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Calculation of steady states in dynamical semiconductor laser
models

Mindaugas Radziunas

Abstract

We discuss numerical challenges in calculating stable and unstable steady states of widely
used dynamical semiconductor laser models. Knowledge of these states is valuable when ana-
lyzing laser dynamics and different properties of the lasing states. The example simulations and
analysis mainly rely on 1(time)+1(space)-dimensional traveling-wave models, where the steady
state defining conditions are formulated as a system of nonlinear algebraic equations. The per-
formed steady state calculations reveal limitations of the Lang-Kobayashi model, explain nontrivial
bias threshold relations in lasers with several electrical contacts, or predict and explain transient
dynamics when simulating such lasers.

1 Introduction

Semiconductor lasers (SLs) and coupled SL systems are beneficial in many modern applications
requiring specific characteristics of dynamic or stationary emission. A variety of models are used
for simulations of well-above-threshold dynamics of SLs. Advanced models, defined by the complex
systems of 1(time)+3(space)-dimensional (1+3-D) or 1+2-D PDEs [1, 2], can give a deep insight into
the spatiotemporal dynamics. These models, however, typically rely on a large number of not very
well-known parameters, require advanced numerical tools, are computationally expensive, and allow
only limited analysis. On the other hand, in this work considered 1+1-D PDE [3, 4] and even simpler
DDE/ODE models [5, 6, 7] may lack quantitative precision but can be quickly solved on standard
computers and admit a variety of analytic and semianalytic methods for their analysis.

Calculating and analyzing stable and unstable steady states is crucial for understanding SL dynam-
ics [8, 9, 10, 11], estimating different lasing characteristics, or designing SLs for specific real-world
applications. For example, knowledge of the steady state branches and multiple stable states in the
1+1-D traveling wave (TW) model was explored when preparing laser state switching [12], explaining
state-interaction induced instabilities in single-frequency-emitting lasers [11], and suggesting methods
for diminishing these drawbacks [13]. Linewidth estimation of the calculated states is needed when de-
signing narrow-linewidth lasers [14]. Linear stability analysis, an inspection of damping and frequency
of main carrier-photon and photon-photon resonances, and a study of small-signal-modulation re-
sponse were crucial for designing directly-modulated lasers at enhanced frequency rates [15]. Calcu-
lating unstable states and knowledge of their type were required when stabilizing them by invasive or
non-invasive optical feedback [16] or preparing an optically excitable laser [17]. Knowledge of special
steady-states determined by the degenerate optical mode (also known as an exceptional point) and
the two-parameter bifurcation analysis [9] enabled experimental access to different dynamic regimes
existing in the vicinity of this point. Namely, small-frequency dispersive Q-switching pulsations, high-
frequency mode-beating-type pulsations, dynamics on tori with the state locking at different strong
resonances [10], chaotic regimes, or excitability on the ruin of the homoclinic orbit [17].
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M. Radziunas 2

Below in this work, we derive systems of algebraic equations, defining stable and unstable steady
states in rather general TW models. For simplified TW models, providing good approximations of the
steady states of more complex models, we present semianalytic algorithms for finding these states
and the state branches for properly selected model parameters. These methods were exploited for
calculation and analysis of the steady-states in SLs with one and two active sections.

2 Mathematical models

We consider and compare steady states in simple DDE [5] and 1+1-D PDE [4] models, used for
dynamic simulations of well-above threshold operating multisection SLs or coupled SL systems. These
models mimic dynamics of the complex optical field Ψ within the whole, from m distinguishable parts
(“sections”) composed SL device cavity, coupled to the real carrier density N in ma “active” sections
Sa of this cavity, see, e.g., pink-colored boxes in Fig. 1. Within the remainingmp = m−ma “passive”
sections Sp, the carriers are not present (e.g., air gaps between different coupled lasers, light-blue
boxes in Fig. 1), or the field and carrier rate equations are decoupled (passive waveguides, yellow
boxes in the same figure). Ψ and N are vector functions of time and, in the PDE model case, space.
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Figure 1: Schematics of typical multisection laser devices and coupled laser systems. Colored boxes
(“sections”): separately contacted laser parts, whole laser diodes, passive waveguides, or air gaps.
Thick black vertical bars in (a): laser facets and interfaces (“edges”) of different sections. Thin arrows:
counterpropagating optical fields and their reflections and transmissions at section edges. (b) and
(c): external cavity diode laser and conventional optical feedback laser with an indication of gain and
reflector response functions, respectively.

Typically, dynamical SL models are given by the systems of equations governing the evolution of fast
fields Ψ and relatively slow carriers N :

d

dt
Ψ = H(β) Ψ + Fsp, (1)

d

dt
N = N (N,P(|Ψ|2),Ψ,Ψ∗), (2)

where β = β0 + δβ(N,P(|Ψ|2)). (3)

Vector P(|Ψ|2), defined by a set of squared moduli of field vector components, represents the local
or global photon number or power within the whole optical field, separate optical modes, or different
polarization components. Typically, P(|Ψ|2) enters functions δβ and N with small (nonlinear gain
compression) prefactors and is linear with respect to its arguments. Complex propagation factor β
consists of the static and dynamically varying parts β0 and δβ . β0 in all m laser parts is defined
by field losses and built-in or temperature-induced nonuniformities of the refractive index. In the ma
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Steady states in dynamical semiconductor laser models 3

active sections determined δβ is mainly defined by the carrier-dependent refractive index change and
gain (vector) functions nR(N) and g(N), which can be extended by field power-depending nonlinear
corrections. Fsp is a Langevin spontaneous emission term. Since the carrier dynamic is usually slow,
and the gain compression impact is small, changes of the propagation factor β within short and even
moderate time intervals are also small. Thus, in more complex models, freezing β = β? (obtained
during time integration of the model equations at the fixed time instant, for example) and analyzing
by operator H(β?) determined linear with respect to Ψ field equation (1), one can extract interesting
information on the structure of the optical fields, which remains almost preserved within these short or
moderate time intervals [18].

