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Regularity of random elliptic operators with degenerate
coefficients and applications to stochastic homogenization

Peter Bella, Michael Kniely

Abstract

We consider degenerate elliptic equations of second order in divergence form with a symmet-
ric random coefficient field a. Extending the work of the first author, Fehrman, and Otto [Ann.
Appl. Probab. 28 (2018), no. 3, 1379–1422], who established the large-scale C1,α regularity of
a-harmonic functions in a degenerate situation, we provide stretched exponential moments for
the minimal radius r∗ describing the minimal scale for this C1,α regularity. As an application to
stochastic homogenization, we partially generalize results by Gloria, Neukamm, and Otto [Anal.
PDE 14 (2021), no. 8, 2497–2537] on the growth of the corrector, the decay of its gradient, and
a quantitative two-scale expansion to the degenerate setting. On a technical level, we demand
the ensemble of coefficient fields to be stationary and subject to a spectral gap inequality, and we
impose moment bounds on a and a−1. We also introduce the ellipticity radius re which encodes
the minimal scale where these moments are close to their positive expectation value.

1 Introduction and main results

In these notes, we present some ideas to generalize results from stochastic homogenization of uni-
formly elliptic operators−∇ · a∇ to the case of degenerate and unbounded random coefficient fields
a. The underlying random distribution is always assumed to be stationary and ergodic. To quantify the
degeneracy and unboundedness, we impose moment bounds on the norm of a(x) and its pointwise
inverse a(x)−1, x ∈ Rd. A precise collection of our general assumptions is given in Definition 1.1.

For the sake of a simplified notation, we focus on scalar models where a : Rd → Rd×d is a matrix field
rather than a field of rank-4 tensors. But since we do not rely on results from scalar PDE theory like
maximum principles, we believe that our methods also extend to systems provided that all arguments
involving |a| or |a−1| also apply to the respective generalizations µ and λ−1 as defined by the first
author, Fehrman, and Otto [8]. As we shall explain in more detail below (see Remark 2.2), we currently
have to restrict ourselves for technical reasons to symmetric matrix coefficient fields a(x) = a(x)T ;
this issue might be resolved when directly working with the scalar quantities µ and λ−1. However, this
is beyond the scope of the current contribution and will be the subject of future work.

To some extent, this paper continues the studies of the first author, Fehrman, and Otto [8], where the
large-scale C1,α regularity and a first-order Liouville principle for a-harmonic functions were derived
in the same setting. It is one of the goals of the present contribution to provide stretched exponential
moments for the minimal radius r∗, which determines the minimal scale for the C1,α regularity. More-
over, we provide quantitative estimates on the growth of the corrector and the decay of its gradient,
and we derive a quantitative two-scale expansion in our degenerate setting.

The starting point of our analysis is the work of Gloria, Neukamm, and Otto [19] on the large-scale
regularity of random elliptic operators. The main achievements of this publication are large-scale

DOI 10.20347/WIAS.PREPRINT.2971 Berlin 2022



P. Bella, M. Kniely 2

Schauder and large-scale Calderón-Zygmund estimates valid on scales larger than the minimal ra-
dius r∗. Their approach is in turn motivated by the ideas of Avellaneda and Lin [5], who established
a large-scale regularity theory for elliptic operators with periodic coefficients, hence, on the torus.
This enabled the authors to apply compactness arguments which are generally not available. Previous
preprints [17,18] of [19] follow in some cases different strategies which can be equally valuable as they
are sometimes better suited for an application in our situation. A key ingredient in all three versions are
functional inequalities (e.g. spectral gap and logarithmic Sobolev inequalities), which allow to quantify
certain aspects of the random ensemble in an advantageous manner. A comparison of various forms
of functional inequalities and applications is given by Duerinckx and Gloria [15]. The basis for our re-
sults on the corrector in stochastic homogenization and the two-scale expansion is the contribution by
Gloria, Neukamm, and Otto [20] on quantitative estimates in stochastic homogenization.

Definition 1.1 (Ensemble of coefficient fields). Let Ω be the space of symmetric coefficient fields
a : Rd → Rd×d, d ≥ 2, and let 〈·〉 denote an ensemble of coefficient fields a, i.e. a probability
measure on Ω, which we assume to be

� stationary, i.e. the probability distributions of a and a(x+ ·) coincide for all x ∈ Rd,

� ergodic, i.e. every translation invariant random variable is almost surely constant.

For any a ∈ Ω, we define the (space-dependent) quantities

λ :=
∣∣a−1

∣∣−1
and µ := |a|.

We suppose λ(x), µ(x) ∈ (0,∞) for a.e. x ∈ Rd, and that p, q ∈ (1,∞) exist satisfying〈
µp
〉 1
p +

〈
λ−q
〉 1
q =: K <∞ and

1

p
+

1

q
<

2

d
, (1.1)

where (1.1) is independent of x ∈ Rd due to the stationarity of the ensemble 〈·〉.

The concept of imposing stochastic moment bounds on the coefficient field a(x) instead of assuming
uniform ellipticity was successfully applied in a similar context by Chiarini and Deuschel to prove an
invariance principle for symmetric diffusion processes on Rd [13]. In the context of homogenization,
condition (1.1) was first imposed by Andres, Deuschel, and Slowik [2] for an ergodic random conduc-
tance model and later also used in a time-dependent ergodic version thereof [14]. In our situation,
the purpose of (1.1) is to guarantee the sublinearity of the corrector (cf. Remark 1.5) and to allow for
specific Sobolev embeddings (e.g. in Lemma 2.3). Only recently, the first author and Schäffner [10]
showed that the relaxed version

1

p
+

1

q
<

2

d− 1
(1.2)

guarantees local boundedness and the existence of a Harnack inequality for solutions to linear, nonuni-
formly elliptic equations. The same result was already proven by Trudinger [25] under the more restric-
tive version in (1.1). Condition (1.2) is, in addition, optimal in the sense that local boundedness is
generally not available if the right hand side is replaced by 2

d−1
+ ε for any ε > 0; we refer to the

references in [10] for further details. As an application to stochastic homogenization, the authors show
that the pointwise sublinearity of the corrector, which was proven by Chiarini and Deuschel [13] in a
similar framework assuming (1.1), also holds under condition (1.2).

Stochastic moment bounds of the type (1.1) appeared recently also in studies on the regularity prop-
erties of non-uniformly parabolic operators; see [1,11] and the references therein.
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Remark 1.2. Birkhoff’s ergodic theorem (see e.g. [21]) guarantees that for a.e. coefficient field a, we
have

lim
r→∞

(  
Br(0)

µp
) 1
p

+
(  

Br(0)

λ−q
) 1
q

= K. (1.3)

As a consequence of (1.3), we may define the ellipticity radius re, which determines the minimal scale
on which the system behaves approximately elliptic, as follows.

Definition 1.3. We define the ellipticity radius re ≥ 1 as the random variable

re := inf

{
r ≥ 1

∣∣∣ ∀ ρ > r :
(  

Bρ(0)

µp
) 1
p

+
(  

Bρ(0)

λ−q
) 1
q ≤ 4K

}
,

where K is defined in (1.1).

We subsequently recall standard notions in stochastic homogenization including the extended cor-
rector (φ, σ) = ((φi)i, (σijk)ijk) and the homogenized field ahom. Existence and uniqueness of the
extended corrector will be discussed afterwards.

Definition 1.4 (Definition of the extended corrector (φ, σ)). In the situation of Definition 1.1 and for
given ξ ∈ Rd, one calls the sublinear solution φξ of −∇ · a(ξ + ∇φξ) = 0 on Rd the corrector
associated to ξ. Specifically for ξ being a canonical basis vector, one considers the corrector φi,
1 ≤ i ≤ d, being a solution to

−∇ · qi = 0, qi := a(ei +∇φi). (1.4)

The vector qi is called the ith component of the flux and one introduces the flux correction σijk,
1 ≤ i, j, k ≤ d, as a vector-valued potential solving

∇ · σi = qi − 〈qi〉, −∆σi = ∇× qi := (∂jqik − ∂kqij)jk. (1.5)

Finally, one defines the homogenized field ahom via ahomei := 〈qi〉.

A question which typically arises in this context, is concerned with the so-called Liouville principle.
For example, given a subquadratic solution u of −∇ · a∇u = 0 on Rd, can one prove that u =
c + ξ · x + φξ(x) for some ξ ∈ Rd? For the present setting, the first author, Fehrman, and Otto
[8] have shown that such a Liouville property does hold (cf. Remark 1.5). The interest in such a
principle also lies in its close relation to Schauder estimates, which has been highlighted by Simon
[24]. Moreover, Liouville properties have been established in many situations including stationary and
ergodic degenerate systems [12], higher-order Liouville principles [16], and Liouville theorems for
uniformly parabolic systems in a random setting supposing stationarity and ergodicity [7].

The existence of an extended corrector (φ, σ) as in Definition 1.4 directly follows from [8, Lemma
1], while its uniqueness is an immediate consequence of the sublinearity of (φ, σ) [8, Lemma 2] and
a related Liouville principle [8, Theorem 1]. For the sake of completeness, we recall these results in
Remark 1.5 below. Identity (1.6) shows that the extended corrector (φ, σ) is sublinear w.r.t. ρ. While
(1.6) gives only a qualitative statement, we will prove a quantified version thereof in Corollary 2.4,
which will serve as an important tool in the latter part of this paper.
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Remark 1.5 (Properties of the extended corrector (φ, σ) [8, Lemmas 1,2, Theorem 1], [13, Proposition
4.1]). Under the hypotheses of Definition 1.1, there exist a constant C > 0 and random tensor fields
φi and σijk, 1 ≤ i, j, k ≤ d, satisfying (1.4)–(1.5) and the skew-symmetry σijk = −σikj , while the
gradient fields are stationary, of vanishing expectation

〈∇φi〉 = 〈∇σijk〉 = 0,

and having bounded moments

d∑
i=1

〈∇φi · a∇φi〉+
d∑
i=1

〈
|∇φi|

2q
q+1
〉 q+1

2q +
d∑

i,j,k=1

〈
|∇σijk|

2p
p+1
〉 p+1

2p ≤ CK

where K is the constant from Definition 1.1. In addition, (φ, σ) is sublinear in the sense

lim
ρ→∞

max

{
1

ρ

( 
Bρ

∣∣∣φ−  
Bρ

φ
∣∣∣ 2p
p−1
) p−1

2p
,

1

ρ

( 
Bρ

∣∣∣σ −  
Bρ

σ
∣∣∣ 2q
q−1
) q−1

2q

}
= 0, (1.6)

and a.e. coefficient field a satisfies the following Liouville principle: Any solution u ∈ H1
a(Rd) to

−∇ · a∇a = 0 in Rd subject to

lim
R→∞

R−(1+α)
(  

BR

|u|
2p
p−1

) p−1
2p

= 0

for some α ∈ (0, 1) admits the representation u(x) = c+ ξ ·x+φξ(x) for some c ∈ R and ξ ∈ Rd.
Finally, the homogenized field ahom is uniformly elliptic.

The following lemma is basically a consequence of the collected results in Remark 1.5 and [8, The-
orem 2]. The claimed mean-value property in (1.8) is a direct consequence of (1.7) which is typically
referred to as a large-scale C1,α regularity estimate. The first large-scale regularity result for a uni-
formly elliptic, scalar equation was obtained by Marahrens and Otto [22], where the ergodicity of the
random ensemble was encoded by means of a logarithmic Sobolev inequality. For elliptic systems
with stationary and coercive coefficients, the first author and Otto [9] derived moment bounds on the
corrector gradient by employing either a logarithmic Sobolev inequality or a spectral gap estimate. We
also mention the large-scale regularity theory for scalar equations in a random environment devel-
oped by Armstrong and Smart [4]. A crucial ingredient of their approach is the assumption of a finite
range of dependence for the symmetric coefficient field. More recently, large-scale regularity results
have also been shown for the random conductance model by Armstrong and Dario [3]. They prove
that the corresponding solutions on supercritical percolation clusters are close to harmonic functions
on large scales which admit stretched exponential moments. For similar models subject to long-range
correlations and decoupling inequalities, Sapozhnikov [23] generalized several results, such as heat
kernel bounds and parabolic Harnack inequalities, which have already been known for the Bernoulli
percolation.

