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ABSTRACT

Optimization problems, in which only the realization of a function or a zeroth-order oracle is avail-
able, have many applications in practice. These are multi-armed bandits, black-box models, and
models in which the other types of oracles are too expensive to use. An effective method for solv-
ing such problems is the approximation of the gradient using sampling and finite differences of the
function values. This method relies on the concentration of the measure on the Euclidean sphere.
However, some noise can be present in the zeroth-order oracle not allowing the exact evaluation of
the function value, and this noise can be stochastic or adversarial. In this paper, we propose and study
new easy-to-implement algorithms that are optimal in terms of the number of oracle calls for solv-
ing non-smooth optimization problems on a convex compact set with heavy-tailed stochastic noise
(random noise has (1 + κ)-th bounded moment) and adversarial noise. These algorithms are based
on methods that were demonstrated to be extremely efficient for stochastic problems with first-order
oracle and heavy-tailed noise. The first algorithm is based on the heavy-tail-resistant mirror descent
and uses special transformation functions that allow controlling the tails of the noise distribution.
The second algorithm is based on the gradient clipping technique. In this technique, the heavy tails
of the noise distribution are clipped, balancing between the bias of the gradient estimate relative to
the true gradient and the algorithm’s fast convergence with estimates with small second moments.
The paper provides proof of algorithms’ convergence results in terms of high probability and in
terms of expectation when a convex function is minimized. For functions satisfying a r-growth con-
dition, a faster algorithm is proposed using the restart technique. The differences between the two
types of algorithms and recommendations for choosing the best parameters are discussed. Particular
attention is paid to the question of how large the adversarial noise can be so that the optimality and
convergence of the algorithms is guaranteed.

Keywords zeroth-order optimization, derivative-free methods, stochastic optimization, non-smooth problems, heavy
tails, gradient clipping, stochastic mirror descent
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1 Introduction.

Consider stochastic non-smooth convex minimization problem over compact convex set S ⊂ R
d:

min
x∈S

f(x), (1)

where f(x) = Eξ[f(x, ξ)] and f : S → R is a convex and Lipschitz continuous function.

We assume that the objective function f can not be evaluated directly. Instead, we have at our disposal a zeroth-order
two-points oracle φ(x, ξ) = f(x, ξ) + δ(x), where δ(x) is some adversarial noise.

Main results and related works. As said, we consider gradient-free methods for convex optimization problems
[25, 5]. More precisely, we consider a two-point zero-order oracle for non-smooth stochastic convex optimization
problems. This field is rather well-developed, see, e.g., the recent survey [8] and references therein. For example, in
the series of papers [6, 11, 20, 10, 23, 2] the optimal oracle complexity, i.e., the number of calls to the oracle in order to
obtain the desired accuracy of the solution, was obtained. For the non-smooth convex-concave stochastic saddle-point
problems the same was done in [4, 7]. In both cases, the oracle complexity is ∼ dε−2, where ε is a desired expected
accuracy in function value (or duality gap for saddle-point problems). These results are quite expected since this
complexity is ∼ d times larger than the complexity of optimal stochastic gradient procedures. Factor d has a natural
interpretation, since to approximate (stochastic) gradient it is sufficient to use d + 1 function values.1 This is obvious
in the smooth case (see e.g. [8]), and is not so trivial in the non-smooth case [23].

Moreover, in [7, 9] it was observed that the gradient-free version of the Stochastic Mirror Descent algorithm converges

with a maximum permissible level of adversarial noise ∼ ε2/
√
d.

All the above results assume that f(x, ξ) is M(ξ) Lipschitz continuous w.r.t. x and that Eξ[M
2(ξ)] < ∞. The goal

of this paper is to obtain analogs of the results mentioned above for the case of a weaker assumption that there exists
κ ∈ (0, 1] such that Eξ[M

1+κ(ξ)] <∞.