In some ODE models (standard or multimode rate equations [6, 7]), instead of complex vector Ψ the
real photon number function is used. N and H, in this case, are scalar-, vector-, or matrix-functions
of carrier and photon numbers. In DDE models, Ψ(t) is defined by a single or several (s′) complex
components, while m′-component real vector-function N(t) represents possibly multilevel carrier dy-
namics in active sections. N is a real vector-function, whereas H, besides the simple scalar- or
matrix-type functional part, also includes a time-delay operator Dτ . A most prominent representative
of DDE models for SLs with s′ = m′ = 1 is a Lang-Kobayashi (LK) system for lasers with delayed
optical feedback [5], see Fig. 1(c). A normalized version of this model is determined by

H = δβ(N) + ηDτ , δβ = (1 + iαH)N, N = µ(I −N − (1 + 2N)|Ψ|2), (4)

where g = N , nR = αHN . αH , η, I are the linewidth enhancement factor, feedback rate, and bias
current; τ is the delay time, whereas the small parameter µ, the ratio of photon and carrier lifetimes,
indicates a slow-fast nature of the SL model.

In 1+1-D PDE models, typically used for describing narrow-waveguide edge-emitting lasers, Ψ is a
(vector-) function determining the field distribution along the whole SL device cavity. The field operator
H accounts for the spatial derivative ∂z along the longitudinal coordinate z and the boundary-interface-
conditions (BIC), given by a set of field reflection-transmission relations at the edges of allm SL device
sections, see thick vertical bars (edges) and corresponding thin red and blue arrows (transmission and
reflection of the counterpropagating fields) in Fig. 1(a). The vector function N can also depend on z
within the active sections Sa, indicating a local carrier density in this way. In simpler PDE models,
one neglects spatial hole burning of carriers [8] and considers sectionally-uniform components of N ,
sectionally-averaged N and P , and, thus, section-wise constant propagation factor β in Eq. (3). In
this case, the carrier rate equations (2) for corresponding ODE, DDE, and PDE models are nearly
identical. Different versions of the 1+1-D PDE traveling wave (TW) model [3, 4] are used to simulate
and analyze the spatiotemporal dynamics in various multisection SLs, including those schematically
represented in Fig. 1. A simplest scaled TW model [22] of a solitary SL (lower right scheme in Fig. 1(a))
for Ψ(z, t) = (Ψ+

E,Ψ
−
E)T and a single-component spatially-uniform N(t) is defined by

H =

(
−∂z + δβ(N) + ζ0/l −iκ/l

−iκ/l ∂z + δβ(N) + ζ0/l

)
, 0 < z < l,

boundary conditions Ψ+
E(0, t) = r0Ψ−E(0, t), Ψ−E(l, t) = rlΨ

+
E(l, t),

N = µ
(
I −N − (1 + 2N)〈|Ψ|2〉[0,l]

)
, 〈ξ〉[a,b]

def
= 1

b−a

∫ b
a
ξ(z)dz,

(5)

where l, κ, ζ0 are scaled diode length, coupling factor of the counterpropagating fields Ψ+
E and Ψ−E in

the presence of Bragg grating (BG), and complex scaling-induced factor. r0 and rl are complex field
reflection factors at the laser facets, whereas the remaining parameters are the same as in the LK
model (4) case.
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M. Radziunas 4

3 Spectral problem and characteristic equation

The field equations 1 with neglected Fsp for optically uninjected SL usually are rotationally-invariant.
Let us assume that the propagation factor β or, more precisely, its correction δβ is fixed, δβ = δβ?,
and the optical fields are given by

Ψ(t) = feiφΘeiΩt. (6)

Here Θ is a time-independent normalized complex vector with the same s′ components as the field
function Ψ, e.g., Θ ≡ 1 in the LK model (4). The real and imaginary parts of the complex frequency
Ω stand for the optical frequency and damping of the field. When squared, a nonnegative real scalar
factor f represents the photon number or field intensity. Finally, φ is a real phase factor that can
be selected arbitrarily in rotationally invariant systems. Substitution of the Ansatz (6) into the field
equations (1) implies the spectral problem

iΩΘeiΩt = H(β0 + δβ?)Θe
iΩt (7)

for the complex eigenfrequencies Ω and eigenvectors Θ, formulated for the fixed δβ?. Typically, this
problem implies a complex algebraic equation

χ(Ω; δβ?) = 0, (8)

whose roots Ω are eigenfrequencies of the spectral problem (7). To find the (simple) roots Ω, we use
the homotopy method, Newton’s iterative procedure, and exploit our software LDSL-tool [19]. For
each Ω solving Eq. (8), a corresponding eigenvector Θ is a scaled nontrivial solution of Eq. (7). Thus,
Θ can be interpreted as a vector-function of the provided δβ? and Ω1.