Lemma 1.6 (Large-scale C1,α regularity and a mean-value property for a-harmonic functions). For
any α ∈ (0, 1) andK > 0, there exist constants C0, C1, and C2 such that for all positive radii r < R
and p, q ∈ (1,∞) satisfying 1

p
+ 1

q
≤ 2

d
the following holds: If

( 
Bρ

µp
) 1
p

+
(  

Bρ

λ−q
) 1
q ≤ 2K
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Regularity of random elliptic operators with degenerate coefficients 5

and

max

{
1

ρ

(  
Bρ

∣∣∣φ−  
Bρ

φ
∣∣∣ 2p
p−1
) p−1

2p
,

1

ρ

( 
Bρ

∣∣∣σ −  
Bρ

σ
∣∣∣ 2q
q−1
) q−1

2q

}
≤ 1

C0

for all ρ ∈ [r, R], then any solution u ∈ H1
a(BR) of −∇ · a∇u = 0 fulfills the excess-decay

Exc(r) ≤ C1

( r
R

)2α

Exc(R), (1.7)

where the excess Exc(ρ) is defined as

Exc(ρ) := inf
ξ∈Rd

 
Bρ

∣∣∇u− (ξ +∇φξ)
∣∣2
a
,

while∇u satisfies the mean-value property
 
Br

|∇u|2 ≤ C2

 
BR

|∇u|2. (1.8)

We now introduce the minimal radius r∗ which quantifies the minimal scale on which the (extended)
corrector (φ, σ) grows only sublinearly. For technical reasons, we do not only demand r∗ ≥ re but
even r∗ ≥M0re for a specific constant M0 ≥ 1 detailed below.

Definition 1.7 (Minimal radius). In the situation of Definition 1.1, we define the minimal radius as the
random variable r∗ ≥M0re given in the form

r∗ := inf

{
r ≥M0re

∣∣∣ ∀ ρ > r : max

{
1

ρ

( 
Bρ

∣∣∣φ−  
Bρ

φ
∣∣∣ 2p
p−1
) p−1

2p
,

1

ρ

( 
Bρ

∣∣∣σ −  
Bρ

σ
∣∣∣ 2q
q−1
) q−1

2q

}
≤ 1

C0

}
,

where C0 is the constant from Lemma 1.6, while M0 ≥ 1 is defined in (2.30).

Concerning the possible degeneracy and unboundedness of the coefficients a(x), we mention that
it is obviously not possible to perform estimates like c|v|2 ≤ v · av ≤ C|v|2 for v ∈ Rd with
uniform constants C ≥ c > 0. It is, therefore, advantageous to introduce a separate notation for such
quadratic forms and also for matrix products a

1
2Ma

1
2 with some M ∈ Rd×d.

Notation 1.8. For a ∈ Rd×d, M ∈ Rd×d, and v ∈ Rd, we set |v|2a := v · av and |M |a :=
∣∣a 1

2Ma
1
2

∣∣
where | · | denotes the spectral norm on Rd×d.

The following spectral gap estimate (1.10) is our main stochastic assumption on the underlying random
environment. A very similar condition involving a coarsening partition {D} of Rd was used in [17].
Alternatively, one can employ multiscale functional inequalities to describe the random ensemble (see
Remark 1.10). A detailed exposition of these ideas is given by Duerinckx and Gloria in [15]. We point
out that the more elementary spectral gap condition (1.10) is sufficient for the present study, where
we deduce stretched exponential moments for r∗ with a typically small exponent ε. Nevertheless, we
believe that stronger stretched exponential bounds on r∗ in the spirit of Gloria, Neukamm, and Otto
[19] could be obtained also in the degenerate setting by relying on multiscale functional inequalities.
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Definition 1.9 (Spectral gap inequality). Let the hypotheses of Definition 1.1 hold and assume that a
partition {D} of Rd and an exponent β ∈ [0, 1) exist such that

diamD ≤ (distD + 1)β ≤ C(d) inn diamD, (1.9)

where inn diamD := 2 sup
{
r ≥ 0

∣∣ ∃ x ∈ D : Br(x) ⊂ D
}

denotes the inner diameter of
D ⊂ Rd.

We say that a random field a satisfies the spectral gap (or Poincaré) inequality, if there exists a
constant κ ∈ (0, 1] such that〈(

X(a)− 〈X(a)〉
)2
〉
≤ 1

κ

〈∑
D

( ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2
〉

(1.10)

for all σ(a)-measurable random variables X(a), where we recall that

ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

= sup ess
‖b‖L∞(D)=1

ˆ
D

b : a
1
2
∂X(a)

∂a
a

1
2 = sup ess

‖b‖L∞(D)=1

lim
t→0

X
(
a+ ta

1
2 ba

1
2

)
−X(a)

t
.

An upgraded version of the standard spectral gap estimate (1.10) to higher order moments will be
provided in Lemma 2.1, which will serve as a useful tool in various situations subsequently in this
paper.

Remark 1.10. Instead of (1.10), one can also use a multiscale spectral gap inequality〈(
X(a)− 〈X(a)〉

)2
〉
≤
〈ˆ ∞

0

ˆ
Rd

( ˆ
B`(x)

∣∣∣∂X(a)

∂a

∣∣∣)2

dx
π(`)

(`+ 1)d
d`

〉
(1.11)

or (multiscale) logarithmic Sobolev inequalities for quantifying the ergodicity of the ensemble 〈·〉. The
weight function π : [0,∞) → [0,∞) in (1.11) is generally assumed to be integrable. Integrable
correlations Cov(a(x); a(0)) can be modeled with weights decaying like π(`) ∼ (` + 1)−1−α for
α > d. We refer to the work of Duerinckx and Gloria [15] for further details.

The connection between the ellipticity radius re and the stochastic integrability of the underlying coef-
ficient field a satisfying the spectral gap inequality (1.10) is clarified in the following lemma. We shall
basically prove that stretched exponential moment bounds on averages of |a|p and |a−1|q carry over
to re.

Lemma 1.11 (Stretched exponential moments for re). Assume that an ensemble of coefficient fields
a ∈ Ω is given according to Definition 1.1, which satisfies the spectral gap estimate (1.10) along with
β ∈ [0, 1) subject to (1.9). In case that

´
B1
λ−q and

´
B1
µp possess stretched exponential moments

max

{〈
exp

( 1

C

(ˆ
B1

λ−q
)α)〉

,
〈

exp
( 1

C

( ˆ
B1

µp
)α)〉}

< 2 (1.12)

for some constants α > 0 and C > 0, then the ellipticity radius re from Definition 1.3 is subject to〈
exp

( 1

C
r

α
α+1

d
2

(1−β)
e

)〉
< 2 (1.13)

with the same parameter α > 0 but a possibly different constant C > 0.
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We are now in a position to show that the minimal radius r∗ introduced in Definition 1.7 possesses
stretched exponential moments by adapting the line of arguments from Gloria, Neukamm, and Otto
[17]. In contrast to the final version [19] of the aforementioned preprint, optimal stochastic integrability
is not achieved in [17]. The main tool which allows the authors to improve the stochastic integrability
of r∗ is a modified extended corrector (φT , σT ) living on the length scale

√
T and arising from a

“massive approximation”. As we are currently not able to adapt this approach to our situation, we
resort to the more elementary approach in the preprint [17] where the same bound on r∗ as in (1.14)
is obtained.

Theorem 1.12 (Stretched exponential moments for r∗). Suppose that the hypotheses of Definition 1.1
on the ensemble of coefficient fields a ∈ Ω satisfying the spectral gap inequality (1.10) hold together
with β ∈ [0, 1) subject to (1.9). Moreover, assume that

´
B1
λ−q and

´
B1
µp allow for the stretched

exponential moments in (1.12) with α := ε
1−ε where ε ∈ (0, 1) is the hole-filling exponent from

Proposition 1.13.

Then, the minimal radius r∗ as defined in Definition 1.7 fulfills〈
exp

( 1

C
r
ε d
2

(1−β)
∗

)〉
< 2 (1.14)

for a sufficiently large constant C > 0.

An essential part of the proof of Theorem 1.12 is concerned with the sensitivity analysis quantifying the
dependence of∇(φ, σ) on the coefficient field a. At the end, we need to control averages of∇(φ, σ)
on balls around the origin, but we shall give a slightly more general statement below. As above, the
(φT , σT )-regularization currently prevents us from proceeding as in [19]. However, we could prove an
analogue of the statement in the intermediate version [18], but as Theorem 1.12 is already posed in
the language of [17], it suffices to generalize the sensitivity result in [17] to our setting.

Proposition 1.13 (Sensitivity estimate for average integrals). Let the assumptions of Definition 1.1 on
the ensemble of coefficient fields a ∈ Ω be in place, and let a partition {D} of Rd and β ∈ [0, 1) be
given according to (1.9). Consider the linear functional

Fψ =

ˆ
g · ψ

acting on vector fields ψ : Rd → Rd, where g : Rd → Rd is supported in Br for some radius r ≥ re.

Then, there exist a hole-filling exponent ε = ε(d,K) ∈ (0, 1) and a constant C = C(d,K) > 1
such that for any g as above satisfying( 

Br

|g|2a−1

) 1
2 ≤ r−d, (1.15)

the following bound on the functional derivative of F holds:∑
D

(ˆ
D

∣∣∣∂F∇φ
∂a

∣∣∣
a

)2

+
∑
D

(ˆ
D

∣∣∣∂F∇σjk
∂a

∣∣∣
a

)2

≤ C
((r + r∗)

1−ε(1−β)

r

)d
. (1.16)

We now employ the above results on the existence of stretched exponential moments for the mini-
mal radius r∗ (cf. Theorem 1.12) and the sensitivity estimate for (extended) corrector gradients (cf.
Proposition 1.13) to derive quantitative estimates on the decay of the corrector gradient∇(φ, σ) and
the growth of the corrector itself. Due to the relatively weak (ε-dependent) stretched exponential mo-
ments available for r∗ (compared to [19] and its preprint [18]), the subsequent results also involve a
dependence on ε.
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Theorem 1.14 (Decay of the corrector gradient and growth of the corrector). Assume that the en-
semble of coefficient fields a ∈ Ω fulfills the assumptions of Definition 1.1 and satisfies the spectral
gap estimate (1.10) along with β ∈ [0, 1) subject to (1.9). Let ε ∈ (0, 1) denote the constant from
Proposition 1.13.

Then, there exists a stationary random field C(x) with stretched exponential moments〈
exp

( 1

C
Cε(1−β)

)〉
< 2 (1.17)

for a sufficiently large constant C > 0 such that the following assertions hold:

1 Ifm : Rd → Rd is bounded and supported inBr, r ≥ 1,
ffl
Br
|m|2 = 1, and assumption (1.12)

holds true with α := ε
1−ε , then, for all x ∈ Rd,∣∣∣∣  
Br

∇(φ, σ)(x+ y) ·m(y) dy

∣∣∣∣ ≤ C(x)r−
ε
2
d(1−β).

