure us about its effectiveness as a platform, its robustness and about
the experience provided through its users’ community. This platform provides several
advantages for developers who use it. It is easy to code and also it can be easily deployed as
PHP comes as a standard apache module. Furthermore it has no special requirements
regarding the server that will be deployed.

D1.3 OpenScout Web Portal

28/36

LAMP application platform consists of an operating system, web server, database and a
scripting language. Their functional interconnection is depicted in figure 11.

Figure 11: LAMP components functionality

LAMP implementations make use of Linux which is an open operating system and has proven
to behave excellent for applications where server robustness is required. The applications, in
LAMP implementation, are hosted on the Apache web server. Apache web server is a very
fast, secure and reliable solution for serving static and dynamic content. Apache follows a
modular approach. As a result of this modular approach most of the modern scripting
languages can be used to build web applications as the Apache can integrate interpreters for
these languages. Some of the most known ones are PHP, Perl and Python. These languages
cover web technology in every aspect (robust rapid web service development, XML handling,
database connectivity and more). Finally the database server used are MySQL and pgSQL
which are open source relational databases with a lot of deployments; they are easy to use and
administrate they are supported by all languages and frameworks, they are small and at the
same time powerful engines and they upgrade easily.

4.2.2 Portal solutions for LAMP
The popularity and wide use of LAMP has led to the development of a variety of content
management systems. Two of the most popular ones are Joomla and Drupal9 which are both
written using PHP.

9http://www.joomla.org, http://drupal.org

D1.3 OpenScout Web Portal

29/36

Joomla is a CMS written following the MVC10 model thus can be extended in a
straightforward way. Content is presented using a mixture of components, plug-ins and
modules. A component in the Joomla lingo represents a separate application that can be
shown inside Joomla as content. A plug-in modifies parts of Joomla before presentation, think
of it as a macro implementation. Finally modules can be thought of as siblings to components.
Modules are a quick way for displaying information relevant to the components, for example
a newsletter component can have the subscription form displayed in a module. In OpenScout
terms a separate component has to be build for every tool irrespective of the technology the
tool is using (SOAP, Web widget, etc.). Modules can enhance the functionality for each tool
(e.g. the search tool can have a “recent searches” module). Summing up on the Joomla CMS
we can state the following:

• Advantages

1. Follows the MVC model thus custom components can be integrated easily.

2. Straightforward template system to use with new components.

• Disadvantages

1. Limited user management (no groups).

2. Lacks built in functionality for features like single sign-on, workflows and web
service integration.

3. Many components are commercial

4. Poor developer documentation

Drupal is a solid programming framework rather than being just a CMS. Furthermore it is
easy to learn, specialized for web applications, and very efficient at reusing code and libraries.
It can be extended through community contributed modules. Although is not pure MVC it
provides a very clean API that makes integration with external tools easy.

• Advantages

1. External modules supporting integration with JSON, REST, SOAP services.

2. Efficient user management.

3. Built-in OpenID support.

4. Workflow management.

5. Excellent audit trail.

10 Model – View –Controller (http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller)

D1.3 OpenScout Web Portal

30/36

• Disadvantages

1. Slow learning curve in order to fully understand the inners of the system.

4.2.3 Java application Server
An alternative and competitive solution for the platform to be chosen is a Java based web
implementation.

At the base of this platform an open operating system is used as Open Solaris or Linux.
Accordingly the Java Platform (Java EE) is installed and used for server programming. Java
EE is the industry standard for enterprise Java computing and is used to create next-
generation web applications. The many years of numerous solutions’ implementations based
on this platform assure the experience to be provided by the community and the required
robustness.

For the implementation using the Java EE the portal is considered as a web application. A
Web application is a set of web components (servlets, JSP), libraries, static resources that are
set up and configured in the web server and provide the required services. In this case
additionally to the web server a web container or application server that can serve the content
is needed. The web container is deployed on top of the web server and is used to run web
applications. Famous application servers are TomCat, Glassfish, JBoss e.t.c.

The interaction between a web client and a web application is illustrated in Figure 12. The
client sends an HTTP request to the web server. A web server that implements Java Servlet
and JavaServer Pages technology converts the request into an HTTPServletRequest object.
This object is delivered to a web component (Web components are either Java servlets, JSP
pages, or web service endpoints), which can interact with JavaBeans components or a
database to generate dynamic content. The web component can then generate an
HTTPServletResponse or it can pass the request to another web component. Eventually a
web component generates a HTTPServletResponse object. The web server converts this
object to an HTTP response and returns it to the client

D1.3 OpenScout Web Portal

31/36

Figure 12: Java Web Application request Handling

Portlets produce fragments of markup code that are aggregated into a portal page.