In DDE models, (7) is an Ω-dependent system of s′ linear equations w.r.t Θ, whereas χ in (8) is the
determinant of this system. In 1+1-D PDE models, (7) still is a system of ODEs along the longitudinal
coordinate z, possibly supplemented with several z-depending algebraic equations. For TW models
[4] relying on the first-order derivatives ∂z only, this system within each laser section can be reduced
to a couple of linear 1-st order ODEs for counterpropagating optical fields Θ+

E and Θ−E , determining
δβ?- and Ω-dependentC0-semigroup. At least for the piece-wise constant δβ? (a natural approximation
during the numerical treatment of model equations) these semigroups can be represented by analytic
transfer matricesMj(z

′, z′′; δβ?,Ω), translating the vector Θ(z) from z′′ to z′ within any device sec-
tion Sj . Combining sectional matricesMj with all BIC allows deriving Eq. (8) for simple linear [18]
and a variety of nontrivial (e.g., ring) SL device configurations [20], whereas the vector Θ at any z can
be written as an analytic function of δβ? and Ω:

Θ(z) = T (z, δβ?,Ω)
def
= M(z, z?; δβ?,Ω) θ?. (9)

Here z? is an appropriately selected edge of one of the SL device sections, whereas the fixed vector θ?
satisfies the BIC at this edge and imposes the same scaling for all vector functions Θ(z). For example,
z? and θ? in linear SL cavities can be the front facet of the SL device and the fixed vector satisfying
reflecting boundary conditions at this facet, respectively [18]. For more complex cavities, the selection
of z? and θ? is less trivial and should be made with care.

We also note that T defined in Eq. (9) is an analytic function of arbitrary δβ? and Ω. Only those vector
functions Θ defined by (δβ?,Ω) satisfying the characteristic Eq. (8) can fulfill all BIC imposed on the
optical fields.

1When the algebraic (am) and geometric (gm) multiplicity of the eigenfrequency Ω is larger than 1, the reconstruction
of Θ is not unique. For gm < am, the reconstructed eigenvectors can be supplemented with the generalized eigenvectors
of the related Jordan matrix.
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Steady states in dynamical semiconductor laser models 5

4 Steady state equations

Each steady state of the dynamical SL model (1-3) is the solution having the form

(Ψ(t), N(t)) = (f̃ eiφΘ̃eiω̃t, Ñ). (10)

Here Θ̃ and Ñ are time-independent complex and real vector functions, f̃ is a nonnegative real con-
stant, whereas φ is an arbitrary phase factor. In contrast to typical stationary states of the dynamical
systems, complex optical fields of the steady states rotate in time with a constant real optical frequency
ω̃.

To derive the steady state defining system, one has to neglect Fsp, insert Ansatz (10) into Eqs. (1-3),
and replace the resulting spectral problem by Eq. (8):

χ(ω; δβ(N, f 2P )) = 0, N (N, f 2P, ω) = 0, (11)

P = P(|Θ|2). (12)

Here we used P(|fΘ|2) = f 2P(|Θ|2), and reorganized arguments of function N . With tilde ,̃ we
denote those functions and variables which fulfill Eqs. (11) and (12) and, thus, are defining the steady
states (10).

For DDE models, Θ is a preselected vector with s′ components determining the scaling of Ψ. Thus,
P in (12) is known, and the steady state defining system (11) consists of one complex characteristic
equation and m′ real equations, relating two real constants f 2, ω and m′-component real vector N .
The roots of this nonlinear system define the steady states of the DDE models. In LK-type models,
these steady states are best known as external cavity modes, ECMs.

In the case of 1+1-D PDE models (or, more precisely, the TW model), P (z) and N(z) are real vector
functions, representing local photon and, possibly, multilevel carrier densities in ma active sections of
the SL device. Eqs. (11,12) is a system of algebraic and functional (z-dependent) equations, which
can hardly be resolved on the functional level. Thus, we treat it on the discrete level, induced, e.g., by
the numerical method during model simulations [19]. Namely, we assume that

� all active sections are subdivided into mD small subintervals sa = [z′a, z
′′
a ];

� N(z) is constant within each sa and is fully defined by m′D real numbers;

� for any z from sa spatial average 〈P(|Θ|2)〉sa = P(〈|Θ|2〉sa) is used instead of P(|Θ(z)|2)
in Eq. (12), s.t. P (z) is fully defined by m′′D ≥ mD real numbers.

As a consequence, δβ? = δβ(N, f 2P ) and N are piece-wise constant w.r.t. z, and evaluation of
T (z, δβ?, ω) from Eq. (9) for z = z′a and z′′a is sufficient for finding an exact value or numerical
approximation of P(〈|Θ|2〉sa). Thus, P can be expressed as a function of δβ? (i.e., N and f 2P )
and ω, whereas the steady-state defining system (11,12) can be rewritten as a system of nonlinear
algebraic equations

χ(ω,N, f 2P ) = 0, N (N, f 2P, ω) = 0, P = P(ω,N, f 2P ). (13)

Here, one complex equation χ = 0 (equivalent to two real equations),m′D real equationsN = 0, and
m′′D real equations involving P relate two real constants f 2, ω, andm′D +m′′D real constants defining
real vector-functions N and P . Once the system (13) is solved, the reconstruction of Θ̃ in Eq. (10) is
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Figure 2: Stable (solid) and unstable (dashed) steady states in ECDL. Each state is indicated by
the same color. (a) and (b): carrier density and local field intensity distributions in the active section.
(c): reconstructed intensities of forward and backward propagating fields in the whole cavity for two
stable states. (d): intensity reflection spectrum of the external cavity. (e): empty bullets: steady states
in relative frequency - threshold gain plane. Black dots and solid/dashed lines: steady states and
branches of these states in corresponding basic TW model.

performed using transfer matrices and function T (9). To solve numerically [19] this system, we use
the homotopy method, Newton’s iterations, and exploit analytic expressions for partial derivatives of
all algebraic functions in Eqs. (13).