2 If ε ∈
(
0, α

α+1
− 1

min{p,q}

]
and (1.12) holds for some α > 1

min{p,q}−1
, then the correctors (φ, σ)

fulfill ( 
B1(x)

|φ|
2p
p−1

) p−1
2p

+
(  

B1(x)

|σ|
2q
q−1

) q−1
2q
.
∣∣∣  

B1

(φ, σ)
∣∣∣+ C(x)µ(|x|)

together with

µ(r) :=


1, 0 ≤ β < 1− 2

εd
,

log(2 + r), β = 1− 2
εd
,

r
εd
2

( 2
εd
−1+β), β > 1− 2

εd
.

(1.18)

Our last result gives a quantitative estimate for a two-scale expansion. It is mainly a consequence
of Theorem 1.14 on the growth of the corrector and the stochastic integrability of the random field
C in (1.17). We formulate the statement in the same spirit as in [20]; in particular, we employ the
same averaging procedure over small balls for reasons of generality (even though this might not be
necessary in many cases). But in contrast to [20], we again encounter the small parameter ε (coming
from Theorem 1.14), and we also get an additional term on the right hand side of (1.19) (which can be
(formally) absorbed in the other term on the right hand side in the limit q →∞).

Corollary 1.15 (Quantitative two-scale expansion). Suppose that the ensemble of coefficient fields
a ∈ Ω meets the requirements of Definition 1.1 and fulfills the spectral gap estimate (1.10). Moreover,
let (1.9) hold with β ∈ [0, 1) and suppose that assumption (1.12) with α > 1

min{p,q}−1
is in place,

while the hole-filling exponent from Proposition 1.13 is restricted to ε ∈ (0, α
α+1
− 1

min{p,q} ]. For

R ≥ re and δ > 0, let g ∈ W 1, 2q
q−1 (Rd) be supported in BR, and let uδ and uhom denote the

solutions to
−∇ · a

( ·
δ

)
∇uδ = ∇ · g, −∇ · ahom∇uhom = ∇ · g,

while the error zδ in the two-scale expansion and the small-scale average uhom,δ are defined by

zδ := uδ −
(
uhom,δ + δφi

( ·
δ

)
∂iuhom,δ

)
, uhom,δ(x) :=

 
Bδ(x)

uhom.

DOI 10.20347/WIAS.PREPRINT.2971 Berlin 2022



Regularity of random elliptic operators with degenerate coefficients 9

We then have(ˆ ∣∣∇zδ∣∣2a) 1
2
. δ1+ d

2q

( ˆ
|∇g|

2q
q−1

) q−1
2q

+ Cδ,gδµ(δ−1)
( ˆ

µ(|x|)2|∇g|2
) 1

2
(1.19)

where µ(r) is defined in (1.18) and where the random field Cδ,g satisfies〈
exp

( 1

C
C
(

1+α+1
α

ε
min{p,q}

)−1

ε(1−β)

δ,g

)〉
< 2

for a sufficiently large constant C > 0 independent of δ, g, p, and q.

2 Large-scale C1,α regularity quantified by the minimal radius r∗

2.1 Proof of Lemma 1.6: A mean-value property for a-harmonic functions

Proof of Lemma 1.6. We divide the proof into two steps. First, we derive a non-degeneracy property
for ξ +∇φξ with ξ ∈ Rd, while the desired mean-value property is proven as a consequence in the
second step.

Step 1. Excess decay and non-degeneracy. Under the hypotheses of the lemma, we may apply [8,
Theorem 2] to establish (1.7). Note that we subsequently use (1.7) with the choice α := 1

2
. Following

[19], we shall first prove a non-degeneracy condition for the correctors φξ in the sense

c|ξ|2 ≤
 
Br

∣∣ξ +∇φξ
∣∣2
a
≤ C|ξ|2 (2.1)

for all r ≥ r∗ and ξ ∈ Rd where 0 < c < C are independent of r and ξ. For the lower bound, we first
recall the elementary bound(ˆ

Br

|ξ +∇φξ|
2q
q+1

) q+1
q ≤

(ˆ
Br

λ−q
) 1
q

ˆ
Br

|ξ +∇φξ|2a.

Together with Poincaré’s inequality, we derive(  
Br

|ξ +∇φξ|2a
) 1

2
&
( 

Br

|ξ +∇φξ|
2q
q+1

) q+1
2q
&

1

r

(  
Br

|ξ · x+ φξ −
 
Br

φξ|
2q
q+1

) q+1
2q
.

The triangle inequality, Jensen’s inequality, and the sublinear growth of the corrector now yield(  
Br

|ξ +∇φξ|2a
) 1

2
&

1

r

(  
Br

|ξ · x|
2q
q+1

) q+1
2q − 1

r

( 
Br

∣∣∣φξ −  
Br

φξ

∣∣∣ 2q
q+1
) q+1

2q

≥ |ξ|
r

(  
Br

|x|
2q
q+1

) q+1
2q − |ξ|

r

( 
Br

∣∣∣φ−  
Br

φ
∣∣∣ 2p
p−1
) p−1

2p
& |ξ| − 1

C0

|ξ|

taking the scaling of φξ and the notation φ = (φi)i into account. Choosing the constant C0 > 0
sufficiently large, one arrives at the desired lower bound in (2.1). Similarly, the upper bound is a
consequence of the Caccioppoli estimate (carried out e.g. in [8, Lemma 3])

ˆ
Br

|ξ +∇φξ|2a ≤
4

r2

(ˆ
B2r

µp
) 1
p
(ˆ

B2r

∣∣∣ξ · x+ φξ −
 
B2r

φξ

∣∣∣ 2p
p−1
) p−1

p
.
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By the same reasoning as above, we obtain(  
Br

|ξ +∇φξ|2a
) 1

2
.
|ξ|
r

( 
B2r

|x|
2p
p−1

) p−1
2p

+
|ξ|
r

( 
B2r

∣∣∣φ−  
B2r

φ
∣∣∣ 2p
p−1
) p−1

2p
. |ξ|+ 1

C0

|ξ|.

The claimed bound (2.1) now follows.

Step 2. Mean-value property. The ideas of [19] also apply to our situation, but we present the main
steps for completeness. The lower bound in (2.1) ensures for any ρ ∈ [r∗, R] the existence of a unique
ξρ ∈ Rd such that

Exc(ρ) =

 
Bρ

∣∣∇u− (ξρ +∇φξρ)
∣∣2
a
. (2.2)

For radii ρ, ρ′ ∈ [r∗, R] satisfying 0 < ρ′ − ρ ≤ ρ, we deduce by virtue of (2.1), the linearity of
ξ 7→ φξ, and the triangle inequality

|ξρ−ξρ′|2 .
 
Bρ

∣∣ξρ−ξρ′+∇φξρ−ξρ′ ∣∣2a .  
Bρ

∣∣∇u−(ξρ+∇φξρ)
∣∣2
a
+

 
Bρ

∣∣∇u−(ξρ′+∇φξρ′ )
∣∣2
a
.

Due to the minimality property (2.2) of ξρ and ρ < ρ′ ≤ 2ρ, this entails

|ξρ − ξρ′|2 .
 
Bρ

∣∣∇u− (ξρ′ +∇φξρ′ )
∣∣2
a
. Exc(ρ′). (2.3)

For arbitrary R ≥ r ≥ r∗, we let N ∈ N be the integer such that 2−(N+1)R < r ≤ 2−NR, which
allows us to use (2.3) and (1.7) (with α = 1

2
) to estimate

|ξr − ξR|2 ≤
( N∑

n=0

|ξ2−(n+1)R − ξ2−nR|
)2

.

( N∑
n=0

2−
n
2

√
Exc(R)

)2

. Exc(R). (2.4)

By means of (2.2), (2.1), and (2.4), we thus get 
Br

|∇u|2a . Exc(r) + |ξr|2 ≤ Exc(r) + Exc(R) + |ξR|2.

Moreover, (1.7) and the definition of the excess ensure Exc(r) . Exc(R) ≤
ffl
BR
|∇u|2a, while

|ξR|2 .
 
BR

∣∣ξR +∇φξR
∣∣2
a
. Exc(R) +

 
BR

|∇u|2a

is a result of (2.1) and (2.2). This concludes the argument.

2.2 Proof of Lemma 1.11: Stretched exponential moments for re

Lemma 2.1 (P th power spectral gap estimate). Let the ensemble of coefficient fields a ∈ Ω satisfy
the assumptions in Definition 1.1 and the spectral gap estimate (1.10) with an arbitrary partition {D}
of Rd. Then, there exists a constant C > 0 such that〈

(ζ − 〈ζ〉)2P
〉 1
P ≤ CP 2

κ

〈(∑
D

(ˆ
D

∣∣∣∂ζ
∂a

∣∣∣
a

)2)P〉 1
P

(2.5)

for any random variable ζ and all P ∈ N, P ≥ 2.

DOI 10.20347/WIAS.PREPRINT.2971 Berlin 2022



Regularity of random elliptic operators with degenerate coefficients 11

Proof. The arguments are basically the same as in [17] but adapted to our degenerate setting. Apply-
ing the spectral gap estimate (1.10) to ζP , we first derive

〈ζ2P 〉 ≤ 〈ζP 〉2 +
1

κ

〈∑
D

( ˆ
D

∣∣∣∂ζP
∂a

∣∣∣
a

)2〉
.

Elementary calculus guarantees that∑
D

( ˆ
D

∣∣∣∂ζP
∂a

∣∣∣
a

)2

= P 2ζ2(P−1)
∑
D

(ˆ
D

∣∣∣∂ζ
∂a

∣∣∣
a

)2

,

while Hölder’s inequality on the level of the probability measure 〈·〉 yields〈∑
D

(ˆ
D

∣∣∣∂ζP
∂a

∣∣∣
a

)2〉
≤ P 2〈ζ2P 〉1−

1
P

〈(∑
D

(ˆ
D

∣∣∣∂ζ
∂a

∣∣∣
a

)2)P〉 1
P
.

Young’s inequality now allows to get rid of 〈ζ2P 〉 on the right hand side and to derive

〈ζ2P 〉 ≤ C〈ζP 〉2 +
(CP 2

κ

)P〈(∑
D

(ˆ
D

∣∣∣∂ζ
∂a

∣∣∣
a

)2)P〉
(2.6)

with some constant C > 0. We now argue how to replace 〈ζP 〉2 by 〈ζ2〉P on the right hand side.

To this end, one writes ζP = ζP
P−2
P−1 ζP

1
P−1 and applies Hölder’s inequality with exponents 2P−1

P−2
and

2P−1
P

followed by Young’s inequality leading to

〈ζP 〉2 ≤ 〈ζ2P 〉
P−2
P−1 〈ζ2〉

P
P−1 ≤ 1

C
〈ζ2P 〉+ CP−2〈ζ2〉P

with another constantC > 0. Using again the original spectral gap inequality and noting that it suffices
to prove (2.5) for the case 〈ζ〉 = 0, we further obtain

〈ζ2〉P ≤ 1

κP

〈∑
D

(ˆ
D

∣∣∣∂ζ
∂a

∣∣∣
a

)2〉P
.

The proof is finished taking Jensen’s inequality 〈(·)〉P ≤ 〈(·)P 〉 into account.

Proof of Lemma 1.11. We divide the proof into two steps.

