
Open Universiteit 
www.ou.nl 

Non-representational authoring of learning designs: from
idioms to model-driven development
Citation for published version (APA):

Dodero, J. M., Tattersall, C., Burgos, D., & Koper, R. (2006). Non-representational authoring of learning designs:
from idioms to model-driven development. Default journal.

Document status and date:
Published: 03/10/2006

Document Version:
Peer reviewed version

Document license:
CC BY-NC-ND

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 15 Jul. 2023

https://research.ou.nl/en/publications/3a43af67-b74e-4b25-9abb-cd1a5f773b4d


Transformational techniques for model-driven authoring of 
learning designs 

Juan Manuel Dodero1                Colin Tattersall2                 Daniel Burgos2                   Rob Koper2 

1 Computer Science Department, Universidad Carlos III de Madrid, Madrid, Spain 
2 Educational Technology Expertise Centre (OTEC), Open University of the Netherlands, Heerlen, The Netherlands 

 

Abstract 
Diverse authoring approaches and tools have been designed to assist the creation of units of learning compliant 

to current learning technology specifications. Although visual and pattern-based editors of Learning Designs (LD) 
can help to abstract the learning designer from the details of the specifications, they are still far from a high-level, 
integrated authoring environment. This paper analyzes the major approaches used to transform an abstract LD into 
a concrete unit of learning (UoL), according to three desired features: the use of patterns and other design 
techniques to abstract the specific representational details; the difference between the abstract source LD model 
and the concrete target UoL model; and the possibility of combining multiple models into a single environment. A 
classification is proposed for the LD techniques commonly found in the analyzed approaches, in order to underline 
its abstraction from the details of the underlying specifications. We have integrated such LD techniques in a 
unified Model-Driven Learning Design (MDLD) meta-modelling environment, which has been used to generate 
UoLs from a number of meta-models. The model-driven development process was studied on the creation of a 
IMS LD UoL for the Learning Networks' knowledge base. 

 
Keywords: Model-driven development, learning design patterns, IMS Learning Design, unit of learning 

1. Introduction 

The increasing adoption of the IMS Learning Design (LD) specification has provided a common ground for 
the digital representation of learning designs. Learning design deals with exploiting prescriptions from 
instructional design theory plus examples of best practices and patterns of experience, which are then applied 
to develop concrete Units of Learning (UoL) [1]. Teachers can avail themselves of LD authoring tools to 
perform such a complex task, thus creating UoLs that adapt to specific instructional needs.  

A recent report on this topic from the UNFOLD project shows that most tools are still too close to the 
technical formalisms and underlying specifications of the digital artefacts they assist to create [2]. For instance, 
although level B properties and conditions are powerful primitives to write adaptive UoLs [3], adding them 
may be actually burdensome, since they are too low-level and have to be expressed in XML. The significant 
shortage of high-level authoring tools prevents teachers from keeping their distance from the specification, so 
they have to learn and use technical concepts that are far from their pedagogical backgrounds and contexts [4] 
This becomes especially difficult if teachers have to learn more than one specification, as it happens in 
netUniversitè [5]; or if they have to create learning content, metadata, and learning designs separately and 
afterwards integrate them manually, as required by RELOAD [6]. 

Most computer-assisted authoring environments differentiate between the language used to interact with 
them (i.e. the source language), and the language of the artefact that is eventually generated (i.e. the target 
language). The source LD language can be graphical, as in MOT+LD, or textual, like in the IMS LD XML 
binding. Graphic tools rely on user-defined visual representations, from which XML descriptions of an IMS 
LD can be easily generated. However, shapes and drawing elements usually keep too close to the core IMS LD 
model, as it happens with ASK-LDT [7]. 



Some graphic tools usually describe a number of models that put together make up the overall source LD. 
When such generic and shared models are used as learning design elements, the resultant LD can be mapped to 
a single UoL that is compliant with the IMS LD specification. This approach is taken by MOT+LD [8] to 
develop models of knowledge, competences, pedagogical structure, materials and delivery, which are 
eventually transposed to concrete IMS LD UoLs. However, the occurrence of multiple models is not restricted 
to the LD source, but it also can occur in the target UoL. For instance, an IMS LD UoL can be readily merged 
with resources described with XHTML [3], QTI [9] and other specifications. In particular, integrating IMS LD 
and QTI requires clear-cut manipulations of manifest files to bind certain QTI elements (e.g. score and 
feedback) with the proper IMS LD Level B properties.  