Fig. 2 represents calculations of ten steady states in monolithically integrated external cavity (EC)
diode laser (DL), schematically represented in Fig. 1(b). The TW model and the basic set of param-
eters within the active and dispersive reflector sections are identical to those used for simulations
of Fig. 4 in Ref. [14], except for in the present case used linear gain and refractive index functions,
related by nR(N) = αHg(N) [4]. In contrast to Ref. [14], here we used an additional 2 mm-long
passive waveguide section, which induced a coexistence of multiple stable steady states. We assume
a single carrier level (i.e., m′D = mD) and account only for a combined photon density in both coun-
terpropagating fields, P(|Θ|2) = |Θ+

E|2 + |Θ−E|2 with m′′D = mD. For mD = 100 subintervals in
the single 1 mm-long active section, we have 202 real algebraic equations in (13) relating the same
number of variables defining the steady states of the (discretized) TW model.

Curves of different colors in panels (a) and (b) of Fig. 2 show distributions of the carrier density Ñ
and field intensity f̃ 2P̃ within the active section for ten calculated steady states. The reconstructed
counterpropagating field intensities |f̃Θ̃+

E|2 and |f̃Θ̃+
E|2 along the whole cavity of two stable steady

states are given in panel (c). Panel (d) shows the intensity of the complex EC reflection spectrum
R(ω), which is the response of the passive reflector, consisting of the passive waveguide and BG, to
the incident monochromatic wave eiωt. A similar (instantaneous) response G(β, ω) of the active part
of the ECDL (including possible reflection and transmission of the fields at the interface to the EC)
depends additionally on the instant value of the factor β, see Ref. [11] and schematics in Fig. 1(b) and
(c). Finally, large empty bullets in Fig. 2(e) show the relative frequency ω̃ and corresponding threshold

gain
〈 g(Ñ)

1+εf̃2P̃

〉
Sa

of these states. Only two of the calculated steady states with the lowest gain values
were stable in the considered case, which was confirmed by transient simulations of the dynamical
TW model.
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Steady states in dynamical semiconductor laser models 7

The algorithm for the location of the steady states in the general TW model was developed during
the recent study of SL emission’s linewidth [14] in ECDLs [11, 13]. In many applications, however,
simplified TW with sectionally-averagedN ,N , andP (where a set ofmD subintervals sa is reduced to
ma sections Sa) or even more simple DDE (such as LK-) models are sufficient. In the basic TW model,
where only a single carrier rate equation per active section is used (m′′D = ma), and the dependence
of δβ on P is not important (δβ and, thus, T are the functions of N and (N,Ω), respectively), the
vector variable P is defined by (N,Ω)-dependent function P and can be eliminated from Eq. (13).
The steady-state defining system is reduced to one complex χ- and ma real N -equations, together
defining real ma-component vector Ñ and real factors ω̃ and f̃ 2.

Study of these low dimensional algebraic systems, including calculation of the steady states and their
continuation with the change of model parameters, can be performed using standard numerical path-
following techniques. For example, small black bullets in Fig. 2(e) are the steady states of the corre-
sponding basic TW model for considered ECDL. Dashed and dotted black curves in the same figure
are branches of these states calculated for tuned field phase shift and losses in the passive waveguide
of the device, respectively. Even though the basic model neglects the nonuniformity of carrier densi-
ties (see Fig. 2(a)) and the gain compression, in the considered case it was perfectly suited for the
identification of frequency and gain of the steady states of more general TW model (cf. large colored
and small black bullets in Fig. 2(e)). In the remainder of this work, we shall exploit the basic TW model
for location and analysis of the steady states in SLs with one or two active sections.

5 SL device with a single active section

Once the basic TW model describes dynamics in SLs with a single active section (ma = 1), the
steady state-defining system (13) can be written as

χ(ω,N ;ϕ, η) = 0, N (N, f 2, ω; I) = 0, (14)

where φ, η, and I are model parameters actively used for location of the steady states. χ is a function
of only two real unknowns ω and N , and each steady state is fully defined by a real-valued triple
(ω̃, f̃ 2, Ñ). By resolving complex characteristic equation in (14) we find a set of pairs (ω̃, Ñ). Substi-
tution of each such pair into the remaining equation allows finding the corresponding f̃ 2, which can be
tuned by changing bias current parameter I . Only nonnegative f̃ 2 can represent steady states. Bias
current Ith, at which f̃ 2 is zero, is a threshold current of this state.

