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Temporal solitons in an optically injected Kerr cavity with two
spectral filters

Alexander Pimenov, Andrei G. Vladimirov

Abstract

We investigate theoretically the dynamical behavior of an optically injected Kerr cavity where
the chromatic dispersion is induced by propagation of light through two Lorentzian spectral filters
with different widths and central frequencies. We show that this setup can be modeled by a second
order delay differential equation that can be considered as a generalization of the Ikeda map
with included spectral filtering, dispersion, and coherent injection terms. We demonstrate that
this equation can exhibit modulational instability and bright localized structures formation in the
anomalous dispersion regime.

1 Introduction

Time-delay models of optical systems like Ikeda map [1], Lang-Kobayashi equations [2], delay differ-
ential equation (DDE) mode-locked laser models [3, 4, 5, 6, 7, 8, 9, 10, 11], frequency swept laser
models [12, 13], and others were successfully used to describe unidirectional propagation of light
through linear and nonlinear optical elements in a ring cavity. Unlike Nonlinear Schrödinger (NLS)- or
complex Ginzburg-Landau (CGL)-type equations these models are free from the mean field approxi-
mation and therefore are valid for arbitrary large gain and losses in the cavity. An important drawback
of the time-delay models, however, is that the inclusion of an arbitrary second order chromatic dis-
persion of the intracavity media into these models is not a trivial task. Recently, it was shown that
chromatic dispersion in photonic crystal mode-locked laser [14] and a SOA-fiber laser with fiber delay
line [15] can be described using a distributed delay term, which arises from the transfer function of
a detuned Lorentzian absorption line in frequency domain. Furthermore, under assumption of weak
dispersion one can replace the distributed time delay model with an extended DDE model containing
a single additional ordinary differential equation for the polarization variable [16]. Using this extended
DDE model, the conventional combined effects of chromatic dispersion and nonlinearity such as mod-
ulational instability (MI) in the anomalous dispersion regime and bright localized structures formation
were demonstrated [16]. Nevertheless, these assumptions and approximations limit our ability to de-
scribe accurately and characterize chromatic dispersion at all the frequencies that are important for
dynamics of optical devices using DDE models. Another approach is to investigate rigorously derived
DDEs where higher order dispersion arises naturally (e.g., coupled cavities [17]), however quantifica-
tion of its magnitude for a given DDE is not a trivial task.

In this paper, we consider an externally injected ring Kerr cavity with two linear spectral filters introduc-
ing an effective chromatic dispersion and demonstrate the possibility to model arbitrary second-order
dispersion near a chosen frequency within the DDE approach framework. We develop a second or-
der DDE model of the system under consideration and demonstrate the appearance of MI and the
formation of bright localized structures in this model in the anomalous dispersion regime. The system
under consideration can be realized experimentally to generate temporal cavity solitons and the corre-
sponding optical frequency combs [18, 19]. We show that in a certain limit our model can be reduced
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A. Pimenov, A.G. Vladimirov 2

to a generalized version of the well-known Lugiato-Lefever equation [20], which is widely used to de-
scribe optical microcomb generation [21, 22, 23], with an additional diffusion term. These results can
be applied to qualitatively analyze any optical set-up that can be modeled using delay equations such
as Fourier domain mode-locked [15], optically injected [16], and multisection mode-locked semicon-
ductor lasers as well as any other system, where second-order chromatic dispersion is important (see
references in [15]). We note also that two spectral filters with different central frequencies are used in
Mamyshev oscillators, which employ active cavity to generate short optical pulses. Hence this work
not only presents the simplest dispersive second-order DDE model that can describe complicated
phenomena like localized structures, but also could provide better understanding of the effect of two
filters in the cavity and a basis for the theoretical investigation of Mamyshev oscillators [24, 25].

2 Model equations

Bandwidth limiting elements

Optical non-linearity 

Opt ical  in ject ion

12

Figure 1: Schematic representation of the considered device

2.1 DDE model

We consider an optically injected passive nonlinear cavity with two linear Lorentzian filters inside it
(see Fig. 1). For this system using the lumped element method described in [3, 4, 5] we obtain the
following set of delay differential equations

B′(t) + (γ1 − iω1)B(t) = γ1γ2

[√
κle

iα|A(t−T )|2+iϕA(t− T ) + η0e
iω0t

]
, (1)

A′(t) + (γ2 − iω2)A(t) = B(t), (2)

where B and A represent electrical field envelopes after the first and the second filter, respectively,
T is the cavity round-trip time, κl is the intensity attenuation factor due to the linear cavity losses, φ
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Temporal solitons in an optically injected Kerr cavity with two spectral filters 3

is the phase shift, α is the Kerr coefficient which, without the loss of generality can be assumed to be
positive, η0 and ω0 are the injection rate and frequency offset, ω1 and ω2 are the central frequencies
of the two filters, while γ1 and γ2 are their bandwidths. The system (1) and (2) can be considered as
an extension of the Ikeda map [1], which takes into consideration the spectral filtering introduced by
two Lorentzian filters.

2.2 Transfer function of the filter

The transfer function of the two filters shown in Fig. 1 can be written in the standard form [14, 15]

F (ω) = ef(ω), (3)

where the complex function f(ω) can be expanded in power series near ω = 0

f(ω) =
∑
k

Dkω
k, (4)

and ImDk represents the dispersion of the kth order. 1

From Eqs. (1) and (2) one obtains that the two filter transfer function is

F (ω) =
γ1γ2

[γ1 + i(ω − ω1)] [γ2 + i(ω − ω2)]
. (5)

Without the loss of generality we can assume that γ1 ≥ γ2 and the reference frequency is chosen in

such a way that the maximum of the function |F (ω)| is at ω = 0, so that
[
d|F (ω)|
dω

]
ω=0

= 0. The latter

condition is equivalent to

δF = γ22ω1 + ω2

[
γ21 + ω1(ω1 + ω2)

]
= 0, (6)

which has two solutions ω2 = ω2± =
−γ21−ω2

1±
√
DF

2ω1
,DF = −4γ22ω

2
1 +(γ21 +ω

2
1)

2. One can see that
both ω2± can be obtained for any values of ω1 ̸= 0 and 0 < γ2 < γ1 due to DF > 0, and, moreover,

|ω2
1 − γ21 | ≤

√
DF ≤ γ21 + ω2

1.