Some works such as the CPM meta-model [10] define a UML profile plugged into a commercial meta-
CASE environment to provide abstract models, which constitute the basis of a model-based approach to 
engineer learning designs. Although not strictly comparable to the pedagogically neutral IMS LD, CPM 
provides a problem-based pedagogical modelling approach that requires knowledge of UML and a vendor tool, 
which can be still a barrier for teachers and specialists in pedagogy. 

To overcome the former issues, learning design patterns have been proposed as a means to incorporate 
template-based pedagogy in a half-cooked learning design [11]. LD pattern-based tools as Collage [12] are a 
powerful way to alleviate teachers and designers' inconveniences caused by the undesirable proximity to the 
IMS LD specification. The seamless integration of patterns into unified LD methods and tools is still required, 
so they become the foundation of model-based design approaches, which are the focus of this work. 

The rest of this paper is structured as follows: first, a characterization of major LD authoring environments 
is presented, and some challenges observed in the analyzed tools are detailed, specially focused on the use of 
design abstractions as patterns. Then a classification of relevant pattern and idiom-based LD techniques is 
provided. An explanation of how such techniques can be integrated in a model-driven development 
environment is followed, for which a meta-modelling tool and a case study have been developed and tested. 
Finally, we provide some conclusions and future work.  

2. Challenges of LD authoring 

The background challenge found in many authoring approaches is how to raise the level of abstraction at 
which teachers operate when they create a learning design. Instead of dealing directly with low-level 
descriptions of LD, software engineering design techniques are commonly used to shortcut the way to the final 
UoL. This section discusses some issues and provides a characterization of the most widespread authoring 
tools. The feature selection criterium for the characterization has been the provision of abstraction facilities to 
isolate users from the specification of the final UoL and resources. Such features are structured in the 
following categories: 

• Design abstractions: This category encompasses whether and which learning design abstractions (e.g. 
patterns) are used to raise the abstraction level, and if different design patterns can be combined and 
applied to the same UoL. This challenge can be difficult or even meaningless, and it is comparable to 
the combination of different source models, usually undertaken by defining meta-models and model 
transformations. Examples of this category are MOT+, CPM and Collage. 

• Source vs. target model: There is a difference between the source model (i.e. the one to be known by 
the user to compose an LD) and the target model used by the resultant UoL. For instance, some 
approaches (e.g. MOD+LD, CPM) are founded on source pedagogical models, which are eventually 
transposed into the target IMS LD model for the generated UoL, whilst others (e.g. RELOAD, ASK-
LDT, Collage) consider IMS LD as both the source and target model. 

• Multiple models: Some development tools allow the combination of elements from different models or 
specifications within the same target UoL, while others are model-specific. For instance, the 



netUniversitè environment [5] allows including IMS LD and QTI elements together in the same UoL 
through a single authoring environment. Other tools as RELOAD strictly adhere to a number of 
learning technology specifications, but do not allow combining them in the same UoL. The 
combination of models can also be carried out on multiple source models, as in MOT+. 

The model-based engineering of learning situations [13] uses the CPM meta-model to produce dedicated 
models that fit a concrete learning situation. The dedicated model is afterwards merged with an abstract model 
describing part of the context. Therefore, the objective of keeping learning designers distant from the 
technological details of the UoL or learning product can be achieved by integrating higher-level abstractions 
into computer-assisted authoring environments. Such abstractions can be manipulated and transformed to 
produce the eventual UoL, as described below. 

3. Transformational techniques for learning design 

In software engineering, several design techniques have proven to be helpful in automating software 
manipulations [14]. These are classified according to the cross-linguality and significance of the 
transformations required to map, merge and extend software models. Although they are applied on regular 
software artifacts, they can also be used to map an abstract LD into concrete UoLs. When it comes to LD, such 
techniques are summarized in the following categories: 

• Shortcutting: generation of LD instances from parameterized templates that require less coding. Design 
patterns, idioms and the like are included in this category [15]. 