Step 1. Exponential concentration for
ffl
BR
µp and

ffl
BR
λ−q. We start by recalling the upgraded spectral

gap estimate from (2.5) and by applying it to X(a) :=
ffl
BR
µp for some arbitrary R ≥ 1. The same

arguments are also applicable to
ffl
BR
λ−q. This yields

〈(
X(a)− 〈X(a)〉

)2r
〉 1

2r ≤ Cr

〈(∑
D

( ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2)r〉 1
2r

(2.7)

for all r ∈ N, r ≥ 2. In a similar setting, exponential concentration and stretched exponential moments
were shown in [15, Proposition 1.10] for arbitrary random variables X(a) by assuming a deterministic
bound of the form ∑

D

(ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2

≤ C
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(albeit employing a multiscale spectral gap inequality). Such a deterministic bound cannot be expected
in our situation, instead we shall prove that〈(∑

D

(ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2)r〉 1
2r

. r
1
αR−

d
2

(1−β) (2.8)

holds true where.means≤ up to the prescribed parameters d, p, q, andK . To this end, we calculate∑
D

( ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2

=
∑
D

(
sup ess
‖b‖L∞(D)=1

ˆ
D

b : a
1
2
∂X(a)

∂a
a

1
2

)2

=
∑
D

(
sup ess
‖b‖L∞(D)=1

lim
t→0

X
(
a+ ta

1
2 ba

1
2

)
−X(a)

t

)2

and

X
(
a+ ta

1
2 ba

1
2

)
−X(a)

t
=

1

t

 
BR

(∣∣a+ ta
1
2 ba

1
2

∣∣p − |a|p)
= p

 
BR

(
(1− θ)|a|+ θ

∣∣a+ ta
1
2 ba

1
2

∣∣)p−1∣∣a+ ϑta
1
2 ba

1
2

∣∣′ : a 1
2 ba

1
2

.
 
BR

|a|p−1
(
1− θ + θ|I + tb|

)p−1∣∣a 1
2 ba

1
2

∣∣
. R−d

ˆ
BR∩D

µp

where we use the identity |A2| = |A|2 for the spectral norm of any symmetric matrix A ∈ Rd×d and
the uniform boundedness ||A|′ : B| . |B| of the derivative of the spectral norm for anyA,B ∈ Rd×d,
while we assume w.l.o.g. that 1

t

(
X
(
a+ ta

1
2 ba

1
2

)
−X(a)

)
is positive for t > 0 sufficiently small. Note

that we further applied the elementary mean value theorem with some θ, ϑ ∈ [0, 1], the boundedness
of b, and the fact that b vanishes outside of D. Moreover, every instance of a and b inside an integral
refers to a(x) and b(x), respectively. As a consequence,〈(∑

D

(ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2)r〉 1
2r

. R−d
〈( ∑

D∩BR 6=∅

(ˆ
BR∩D

µp
)2)r〉 1

2r

.

By recalling (1.9), we notice that the number of subdomains D obeying D ∩ BR 6= ∅ equals (up to
fixed constants)

ˆ R

0

( l

(l + 1)β

)d−1 dl

(l + 1)β
.
ˆ R

0

l(1−β)(d−1)−βdl . Rd(1−β).

Jensen’s inequality then leads to〈(∑
D

(ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2)r〉 1
2r

. R−
d
2

(1+β)

〈
R−d(1−β)

∑
D∩BR 6=∅

(ˆ
D

µp
)2r
〉 1

2r

.

Likewise, any subdomainD can be covered by at most |D| . Rβd unit ballsB1(xk) with appropriate
xk ∈ D, hence, applying Jensen’s inequality once more results in〈(∑

D

(ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2)r〉 1
2r

. R−
d
2

(1−β)

〈
R−d(1−β)

∑
D∩BR 6=∅

R−βd
∑
k

( ˆ
B1(xk)

µp
)2r
〉 1

2r

.
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Pulling the expectation inside and using the stationarity of the underlying ensemble, we deduce〈(∑
D

(ˆ
D

∣∣∣∂X(a)

∂a

∣∣∣
a

)2)r〉 1
2r

. R−
d
2

(1−β)

〈(ˆ
B1

µp
)2r
〉 1

2r

.

Owing to (1.12) and Lemma A.1, we know that
〈
(
´
B1
µp)2r

〉 1
2r . r

1
α , which gives rise to (2.8).

Together with (2.7), this results in〈(
X(a)− 〈X(a)〉

)2r
〉 1

2r
. r

α+1
α R−

d
2

(1−β).

An elementary argument shows that
〈(
X(a)−〈X(a)〉

) α
α+1

r〉 1
r . rR−

α
α+1

d
2

(1−β), which by Lemma
A.1 entails 〈

exp
( 1

C
R

α
α+1

d
2

(1−β)
(
X(a)− 〈X(a)〉

) α
α+1

)〉
< 2

for a sufficiently large constant C > 0 depending only on fixed model parameters. Therefore,〈
I
(  

BR

µp − 〈µp〉 > δ
)〉
. exp

(
− 1

C
δ

α
α+1R

α
α+1

d
2

(1−β)
)
. (2.9)

Step 2. Stretched exponential moments for re. For any r0 > 1 we now estimate the probability of the
event re > r0 as follows:〈

I(re > r0)
〉
≤
〈
I
(
∃ r > r0 :

 
Br

µp > (2K)p ∨
 
Br

λ−q > (2K)q
)〉

≤
〈
I
(
∃n ≥ n0 :

 
Bbn

µp >
(2K)p

bd
∨

 
Bbn

λ−q >
(2K)q

bd

)〉
where b = b(d, p, q,K) ∈ (1, 2) is a constant specified below and n0, n ∈ N satisfy bn0−1 <
r0 ≤ bn0 and bn−1 < r ≤ bn. Notice that

ffl
Bbn

µp > ( r
bn

)d(2K)p > b−d(2K)p according to the

assumption in the first line and that an analogous estimate holds for λ−q. The previous estimate is
continued via

〈
I(re > r0)

〉
≤

∞∑
n=n0

〈
I
( 

Bbn

µp >
(2K)p

bd

)〉
+

∞∑
n=n0

〈
I
(  

Bbn

λ−q >
(2K)q

bd

)〉
.

We are hence in a position to employ (2.9) after choosing b ∈ (1, 2) sufficiently close to 1 in order to
guarantee that the lower bounds inside the indicator functions subsequently stay positive. Besides, we
only provide the argument for the term involving µ, while the same reasoning also applies to the other
term. This yields

∞∑
n=n0

〈
I
(  

Bbn

µp >
(2K)p

bd

)〉
≤

∞∑
n=n0

〈
I
( 

Bbn

µp − 〈µp〉 > (2K)p

bd
−Kp

)〉
≤

∞∑
n=n0

exp
(
− 1

C

((2K)p

bd
−Kp

) α
α+1 (

bn
) α
α+1

d
2

(1−β)
)

≤ C0 exp
(
− c1r

α
α+1

d
2

(1−β)

0

)
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together with (large) constants C,C0 ≥ 1, and a (small) constant c1 ∈ (0, 1). For the third inequality

above, we pull out the factor exp
(
− c1(bn0)

α
α+1

d
2

(1−β)
)

and estimate the remaining sum using the

crude bound (bn)
α
α+1

d
2

(1−β)−(bn0)
α
α+1

d
2

(1−β) & log(b)(n−n0). We can now derive moment bounds
of order k ≥ 1 via〈

rke
〉

=
〈 ˆ ∞

0

I(re > r)
d

dr
rkdr

〉
≤
ˆ ∞

0

C0 exp
(
− c1r

α
α+1

d
2

(1−β)
) d

dr
rkdr

=

ˆ ∞
0

C0c1
α

α + 1

d

2
(1− β)r

α
α+1

d
2

(1−β)−1 exp
(
− c1r

α
α+1

d
2

(1−β)
)
rkdr

By means of the substitution t = c1r
α
α+1

d
2

(1−β), the last expression rewrites as

〈
rke
〉

=

ˆ ∞
0

C0e
−t
( t
c1

)α+1
α

2k
d(1−β)

dt = C0c
−α+1

α
2k

d(1−β)
1 Γ

(α + 1

α

2k

d(1− β)
+ 1
)
.

The stretched exponential bound (1.13) for re of order α
α+1

d
2
(1− β) now immediately follows as

〈
exp

( 1

C
r

α
α+1

d
2

(1−β)
e

)〉
≤ 1 +

∞∑
k=1

〈
r

α
α+1

d
2

(1−β)k
e

〉
Ckk!

≤ 1 + C0

∞∑
k=1

Γ(k + 1)

Ckck1k!
< 2 (2.10)

for C > 0 large enough.

2.3 Proof of Proposition 1.13: A sensitivity estimate for average integrals

Remark 2.2. The reason for demanding symmetric coefficient fields a(x) = a(x)T is mainly related
to the subsequent proof of Proposition 1.13, which does not seem to generalize to the case of non-
symmetric a. In particular, the arguments in (2.18) and (2.19) heavily rely on the symmetry of a.
In (2.19), we smuggle in a−

1
2 and a

1
2 leading to |g|a−1 and |ψ|a after applying Hölder’s inequality.

In the absence of symmetry, the terms which we insert should still cancel and be of the order −1
2

and 1
2

w.r.t. a. Owing to (2.18) and the fact that the matrix a should partially cancel within the norm

| · |a−1 , we see that the definition of | · |a−1 has to be of the form |g|a−1 := gT (a
1
2 )−T (a

1
2 )−1g. Since

(2.18) shall be controlled in terms of | · |a in the subsequent estimate, | · |a needs to be defined as
|ψ|a := ψT (a

1
2 )Ta

1
2ψ. But the structure of | · |a−1 and | · |a now prevents us from proceeding as in

(2.19) unless a is symmetric.

Proof of Proposition 1.13. We follow a strategy similar to the one in [17], which separates the proof
into several steps. Throughout the proof, we will use the notation

F∇(φ, σ) :=

ˆ
g̃ · ∇φ+

ˆ
ḡ · ∇σ

for compactly supported g = (g̃, ḡ).

Step 1. Energy estimates for r ≥ r∗. We start by noting that

 
BR

|∇φi + ei|2a . 1 (2.11)
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Regularity of random elliptic operators with degenerate coefficients 15

for all R ≥ r, where the constant on the right hand side only depends on d and K . This follows from
a Caccioppoli estimate as stated in [8, Lemma 3] since r∗ ≥ re in particular ensures R ≥ re. The
definition of the minimal radius r∗ in Definition 1.7 then allows for a constant upper bound.

As in [17], we now claim that for all γ ∈ (0, d) and any decaying functions u and g related via

−∇ · a∇u = ∇ · g, (2.12)

we have ˆ
Br

|∇u|2a .
ˆ ( |x|

r
+ 1
)−γ
|g|2a−1 (2.13)

with generic constants only depending on d and γ in this paragraph. Restricting oneself by scaling to
the case r = 1, one is left to prove( ˆ

B1

|∇u|2a
) 1

2

.

(ˆ
B1

|g|2a−1

) 1
2

+
∞∑
n=1

(
1

(2n)d

ˆ
2n−1<|x|<2n

|g|2a−1

) 1
2

taking the following elementary estimate into account:( ˆ
B1

|g|2a−1

) 1
2

+
∞∑
n=1

(
1

(2n)d

ˆ
2n−1<|x|<2n

|g|2a−1

) 1
2

.

( ˆ
B1

(
|x|+ 1

)−γ|g|2a−1

) 1
2

+
∞∑
n=1

(
2n
) γ−d

2

( ˆ
2n−1<|x|<2n

(
|x|+ 1

)−γ|g|2a−1

) 1
2

.
ˆ (
|x|+ 1

)−γ|g|2a−1 .

As a result of the unique solvability of (2.12) in the class of decaying solutions, we may assume that g
is either supported inB1 or inB2n\B2n−1 for some n ∈ N. In the first case, we employ the energy es-
timate for (2.12) to derive

´
B1
|∇u|2a ≤

´
|∇u|2a .

´
B1
|g|2a−1 . If supp g ⊂ B2n\B2n−1 , we addition-

ally use the mean-value property from Lemma 1.6 to deduce
´
B1
|∇u|2a . (2n−1)−d

´
B2n−1

|∇u|2a .
(2n)−d

´
2n−1<|x|<2n

|g|2a−1 .

The generalization of the previous estimate (2.13) provided in [17] also holds in our situation. For any
0 < γ′ < γ < d and functions u and g subject to (2.12), one has

ˆ
Br

( |x|
r

+ 1
)−γ
|∇u|2a .