Below we will assume that the condition ω2 = ω2+ is satisfied that corresponds to a situation when
the largest of the two maximums of |F (ω)| is located at zero frequency (see Fig. 2). Moreover, for
ω2 = ω2+ we have

ω2ω1 < 0, |ω2| ≤ |ω1|,
∣∣∣∣dω2

dω1

∣∣∣∣ < 1,

and one can see that
d|ω2 − ω1|
d|ω1|

> 0,

i.e. the difference between the two frequencies grows with |ω1|, and since for any of ω1 = ±ω∗
1

we have ω2 = ∓ω∗
2 , respectively, for any fixed 0 < γ2 < γ1 we can choose |ω2 − ω1| and find

1For example, for a single Lorentzian absorption line we have f = −σL
Γ+i(ω+Ω) [15], and second-order dispersion

coefficient takes the form ImD2 = Im d2f
dω2 ≈ 2σL

Ω3 for 0 < Γ ≪ |Ω|, and the sign of the coefficient coincides with the
sign of Ω.
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A. Pimenov, A.G. Vladimirov 4

corresponding value of ω1 (negative or positive) and ω2 = ω2+, which means that we can have
any possible combinations of two filters (narrow filter to the left or to the right of the broad filter),
disregarding frequency shift of the combined filter. Moreover, these inequalities immediately imply that
the largest maximum of |F (ω)| is at ω = 0 for ω2 = ω2+ as claimed earlier, since more narrow
Lorentzian filter with the width γ2 has the central frequency ω2 closer to zero frequency. The other root
(6) ω2 = ω2− can correspond to a global maximum, a local maximum, or a local minimum, which do
not provide any additional useful alternatives, if we are interested to fix the maximum of the combined
filter |F (ω)| at zero frequency ω = 0.
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Figure 2: Absolute value of the transfer function F defined by Eq. (5), where ω2 = ω2+ satisfies (6),
γ1 = 1 and other parameters are varied: (left) γ2 = 1, ω1 = 1

2
(dashed), ω1 = 1 (solid), ω1 = 2

(dotted); (right) ω1 = 3, γ2 = 1
8

(dashed), γ2 = 1
2

(solid), γ2 = 1 (dotted). The corresponding val-

ues of ω2, β, σ are {−1
2
,−1,−1

2
}, {0, 0, 3

4
} and { 4√

5
,
√
2, 5√

8
} (left); {−0.0047,−0.07677,−1

3
},

{2.66, 1.95, 4
3
} and {8.58, 3.84, 5

√
2

3
} (right).

Since f(ω) = lnF (ω), in the power series expansion (4) we obtain the second-order coefficient as

D2 =
ω2
1 − γ21 − 2iγ1ω1

2(γ21 + ω2
1)

2
+
ω2
2 − γ22 − 2iγ2ω2

2(γ22 + ω2
2)

2
.

One can check that D2 can be represented in the following way

D2 = ρ

(
−σ

2 − 2

2
+ iβ

)
+
δF [δF − 2i (γ21γ2 + γ1γ

2
2 + γ2ω

2
1 + γ1ω

2
2)]

2 (γ21 + ω2
1) (γ

2
2 + ω2

2) (γ1γ2 − ω1ω2)
, (7)

with

ρ =
γ1γ2 − ω1ω2

(γ21 + ω2
1) (γ

2
2 + ω2

2)
, (8)

σ =

√
ρ (γ21γ2 + γ1γ

2
2 + γ2ω

2
1 + γ1ω

2
2)

γ1γ2 − ω1ω2

, (9)

β =
γ1ω2 + γ2ω1

γ1γ2 − ω1ω2

. (10)

It follows from the conditions (6), where ω2 = ω2+, and the relation γ1 ≥ γ2 that the second term
in the right hand side (RHS) of (7) vanishes, ρ > 0, and signβ = signω1. Hence, the parameters
β and σ2−2

2
represent the normalized second-order dispersion and the diffusion near zero frequency,

respectively, whereas the parameter
√
ρ can be considered as a scaling coefficient.
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Temporal solitons in an optically injected Kerr cavity with two spectral filters 5

One can see that under these conditions

d|β|
d|ω1|

>

√
D(

√
D + ω2

1 − γ21)

4γ1ω2
1(γ

2
1 + ω2

1)
> 0,

and since |ω2 − ω1| grows with |ω1|, second-order dispersion grows with the difference between the
frequencies. Moreover, using (6) to express ω2

2 one obtains

σ =
(γ2ω1 − γ1ω2)Sign ω1√
ω1ω2(ω1ω2 − γ1γ2)

,

dσ

dγ2
=

|ω1|(γ1γ2ω1 + (γ21 − 2ω2
1)ω2)(γ2

dω2

dγ2
− ω2)

2(ω1ω2(ω1ω2 − γ1γ2))3/2
,

γ2
dω2

dγ2
− ω2 = ω2

γ21 + ω2
1

2
√
D

,

ω1(γ1γ2ω1 + (γ21 − 2ω2
1)ω2) < −γ

2
1(γ

2
1 + ω2

1)

2
,

hence due to ω1ω2 < 0 we see that dσ
dγ2

< 0, and σ decreases with γ2 increasing from 0 to γ1.