• Mapping: generation of an LD instance from mixing more than one partly-completed design.  

• Refactoring: to perform modifications on an LD instance to become more efficient or reusable, without 
changing its original purpose [16].  

• Extending: adding a number of LD elements which cannot be represented with a given LD language or 
it becomes so costly that it is better to use elements from a different language. 

3.1 Shortcutting patterns and idioms 

 A design pattern names, abstracts, and identifies the key aspects of a common design structure that make it 
useful for creating a reusable design [17]. Pattern-based solutions are applied to LD with different levels of 
abstraction. On one hand, pattern languages define high-level collections of patterns and the rules to combine 
them, so raising the abstraction level of course design [18]. On a lower abstraction level, when a learning 
design pattern is specific to an LD language, it becomes an idiom [15]. An idiom is a pattern that describes how 
to implement particular aspects of an LD using the features of a given LD language (notably IMS LD). 
Although IMS LD can be used to represent higher-level LD patterns, when it comes to generating concrete 
UoLs, the required transformations have to be aware of IMS LD details such as level B properties and 
conditions. Idioms provide an abstract expression of such details in IMS LD. Next, a purposeful catalogue of 
IMS LD idioms is proposed to support the development approach described thereafter. 

Although many kinds of IMS LD idioms can be identified, depending on what elements of the IMS LD 
specification have to do with the idiom, we only selected those that provide a higher-level abstraction for level 
B elements, like properties and conditions, which are particularly difficult to abstract in authoring tools. Each 
idiom is described in Table 1 by a UML activity diagram and an associated script containing the binding to the 
IMS LD information model, which drives the transformation used to generate the UoL. This way, the designer 
only selects the desired activity idiom from the catalog, and the appropriate transformation is then applied. For 
brevity we summarize only a handful of IMS LD idioms used to describe common structures of learning 
activities: 



• Alternative activities (vid. Table 1(a)): Only one of a number of activities is executed depending on a 
previous condition  

• Forked activities (vid. Table 1 (b)): The learning flow is split among a number of concurrent activities, 
which since then will run in parallel.  

• Rendezvous (vid. Table 1(c)): Two or more concurrent learning activity flows meet on a 
synchronization point (i.e. the rendezvous), and then continue together on a single flow. If there are 
flows that arrive later, they have to wait for the rest.  

• Guard-synchronized activities (vid. Table 1(d)): The rendezvous synchronization is augmented by the 
satisfaction of a boolean condition. When it is false, all learning flows must wait; when it becomes 
true, the behavior is like the rendezvous idiom. 

For clarity, the activity idioms described above include only two activities, but the cardinality can be 
extended by the iterative application of a two-activity idiom, without losing generality. The binding scripts 
avoid the verbosity of the IMS LD XML binding. From the scripts of Table 1, a simple substitution of 
parameters ―marked with $― is applied to generate the XML-based UoL chunks. These are not still fully-
fledged UoLs, since they miss the role and method role-part definition. Nevertheless, they are closer to the 
sought-after runnable condition of the UoL [19]. 

3.2 Mapping  

The generation of UoL chunks from the idiom scripts is a one-to-one mapping from the model used to 
express the idiom (i.e. from the idiom script language) to the model in which the UoL chunk is based (i.e. the 
IMS LD XML binding). Nevertheless, other kinds of transformations may require conformance to more than 
one model, in which case more complex mappings are required. On the one hand, one-to-many model 
mappings are useful to keep the user away from knowing more than one model. For instance, the teacher can 
create an LD containing both activities and assessments without needing to know about IMS LD or QTI and, 
more importantly, without having to know the way of connecting elements from both specifications ―based 
upon binding level B properties and QTI item variables. On the other hand, many-to-one model mappings 
(sometimes called model merging) allow the definition of separate aspects on the development of a learning 
artefact, as well as the division of responsibilities in a group of designers. 