For a variety of SLs (such as the ECDL from Fig. 1(b), for example), the characteristic equation can
be replaced by an equivalent resonance condition, formulated exploiting in the previous Section men-
tioned complex response functions G(β,Ω) = G(N,Ω) and R(Ω) [4, 11]:

χ(Ω, N) = 0 ⇔ G(N,Ω)R(Ω) = 1. (15)

For example, this formulation is exploited to analyze the simplest nontrivial device, which is a Fabry-
Perot (FP) laser with optical feedback from the EC; see Fig. 1(c) and Ref. [21] for the parameter
values used in the considered example. The EC response is defined by R(ω) = ηeiϕe−iωτ , where
ηeiϕ = rme

β0,ecc0τ is the ratio of delayed back-reflected and emitted field amplitudes, rm is the field
amplitude reflection at the external mirror, c0 is the speed of light in vacuum, whereas τ , η, and ϕ
are the field roundtrip time in the EC, feedback level, and phase shift, respectively. Eq. (15) for real
frequencies ω now can be split into two real equations

η = |G−1(N,ω)|, ϕ = ωτ − arg
(
G(N,ω)

)
mod(2π), (16)

DOI 10.20347/WIAS.PREPRINT.2961 Berlin 2022



M. Radziunas 8

which for any pair (ω,N) uniquely define the feedback factors η and ϕ. The first and the second
equations are independent on φ and η, such that they determine two-dimensional manifolds in three-
dimensional (N,ω, η)- or (N,ω, ϕ)-space, respectively. The intersection of these manifolds at fixed
feedback level (FFL) η or fixed feedback phase (FFP) ϕ (modulus 2π) define curves in (ω,N) plane.

(b)(a)

Figure 3: Steady states in the FP laser with optical feedback in relative frequency-carrier density
domain. (a): states for several feedback levels η and arbitrary phase ϕ close to two solitary SL reso-
nances. Colored solid and dashed: TW and corresponding LK models, respectively. (b): same states
for several η ≤ 0.1 (solid colored) and ϕ = 0 but arbitrary η (solid gray/black) close to the solitary SL
resonance. Thick dots at η = 0.1 curves: steady states for ϕ = 0. Black dash-dotted: saddle-node
bifurcation positions.

The FFL curves for several values of η are shown by solid colored lines in Fig. 3. Variables δω and
δN on the axes are nonscaled frequency and carrier density relative to those of one of the solitary
SL resonances. For small and moderate η, we see closed FFL loops around each resonance of the
solitary laser. At the critical feedback level ηc, which is the field amplitude reflection |rc| =

√
0.05 at

the diode edge facing the EC, the two-dimensional manifold defined by the first equation in (16) has
multiple saddle points resulting the collision of the adjacent loops at infinitely large δN . For even larger
feedback, a single periodically modulated FFL curve is formed. For comparison, thin dashed curves in
Fig. 3 show corresponding ellipses of ECMs in the properly normalized Lang-Kobayashi model [22].
Obviously, the standard LK model can only account for a single solitary laser resonance. One can
see that closed loops of two models around the selected resonance are in good agreement for small
feedback levels but rapidly diverge when η > 0.1. Behind ηc, the ECM ellipses and FFL curves have
different topologies.

The intersection of multiple fixed feedback phase (FFP) curves determined by the second equation in
(16) with FFL curves for given η and ϕ define all steady states of the model. A subset of such states
calculated for the TW model with included material gain dispersion [4] is shown by black dots on the
orange η = 0.1 level curves in Fig. 3(b). All but one FFP curve in this diagram either bypass the
selected FFL, or cross it twice, defining node-type (lower crossing) and saddle-type (upper crossing)
steady states (“modes” and “antimodes” in LK-model language), or touch the FFL curve, indicating the
saddle-node bifurcation positions (dash-dotted curve in the same diagram). The remaining single FFP
curve (solid black line in this diagram) terminates at the solitary laser resonance, where η vanishes.
It is noteworthy that the LK and TW models in the close vicinity of the solitary laser resonance in the
considered case with τ = 4.5 ns have nearly the same minimal feedback levels enabling the saddle-
node bifurcation (η ≈ 1.063 · 10−4 and≈ 1.064 · 10−4) and the feedback level (η ≈ 3.87 · 10−4 and
≈ 3.86 · 10−4) admitting a steady state at the mode degeneracy [9], also known as the exceptional
point.

DOI 10.20347/WIAS.PREPRINT.2961 Berlin 2022



Steady states in dynamical semiconductor laser models 9

Due to the simplicity of the field equations in the considered laser, nearly all curves in Fig. 3 have
analytic parametric representations. In more general cases, given, e.g., by a distributed feedback
(DFB) laser with a passive dispersive reflector [4], or an ECDL considered above, see black curves
and bullets in Fig. 3(e), we still exploit the splitting of the resonance equation (16) (ηeiϕ = e2β0,phlph

with lph denoting the length of the middle phase-tuning section in this case) but rely on more involved
formulas and numerical path-following techniques [19].