Therefore, the lower bound on σ can be estimated assuming γ2 = γ1, where ω2 =
−γ21−ω2

1+|ω2
1−γ21 |

2ω1

and

σ ≥ σγ2=γ1 =


√
2
√
1 + β2, |ω1| ≥ γ1,

2
γ1
√

1+β2√
γ21+ω

2
1

, |ω1| < γ1.
≥

√
2
√

1 + β2. (11)

2.3 Normalized DDE model

By substituting Eq. (2) into Eq. (1), using Eq. (6), and rescaling time as t → t/
√
ρ, we obtain the

following normalized dimensionless second-order DDE

A′′(t)(1 + iβ) + σA′(t) + A(t) =
√
κeiα|A(t−T )|

2+iφA(t− T ) + ηeiω0t, (12)

σ >
√
2
√

1 + β2,

where losses and forcing take the form
√
κ = r

√
κl ≤ 1, η = rη0 with r = γ1γ2√

(γ21+ω
2
1)(γ

2
2+ω

2
2)

≤ 1,

and the phase shift is φ = ϕ+arg 1
γ2γ2−ω1ω2−i(γ1ω2+ω2γ1)

. Here, similarly to the previous section one

can see that dr
d|ω1| < 0 for γ1 > γ2 and ω2 = ω2+, hence for fixed κl the parameter κ decreases with

increasing detuning between the two frequencies |ω2 −ω1|. With the condition (11) on dimensionless
parameters σ and β the equation is equivalent to the system with two filters (1)-(2) for any κ < 1 with
global maximum of the combined filter transfer function F (ω) (5) located at zero frequency ω = 0,
|F (ω)| ≤ |F (0)| ≤ 1. We note that for

√
2 ≤ σ ≤

√
2(1 + β2) the global maximum of F (ω) is at

another frequency and additional constraints on parameter κ are necessary, whereas for σ <
√
2 the

diffusion coefficient in (7) becomes negative, equivalence with (1)-(2) is lost and zero solution A = 0
for η = 0 is unstable.

For β = 0 relation (7) gives zero dispersion coefficient and diffusion coefficient equal to (σ2 − 2)/2,
which agrees with previous analysis of a similar DDE [26] in case of σ >

√
2.

We note that the direct application of truncated expansion (4) in the RHS of DDE models similar to (1)
and (12) would lead to the appearance of the second derivative of the delayed variable A′′(t− T ) in
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and spurious instability [15]. In contrast, non-delayed second order derivative A′′(t) in (12) appears
without any expansions, and the term iβA′′(t) is responsible for the second-order chromatic disper-
sion similarly to the NLS equation. On the other hand, unlike the cubic CGL model, where the real
coefficient by the second derivative is responsible for the diffusion (or parabolic spectral filtering), the
filtering in (12) is performed by two Lorentzian filters, which are introduced by the presence of of both
the first and the second order derivatives. Therefore, the generality of this kind of dispersion operator
is still not directly comparable to the operators in NLS-type equations or systems with distributed delay
[15]. However, in contrast to the approximate DDEs [16], the physical meaning of this filter is clear for
any feasible parameters. For simplicity below we consider the case of non-detuned injection, ω0 = 0.

2.4 Limit of Lugiato-Lefever equation

Assuming large delay limit T = r/ε, where ε ≪ 1 and r = 1 + a1ε + a2ε
2 + . . . , taking ω0 = 0,

and rescaling the time variable t→ t/ε we can rewrite (12) in the form

ε2A′′(t)(1 + iβ) + εσA′(t) + A(t) =
√
κeiα|A(t−r)|

2+iφA(t− r) + η, (13)

Let the injection rate, the linear cavity losses and the phase shift be small,

η = ε3S, κ = 1− 2ε2k, φ = ε2θ. (14)

Then looking the solution in the form A(t) = εu(t, τ) + ε2v(t, τ) + . . . with τ = ε2t, applying
multiscale analysis [27, 28], and collecting the first order in ϵ and using solvability condition of the the
resulting equation we get the periodic boundary condition:

u(t, τ) = u(t− 1, τ). (15)

Next, in the second order in ε we obtain

v(t, τ)− v(t− 1, τ) = a1ut(t− 1, τ)− σut(t, τ),

which impl the periodicity of v, v(t − 1, τ) = v(t, τ) and the relation a1 = σ with the periodicity
condition (15). Finally collecting the third order terms in ε, using the relation a2 = σ2, and applying
solvability condition [27, 28] we get the generalized Lugiato-Lefever equation (LLE)

uτ = S − ku+ iθu+ iαu|u|2 +
(
σ2 − 2

2
− iβ

)
utt (16)

with the diffusion coefficient (σ2 − 2)/2 the boundary condition (15). It is well known that for the con-
dition β < 0 in Eq. (16) corresponds to anomalous dispersion regime, and for θ < 0 this equation can
demonstrate the formation of bright dissipative solitons [20]. Dimensionless dispersion and diffusion
coefficients in Eq. (16) coincide with those defined by Eq. (7).

3 Continuous wave (CW) state

The CW state of the equation (12) with ω0 = 0 takes the form A = A0e
iψ, where the real quantities

A0 and ψ satisfy the system of the transcendental equations

A0

[
1−

√
κ cos

(
αA2

0 + φ
)]

= η cosψ, (17)

A0

√
κ sin

(
αA2

0 + φ
)
= η sinψ, (18)
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which leads to a single transcendental equation for A2
0

A2
0

[
κ+ 1− 2

√
κ cos

(
αA2

0 + φ
)]

= η2. (19)

Assuming ε ≪ 1, A0 = εu0, φ = ε2θ, 0 < 1 − κ ∼ 2ε2k, and η = ε3S, this equation can be
approximated by a cubic equation for u20

S2 ≈ u20
[
k2 + (θ + αu20)

2
]
, (20)

which coincides with the equation for the uniform stationary solutions of the LLE (16). Therefore, in
this limit equation (12) can have up to three coexisting CW states similarly to LLE (see Fig. 3, left),
however out of this limit for strong injection there can be more coexisting CW states, see right panel of
Fig. 3. Here, the upper CW state looses stability via a modulational instability, and unstable CW states
are shown by dotted red line.