One-to-one mappings are used to transform between single meta-models. These mappings can be intra-
language or inter-language, depending on the source and target meta-models. In intra-language mappings, a 
simple sequence of modelling actions describes the transformation from a model to another complying with the 
same meta-model (for instance, a transformation to enlarge the number of activities of an IMS LD). In inter-
language mappings, the source and target meta-models are different (for instance, a transformation from UML 
to IMS LD). The mapping effort depends on the semantic distance between the concepts of both models (e.g. 
UML 2.0 activities, lanes, and object nodes versus IMS LD activities, roles, and environments). In such an 
example, activity diagram lanes are mapped to IMS LD roles, as usually done in the IMS LD specification. 

In a sense, one-to-many model mappings can be considered as one-to-one mappings between the source 
model and an instance of the non-explicit meta-model formed by the combination of the target models. For this 
reason, we do not focus on the mapping cardinality, but on defining appropriate meta-models instead. 



 
 
 

(a) Alternative activities idiom 

locpers-property $LP-COND { datatype: boolean; initial-value: false; } 
learning-activity $A1, $A2; 
activity-structure alternatives { 
 structure-type: selection; number-to-select: 1; 
 activities: $A1, $A2; } 
activity-structure alt-activ-idiom { 
 structure-type: sequence; 
 activities: $A-COND, alternatives; } 
condition { 
 if completion($A-COND) 
  if ($LP-COND) then { show($A1); hide($A2) } 
   else { show($A2); hide($A1) }; } 

 
(b) Forking activities idiom 

learning-activity $A1, $A2; 
activity-structure fork-activ-idiom { 
 structure-type: selection; number-to-select: 2; 
 activities: $A1, $A2; } 

 
 
 
 

(c) Activity rendezvous idiom 

locpers-property comp_a1, comp_a2, comp_rv { 
 datatype: boolean; initial-value: false; } 
learning-activity $A1 { on-completion: comp_a1=true; } 
learning-activity $A2 { on-completion: comp_a2=true; } 
learning-activity rendezvous { 
 isvisible: false; complete-activity: when comp_rv==true; } 
activity-structure forked { 
 structure-type: selection;  number-to-select: 2; 
 activities: $A1, $A2; } 
activity-structure rendezvous-idiom { 
 structure-type: sequence; activities: forked, rendezvous; } 
condition { 
 if (comp_a1 and comp_a2) then comp_rv=true; } 

 
 
 
 
 

(d) Guard-synchronized activities 
idiom 

locpers-property comp_a1 { datatype: boolean; initial-value: false; } 
locpers-property comp_a2 { datatype: boolean; initial-value: false; } 
locpers-property comp_rv { datatype: boolean; initial-value: false; } 
locpers-property $LP-COND { datatype: boolean; initial-value: false; } 
learning-activity $A1 { on-completion: comp_a1=true; } 
learning-activity $A2 { on-completion: comp_a2=true; } 
learning-activity rendezvous { 
 isvisible: false; complete-activity: when comp_rv==true; } 
activity-structure forked { 
 structure-type: selection;  number-to-select: 2; 
 activities: $A1, $A2; } 
activity-structure guard-sync-idiom { 
 structure-type: sequence; activities: forked, rendezvous; } 
condition { 
 if (comp_a1 and comp_a2 and $LP-COND) 
  then comp_rv=true; } 

Table 1. IMS LD activity structure idioms. Each idiom is described by a UML activity diagram (left column) 
and a  binding script (right column) from which the IMS LD XML elements are generated 

activity-1 activity-2 

activity-1 activity-2 

activity-1 activity-2 

activity-1 activity-2 

activity-cond 



3.3 Refactoring 

Refactorings are intra-language mappings usually applied to improve the efficiency or reusability of a 
model. Although refactoring transformations do not really encompass different abstraction levels for the source 
and target model, they can be easily automated so that users only have to select the appropriate refactoring 
method to be applied. For instance, the application of the IMS LD activity rendezvous idiom (see Table 1(c)) 
results in adding local personal properties to hold the completion of each activity. On another hand, if each 
activity contained a QTI item to mark their finalization, the IMS LD-to-QTI mapping would result in the 
definition of additional properties for the same purpose. Automated refactoring inspections can help to 
abbreviate the eventual UoL and merge such duplicated properties. This does not add a new functionality, but 
improves the efficiency of the target UoL. 