ˆ ( |x|
r

+ 1
)−γ′
|g|2a−1 (2.14)

where here the generic constants only depend on d, γ, and γ′. As above, we restrict ourselves to
r = 1. By using (2.13) with r := 2ρ therein for some ρ ≥ 1, we find

ˆ
ρ≤|x|≤2ρ

|∇u|2a .
ˆ ( |x|

2ρ
+ 1
)−γ′
|g|2a−1 . ργ

′
ˆ (
|x|+ 1

)−γ′ |g|2a−1 .

Multiplying with ρ−γ , we obtain
´
ρ≤|x|<2ρ

|x|−γ|∇u|2a . ργ
′−γ ´ (|x|+ 1)−γ

′|g|2a−1 . Setting ρ := 2n,

recalling γ′ < γ, and taking the sum over n ∈ N, we arrive at
ˆ
|x|≥1

(
|x|+ 1

)−γ|∇u|2a . ˆ (
|x|+ 1

)−γ′ |g|2a−1 .
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The case |x| < 1 is treated by the previous estimate (2.13) for r = 1:ˆ
|x|<1

(
|x|+ 1

)−γ|∇u|2a ≤ ˆ
|x|<1

|∇u|2a .
ˆ (
|x|+ 1

)−γ′ |g|2a−1 .

Step 2. Energy estimate for all r ≥ re. We claim that any a-harmonic function u on Rd, i.e. any
solution to

−∇ · a∇u = 0, (2.15)

satisfies ˆ
Br(x)

|∇u|2a .
( r
R

)εd ˆ
BR(x)

|∇u|2a (2.16)

for some ε > 0 and for all R ≥ r ≥ re, where generic constants here and in the subsequent proof
only depend on d and K .

Applying the Caccioppoli estimate for solutions to (2.15) from [8, Lemma 3] entails

 
Bre (x)

|∇u|2a . r−2
e

(  
A

|u− ū|
2p
p−1

) p−1
p

where we abbreviate A := B2re(x)\Bre(x) and ū :=
´
A
u. Since the condition 1

p
+ 1

q
≤ 2

d
guar-

antees the embedding W 1, 2q
q+1 (A) ↪→ L

2p
p−1 (A), we infer from Sobolev’s inequality (observing the

correct scaling w.r.t. re) that

 
Bre (x)

|∇u|2a . r
−2−d p−1

p
e

(ˆ
A

|u− ū|
2p
p−1

) p−1
p

. r
−2−d p−1

p
e r

−d( 1
p

+ 1
q

)
e

((ˆ
A

|u− ū|
2q
q+1

) q+1
q

+ r2
e

(ˆ
A

|∇u|
2q
q+1

) q+1
q

)
. r

−2−d p−1
p

e r
−d( 1

p
+ 1
q

)
e r2

e

( ˆ
A

|∇u|
2q
q+1

) q+1
q

= r
−d q+1

q
e

( ˆ
A

|∇u|
2q
q+1

) q+1
q

where we employed the correctly scaled Poincaré inequality for the third estimate. Thanks to Hölder’s
inequality (cf. [8, Lemma 3]), we conclude that

 
Bre (x)

|∇u|2a .
( 

A

|∇u|
2q
q+1

) q+1
q
.
 
A

|∇u|2a.

Rewriting this estimate in terms of an explicit constant C(d,K), we getˆ
Bre (x)

|∇u|2a ≤ C

ˆ
B2re (x)\Bre (x)

|∇u|2a.

The bound in (2.16) now follows from a so-called hole-filling trick, which amounts to adding
C
´
Bre (x)

|∇u|2a to both sides. This results in

ˆ
Bre (x)

|∇u|2a ≤
C

C + 1

ˆ
B2re (x)

|∇u|2a ≤
( C

C + 1

)n ˆ
B2nre (x)

|∇u|2a
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Regularity of random elliptic operators with degenerate coefficients 17

where the second bound simply follows by iteration. Defining ε > 0, n ∈ N, and N ∈ N via

C

C + 1
= 2−εd, 2n−1re ≤ r < 2nre, 2N−1re ≤ R < 2Nre,

we arrive atˆ
Br(x)

|∇u|2a ≤
ˆ
B2nre (x)

|∇u|2a ≤ 2−εd(N−1−n)

ˆ
B

2N−1re
(x)

|∇u|2a ≤ 22εd
( r
R

)εd ˆ
BR(x)

|∇u|2a

provided N − 1 ≥ n. In case that N = n, (2.16) holds true by adapting the generic constant
appropriately.

Step 3. Sensitivity estimate for all r ≥ r∗. We proceed by following [17] and recall that the defining
equations for the decaying functions φ and σjk (where we skip the index i for notational convenience)
read

−∇ · a(∇φ+ e) = 0, −∆σjk = ∂jqk − ∂kqj, q = a(∇φ+ e). (2.17)

Fixing an element D of the underlying partition of Rd, we shall write aD for a coefficient field which
may differ from a only inside of D. The corresponding solutions to (2.17) for a replaced by aD are
then denoted by φD and σjkD. As a result, the differences φ− φD and σ − σjkD are subject to

−∇ · a∇(φ− φD) = ∇ · (a− aD)(∇φD + e),

−∆(σjk − σjkD) = ∂j
(
a(∇φ+ e)− aD(∇φD + e)

)
k
− ∂k

(
a(∇φ+ e)− aD(∇φD + e)

)
j
.

Taking a linear combination with scalar coefficients {cD}D, we get

−∇ · a∇
∑
D

cD(φ− φD) = ∇ ·
∑
D

cD(a− aD)(∇φD + e),

−∆
∑
D

cD(σjk − σjkD) = ∂j
∑
D

cD
(
a(∇φ+ e)− aD(∇φD + e)

)
k

− ∂k
∑
D

cD
(
a(∇φ+ e)− aD(∇φD + e)

)
j
.

With the help of estimate (2.14) in Step 1, we now derive
ˆ
Br

∣∣∣∇∑
D

cD(φ− φD)
∣∣∣2
a

+

ˆ
Br

( |x|
r

+ 1
)−γ∣∣∣∇∑

D

cD(φ− φD)
∣∣∣2
a

.
ˆ ( |x|

r
+ 1
)−γ′∣∣∣∑

D

cD(a− aD)(∇φD + e)
∣∣∣2
a−1

≤
ˆ ( |x|

r
+ 1
)−γ′∑

D

c2
D

∣∣∣a− 1
2 (a− aD)a−

1
2a

1
2 (∇φD + e)

∣∣∣2
≤
∑
D

c2
D sup
x∈D

∣∣a− aD∣∣2a−1

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a.

Note that we crucially employed the inclusion supp(a − aD) ⊂ D and the fact that the elements
of the partition are disjoint when pulling the square inside the sum over all D. Moreover, all generic
constants appearing in this part of the proof only depend on d, γ, and γ′. Next, we observe that

a(∇φ+ e)− aD(∇φD + e) = a∇(φ− φD) + (a− aD)(∇φD + e)
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together with the previous estimates and γ′ ≤ γ leads to
ˆ
Br

∣∣∣∑
D

cD(∇φ−∇φD)
∣∣∣2
a

+

ˆ
Br

( |x|
r

+ 1
)−γ∣∣∣∑

D

cD
(
a(∇φ+ e)− aD(∇φD + e)

)∣∣∣2
a−1

≤
ˆ
Br

∣∣∣∑
D

cD(∇φ−∇φD)
∣∣∣2
a

+

ˆ
Br

( |x|
r

+ 1
)−γ∣∣∣a∇∑

D

cD(φ− φD)
∣∣∣2
a−1

+

ˆ
Br

( |x|
r

+ 1
)−γ′∣∣∣∑

D

cD(a− aD)(∇φD + e)
∣∣∣2
a−1

(2.18)

.
∑
D

c2
D sup
x∈D

∣∣a− aD∣∣2a−1

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a.

Similarly, we may apply (2.13) to find
ˆ
Br

∣∣∣∇∑
D

cD(σjk − σjkD)
∣∣∣2
a
.
ˆ
Br

( |x|
r

+ 1
)−γ∣∣∣∑

D

cD
(
a(∇φ+ e)− aD(∇φD + e)

)∣∣∣2
a−1

.
∑
D

c2
D sup
x∈D

∣∣a− aD∣∣2a−1

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a.

Due to the definition of the functional

Fψ =

ˆ
g · ψ with

( 
Br

|g|2a−1

) 1
2 ≤ r−d,

we have

|Fψ| =
∣∣∣ˆ

Br

gTa−
1
2a

1
2ψ
∣∣∣ ≤ (ˆ

Br

|a−
1
2 g|2

) 1
2
(ˆ

Br

|a
1
2ψ|2

) 1
2 ≤

(  
Br

|ψ|2a
) 1

2
. (2.19)

Consequently, we deduce that

rd
∣∣∣∑
D

cD(F∇φ− F∇φD)
∣∣∣2 + rd

∣∣∣∑
D

cD(F∇σjk − F∇σjkD)
∣∣∣2

.
∑
D

c2
D sup
x∈D

∣∣a− aD∣∣2a−1

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a.

Thus, an elementary l2 duality argument guarantees the bound

rd
∑
D

|F∇φ− F∇φD|2 + rd
∑
D

|F∇σjk − F∇σjkD|2

. sup
D

(
sup
x∈D

∣∣a− aD∣∣2a−1

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a

)
.

We now specify aD := a + ta
1
2 δaDa

1
2 for t ∈ R, |t| � 1, and a perturbation δaD being bounded

and supported in D. In the limit t→ 0, the previous estimate becomes

rd
∑
D

∣∣∣ ˆ
D

∂F∇φ
∂a

: a
1
2 δaDa

1
2

∣∣∣2 + rd
∑
D

∣∣∣ˆ
D

∂F∇σjk
∂a

: a
1
2 δaDa

1
2

∣∣∣2
. sup

D
sup
x∈D
|δaD|2 · sup

D

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a.
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Lemma A.3 now allows for an explicit estimate of the matrix-valued derivative of F in terms of specific
matrix norms. But as all matrix norms on Rd×d are equivalent, Lemma A.3 also holds for the spectral
norm | · | up to an additional constant. Hence, we arrive at

rd
∑
D

(ˆ
D

∣∣∣∂F∇φ
∂a

∣∣∣
a

)2

+ rd
∑
D

( ˆ
D

∣∣∣∂F∇σjk
∂a

∣∣∣
a

)2

. sup
D

ˆ
D

( |x|
r

+ 1
)−γ′
|∇φD + e|2a . sup

D

(distD

r
+ 1
)−γ′ ˆ

D

|∇φD + e|2a. (2.20)

To derive the announced sensitivity estimate for r ≥ r∗, we set ρ := diamD and choose x ∈ D
such that R := distD = |x|. The assumption ρ ≤ (R + 1)β with β ∈ (0, 1) on the coarseness of
the partition as well as the hole-filling estimate (2.16) ensure thatˆ

D

|∇φD + e|2a ≤
ˆ
Bρ(x)

|∇φD + e|2a .
( 1

R + 1

)εd(1−β)
ˆ
BR+1(x)

|∇φD + e|2a.

Applying (2.16) once more in case that r∗ > 2R + 1, we obtainˆ
D

|∇φD + e|2a .
( 1

R + r∗ + 1

)εd(1−β)
ˆ
Bmax{2R+1,r∗}

|∇φD + e|2a.