1.5 2 2.5

10
-6

0

1

2

3

4
10

-4

1 2 3 4 5 6

10
0

10
1

Figure 3: Intensity |A0|2 of CW states (17)-(18) obtained by varying parameter η (left). Here, ω0 = 0,
κ = 1 − 10−4, σ =

√
2.5, α = 1, φ = −3 × 10−4, which in the LLE limit (13) corresponds to

ε = 0.01, see Fig. 6. In the right panel we choose κ = exp(−2), φ = −2, which corresponds to
ε = 1, where solid lines correspond to stable CWs and dashed - to unstable.

3.1 Stability of CW solution and MI

Here, we demonstrate how MI of an initially stable CW state can appear in the anomalous dispersion
regime in the limit of large delay T ≫ 1. For that, we linearize the equation (12) near the CW state
A(t) = (A0 + δAeλt)eiψ and calculate the determinant of the Jacobian of the linearised system to
obtain the following characteristic equation for the eigenvalues λ describing the stability of the CW
solution:

κY 2 + λ{λ
[(
β2 + 1

)
λ2 + 2λσ + σ2 + 2

]
+ 2σ}+ 1+

2
√
κY {sin

(
αA2

0 + φ
) [
αA2

0

(
λ2 + λσ + 1

)
− βλ2

]
−

cos
(
αA2

0 + φ
) [
λ2

(
αA2

0β + 1
)
+ λσ + 1

]
} = 0.

(21)

where Y (λ) = exp(−λT ). In the limit of large delay time T → ∞ the eigenvalues belonging to the
pseudo-continuous spectrum can be represented in the form λ = iµ+ Λ

T
+O(1/T 2) with real µ [29].

DOI 10.20347/WIAS.PREPRINT.2948 Berlin 2022



A. Pimenov, A.G. Vladimirov 8

Thus, in this limit the characteristic equation is a quadratic equation for Y with the coefficients de-
pending only on the imaginary part µ of the eigenvalue, and we can obtain from (21) two branches of
pseudo-continuous spectrum given by

Λ±(µ) = −Re lnY±(iµ). (22)

For a stable CW solution we have Λ±(µ) ≤ 0 and, in particular, Λ±(0) = −Re lnY±(0) ≤ 0,
where

Y±(0) =
1√
κ

[
cos

(
αA2

0 + φ
)
− αA2

0 sin
(
αA2

0 + φ
)
±
√
D
]
, (23)

D =
[
cos

(
αA2

0 + φ
)
− αA2

0 sin
(
αA2

0 + φ
)]2 − 1. (24)
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Figure 4: Curves of pseudocontinuous spectrum in the limit of large delay (21) of (12) of the CW with
the largest intensity (|A0| ≈ 0.0169 out of another two |A0| ≈ 0.0167 and |A0| ≈ 0.006) near
the LLE limit, η ≈ 1.707 × 10−6, and varying β = 0 (top-left), β = 1/4 (top-right), β = −1/8
(bottom-left), β = −1/4 (bottom-right). Other parameters are as in Fig. 3

.

Moreover, the second derivative of Λ±(µ) at µ = 0 takes the form

Λ′′
±(0) = 2− σ2 ± 2β ReB(α, φ, η, κ), (25)

B =
αA2

0 cos (αA
2
0 + φ) + sin (αA2

0 + φ)√
D

. (26)

One can see from (25) that for small β ≈ 0 and σ >
√
2 we have Λ′′

±(0) < 0 for the CW solutions
on the upper branch of S-shaped bifurcation curve depicted in Fig. 3 (see top-left panel of Fig. 4). It
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Temporal solitons in an optically injected Kerr cavity with two spectral filters 9

is known that strong anomalous dispersion can lead to the change of the curvature of one of the two
branches Λ±(µ) of the pseudo-continuous spectrum at µ = 0 (see Fig. 4, bottom-left) [15]. Moreover,
further increase of anomalous dispersion can lead to a MI of a CW state (see Fig. 4, bottom-right) [16].
On the other hand, in the case of strong normal dispersion regime the sign change of the curvature of
the curve with smaller Λ±(0) does not lead to a MI, as it is seen from the top-right panel of Fig. 4.

The stability condition of the CW state can be written in the form |Y±(iµ)| > 1 for all the wavenumbers
µ. In particular, at zero wavenumber µ = 0 we get

|Y±(0)| > 1. (27)

A CW solution satisfying this condition is stable with respect to perturbations at zero wavenumber, but
may be unstable with respect to MI at nonzero wavenumbers. A possible (but not unique) way how
such a MI can develop is related to the change of the sign from negative to positive of one of the two
quantities Λ′′

±(0) corresponding to the greater of the two values Λ′′
±(0). Note, that both the quantities

Λ′′
±(0) are always negative at β = 0 due to the inequality (11). It follows from Eq. (26) that such a

sign change can take place only in the case when

D > 0 (28)

and, hence, Y±(0) must be real. Otherwise, B is purely imaginary and the last term in the RHS of
Eq. (25) vanishes. It is shown in Appendix A that in the LLE limit (14) we have Λ+(0) < Λ−(0) and
for the CW state with the highest intensity we can have Λ′′

−(0) > 0 only in the anomalous dispersion
regime β < 0 . Out of LLE limit we can have positive Λ′′

±(0) in case of β > 0 as well (see Appendix
B for numerical treatment).

Note, that the development of MI on the stable upper part of the CW branch can be correlated with the
appearance of stable localized structures. In the next section we study numerically how the dispersion
coefficient β affects the existence range of these structures. Remarkably, there are also scenarios out
of the LLE limit where localized structures can be observed for zero and small positive β.
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Figure 5: Curves of pseudocontinuous spectrum in the limit of large delay (21) of (12) of the CW with
the largest intensity (|A0| ≈ 0.0178 out of another two |A0| ≈ 0.0156 and |A0| ≈ 0.0065) near the
LLE limit with β = 1/2 (left) and β = 1/2 (right), and η ≈ 1.797 × 10−6. Other parameters are as
in Fig. 3

.