3.4 Extending 

In inter-language mappings, either the source or the target meta-model can define concepts that are not 
present in the other. For instance, UML 2.0 does not have a form to model roles, like IMS LD does. Such cases 
are usually dealt by extending the source meta-model. For example, CPM uses the UML extension mechanism 
based on profiles to augment the set of available modelling elements. On another hand, if the target meta-
model has no means to represent certain elements of the source model, then the target model can lose 
information. For instance, with ASK-LDT the user can define and configure a library of activity types, which 
are eventually transformed to IMS LD activities only. But these can be only of two kinds, namely learning or 
support activities. In these cases, extensibility could be both an advantage and a risk, since it would offer a 
chance to enhance the expressive power, but it may compromise reusability and interoperability. 

4. Model-driven learning design 

Non-representational LD techniques such as the described above enable the Model-Driven Learning Design 
(MDLD). The intention of MDLD is to develop specific learning technology-supported software artefacts such 
as learning designs. It enables tools to be provided for specifying a system independently of the platform that 
supports it, as well as for transforming the system abstract specification into the more concrete specification for 
a particular platform. Therefore, the objective of MDLD is to raise the abstraction level at which learning 
technology systems are designed. As a consequence, the MDLD integrates diverse non-representational 
abstractions to specify an LD. 

The purpose of the MDLD is to integrate non-representational techniques in a single environment that 
relieves the learning designer from lower-level LD authoring tasks. In order to test it in practice, we have built 
a meta-modelling tool based on Eclipse and the FXL plug-in [20], which provides two complementary views 
of model-based development: 

● The activity modeler view (vid. Figure 1) uses the Business Process Execution Language (BPEL) plug-
in to model activities at the PIM level.  

● The transformation modeler view (vid. Figure 2) provides a graphic user interface to edit 
transformation pipelines from the PIM to the PSM level.  

The model-driven transformation process is defined as a pipeline, which receives a number of source 
models on the input, and generates other models on the output. This process is accomplished in a number of 
steps defined through the transformation modeler. On the other hand, graphical editing of the models is carried 
out with the activity modeler. In its current prototype, the activity modeler allows editing learning activity 
structures, which are enough to define the IMS LD activity idioms.  



 

Figure 1. Activity modelling view of the MDLD environment. The screen represents the BPEL modelling 
of an activity rendezvous pattern, from which the corresponding IMS LD idiom is later generated. 

 

Figure 2. Transformation modelling view of the MDLD environment. The screen represents the 
transformation pipeline used to generate the IMS LD manifest file of a UoL through a number of 

transformational steps. 



The transformation pipeline has to be defined only once ―i.e. the teacher is not required to use the 
transformation modeler. The teacher only has to choose the LD idiom and select the QTI items from the 
library, and then apply the transformation. On the other hand, the teacher is not forced to define a concrete IMS 
LD activity structure, but she can simply select it from the library of IMS LD idioms. Nonetheless, the activity 
modeler provides the learning designer with a higher-level way of dealing with activities. 

Activity abstractions are represented with BPEL. The expressive limitations of BPEL are clear (e.g. 
concerning user roles), since it is not designed for instructional design. To overcome this lack of 
expressiveness, an extension was provided by adding scripts to each IMS LD idiom. Other alternatives to 
specify activity idioms’ details, such as using UML profiles and tagged activity diagrams [10], were also 
explored. Nevertheless, BPEL was used because of its simplicity. 