While this estimate trivially follows from the previous one in case that r∗ ≤ 2R + 1, we treat the

additional factor from the hole-filling estimate in case that r∗ > 2R+ 1 via
(

1
R+1

)εd(1−β)(2R+1
r∗

)εd ≤(
1

R+1

)εd(1−β)(2R+1
r∗

)εd(1−β)
.
(

1
r∗

)εd(1−β)
.
(

1
R+r∗+1

)εd(1−β)
. The remaining integral is controlled

via the Caccioppoli estimate (2.11), which results inˆ
D

|∇φD + e|2a .
( 1

R + r∗ + 1

)εd(1−β)

(R + r∗ + 1)d ≤ (R + r)d(1−ε(1−β))

recalling r ≥ r∗ ≥ 1. Going back to (2.20) and defining γ′ := d(1 − ε(1 − β)) < d, we conclude
that

rd
∑
D

(ˆ
D

∣∣∣∂F∇φ
∂a

∣∣∣
a

)2

+ rd
∑
D

(ˆ
D

∣∣∣∂F∇σjk
∂a

∣∣∣
a

)2

. rd(1−ε(1−β)). (2.21)

Step 4. Sensitivity estimate for all r ≥ re. The range of radii r ∈ [re, r∗) is covered by applying the
result from the previous step to the functional

F̃ψ :=
( r
r∗

) d
2
Fψ.

Since (1.15) holds true, we infer∣∣F̃ψ∣∣2 =
( r
r∗

)d
|Fψ|2 ≤

( r
r∗

)d  
Br

|ψ|2a ≤
 
Br∗

|ψ|2a.

This enables us to employ (2.21) for F̃ and r = r∗ therein resulting in

(r∗)
d
( r
r∗

)d∑
D

( ˆ
D

∣∣∣∂F∇φ
∂a

∣∣∣
a

)2

+ (r∗)
d
( r
r∗

)d∑
D

(ˆ
D

∣∣∣∂F∇σjk
∂a

∣∣∣
a

)2

. (r∗)
d(1−ε(1−β)).

(2.22)

Combining (2.21) and (2.22) establishes the announced estimate (1.16).
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2.4 Auxiliary results on the sublinear growth of the extended corrector (φ, σ)

Lemma 2.3. For 0 < L < ρ < ∞, 1 ≤ s < d, s ≤ S < ∞ such that θ := d(1
s
− 1

S
) ∈ [0, 1),

and u ∈ W 1,s(Br), we have

1

ρ

( 
Bρ

∣∣∣u−  
Bρ

u
∣∣∣S) 1

S

≤ C(d)

( 
Bρ

∣∣∣ 
BL(x)

∇u
∣∣∣sdx) 1

s

+ C(d)

(
L

ρ

)1−θ( 
B2ρ

|∇u|s
) 1

s

.

(2.23)

Proof. By scaling we can assume ρ = 1, in which case (2.23) reduces for some L ≤ 1 to

(ˆ
B1

∣∣∣u−  
B1

u
∣∣∣S) 1

S

≤ C(d)

(ˆ
B1

∣∣∣ 
BL(x)

∇u
∣∣∣sdx) 1

s

+ C(d)L1−θ
(ˆ

B2

|∇u|s
) 1

s

. (2.24)

To show this, we apply the triangle inequality to estimate the left-hand side by

(ˆ
B1

∣∣∣u−  
B1

u
∣∣∣S) 1

S

≤
(ˆ

B1

∣∣∣(u− uL)−
 
B1

(u− uL)
∣∣∣S) 1

S

+

(ˆ
B1

∣∣∣uL −  
B1

uL

∣∣∣S) 1
S

,

where uL(x) :=
ffl
BL(x)

u. Combining Jensen’s, Sobolev’s, and Poincaré’s inequalities (while using
1
S
≥ 1

s
− 1

d
), we get for the second term on the right-hand side

(ˆ
B1

∣∣∣uL −  
B1

uL

∣∣∣S) 1
S

≤ C(d)

(ˆ
B1

∣∣∣uL −  
B1

uL

∣∣∣ dsd−s) d−s
ds

≤ C(d)

(ˆ
B1

|∇(uL)|s
) 1

s

= C(d)

(ˆ
B1

|(∇u)L)|s
) 1

s

.

For the first term, we apply Hölder’s inequality (with exponents s
s−S(1−θ) ,

s
S(1−θ) ∈ (1,∞) after split-

ting the integrand as | · |S = | · |θS| · |(1−θ)S) and Jensen’s inequality, followed in the next step by the
above Sobolev inequality and the convolution estimate:

(ˆ
B1

∣∣∣(u− uL)−
 
B1

(u− uL)
∣∣∣S) 1

S

≤ C(d)

(ˆ
B1

∣∣∣(u− uL)−
 
B1

(u− uL)
∣∣∣ dsd−s)θ d−sds (ˆ

B1

|u− uL|s
) 1−θ

s

≤ C(d)

(ˆ
B1

|∇(u− uL)|s
) θ

s

L1−θ
(ˆ

B2

|∇u|s
) 1−θ

s

≤ C(d)L1−θ
(ˆ

B2

|∇u|s
) 1

s

,

which proves (2.24).

Corollary 2.4. For 0 < L < r, θ := d
2
(1
p

+ 1
q
) ∈ (0, 1), and

K̄ := sup
R≥r

( 
BR

|a|p
) 1
p

+
( 

BR

|a−1|q
) 1
q
,
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the extended corrector (φ, σ) from Definition 1.4 satisfies

1

r

( 
Br

∣∣∣φ−  
Br

φ
∣∣∣ 2p
p−1

) p−1
2p

+
1

r

( 
Br

∣∣∣σ −  
Br

σ
∣∣∣ 2q
q−1

) q−1
2q

.

( 
Br

∣∣∣ 
BL(x)

∇φ
∣∣∣ 2q
q+1

dx

) q+1
2q

+

( 
Br

∣∣∣  
BL(x)

∇σ
∣∣∣ 2p
p+1

dx

) p+1
2p

(2.25)

+ K̄
1
2

(
L

r

)1−θ(
1 +

1

r

( 
B8r

∣∣∣φ−  
B8r

φ
∣∣∣ 2p
p−1

) p−1
2p

+
1

r

( 
B8r

∣∣∣σ −  
B8r

σ
∣∣∣ 2q
q−1

) q−1
2q
)
.

Proof. We start with σ. Using Lemma 2.3 with u = σ, S = 2q
q−1

, and s = 2p
p+1

, we get that

1

r

( 
Br

∣∣∣σ −  
Br

σ
∣∣∣ 2q
q−1

) q−1
2q

≤ C(d)

( 
Br

∣∣∣  
BL(x)

∇σ
∣∣∣ 2p
p+1

dx

) p+1
2p

+ C(d)

(
L

r

)1−θ( 
B2r

|∇σ|
2p
p+1

) p+1
2p

, (2.26)

with θ = d
2
(1
p

+ 1
q
) < 1. To estimate the second term on the right-hand side, we assume w.l.o.g.

that
ffl
B4r

σ = 0 and consider ησ with a smooth cut-off function η for B2r in B4r, which then by
−∆σijk = ∂jqik − ∂kqij =: ∇ · q̃ with q̃ = qikej − qijek satisfies

∆(ησijk) = ∇ · (2σijk∇η − ηq̃) +∇η · q̃ − σijk∆η.

By a Calderón–Zygmund estimate for the Laplacian combined with Sobolev’s and Jensen’s inequali-
ties, this implies(ˆ

B2r

|∇σijk|
2p
p+1

) p+1
2p

≤
(ˆ

Rd
|∇(ησijk)|

2p
p+1

) p+1
2p

.
1

r

(ˆ
B4r

|σijk|
2p
p+1

) p+1
2p

+

(ˆ
B4r

|q̃|
2p
p+1

) p+1
2p

.

Using the definition of q̃ via qi = a(∇φi + ei) we see that by Hölder’s inequality( 
B4r

|q̃|
2p
p+1

) p+1
2p

≤
( 

B4r

|a|p
) 1

2p
( 

B4r

|∇φi + ei|2a
) 1

2

,

which combined with the previous inequality (after taking averages on both sides) yields( 
B2r

|∇σijk|
2p
p+1

) p+1
2p

.
1

r

( 
B4r

|σijk|
2p
p+1

) p+1
2p

+ K̄
1
2

( 
B4r

|∇φi + ei|2a
) 1

2

.

Note that the same arguments apply if we replace σ by σ−
ffl
B4r

σ. We then plug the previous estimate
into (2.26) and use Jensen’s inequality to obtain

1

r

( 
Br

∣∣∣σ −  
Br

σ
∣∣∣ 2q
q−1

) q−1
2q

≤ C(d)

( 
Br

∣∣∣  
BL(x)

∇σ
∣∣∣ 2p
p+1

dx

) p+1
2p

(2.27)

+ C(d)

(
L

r

)1−θ
1

r

( 
B4r

∣∣∣σ −  
B4r

σ
∣∣∣ 2q
q−1

) q−1
2q

+ C(d)

(
L

r

)1−θ

K̄
1
2

( 
B4r

|∇φ+ e|2a
) 1

2

.
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To control the last term on the right-hand side, we observe that testing−∇·a
(
∇(φ−

ffl
B8r

φ)+e
)

= 0

with η2(φ−
ffl
B8r

φ), where η is a cut-off function for B4r in B8r, entails

 
B8r

∣∣∣∇(η(φ−  
B8r

φ
))∣∣∣2

a
.
 
B8r

|e|2a +

 
B8r

∣∣∣φ−  
B8r

φ
∣∣∣2|∇η|2a

. K̄

(
1 +

1

r2

( 
B8r

∣∣∣φ−  
B8r

φ
∣∣∣ 2p
p−1

) p−1
p
)
, (2.28)

where we used Hölder’s inequality together with |∇η| . 1
r
.

Using Lemma 2.3 with u = φ, S = 2p
p−1

and s = 2q
q+1

, we get that

1

r

( 
Br

∣∣∣φ−  
Br

φ
∣∣∣ 2p
p−1

) p−1
2p

≤ C(d)

( 
Br

∣∣∣ 
BL(x)

∇φ
∣∣∣ 2q
q+1

dx

) q+1
2q

+ C(d)

(
L

r

)1−θ( 
B2r

|∇φ|
2q
q+1

) q+1
2q

. (2.29)

By means of Hölder’s inequality, we see that(  
B2r

∣∣∣∇(φ−  
B8r

φ
)∣∣∣ 2q

q+1

) q+1
2q

. K̄
1
2

(  
B8r

∣∣∣∇(η(φ−  
B8r

φ
))∣∣∣2

a

) 1
2

,

which we use in (2.29) to control the last integral. Finally, such modified (2.29) together with (2.28) and
(2.27) yield (2.25), which completes the proof.

2.5 Proof of Theorem 1.12: Stretched exponential moments for r∗

Proof of Theorem 1.12. Step 1. Control of the minimal radius r∗. Let p, q ∈ (1,∞) be the integrability
exponents of a and a−1 from Definition 1.1. We shall follow the lines of [17] to derive an estimate for the
minimal radius r∗. To this end, we first assume that M0re < r ≤ r∗ holds with some positive radius
r and the positive constant M0 from Definition 1.7 which is specified in (2.30) below. We introduce

X(r) := max

{
1

r

( 
Br

∣∣∣φ−  
Br

φ
∣∣∣ 2p
p−1
) p−1

2p
,

1

r

(  
Br

∣∣∣σ −  
Br

σ
∣∣∣ 2q
q−1
) q−1

2q

}
.

With another positive radius r′ subject to r′ < r, we may employ Corollary 2.4 to obtain

X(r) .