We note that the condition Λ′′(0) > 0 precedes the appearance of MI of the CW for stronger disper-
sion if Y±(0) is real-valued. If it’s complex-valued, MI is still possible for sufficiently strong dispersion
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(see Fig. 5). In the LLE limit, one can derive an approximate condition for MI development (see Ap-
pendix), and demonstrate that for typical parameters in this limit strong anomalous dispersion can lead
to the instability.

4 Numerical results

In this section, we perform numerical bifurcation analysis of equation (12) using DDE-BIFTOOL [30].
Let us start with the parameter set close to the LLE limit. We take σ =

√
2.5, β = −0.5, which

corresponds to two filters (5) with γ1 = γ2, ω1 = −1+
√
5

2
γ1 ≈ −1.62γ1, ω2 =

√
5−1
2
γ2 ≈ 0.62γ2.Let

α = 1, ω0 = 0 and φ = φε, κ = κε, where

κε = exp(−2ε2), φε = −2ε2

are chosen according to analysis of DDE (13) in the limit ε → 0. These values directly correspond to
the parameters of LLE (16) where localized structures are known to exist (θ = φ/ε2 < −

√
3). We

also pick a reference injection strength

ηε = ε3

√
8

√
3
3 +

4

3

(
−φε
ε2

−
√
3
)
, (29)

where three CW states are guaranteed to coexist for ε ≪ 1, and vary η near ηε. The main numerical
difficulty in this limit is that the delay time T and the width of the localized structures are proportional
to the large quantity ε−1. Figure 6 was obtained with ε = 0.05, which was the smallest value of ε
used in our simulations and corresponded to κ ≈ 0.995. Similarly to the LLE [31, 32] the bifurcation
diagram in the left panel of this figure shows a typical S-shaped CW branch with stable lower part
and modulationally unstable upper part. The branch of unstable periodic solutions bifurcates from the
unstable middle part of the CW branch and it becomes stable after a fold bifurcation at η ≈ 0.00022.
The stable periodic solution has only a slight asymmetry in its time profile and resembles the temporal
dissipative solitons of the LLE, see right panel of Fig. 6.

Thus, close to the limit ε → 0 the normalized second-order DDE (12) demonstrates the bifurcation
structure similar to that of the LLE. Note, however, that the magnitude of the parameters σ, β and
1 − κ in the normalized equation (12) depends on the frequency detuning of the linear filters with
respect to each other in the original equivalent system (1)-(2), and stronger detuning results for fixed
σ in larger |β| as discussed in Section 2.2, and higher losses 1− κ at the same time as discussed in
Section 2.3. Therefore, it is necessary to investigate how larger values of ε corresponding to smaller
values of the attenuation factor κ (larger losses) affect the properties of the localized solutions. For
example, for the considered parameters σ =

√
2.5 and β = −0.5 from Eqs. (1)-(2) and the condition

κl ≤ 1 one obtains κ ≤ 0.4 in (12), which is satisfied for ε ≥ 0.7.

For larger ε = 0.2, which corresponds to κ ≈ 0.92, the stable part of the periodic solution branch is
split into two parts separated by two fold bifurcation points, see left panel of Fig. 7. Both these parts
correspond to very asymmetric localized pulses, but the second part contains wider pulses then the
first one, see right panel of Fig 7. Figures 8 and 9 show the branches of CW and periodic solutions
with scaled intensity 2 obtained by increasing gradually ε up to 1, which corresponds to κ ≈ 0.135.

2In these figures η is shifted, more precisely, η̃ = η−ηε−η1,j+10−5j for the left panel of Fig. 8, η̃ = η−ηε−η2,j+
5jη2,1 for the right panel, η̃ = η−ηε−η1,j+10−2(j−4) for the left panel of Fig. 9, η̃ = η−ηε−η2,j+2×10−3(j−4) for
the right panel, and ε = ϵj , ϵ⃗ = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, η⃗1 = {−1.2× 10−5,−1.634×
10−4,−7.69 × 10−4,−0.0039,−0.0136,−0.0245,−0.059,−0.11,−0.195,−0.347,−0.5474}, η⃗2 = {1.413 ×
10−6, 4.3× 10−6,−1.2× 10−4,−0.0015,−0.006,−0.019,−0.047,−0.099,−0.185,−0.333,−0.5294}
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Figure 6: Left panel: One-parameter bifurcation diagram of Eq. (12) with φ = φε, κ = κε, and
ε = 0.05. CW (periodic) solutions are shown by thick (thin) lines. Solid lines represent stable states
and dashed lines represent unstable states. The parameter η is changed near ηε defined by Eq. (29).
Right panel: Stable localized periodic solution for η ≈ 0.000223, where Tw ∼ 1/ε is the period of the
solution controlled by the choice of delay time T . Other parameters are α = 1, σ =

√
2.5, β = −0.5.
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Figure 7: Left panel: One-parameter bifurcation diagram of Eq. (12) with φ = φε, κ = κε, and
ε = 0.2. CW (periodic) solutions are shown by thick (thin) lines. Solid lines represent stable states
and dashed lines represent unstable states. The parameter η is changed near ηε defined by Eq. (29).
Right panel: Stable localized periodic solutions for the same η from the first (main) stable part of the
periodic solution branch (solid) and the secondary stable part (dashed). Other parameters are as in
Fig. 6.