6 SL device with two active sections

Let us consider the basic TW model, describing the dynamics of SLs with two active sections (ma =
2). An example of such a device is the ECDL, see Fig. 1(b), with the active Bragg grating section.
The parameter set exploited below was already used to calculate the steady states in Fig. 2(e). The
missing material parameters of now active BG are identical to those of the amplifying section. The
steady-state defining system (13) in this case can be rewritten as

N1(N1, N2, f
2, ω; I1) = 0, N2(N1, N2, f

2, ω; I2) = 0, χ(ω,N1, N2;ϕ) = 0. (17)

Besides relating elements of the steady state-defining quadruplet (f̃ 2, ω̃, Ñ1, Ñ2), the first, second,
and third equations of this system depend on the bias currents I1, I2 in both active sections and the
field phase tuning factor ϕ ∝ =β0,ph in the middle passive waveguide section, respectively. These
parameters are explored when constructing the steady-state branches and analyzing the dynamics of
the whole TW model. Being linear with respect to f 2, I1, and I2 in the basic TW model, the first two
equations in (17) can be resolved with respect to these factors:{

N1 = 0

N2 = 0
⇒

{
Ij = Jj(N1, N2, f

2, ω), j = 1, 2

f 2 = F1(N1, N2, ω; I1) = F2(N1, N2, ω; I2)
. (18)

The complex characteristic equation does not depend on f 2, and for considered ECDL can be split
into two real equations, similar to those of Eq. (16):

0 = χ(N1, N2, ω;ϕ) = ηei(ϕ−ω̃τ)G1(N1, ω)G2(N2, ω)− 1

⇒

{∣∣G1(N1, ω)G2(N2, ω)
∣∣ = η−1

ϕ = ωτ − arg
(
G1(N1, ω)G2(N2, ω)

)
mod(2π)

,
(19)

where G1 and G2 are responses of both active sections to through the internal section side injected
monochromatic field. Like in the previously considered case, the first of these new equations does not
depend on ϕ and can be used for the definition of 2-D steady-state manifolds (SSM) in (ω,N1, N2)-
space, see the semitransparent surface in Fig. 4(a). The second real equation for each regular point of
this surface uniquely determines the phase ϕ. For fixed ϕ, the characteristic equation defines multiple
mode threshold density (MTD) curves on this surface, each determined by pairs (N1, N2) at which the
imaginary part of the complex frequency of optical mode vanishes, Ω ≡ <Ω = ω. These MTD curves,
given by solid black lines in Fig. 4(a), can be found by standard path-following algorithms, provided one
or several points on each such curve are known2. Moreover, MTD curves are essential in explaining
the slow-fast SL model dynamics. In the case of ultimately slow carrier dynamics, several segments
of these curves define low-dimensional exponentially attracting center manifolds containing all regular

2To find these initial points, we fix several values of N2 and apply algorithms discussed in the previous Section to the
function χ of two remaining variables (ω,N1).
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and irregular attractors of the considered dynamical system [9]. The carrier densities (N1, N2) on
these specially chosen MTD curve segments imply vanishing =Ω of the corresponding mode and
damping (=Ω > 0) of all remaining modes. In the present example, the center manifolds are defined
by the “outer” (lower-left) border of the (N1, N2)-plane projection of the MTD curve set; see thick MTD
curve segments for modes I, II, and III in Fig. 4(b). For (N1, N2) belonging to the remaining “inner”
segments of the MTD branches, at least one mode has negative damping, =Ω < 0. Since the carrier
dynamic of our system is relatively slow, we expect that (N1, N2)-plane projections of calculated
transients should be accumulated around the outer borders of such MTD-curve representation.

(a) (b) (c)

Figure 4: Steady states in ECDL with an active Bragg grating section. (a): roots (ω,N1, N2) of charac-
teristic equation χ = 0 for arbitrary (surface) and fixed (solid black curves) phase ϕ. Green-red-blue
bullets: steady states, calculated for (20, 2), (50, 2), and (50, 50) mA bias currents in amplifier and
grating sections, respectively. Corresponding thin solid curves: shift of these states with the change of
ϕ. Bottom plane: projection onto (ω,N1)-domain. (b): same as (a), projected onto (N1, N2) plane.
Yellow-orange curves: projections of three calculated transients. (c): corresponding lasing threshold
curves for different modes.

Each triplet (ω̃, Ñ1, Ñ2) on the 2-D SSM and on MTD curves in particular, together with an arbitrarily
chosen non-negative factor f̃ 2, defines a steady state of the basic TW model with properly chosen
parameters I1, I2, and ϕ. Whereas ϕ is determined by the last equation in (19) and the triplet alone
(e.g., ϕ = 0 at black solid MTD curves in Fig. 4(a)), bias currents I1 and I2 are defined by the
quadruplets and the functions J1 and J2 from Eq. (18). For vanishing f̃ 2, these are pairs of cur-
rent thresholds, allowing to reach the threshold densities (Ñ1, Ñ2) of the selected mode but not big
enough to excite this mode. A corresponding lasing threshold representation of MTD curves is shown
in Fig. 4(c). The laser is off for small injections, which are left and beneath all curves in this diagram.
By increasing one or both currents, we can reach and cross one of the outer lasing threshold curves,
which causes switching on the lasing. In our example, depending on the relation of the currents, we
can switch on the lasing by crossing the branches of modes I, II, or III, see thick black segments in
Fig. 4(c), which become excited in the first part of the switching-on process. A switching-on of the laser
by setting (I1, I2) = (20, 2) mA (which is just slightly above threshold, see Fig. 4(c)) is represented
by the lowest yellow-orange-brown curve in Fig. 4(b). This curve is the projection of the calculated 40-
ns transient trajectory onto (N1, N2)-plane. At the initial stage, the system reaches the threshold of
Mode I and, shortly afterward, Modes IV and II, such that all these modes are excited. Initially excited
Mode I dominates, and the calculated trajectory follows its MTD curve, relaxing to by the bias-currents
determined stable steady-state on it (green bullet in Fig. 4(b)).