((r′
r

)1−θ(
1 +X(8r)

)
+
(  

Br

∣∣∣  
Br′ (x)

∇φ
∣∣∣ 2p
p+1
) p+1

2p
+
(  

Br

∣∣∣  
Br′ (x)

∇σ
∣∣∣ 2q
q+1
) q+1

2q

)
with θ = d

2

(
1
p

+ 1
q

)
< 1. From the definition of r∗ and the constant C0 in Definition 1.7, we deduce

that there exists some ρ ≥ r such that X(ρ) ≥ 1
C0

while X(ρ′) ≤ 2
C0

for all ρ′ ≥ ρ. Note that we
crucially employed the assumption M0re < r∗, which ensures that such a ρ ≥ r actually exists. We
infer

X(ρ′) ≥
( ρ
ρ′

)1+dmax
{
p−1
2p

,
q−1
2q

}
X(ρ) ≥

(1

2

)1+dmax
{
p−1
2p

,
q−1
2q

}
1

C0

, X(8ρ′) ≤ 2

C0
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for all ρ′ ∈ (ρ, 2ρ). The choice r := ρ′ and r′ := ρ′′ ∈ (0, ρ′) entails

1

C
≤
(ρ′′
ρ′

)1−θ
+
( 

Bρ′

∣∣∣  
Bρ′′ (x)

∇φ
∣∣∣ 2p
p+1
) p+1

2p
+
( 

Bρ′

∣∣∣  
Bρ′′ (x)

∇σ
∣∣∣ 2q
q+1
) q+1

2q

with a positive constant C(d, p, q,K,C0) which is in particular independent of M0. One can now
absorb the first term on the right-hand side by setting ρ′′ := ρ′

M0
with

M0 := (2C)
1

1−θ (2.30)

leading to

1

2C
≤
( 

Bρ′

∣∣∣  
B ρ′
M0

(x)

∇φ
∣∣∣ 2p
p+1
) p+1

2p
+
(  

Bρ′

∣∣∣  
B ρ′
M0

(x)

∇σ
∣∣∣ 2q
q+1
) q+1

2q
.

Taking the power 2P , P ∈ N, applying Jensen’s inequality, and integrating over (ρ, 2ρ), we find

1

4(4C)2P
≤
ˆ 2ρ

ρ

 
Bρ′

∣∣∣  
B ρ′
M0

(x)

∇(φ, σ)
∣∣∣2P 1

ρ′
.

Since the previous calculation holds for any configuration satisfying M0re < r ≤ r∗, we arrive at

〈I(M0re < r ≤ r∗)〉 ≤ CP

ˆ ∞
r
M0

〈∣∣∣  
Bρ

∇(φ, σ)
∣∣∣2P〉1

ρ
(2.31)

extending the range of integration, renaming variables, and using the stationarity of
ffl
Bρ(x)
∇(φ, σ).

Step 2. Control of the corrector gradient∇(φ, σ). We keep the assumptions and the notation from the
previous step and consider some ρ > r

M0
. As a result of the vanishing expectation of ∇(φ, σ), the

spectral gap estimate (2.5) ensures the bound〈∣∣∣  
Bρ

∇(φ, σ)
∣∣∣2P〉 1

P ≤ CP 2

κ

〈(∑
D

( ˆ
D

∣∣∣ ∂
∂a

 
Bρ

∇(φ, σ)
∣∣∣
a

)2)P〉 1
P
.

Recalling the notation F∇(φ, σ) =
´

Rd g∇(φ, σ) =
ffl
Bρ
∇(φ, σ) with g := |Bρ|−11Bρ , which in

particular fulfills the condition
( ffl

Bρ
|g|2a−1

) 1
2 . ρ−d

( ffl
Bρ
|a−1|

) 1
2 . ρ−d, Proposition 1.13 guaran-

tees 〈∣∣∣  
Bρ

∇(φ, σ)
∣∣∣2P〉 1

P
. P 2

〈((ρ+ r∗)
1−ε(1−β)

ρ

)dP〉 1
P
.

Here and in the remainder of this proof, all generic constants may depend on d, p, q, β, ε, κ, K , and
C0. Together with the estimate on the minimal radius in (2.31), we derive

〈I(M0re < r ≤ r∗)〉
1
P .

(ˆ ∞
r
M0

〈∣∣∣ 
Bρ

∇(φ, σ)
∣∣∣2P〉1

ρ

) 1
P

. P 2

( ˆ ∞
r
M0

〈((ρ+ r∗)
1−ε(1−β)

ρ

)dP〉1

ρ

) 1
P

.
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An evaluation of the integral over ρ after using the triangle inequality gives rise to

〈I(M0re < r ≤ r∗)〉
1
P . P 2

(( 1

εdP (1− β)

( r

M0

)−εdP (1−β)) 1
P

+
( 1

dP

( r

M0

)−dP) 1
P 〈
rdP (1−ε(1−β))
∗

〉 1
P

)
.

Keeping track only of the dependence of the constants on P , this expression simplifies to

〈I(M0re < r ≤ r∗)〉
1
P . P 2

( 1

rεd(1−β)
+

1

rd
〈
rdP (1−ε(1−β))
∗

〉 1
P

)
. (2.32)

To derive a bound on 〈I(r∗ ≥ r)〉, we first note that

〈I(r∗ ≥ r)〉
1
P ≤ 〈I(M0re ≥ r)〉

1
P + 〈I(M0re < r ≤ r∗)〉

1
P

by elementary arguments, where 〈I(M0re ≥ r)〉 1
P . exp

(
− 1

CP

(
r
M0

)ε d
2

(1−β))
due to (1.13) with

α = ε
1−ε . As a consequence of the scalar inequality e−x ≤ x−2 for any x > 0, we obtain

exp
(
− 1

CP

( r

M0

)ε d
2

(1−β))
≤ C2P 2M

εd(1−β)
0

rεd(1−β)
.

Hence, we established the estimate

〈I(r∗ ≥ r)〉
1
P . P 2

( 1

rεd(1−β)
+

1

rd
〈
rdP (1−ε(1−β))
∗

〉 1
P

)
. (2.33)

Step 3. Buckling and exponential moments of r∗. We introduce s := r
ε
2
d(1−β), s∗ := r

ε
2
d(1−β)
∗ ,

Q := 1
ε(1−β)

> 1, and we replace P ≥ 1 by P
2

(now with P ≥ 2) in (2.33). The transformed estimate
then reads

〈I(s∗ ≥ s)〉
1
P ≤ C̃P

(1

s
+

1

sQ
〈
(sQ−1
∗ )P

〉 1
P

)
(2.34)

with some constant C̃ ≥ 1. The basic idea of buckling in this context is to assume that there exists a
constant Λ ≥ 1 such that 〈

I(s∗ ≥ s)
〉
≤ exp

(
− s

Λ

)
(2.35)

holds true for all s ≥ Λ. This assumption is in general only satisfied for min{s∗, δ−1} with δ > 0
instead of s∗. Showing that (2.35) (with min{s∗, δ−1}) entails Λ ≤ C for some constantC ≥ 1, which
is in particular independent of δ, allows to transfer the uniform exponential decay to

〈
I(s∗ ≥ s)

〉
.

Imposing (2.35), we calculate for any P ≥ 2,

〈sP∗ 〉 ≤
ˆ ∞

0

〈
I(s∗ ≥ s)

〉 d

ds
sP ds ≤

ˆ ∞
0

exp
(

1− s

Λ

) d

ds
sP ds

= e

ˆ ∞
0

1

Λ
exp

(
− s

Λ

)
sP ds = e

ˆ ∞
0

e−t(Λt)P dt = eΛPP !.

We thus obtain 〈sP∗ 〉
1
P ≤ ePΛ for all P ≥ 2 and infer from (2.34) the estimate

〈I(s∗ ≥ s)〉
1
P ≤ C̃P

(1

s
+

1

sQ
(
eP (Q− 1)Λ

)Q−1
)
≤ C0

P

s

(
1 +

(PΛ

s

)Q−1)
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with another constant C0 ≥ 1. By defining Λ′ := 2C0Λ
Q−1
Q ≥ 1, we have

〈I(s∗ ≥ s)〉
1
P ≤ C0

P

s

(
Λ′

2C0

+

(
Λ

2C0Λ
Q−1
Q

)Q−1)
≤ P

s
Λ′

provided s ≥ PΛ′. The best upper bound for 〈I(s∗ ≥ s)〉 ≤
(
P
s
Λ′
)P

can be found by optimizing
the right-hand side in P leading to P = s

eΛ′
. In order to guarantee P ≥ 2 (due to the variable

transformation at the beginning of this step), we have to demand s ≥ 2eΛ′. Note that s ≥ PΛ′ is
trivially satisfied. Consequently,

〈I(s∗ ≥ s)〉 ≤ e−P ≤ exp
(
− s

2eΛ′

)
for all s ≥ 2eΛ′. This shows that (2.35) also holds true with 2eΛ′ instead of Λ. Taking the best

constant Λ in (2.35) ensures Λ ≤ 2eΛ′ = 4C0eΛ
Q−1
Q and, finally, Λ ≤ (4C0e)

Q.

Moments of s∗ of order k ∈ N are now derived as above via

〈sk∗〉 ≤
ˆ ∞

0

〈I(s∗ ≥ s)〉 d

ds
sk ds ≤

ˆ ∞
0

exp
(
− s

Λ

) d

ds
sk ds

=

ˆ ∞
0

1

Λ
exp

(
− s

Λ

)
sk ds =

ˆ ∞
0

e−t(Λt)k dt = Λkk!.

As an immediate consequence, we obtain stretched exponential moments of r∗ in the sense that〈
exp

( 1

C
r
ε
2
d(1−β)
∗

)〉
= 1 +

∞∑
k=1

1

k!

〈sk∗〉
Ck
≤ 1 +

∞∑
k=1

Λk

Ck
< 2

for a sufficiently large constant C > 0.

3 Two applications to stochastic homogenization

3.1 Proof of Theorem 1.14: Decay and growth properties of the corrector

Proof of Theorem 1.14. We define the random variable

F (x) :=

 
Br

∇(φ, σ)(x+ y) ·m(y) dy

which is stationary and satisfying 〈F 〉 = 0 thanks to the according properties of ∇(φ, σ). From the
P -spectral gap inequality (2.5) and the sensitivity estimate (1.16), we thus derive

〈
|F |2P

〉 1
2P . P

〈(∑
D

( ˆ
D

∣∣∣∂F
∂a

∣∣∣
a

)2)P〉 1
2P
. P

〈((r + r∗)
1−ε(1−β)

r

)Pd〉 1
2P

for any P ∈ N, P ≥ 2. Taking r ≥ 1 and r∗ ≥ 1 into account, this simplifies to

〈
|F |2P

〉 1
2P . Pr−

ε
2
d(1−β)

〈
r(1−ε(1−β))Pd
∗

〉 1
2P
. (3.1)
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The first assertion of the theorem is a consequence of establishing exponentially stretched moments
of order ε(1− β) for

C(x) := r
ε
2
d(1−β)

∣∣F (x)
∣∣.

To this end, we choose Q ≥ 1 and let P ∈ N be the integer such that Q ≤ P < Q + 1. Estimate
(3.1) then entails 〈

|C|2Q
〉 1

2Q . Q
〈
r(1−ε(1−β))(Q+1)d
∗

〉 1
2(Q+1)

.

Replacing Q by µQ
2

for some µ > 0 and demanding Q ≥ 4
µ

to guarantee µQ
2
≥ 2, we obtain

〈
|C|µQ

〉 1
Q . Qµ

〈
r

(1−ε(1−β))(µQ
2

+1)d
∗

〉 µ

2(
µQ
2 +1) ≤ Qµ

〈
r(1−ε(1−β))µQd
∗

〉 1
2Q
.

Next, we infer from Theorem 1.12 and Lemma A.1 the bound〈
r(1−ε(1−β))µQd
∗

〉
≤
(
C

(1− ε(1− β))2µQ

ε(1− β)

) (1−ε(1−β))2µQ
ε(1−β)

for some constant C ≥ 1, which results in〈
|C|µQ

〉 1
Q . Qµ

(
1+

1−ε(1−β)
ε(1−β)

)
= Q

µ
ε(1−β) = Q

for µ := ε(1− β). Applying again Lemma A.1 concludes the argument.