The width of the S-shaped area of the CW branches as well as the width of the branch of the localized
solutions increases with ε up to ε = 0.8 and then decreases. For ε ≥ 0.4 the upper branch of
CW states stabilizes for the chosen parameter values (Fig. 9, left). Asymmetric localized structures
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corresponding to the stable parts of the periodic solution branches with ε ≥ 0.2 in Fig. 10 look similar
to the those shown in the right panel of Fig. 7 obtained for ε = 0.2.
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Figure 8: Bifurcation diagrams of Eq. (12) obtained for different values of ε. Left panel: CW states cut
around S-shaped bifurcation curve (thick lines) and periodic solutions (thin lines). Solid lines represent
stable states and dashed lines represent unstable states, η̃ = η − ηε + δη(ε) is a shifted value of η.
Right panel: Branches of periodic solutions from the left panel, magnified. The intensity is scaled by
ε2 and other parameters are as in Fig. 6.
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Figure 9: CW states cut around S-shaped bifurcation curve (thick lines) and periodic solutions (thin
lines) of (12), where solid lines represent stable states and dashed lines represent unstable states.
Right panel: Branches of periodic solutions from the left panel, magnified. The intensity is scaled by
ε2, the curves from left to right correspond to j = 5, 6, 7, 8, 9, 10, 11, and other parameters are as in
Fig. 8.

Finally, let us study how the variation of the effective dispersion coefficient β influences the existence
range of the temporal localized structures. One can see in the top left panel of Fig. 11 that near the LLE
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Figure 10: Top panels: Localized periodic solutions of Eq. (12) from the middle points of the stable
parts of the branches depicted on Fig. 8, 9 for ε increasing from 0.05 (bottom curve of the left upper
panel) to 1 (top curve of the bottom panel). Bottom panel: Wider localized solutions from the secondary
parts of the periodic solution branches for ε increasing from 0.2 (bottom curve) to 1 (top curve). Time
is scaled by the solution period Tw ∼ ε−1, which is controlled by the delay time T . Other parameters
are as in Fig. 8.

limit (ε = 0.05) the localized solutions can be observed only for negative β < −0.05 corresponding
to the anomalous dispersion regime. It is seen that when β increases the interval of the injection rates
between two fold bifurcations, where stable localized solutions exist, shrinks so that for β ≥ −0.06
one can hardly see any stable localized structure in the region of S-shaped CW curve. However, by
increasing ε out of the LLE limit first to ε = 0.3 (top right panel of Fig. 11) and then to ε = 0.5
(bottom left panel), one can see that around ε ≈ 0.5 localized structures can be observed for β = 0
as well. Furthermore, for 0.5 ≤ ε ≤ 1 (bottom right panel) stable bright temporal dissipative solitons
can be observed even with small positive β, 0 ≤ β < 0.1. Therefore, we conclude that out of the LLE
limit temporal localized structures in the DDE model (12) could be observed not only in anomalous
dispersion regime but also for positive β, although in a smaller range of the injection rates η. We
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have considered here only one possible way to exit the LLE limit in a continuous manner, however
our preliminary numerical simulations suggest that there are many possible combinations of values of
κ, η, φ, and β away from the LLE limit, where stable or unstable temporally localized structures can
be observed. We leave this question to further studies, and, in particular, for experimentally justified
parameters.
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Figure 11: Top left: Bifurcation diagram of Eq. (12) for ε = 0.05 and various values of β. Thick lines
indicate CW solutions cut around S-shaped bifurcation curve, while thin lines correspond to periodic
solutions. Solid (dashed) lines represent stable (unstable) solutions. Fold bifurcations are marked by
F and Hopf bifurcations are marked by H. Other panels show fold bifurcations of the localized periodic
solutions of (12) on the plane of two parameters, β and η. They correspond to ε = 0.3 (top right),
ε = 0.5 (bottom left), and ε = 1.0 (bottom right). Other parameters are as in Fig. 8.

In this section we have demonstrated the existence of bright localized structures of the second oder
DDE model (12). It follows from this result that such kind of structures should also exist in the original
set of two DDEs (1) and (2). We can use this theory then to find parameters for (1)-(2) where localized
structures exist (see Fig. 12).
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Figure 12: Periodic pulse train solutionA(t) of (1)-(2) (left) and single pulse (right), where the parame-
ters are γ1 = 1, ω1 ≈ 1.29, γ2 ≈ 0.26, ω2 ≈ −0.034, κl ≈ 0.68, ϕ ≈ −4.17,η0 ≈ 1.65, α = 1.5,
T = 200. In the normalized equation (12) these values correspond to σ = 3.23, β = 1, κ = 0.25,
φ ≈ −3.383, η = 1.

5 Conclusion

We have considered a DDE model of an optically injected ring Kerr cavity with two spectral filters
having different widths and central frequencies. We have derived a normalized complex-valued second
order DDE (12), which is similar to real-valued DDE reported in [26]. This equation can be considered
as a generalization of the Ikeda map, which explicitly contains second-order dispersion coefficient
at zero frequency as a parameter. We have derived an admissibility relation for these parameters,
analyzed stability of the CW solutions of this model in the limit of large delay, and demonstrated the
effect of strong dispersion on the development of modulational instability. We have shown that in the
limit of small losses and weak injection the DDE model can be reduced to a generalized version of the
well known LLE, which is known to have dissipative soliton solutions. We have performed numerical
bifurcation analysis of CW solutions and temporal localized structures using DDE-BIFTOOL package
[30] and demonstrated qualitative similarity of the solutions of the DDE model with those of the LLE in
the regime of anomalous dispersion (β < 0) in the corresponding limit. Moreover, out of LLE limit one
can observe numerically stable localized structures not only in the anomalous dispersion regime, but
also at zero and small positive values of β, albeit in a shrinkingly smaller interval of existence. Finally,
these results demonstrate that chromatic dispersion caused by two suitably offset spectral filters in a
nonlinear optical cavity can lead to instabilities and appearance of localized structures, which can be
relevant for more complex systems with two filters such as Mamyshev oscillators.