In order to show the possibilities of the MDLD, the meta-modelling tools described above have been used 
to change the traditional way of creating an IMS LD-based UoL into a series of transformation commands. The 
target UoL of the case study is based on an adaptive IMS LD taken from the Learning Networks' knowledge 
base [3], but elements from other specifications have been also incorporated ―a set of QTI items grouped in 
IMS LD activities, which are synchronized by means of level B properties and conditions. Adding such items 
to a UoL may be a hindrance when the learning designer is not acquainted with the IMS LD and QTI 
specifications. Therefore, the objective of the case study is to show how non-representational LD techniques 
included in the MDLD development environment facilitate the creation of an LD exemplar consisting of 
different models. In particular, the learning design technique used to abstractly represent the activity structure 
has been the activity rendezvous IMS LD idiom. 

The transformation pipeline followed in the case study is depicted in Figure 3. From left to right, the input 
to the pipeline is the M0 manifest file, which does not contain any IMS LD information at all. First, a content 
package (CP) transformation is executed to prepare it for holding an IMS Learning Design. The result is the M1 
manifest. Second, M2 adds to M1 an empty activity structure according to the activity rendezvous idiom (act-rv-
idiom). Afterwards, all the activities are filled in with QTI items, which are bound to the UoL by means of two 
level B properties and one condition (notably to bind the score and feedback QTI elements), thus resulting in 
M3. Since the LD-QTI mapping added some redundancy on properties when it is combined with the 
rendezvous idiom, a final refactoring stage is executed to overcome this issue. 

  
 
 
 

IMS 
LD+QTI 

 
 
 

IMS LD + CP 

IMS CP IMS LD BPEL IMS QTI 
Meta-models 

LD 
models 

M0 

M1 M2 M3 

act-rv-idiom 

 QTI items 

Mapping 
models 

Building 
block 

models 

Template 
models 

Idiom 
mapping 

LD-QTI 
mapping 

M3’ 

Property 
Refactoring 

 

Figure 3. Scheme of the MDLD transformation pipeline of the case study. Models can represent templates, 
building blocks, mappings, or exemplars, depending on their granularity level and completion status [19]. Each 

artefact is an instance of a meta-model from the top of the figure, represented as dotted arrows. 



The complete MDLD process delivers the M3’ UoL, which becomes functionally identical to M3, but less 
verbose in using level B properties. Artefact M3 contains elements from both IMS LD and QTI specifications. 
To generate this, it was only required to select the LD idiom and QTI items from respective libraries containing 
templates and building blocks. According to the terminology of Hernández-Leo et al. [19], M3 and M3’ are 
exemplars (i.e. ready-to-run UoLs); M1 and M2 are LD templates (i.e. partly completed exemplars), M0 is a 
non-LD template; QTI items are building blocks (i.e. partly completed UoL chunks). 

5. Conclusion and Future Works 

This paper presents a characterization of LD techniques aimed at providing high-level LD authoring 
environments. We have classified relevant design pattern-based approaches and enlarged them with others such 
as IMS LD idioms, mappings, extensions, and refactoring. All of them are combined in a model-driven 
learning design environment which enables the overall objective of distancing the author from the IMS LD 
specification. The experience of using the MDLD environment shows that the learning designer can generate 
an IMS LD UoL by combining several learning technology specifications, without requiring a detailed 
knowledge of them.  

Although the list of idioms described in this paper is far from exhaustive ―it only contained those which 
model IMS LD activity structures―, it was sufficient to test how they facilitate creating IMS LD level B 
UoLs. Nevertheless, if different LD roles were involved along with activities, the list of idioms should be 
extended to express the role-part collaborations with IMS LD. On the other hand, not all languages are equally 
suitable to express such idioms. Although BPEL resulted useful due to its simplicity, its expressive limitations 
(e.g. concerning the modelling of user roles) corresponds to the mapping case in which the source meta-model 
lacks concepts which the target model has. In the future, other transformational techniques based on extending 
the source modelling language are needed to overcome such limitations. 

As a consequence, not all abstract modelling languages are equally suitable for LD authoring, and none of 
them is completely satisfactory to model complex aspects of the IMS LD specification. This motivated the 
need to define a Domain-Specific Language (DSL) for the educational domain, with which the MDLD 
environment can be extended. 

Acknowledgement 

This work is partly funded by the MODUWEB project (TIN2006-09768) from the Spanish Ministry of 
Science and Technology. 