In general, each triplet on the 2-D SSM alone defines the steady states for multiple sets of currents I1

and I2, related to each other by a real nonlinear equation F1 = F2 from (18). This equation is fulfilled
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along 1-D curves on the 2-D SSM for fixed (but not arbitrary) pairs (I1, I2). Green, red, and blue thin
solid curves in Fig. 4(a) are examples of these by the phase ϕ-parametrized steady state branches
calculated for three different sets (I1, I2). Solid bullets at the intersections of these thin curves with the
solid thick black MTD curves represent the steady states of the TW model for a corresponding couple
of bias currents and ϕ = 0. Projection of all these steady state branches and MTD curves onto the
bottom (ω,N1)-plane implies the steady state representations reminding those of Fig. 2(e). Another
projection of the steady states and the MTD curves onto the (N1, N2)-plane is shown in Fig. 4(b).

For fixed φ, a monotonous change of a single bias current typically causes a gradual shift of the
steady-state triplets along the MTD curves but can also imply the creation or annihilation of the steady
state pair on the MTD curve in the saddle-node bifurcation. Tuning of the bias current can also lead to
the Hopf-bifurcations of the steady states, which are particularly expected close to the intersection of
MTD curve projections in (N1, N2)-plane, see Fig. 4(b). Separation of frequencies ω̃ of the involved
MTD branches defines the periodicity of the generated orbit. Such mode-beating pulsations available
for large bias injection regions are of practical interest and were studied, for example, in Ref. [10].
In the present example, starting from the Mode I-defined stable steady-state at (20, 2) mA currents,
green bullet in Fig. 4(b), we alternated a slight step-wise increase of I1 with transient simulations. In
the beginning, we could observe a slow upwards shift of the still stable steady state along the MTD
branch of Mode I in Fig. 4(b). At I1 ≈ 24.6 mA, already slightly behind the crossing of MTD branches
of Modes I and II, the steady state underwent Hopf bifurcation and could not be traced along the MTD
curve of Mode I anymore. Instead, a newly stabilized steady state on the MTD branch of Mode II could
be observed and traced.

A middle yellow-orange-brown curve in Fig. 4(b) represents a calculated 3-ns long trajectory after a
large-step switch of the bias currents from (20, 2) mA (green bullets) to (50, 2) mA (red bullets). At
the initial stage after the bias switch, nearly all field power is contained in Mode I, and the trajectory
follows the MTD branch of Mode I, trying to converge to the steady state (red bullet) on this branch.
This state is unstable, Modes II and III start to contribute to the total field power, and the trajectory
first turns towards the steady state on the MTD branch of Mode III and, later, of Mode II, exhibiting
mode-beating oscillations on the way.

A next switch of the bias currents to (50, 50) mA, see the upper yellow-orange-brown curve in Fig. 4(b),
however, was not leading to the stable steady-state (blue bullet) on the outer MTD branch of Mode
III, but to the “inner” state still determined by the same Mode II, even though Mode III at the achieved
carrier densities has negative damping, =Ω < 0. In this case, Hopf bifurcation by a further small-
step increase of I2 could not be found, and two stable steady-states determined by Modes II and III
were coexisting. We explain this contradiction to our original assumption of the close vicinity of the
attractors to outer MTD branches in (N1, N2)-plane projections by insufficient slowness of the carrier
dynamics in the considered system. Indeed, halving the spontaneous recombination parameters (dou-
bling carrier lifetime) and bias currents does not affect the MTD branches or the steady state locations
but destabilizes the previously stable “inner” state determined by Mode II. A sequence of transient
simulations combined with a small-step increase of I2 starting from the Mode II-defined stable steady-
state, the red bullet in Fig. 4(b), has confirmed the existence of Hopf bifurcation before reaching the
blue-bullet-defined position on the MTD branch of Mode II.
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7 Conclusions

In conclusion, we discussed algorithms and challenges in calculating (stable and unstable) steady
states in the TW model of the SLs. Approximation of the continuous functions by the piece-wise con-
stant ones allows replacing the steady-state-defining functional equalities with a system of algebraic
equations, resolvable using the homotopy method and Newton’s iterative procedure. We have also
shown that the steady states of the basic simplified TW model relying on the sectional averages of the
carrier and photon densities can provide good approximations of the states in more general models.
We have shown how stable and unstable steady states of the basic TW model governing the dynamics
of the SL device with ma active sections can be defined by ma + 2 real nonlinear equations relating
the same number of real steady state defining variables. We compared the steady states of the TW
and LK models in the numerical example of the FP laser with optical feedback (case of ma = 1).
Constructed using a first-order approximation of the characteristic equation χ(ω, δβ) at the solitary SL
resonance [22], the LK model is in good agreement with the TW model when feedback is small, and
a single-mode operation of the solitary SL is pronounced. For multimode SLs or SLs with a feedback
ratio η exceeding the field amplitude reflection at the diode’s facet facing EC, this good agreement is
lost, and the usage of the LK model becomes questionable. For the ECDL with active Bragg grating
section (case of ma = 2), we constructed the mode threshold density branches. These branches can
be used to define all steady states of the system and derive nontrivial relations of bias currents at both
active sections needed to switch on the laser device. Several transient simulations have shown how
calculated trajectories approach and follow predominantly outer MTD branches in (N1, N2) projection
plane. The existence of the attractors on the inner MTD branches and, thus, multistability is possible
due to insufficient slowness of the carrier dynamics. Finally, we note that steady-state calculations do
not provide direct information about their stability and other properties, such as the linewidth or small
signal modulation response, but they still are extremely useful for the understanding of laser dynamics.