Appendices

A MI in the LLE limit

Linear stability of the CW solutions of the classical Lugiato-Lefever equations was studied alalytically
and numerically in a number of works, see e.g. Refs. [33, 34, 35] for both the normal and anomalous
dispersion regimes. In this Appendix we consider the DDE model (12) in the LLE limit, where this
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model can be reduced to the generalized LLE (16) with the additional diffusion (spectral filtering) term
(σ2 − 2)/2, which exerts a stabilizing effect on the CW solutions. A detailed linear stability analysis
of the generaized LLE model (12) is beyond the scope of this paper. We present here only some
analytical results concerning the sign change of one of the two quantities Λ′′

±(0) (see Eq. (25)), which
can be a precusor of the MI.

Without the loss of generality we can assume that α = 1 and k = 1. Substituting (14) and A0 =
ϵu0 +O(ϵ2) into (23)-(25) and using Λ±(0) = −Re lnY±(0) we obtain:

Λ±(0) = ε2
(
1∓ Re

√
D̃
)
+O(ϵ3), D̃ = −

(
θ + 3u20

) (
θ + u20

)
, (A.1)

Λ′′
±(0) = 2− σ ± Re

[
2β(2u20 + θ)√

D̃

]
+O(ϵ). (A.2)

where Λ′′
±(0) can be positive only when D̃ > 0, i.e. for − θ

3
< u20 < −θ. We see from (A.1) and (A.2)

that for D̃ > 0 in the LLE limit we have Λ+(0) < Λ−(0) and the curvature Λ′′
−(0) can be positive

only for
β(2u20 + θ) < 0. (A.3)

Let us consider the case when Eq. (20) has three real roots, which similarly to the standard LLE takes
place for θ < −

√
3. Taking a real root u20 = a2 of Eq. (20) we can express the remaining two roots as

u20± =
1

2

(
±
√
−4a2θ − 3a4 − 4− a2 − 2θ

)
, (A.4)

where three distinct roots are real for θ < −
√
3 and

−2θ

3
− 2

3

√
θ2 − 3 < a2 < −2θ

3
+

2

3

√
θ2 − 3. (A.5)

From this condition it follows that 2a2 + θ > 0 for all − 4√
5
< θ < −

√
3. Furthermore, the condition

that u20± < a2 for both the roots defined by (A.4) is also possible only for 2a2 + θ > 0. Therefore it
follows from (A.3) that for any θ < −

√
3 the CW state with the highest intensity can have Λ′′

−(0) > 0
only in the anomalous dispersion regime β < 0.

Since the condition Λ′′
−(0) > 0 is not sufficient for the development of MI of a CW state, we assume

further in (21) with k = α = 1 that Imλ = εw. Then up to order ε2 we obtain:

Λ±(w) ≈ −
[
2 +

w2 (σ2 − 2)

2
±
√
D(w)

]
ε2,

where D(w) = − (u20 + βw2 − θ) (3u20 + βw2 − θ). We can find the frequencies w at which the
MI can observed using the conditions

Λ′
−(w) = 0, Λ−(w) = 0. (A.6)

In particular, in the normal dispersion regime (β > 0) solving (A.6) with respect to w2 and θ we obtain

w2 ≈ 4

σ2 − 2

 u20β√
4β2 + (σ2 − 2)2

− 1

 > 0 (A.7)
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and two solitions for θ

−θ ≈
u20

[
2(σ2 − 2) +

√
4β2 + (σ2 − 2)2

]
− 4β

σ2 − 2
> 4, (A.8)

−θ ≈ 1

σ2 − 2

u20
2(σ2 − 2) +

4β2 − (σ2 − 2)
2√

4β2 + (σ2 − 2)2

− 4β

 > 2
√
3. (A.9)

Since according to (A.7), (A.8), and (A.9) both w2 and −θ increase with u0, the value of −θ corre-
sponding to w = 0 gives the lower bound of the detuning parameter, for which the development of MI
is possible. We note that for w = 0 and θ < 0 we have D(0) < 0, and Λ−(0) ̸= 0, hence MI is not
possible, and the lower bound obtained using w = 0 is not tight and provides a necessary condition

for the MI. It follows from Eq. (A.7) that for w = 0 we get u20 =

√
4β2+(σ2−2)2

β
> 2. Substituting this

expression into (A.8) and (A.9) yields the following expression for the lower bound of the MI:

−θ ≈
2
√

4β2 + (σ2 − 2)2 ± (σ2 − 2)

β
, (A.10)

where the sign "+"("−") corresponds to Eq. (A.8) [Eq. (A.9)]. The expression in the right hand side
of Eq. (A.10) achieves its minimal value −θ ≈ 2

√
3 at σ2 = 2 ∓ 2β√

3
. Therefore, for −θ < 2

√
3 MI

is not possible in the normal dispersion regime.

From the previous paragraph we see that in normal dispersion regime the MI is possible only for
sufficiently large −θ > 2

√
3. In the anomalous dispersion case (β < 0) by solving Eq. (A.6) we get

the following expression for the MI frequencies

w2 ≈ − 4

σ2 − 2

 u20β√
4β2 + (σ2 − 2)2

+ 1

 > 0

with u0 >
√

4β2+(σ2−2)2

−β > 2 and two solutions for the detuning parameter θ:

−θ ≈
u20

[
2(σ2 − 2)−

√
4β2 + (σ2 − 2)2

]
− 4β

σ2 − 2
,

and

−θ ≈ 1

σ2 − 2

u20
2(σ2 − 2) +

−4β2 + (σ2 − 2)
2√

4β2 + (σ2 − 2)2

− 4β

 .