References 

[1]. R. Koper, “An introduction to learning design”. In Learning Design: A Handbook on Modelling and 
Delivering Networked Education and Training (Koper R. and Tattersall C., Eds.), pp 3-20, Springer, 
Berlin, 2005. 

[2]. D. Burgos,  and D. Griffiths, The UNFOLD Project. Understanding and Using Learning Design. Open 
University of The Netherlands, Heerlen, 2005. 

[3]. R. Koper and D. Burgos, “Developing advanced units of learning using IMS Learning Design level B”, 
Advanced Technology for Learning 2(4), 252-259, 2004. 

[4]. D. Griffiths and J. Blat, “The role of teachers in editing and authoring units of learning using IMS 
Learning Design”, Advanced Technology for Learning 2(4), 243-251, 2005. 

[5]. E. Giacomini, P. Trigano and A. Sorin, “A QTI editor integrated into the netUniversitè web portal using 
IMS LD”, Journal of Interactive Media in Education, 2005(9). 



[6]. C.D. Milligan, P. Beauvoir and P. Sharples, “The Reload learning design tools”, Journal of Interactive 
Media in Education, 2005(7). 

[7]. D.G. Sampson, P. Karampiperis and P. Zervas, “ASK-LDT: A Web-based learning scenarios authoring 
environment based on IMS Learning Design”, Advanced Technology for Learning 2(4), 2005. 

[8]. I. De la Teja,  K. Lundgren-Cayrol, and G. Paquette, “Transposing MISA learning scenarios into IMS 
units of learning”, Journal of Interactive Media in Education, 2005(13). 

[9]. H. Vogten, H. Martens, R. Nadolski, C. Tattersall, P. Van Rosmalen, and R. Koper, “Integrating IMS 
Learning Design and IMS Question and Test Interoperability using CopperCore Service Integration”, 
Proc. of the Learning Networks for Lifelong Competence Development Workshop, p. 43, Sofia, Bulgaria, 
2006. 

[10]. T. Nodenot, P. Laforcade, C. Sallaberry and C. Marquesuzaa, “A UML profile incorporating separate 
viewpoints when modeling co-operative learning situations”, Proc. of the First International Conference 
on Information Technology: Research and Education, p. 605, IEEE Press, Newark, USA, 2003  

[11]. P. McAndrew, P. Goodyear, and J. Dalziel, “Patterns, designs and activities: unifying descriptions of 
learning structures”, International Journal of Learning Technology 2(2), 216-242, 2006. 

[12]. D. Hernández-Leo, E.D. Villasclaras-Fernández, I. M. Jorrín-Abellán, J.I. Asensio-Pérez, I. Ruiz-Requies, 
and B. Rubia-Avi, “COLLAGE: A collaborative learning design editor based on patterns”, Educational 
Technology and Society 9(1), 58-71, 2006. 

[13]. T. Nodenot, C. Marquesuzaa, P. Laforcade, and C. Sallaberry, “Model-based engineering of learning 
situations for adaptive web based educational systems”, Proc. of the Thirteenth International World Wide 
Web Conference, p. 94, ACM Publications, New York, USA, 2004. 

[14]. G. Caplat and J.L. Sourrouille, “Model mapping using formalism extensions”, IEEE Software 22(2), 44-
51, 2005 

[15]. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software 
Architecture. Volume 1. A System of Patterns, Wiley, 1996. 

[16]. M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring: Improving the Design of Existing 
Code, Addison-Wesley, 1999. 

[17]. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1994. 

[18]. J. Bergin, “A pattern language for initial course design”, ACM SIGCSE Bulletin 33(1), 282-286, 2001. 
[19]. D. Hernández-Leo, A. Harrer, J. M. Dodero, J. I. Asensio-Pérez, and D. Burgos, “Creating by reusing 

learning design solutions”, Proc. of the Eighth International Symposioum on Computers in Education, 
León, Spain, 2006. 

[20]. C. Reichel C, R. Oberhauser, “XML-based Programming Language Modeling: An Approach to Software 
Engineering”, Proc. of SEA, MIT Cambridge, MA, USA, November 2004. 