References

[1] O. Hess and T. Kuhn, “Spatio-temporal dynamics of semiconductor lasers: theory, modelling
and analysis,” Prog. Quant. Electr. 20(2), pp. 85-179, 1996

[2] T. Inoue et al., “Comprehensive analysis of photonic-crystal surface-emitting lasers via time-
dependent three-dimensional coupled-wave theory,” Phys. Rev. B 99, 035308, 2019.

[3] J. Javaloyes and S. Balle, “Emission directionality of semiconductor ring lasers: a traveling-wave
description,” IEEE J. of Quantum Electron. 45, pp. 431-438, 2009.

[4] M. Radziunas, “Traveling wave modeling of nonlinear dynamics in multisection semiconductor
laser diodes,” in Handbook of Optoelectronic Device Modeling and Simulation: Lasers, Modu-
lators, Photodetectors, Solar Cells, and Numerical Methods, vol. 2, J. Piprek Ed., Vol. 2, CRC
Press, 2017, pp. 153-182.

[5] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser
properties,” IEEE J. of Quantum Electron., 16, pp. 347-355, 1980.

[6] M. Yamada, “Theoretical analysis of nonlinear optical phenomena taking into account the beat-
ing vibration of the electron density in semiconductor lasers,” J. of Appl. Physics 66, pp. 81-89,
1989.

DOI 10.20347/WIAS.PREPRINT.2961 Berlin 2022



Steady states in dynamical semiconductor laser models 13

[7] J. Danckaert et al.,“Minimal rate equations describing polarization switching in vertical-cavity
surface-emitting lasers,” Optics Communications 201(1-3), pp. 129-137, 2002

[8] R. Schatz, “Longitudinal spatial instability in symmetric semiconductor lasers due to spatial hole
burning,” IEEE J. of Quantum Electron. 28(6), pp. 1443-1449, 1992.

[9] J. Sieber, “Numerical bifurcation analysis for multi-section semiconductor lasers,” SIAM J. Appl.
Dyn. Syst., 1, 248, 2002.

[10] S. Bauer et al., “Nonlinear Dynamics of Semiconductor Lasers with Active Optical Feedback,”
Phys. Rev. E 69, 016206, 2004.

[11] M. Radziunas et al. “Study of micro-integrated external-cavity diode lasers: simulations, analysis
and experiments,” IEEE J. of Quant. Electron., 51, 2000408, 2015.

[12] M. Khoder et al.“Study of wavelength switching time in tunable semiconductor micro-ring lasers:
experiment and travelling wave description,” OSA Continuum, 1(4), pp. 1226-1240, 2018.

[13] M. Krüger et al., “Improving the spectral performance of extended cavity diode lasers using
angled-facet laser diode chips,” Appl. Phys. B 125, 66, 2019.

[14] H. Wenzel et al., “Semiconductor laser linewidth theory revisited,” Appl. Sci., 11, 6004, 2021.

[15] M. Radziunas et al.,“Improving the modulation bandwidth in semiconductor lasers by passive
feedback,” IEEE J. of Sel. Top. in Quant. Electron., 13, 136, 2007.

[16] S. Schikora et al., “All-optical noninvasive control of unstable steady states in a semiconductor
laser,” Phys. Rev. Lett. 97, 213902, 2006.

[17] H.-J. Wünsche et al., “Excitability of a semiconductor laser by a two-mode homoclinic bifurca-
tion,” Phys. Rev. Lett. 88(2), 023901, 2002.

[18] M. Radziunas and H.-J. Wünsche, “Multisection lasers: longitudinal modes and their dynamics,”
in Optoelectronic Devices - Advanced Simulation and Analysis (J. Piprek, ed.), ch. 5, pp. 121-
150, New York: Springer, 2005.

[19] M. Radziunas. “LDSL-tool: a software kit for simulation of longitudinal dynamics in semiconduc-
tor lasers,” http://www.wias-berlin.de/software/ldsl/.

[20] M. Radziunas, “Longitudinal modes of multisection edge-emitting and ring semiconductor
lasers,” Opt. and Quantum Electron. 47(6), pp. 1319-1325, 2015.

[21] M. Radziunas, D.J. Little, and D.M. Kane, “Numerical study of optical feedback coherence in
semiconductor laser dynamics,” Opt. Lett., 44(17), pp. 4207-4210, 2019.

[22] M. Radziunas et al., “External cavity modes in Lang-Kobayashi and traveling wave models,”
SPIE Proc. Ser, 6184, 61840X, 2006.

DOI 10.20347/WIAS.PREPRINT.2961 Berlin 2022

http://www.wias-berlin.de/software/ldsl/

	Introduction
	Mathematical models
	Spectral problem and characteristic equation
	Steady state equations
	SL device with a single active section
	SL device with two active sections
	Conclusions