Portlets are the way to provide the required functionality in a java technology implemented
web portal. Portlets are small web applications that run in a portion of a web page and they
constitute the heart of any portal as all of its functionality resides in its portlets. A portal’s
core is a portlet container. The container's job is to manage the portal's pages and to aggregate
the set of portlets that are to appear on any particular page. This means that the core doesn't
contain application code. Instead, all of the features and functionality of the portal application
must reside in its portlets.
Portlets are pluggable user interface software components that are managed and displayed in a
web portal and a Java standard portlet should be deployable on any portlet container which
supports the standard. So this architecture provides the possibility of producing reusable tools
which can be later integrated in other web applications.
As an example of this platform implementation we will consider two well known and tested
portlet containers liferay and jetspeed

D1.3 OpenScout Web Portal

32/36

4.2.4 Portal solutions for Java
Several solutions exist extending the Java Servlets API providing both loose and strong MVC
web application frameworks. Two of the most notable ones are Jakarta Struts and Springs.
Liferay and Jetspeed2 lay on top of these frameworks and are the most widespread portal
engines in the Java world.

Liferay

Liferay portal works on top of apache Struts framework and complies with Java Portlet
Specification (JSR168, JSR286) thus ensuring easy integration and interoperability for
portlets between different web portals. Liferay is an elegant portal with much out of the box
functionality.

• Advantages

1. Extensible and secure

2. SSO Manager

3. Collaboration features (integration with social networks)

4. Built in support for web service integration

5. Rich portlets using ICEfaces

6. Easy layout customisation (dragable portlets)

• Disadvantages

1. Documentation is outdated or hard to find

2. Loose community

3. Professional support is commercial

4. Resource hungry

5. Open source version is not extensively tested (bleeding edge)

D1.3 OpenScout Web Portal

33/36

Jetspeed2

Jetspeed is an Open Portal Platform and Enterprise Information Portal, written entirely in
open source under the Apache license in Java and XML and based on open standards. Like
Liferay discussed above Jetspeed2 can act as a portal container making information from
multiple sources available in an easy to use manner. Jetspeed2 supports both 1.0 and 2.0 Java
Portlet Standards.

• Advantages

1. Better community support (Apache software foundation behind it)

2. Spring-based Components and Scalable Architecture

3. SSO Manager

4. Rich portlets using ICEfaces

5. Drag and drop moving of portlets

• Disadvantages

1. Slow learning curve (requires in-depth knowledge of all java technologies
behind it)

4.2.5 Summary
In the above study a brief analysis of the most popular portals and underlying technologies
was made. Based on our studies and facts and on the analysis provided by CMSWire11 the
following chart summarizes our view on the issue.

11 CMS Wire audience consists of expert technologists, decision makers, vendors and analysts with a focus on

web and enterprise content management, social media, web publishing, collaboration practices and related
technologies (http://cmswire.com)

D1.3 OpenScout Web Portal

34/36

Figure 13: LAMP & Java web comparison chart

In order to have a best view of the intended results test implementations of the mentioned
technologies will take place. At the moment widget integration tests in a LAMP stack are
taking place. For this reason Joomla platform is used as underlying technology. Also a Liferay
installation is planned to be performed real soon so an in-depth comparison can be performed.
Finally other promising technologies as is Ruby on Rails will be reviewed as well.

D1.3 OpenScout Web Portal

35/36

4.3 MACE Implementation

Since there are functionality overlaps between OpenScout and the MACE project especially
for the metadata harvester part, we briefly describe the MACE implementation, part of which
can be re-used after further investigation.

According to its documentation12, MACE also used OAI-PMH for the metadata harvester and
SOAP for connecting remote services. As in other projects, LOM is also the choices of
MACE for describing the application profile. In addition to OAI-PMH, MACE used RSS
13(Rich Site Summary, also known as “Really Simple Syndication”) for usage metadata
harvesting. Regarding the web portal, MACE relies on Widget technology.

We will consider the MACE base technology which is available as open source as a basis for
our developments as a back-end. The decision will be taken after further cooperation talks
with the MACE project partners – the decision, however, does not influence the work plan or
will cause any deviations but might lead to new synergies.

5 Conclusion and Outlook

OpenScout web portal will be the single point of access for tools, services and content of the
project. Different tools and services can be integrated in other external applications but at the
OpenScout web portal a thorough presentation of all tools and services for end users will be
provided. Under this perspective the web portal can be seen as a “show case” for the various
services presentation and mash up. Of great importance for the configuration and tuning of
the portal will be the final implementation of the components interconnection.

The portal platform implementations and tests have already started but details will be
finalized and fixed later on as the components connection implementation evolves.

12 Moritz Stefaner, Elisa Dalla Vecchia, Massimiliano Condotta, Martin Wolpers, Marcus Specht4, Stefan Apelt,
and Erik Duval. MACE – Enriching Architectural Learning Objects for Experience Multiplication. EC-TEL
2007, 2007, LNCS 4753, pp. 322–336, 2007.
13 http://www.rssboard.org/rss-0-9-1-netscape

D1.3 OpenScout Web Portal

36/36

6 References

[1] Facebook start page. http://www.facebook.com.

[2] iGoogle start page. http://www.google.com/ig.

[3] Netvibes start page. http://www.netvibes.com.

[4] OpenSocial. http://www.opensocial.org/.

[5] ICT ROMULUS. D4.1 – annual report on mashup integration. Report, ICT
ROMULUS, 12 2008.