Concerning the growth of the correctors (φ, σ), we start by employing Sobolev’s inequality related to

the embedding W 1, 2q
q+1 (B(x)) ↪→ L

2p
p−1 (B(x)) on the unit ball B(x) := B1(x), which holds by the

condition 1
p

+ 1
q
≤ 2

d
. We infer(  

B(x)

|φ|
2p
p−1

) p−1
2p
.
( 

B(x)

|φ|
2q
q+1

) q+1
2q

+
(  

B(x)

|∇φ|
2q
q+1

) q+1
2q
.

Poincaré’s inequality and an elementary estimate involving the ellipticity radius re(x) give rise to(  
B(x)

|φ|
2p
p−1

) p−1
2p
.
∣∣∣ 

B(x)

φ
∣∣∣+ re(x)d

q+1
2q

(  
Bre(x)(x)

|∇φ|
2q
q+1

) q+1
2q
.

Hölder’s inequality followed by a hole-filling argument then yields( 
B(x)

|φ|
2p
p−1

) p−1
2p
.
∣∣∣  

B(x)

φ
∣∣∣+ re(x)d

q+1
2q

(r∗(x)

re(x)

) d
2

(1−ε)( 
Br∗(x)(x)

|∇φ|2a
) 1

2
.

Owing to a Caccioppoli estimate of the last term above and the definition of the minimal radius r∗(x)
from Definition 1.7, we deduce(  

B(x)

|φ|
2p
p−1

) p−1
2p
.
∣∣∣ 

B(x)

φ
∣∣∣+ re(x)d

q+1
2q

(r∗(x)

re(x)

) d
2

(1−ε)( 
Br∗(x)(x)

∣∣∣φ−  
Br∗(x)(x)

φ
∣∣∣ 2p
p−1
) p−1

2p

.
∣∣∣ 

B(x)

φ
∣∣∣+ r∗(x)

d
2

(1−ε)re(x)
d
2

( 1
q

+ε).

As in [18], we proceed by calculating
 
Bt(x)

(
φ(y)− φ(x)

)
dy =

ˆ t

0

 
Br(x)

∇φ(y) · y − x
r

dy dr
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for any t ≥ 1. This identity easily follows from the integral mean value theorem. Hence,

∂t

 
Bt(x)

φ =

 
Bt(x)

∇φ(y) · y − x
t

dy.

Moreover, we have
ffl
Bt(x)

∣∣y−x
t

∣∣2 dy ' 1, which allows us to employ the first part of this theorem
ensuring that ∣∣∣∂t  

Bt(x)

φ
∣∣∣ ≤ C(x)t−

ε
2
d(1−β)

and, consequently,

∣∣∣ 
BR(x)

φ−
 
B(x)

φ
∣∣∣ ≤ ˆ R

1

∣∣∣∂t  
Bt(x)

φ
∣∣∣ ≤ C(x)

ˆ R

1

t−
ε
2
d(1−β) . C(x)µ(R)

recalling the definition of µ(r) from (1.18). In a similar fashion, we find that

 
BR(x)

φ−
 
BR

φ =

 
BR

(
φ(x+ y)− φ(y)

)
dy

=

 
BR

ˆ 1

0

∇φ(y + tx) · x dt dy = |x|
ˆ 1

0

 
BR

∇φ(y + tx) · x
|x|

dt dy.

Since
ffl
BR

∣∣ x
|x|

∣∣2 = 1, we conclude as above that

∣∣∣  
BR(x)

φ−
 
BR

φ
∣∣∣ ≤ R−

ε
2
d(1−β)|x|

ˆ 1

0

C(tx) dt.

We may now apply the previous estimates to the right-hand side of the following inequality,∣∣∣ 
B(x)

φ
∣∣∣ ≤ ∣∣∣  

B

φ
∣∣∣+
∣∣∣ 

B

φ−
 
BR

φ
∣∣∣+
∣∣∣ 

BR

φ−
 
BR(x)

φ
∣∣∣+
∣∣∣  

BR(x)

φ−
 
B(x)

φ
∣∣∣,

leading to ∣∣∣  
B(x)

φ
∣∣∣ ≤ ∣∣∣  

B

φ
∣∣∣+
(
C(0) + C(x) +

ˆ 1

0

C(tx) dt
)
µ(|x|)

when choosing R := |x|. Together, we have

( 
B(x)

|φ|
2p
p−1

) p−1
2p
. r∗(x)

d
2 + re(x)

d
2

( 1
εq

+1) +
∣∣∣ 

B

φ
∣∣∣+
(
C(0) + C(x) +

ˆ 1

0

C(tx) dt
)
µ(|x|).

Observe that r∗(x)
d
2 is stochastically integrable with stretched exponential moment ε(1 − β) as〈

exp
(

1
C
r
ε
2
d(1−β)
∗

)〉
< 2 due to (1.14) and that re(x)

d
2

( 1
εq

+1) is also integrable with the same moment

ε(1−β) since
(

1
εq

+1
)
ε ≤ α

α+1
and

〈
exp

(
1
C
r

α
α+1

d
2

(1−β)
e

)〉
< 2 due to (1.13). This closes the proof

for the second part of the theorem as the same arguments also apply to σ by basically exchanging p
and q.
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3.2 Proof of Corollary 1.15: A quantitative two-scale expansion

Proof of Corollary 1.15. We follow the strategy presented in [18, 20] and first notice that by a scaling
argument it is sufficient to prove the claim for δ = 1. Next, we derive the following equation for z where
(·)1 denotes averaging over a ball of radius 1:

−∇ · a∇z = ∇ · (g − g1 + (aφi − σi)∇∂iuhom,1). (3.2)

The calculation is carried out in [20] but we recall the main steps of the proof for completeness. From
the representation z := u−

(
uhom,1 + φi∂iuhom,1

)
, we obtain

a∇z = a∇u− ∂iuhom,1a(∇φi + ei)− aφi∇∂iuhom,1

and
−∇ · a∇z = ∇ · (g − g1) +∇ · (aφi∇∂iuhom,1) +∇∂iuhom,1 · (∇ · σi).

The claim is now a result of the skew-symmetry of σi, more precisely of

∇∂iuhom,1 · (∇ · σi) = −∇ · (σi∇∂iuhom,1).

Testing (3.2) with z entails
ˆ
|∇z|2a .

ˆ
|g − g1|2a−1 +

ˆ
|φi∇∂iuhom,1|2a +

ˆ
|σi∇∂iuhom,1|2a−1 .

For the first term on the right-hand side we aim to apply Poincaré’s inequality noting that g − g1 ∈
W 1, 2q

q−1 (Rd) is supported in BR+1. Up to several constants depending in particular on R, we get

ˆ
|g − g1|2a−1 .

(ˆ
BR+1

∣∣a−1
∣∣q) 1

q
(ˆ

BR+1

∣∣∇g − 1 ∗ ∇g
∣∣ 2q
q−1

) q−1
q
.
( ˆ ∣∣∇g∣∣ 2q

q−1

) q−1
q
.

For the second term, we note that∇∂iuhom,1 = 1
|B|1B∗∇∂iuhom (withB := B1(0)) leading together

with Jensen’s inequality to
ˆ
|φi∇∂iuhom,1|2a .

ˆ
|a||φi|2

∣∣∣ˆ
B(x)

∇∂iuhom

∣∣∣2 . ˆ
|a||φ|2 1B ∗ |∇2uhom|2.

Proceeding with Hölder’s inequality, we deduce
ˆ
|φi∇∂iuhom,1|2a .

ˆ ( ˆ
B(x)

|a||φ|2
)
|∇2uhom|2

≤
ˆ ( ˆ

B(x)

|a|p
) 1
p
(ˆ

B(x)

|φ|
2p
p−1

) p−1
p |∇2uhom|2.

Theorem 1.14 and
ffl
B
φ = 0, therefore, result in

ˆ
|φi∇∂iuhom,1|2a .

ˆ
4Kre(x)

d
pC(x)2µ(|x|)2|∇2uhom|2 . C2

g,p

ˆ
µ(|x|)2|∇g|2

where we introduced the random field

C2
g,p :=

´
C(x)2re(x)

d
pµ(|x|)2|∇2uhom|2´

µ(|x|)2|∇g|2
.
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Employing the stationarity of C(x) and re(x) as well as a weighted L2 estimate for ∇2uhom (recall
that µ(·) as defined in (1.18) is a Muckenhoupt weight), we infer the bound

〈
Crg,p
〉
≤
(´ 〈C(x)rre(x)

dr
2p
〉 2
rµ(|x|)2|∇2uhom|2´

µ(|x|)2|∇g|2

) r
2

.
〈
Crr

dr
2p
e

〉
for any r ≥ 2. Now let r ≥ 2

ε(1−β)
(1 + α+1

α
ε
p
) and observe that the previous estimate gives rise to

〈
C

(1+α+1
α

ε
p

)−1ε(1−β)r
g,p

〉
.
〈
C(1+α+1

α
ε
p

)−1ε(1−β)rr
d
2p

(1+α+1
α

ε
p

)−1ε(1−β)r
e

〉
≤
〈
Cε(1−β)r

〉 1

1+α+1
α

ε
p

〈
r

α
α+1

d
2

(1−β)r
e

〉 α+1
α

ε
p

1+α+1
α

ε
p . (cr)r

using Hölder’s inequality, the stochastic integrability of C and re from Theorem 1.14 and Lemma 1.11,
respectively, and Lemma A.1. This ensures the announced stretched exponential moment bounds for
Cg,p. The same arguments also show that

ˆ
|σi∇∂iuhom,1|2a−1 . C2

g,q

ˆ
µ(|x|)2|∇g|2

together with the random field

C2
g,q :=

´
C(x)2re(x)

d
qµ(|x|)2|∇2uhom|2´

µ(|x|)2|∇g|2

allowing for the same stochastic integrability as Cg,p up to replacing p by q.

A Some auxiliary tools

Lemma A.1 (see e.g. [18, Lemma 6]). The following statements on a nonnegative random variable F
are equivalent.

1 There exists a constant C ≥ 1 such that〈
exp

( 1

C
F
)〉

< 2.

2 There exists some p0 ∈ N and a constant C ≥ 1 such that〈
F p
〉 1
p ≤ Cp

for all p ∈ N, p ≥ p0.

Notation A.2. For a matrix M ∈ Rd×d, we write

|M |F1 :=
d∑
i=1

d∑
j=1

|Mij|, |M |F∞ := sup
i≤d

sup
j≤d
|Mij|.
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Lemma A.3. Let M : Rd → Rd×d and suppose that∑
D

( ˆ
D

M : a
1
2Na

1
2

)2

≤ c2 sup
D
‖|N |F∞‖2

L∞(D)

for some c > 0 and all bounded N : Rd → Rd×d. Then, we have∑
D

∥∥∣∣a 1
2Ma

1
2

∣∣
F1

∥∥2

L1(D)
≤ c2.

Proof. We first observe that

∑
D

‖|M |F1‖2
L1(D) = sup

N∈Rd×d

Nbounded

∑
D

( ´
D
M : N

)2

supD ‖|N |F∞‖2
L∞(D)

for all matrix-valued functions M,N ∈ Rd×d provided that Nij(·) is bounded for all i and j. This can
be verified by elementary arguments from linear algebra. The previous identity, in particular, implies
that the bound

∑
D ‖|M |F1‖2

L1(D) ≤ c2 holds, if

∑
D

( ˆ
D

M : N
)2

≤ c2 sup
D
‖|N |F∞‖2

L∞(D)

for some c > 0 and all bounded N : Rd → Rd×d. Replacing M by a
1
2Ma

1
2 and observing that

a
1
2Ma

1
2 : N = M : a

1
2Na

1
2 allows to conclude.
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