Here, the coefficients by u20 can change sign depending on the parameters, hence there is no clear
lower boundary for −θ in contrast to normal dispersion regime. Moreover, we could numerically ob-
serve MI for σ =

√
2.5, see Figs. 4, 5 Finally, we conclude that while it is possible to observe MI in the

case of anomalous dispersion, in normal dispersion case that can be done only for sufficiently large
−θ > 2

√
3.
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B Examples of MI out of LLE limit

Finally, we consider some examples of specific CWs, where relation (26) can be simplified, so that
conditions for the change of curvature of Λ±(ξ) at ξ = 0 can be obtained explicitly, and then MI can
be demonstrated numerically for close parameters.

For that, let us first study the conditions (27) and (28), which ensure that the CW is stable for β = 0
and that Λ′′(0) can become positive for some β ̸= 0, and introduce auxiliary variable

ζ = cos
(
αA2

0 + φ
)
,

in Eqs. (17) and (18). Then we get sin(αA2
0 + φ) = ±

√
1− ζ2 and Eq. (19) can be rewritten in the

form A0 =
η√

κ+1−2
√
κζ

with −1 ≤ ζ ≤ 1.

For sin[2(αA2
0 + φ)] < 0 using the relations (23) and (24) the inequalities (27) and (28) can be

rewritten in the form
1− |ζ|√
1− ζ2

< αA2
0 ≤

1√
1− ζ2

(
|ζ|+ 1 + κ

2
√
κ

)
. (B.1)

Furthermore, from (26) one can see that for αA2
0 >

√
1−ζ2
|ζ| > 1−|ζ|√

1−ζ2
we have B > 0 when

Λ+(0) < Λ−(0) < 0, and B < 0 when Λ−(0) < Λ+(0) < 0. Hence it follows from (25) that the
sign change of one of the two quantities Λ′′

±(0) corresponding to larger Λ±(0), which can lead to a MI
of the CW solution, can occur only for β < 0. In the LLE limit one can see that this scenario usually
corresponds to the change of the curvature sign of Λ(µ) of the upper part of the CW branch (see Fig.
3) in anomalous dispersion regime.

Alternatively, for 1−|ζ|√
1−ζ2

< αA2
0 <

√
1−ζ2
|ζ| we have B < 0 when Λ+(0) < Λ−(0) < 0, and B > 0

when Λ−(0) < Λ+(0) < 0. Hence, in this case the sign change of the curvature can occur for β > 0.

For sin[2(αA2
0 + φ)] > 0 instead of (B.1) we get the inequalities

|ζ|+ 1 < αA2
0

√
1− ζ2 ≤ |ζ|+ 1 + κ

2
√
κ
, (B.2)

which imply that A0 >
1√
α

, which is incompatible with the LLE limit, where A0 is asymptotically small.

Since |ζ| ≤ 1, from (24) one can see that forA0 = 0 we haveD ≤ 0. In particular, according to Eqs.
(23) and (24) together with the inequality sin[2(αA2

0 +φ)] > 0, for D = 0 we get Y±(0) = − 1√
κ

for

sin(αA2
0+φ) > 0 and Y±(0) =

1√
κ

for sin(αA2
0+φ) < 0. Therefore, for larger A0 and D we have

Λ−(0) < Λ+(0) < 0 for B > 0 and Λ+(0) < Λ−(0) < 0 for B < 0. Hence, it follows from (25) that
in this case the change of curvature can be observed for β > 0.

Let us consider a simple case whereφ = −αA2
0+π/2 in Eq. (12) and, therefore, cos (αA2

0 + φ) = 0
in Eq. (19). Hence, we get A0 = η√

1+κ
< η, which corresponds to the CW with the lowest intensity

in case of bistable S-shaped CW branch. Furthermore, from (23) we obtain D = α2η4

(κ+1)2
− 1 and

Y+(0) =
1√
κ

(
αη2

κ+1
+
√
D
)

. Therefore, from and (25) and (B.2) with sufficiently large β we can have

Λ′′
+(0) = 2− σ2 +

2β√
α2η4

(κ+1)2
− 1

> 0, 1 + κ < αη2 <
(1 + κ)2

2
√
κ

.
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This condition is reminiscent of the MI condition of a CW in the anomalous dispersion regime in the
case of CW solutions of a semiconductor laser model [15], though second-order dispersion coefficient
β is multiplied here not by α but by a function of α, η, κ. Similarly to the case of a laser under optical
injection [16], this condition manifests the change of curvature of Λ(ξ) at ξ = 0 for some β > 0, and
it precedes appearance of a MI for larger β, which can be observed numerically (see Fig. 13, top).
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Figure 13: Curves of pseudocontinuous spectrum in the limit of large delay (21) of (12) of the CW
with the lowest intensity A0 = η√

1+κ
for ζ = π

2
, η = 1.285 (top) and the largest intensity (B.3) for

ζ = π/6, η = 0.975 with β = −0.3 (top-left), β = 0.3 (top-right), β = −0.1 (bottom-left) and
β = 0.1 (bottom-right). Other parameters are κ = 0.8, σ =

√
2.5, α = 1.

The most usual way to find a localized structure in form of a bright dissipative soliton, is to look for
three coexisting CWs, where CW with the largest field intensity A2

0 is modulationally unstable. Indeed,

for φ = −αA2
0 +

π
6

, where ζ =
√
3
2

, the CW takes the form

A0 =
η

2−
√
3κ

√
3 +

1−
√
3κ

κ2 −
√
3κ+ 1

> η. (B.3)

and the condition Λ′′(0) ≥ 0 takes the form

2− σ2 +
2β

(√
3αA2

0 + 1
)√

α2A4
0 − 2

√
3αA2

0 − 1
≥ 0, 2 +

√
3 < αA2

0 ≤
κ+

√
3
√
κ+ 1√

κ
.

Similarly, the change of curvature of Λ(ξ) at ξ = 0 can occur only for β > 0, where also a MI can be
observed (see Fig. 13, bottom). We can use the CW (B.3) by choosing corresponding parameter φ to
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find parameters where localized structures exist, and obtain parameters for the original system (1)-(2)
to obtain these structures in numerical simulations (see Fig. 12)
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