Under this assumption, we know from [19] that the stochastic (full) gradient oracle complexity is ∼ ε−
1+κ
κ and we

may expect therefore ∼ dε−
1+κ
κ zero-order stochastic oracle complexity. In this paper, we propose an algorithm that

achieves the following bound ∼
(√

d/ε
) 1+κ

κ

that matches the expected bounds only for κ = 1. To the best of our

knowledge, this poses the following open problem: is the bound ∼
(√

d/ε
) 1+κ

κ

optimal in terms of the dependence

on d? For smooth stochastic convex optimization problems with (d+1)-points stochastic zero-order oracle the answer

is negative and the optimal bound is ∼ dε−
1+κ
κ . Thus, for κ ∈ (0, 1) our results are in a sense surprising since

the dependence on d in our bound is very different from the known results for the case κ = 1. To the best of our
knowledge, this paper provides the first known result for gradient-free methods without assuming a finite variance of
the stochastic noise. Since we give an accurate analysis, including high-probability bounds,2 our results could be of
interest even in a very particular case of κ = 1. In this case, the high-probability bound was previously known only
for compact-support distributions of f(x, ξ) [7]. That is, even for subgaussian tails it was an open question to obtain
high-probability bounds for gradient-free methods. The main challenge in obtaining our results is in the combination
of the auxiliary gradient-free randomization and the original stochasticity of the oracle in the problem. The known
concentration of measure inequalities do not allow obtaining the desired subgaussian concentration for the output of
the algorithm.

To conclude, in this paper we obtain ∼
(√

d/ε
) 1+κ

κ

gradient-free two-points stochastic oracle complexity bound in

terms of high-probability. We also obtain a bound∼ ε2/
√
d on the maximum admissible level of additional adversarial

noise in function values. We generalize these results to strongly convex problems and problems with a sharp minimum.

The proposed approach. Starting from the work [18] one can observe an increased interest of researchers in algo-
rithms that use gradient clipping to be able to obtain high-probability convergence guarantees in stochastic optimiza-
tion problems with heavy-tailed noise. In particular, only in the last two years, the following accurate results were
obtained:

• an optimal algorithm with general proximal setup for non-smooth stochastic convex optimization problems
with infinite variance [26] with the convergence in expectation,

1To say more accurately, it is sufficient to use d+ 1 values of f(x, ξ) with the same ξ and different (d+ 1) points x.
2We emphasize, that these bounds were obtained without any probabilistic assumptions, except Eξ[M

1+κ(ξ)] < ∞!
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• an optimal adaptive algorithm with general proximal setup for non-smooth online stochastic convex opti-
mization problems with infinite variance [28] with the convergence in high-probability,

• optimal algorithms with euclidean proximal setup for smooth and non-smooth stochastic convex optimization
problems and variational inequalities with infinite variance [22, 21] with the convergence in high-probability,

• an optimal variance-adaptive algorithm with euclidean proximal setup for non-smooth stochastic (strongly)
convex optimization problems with infinite variance [16] with the convergence in high-probability.

Since the results listed above are strongly correlated with each other, in this paper, we depart from the works [26, 28]
to incorporate zero-order oracle into their algorithms. The developed technique, which reduces randomization caused
by the gradient-free nature of the oracle to the original stochasticity, allows generalizing the results of other papers
considered above in a similar manner. The idea of this reduction is not new and has already been used many times, see
e.g. [6, 11, 10, 23]. But, all these works are significantly based on the assumption of finite variance of the stochastic
noise. For the infinite noise variance setting, the technique requires significant generalizations, which we make in this
paper. We expect, that based on these results it is possible to obtain new results for zero-order algorithms in the smooth
setting and also in the setting of one-point feedback. Also, the described above results can be generalized to obtain
the same complexity bounds for non-smooth convex-concave saddle-point problems in terms of the duality gap used
in [4](rather than the gap used in [7]).3 We leave this for future work.

1.1 Notations and assumptions.

We use 〈x, y〉 = ∑d
k=1 xkyk to denote the inner product of x, y ∈ R

d. For p ∈ [1, 2] notation || · ||p is used for the

standard lp-norm, i.e. ||x||p =
(
∑d

k=1 |xk|p
)1/p

. The corresponding dual norm is ||y||q = maxx{〈x, y〉| ||x||p ≤ 1}.
Bp = {x ∈ R

d | ||x||p ≤ 1} is a p-ball with center at 0 and radius 1 and Sp = {x ∈ R
d | ||x||p = 1} is a p-sphere

with center at 0 and radius 2. Finally, or τ > 0 and convex set S ⊂ R
d we denote Sτ = S + τ · B2.

Assumption 1 (Convexity). ∃τ > 0, s.t. function f(x, ξ) is convex for any ξ on Sτ .

This assumption implies that f(x) is convex as well on S.

Assumption 2 (Lipschitz). ∃τ > 0, s.t. function f(x, ξ) is M2(ξ) Lipschitz continuous w.r.t. l2 norm, i.e., for all
x1, x2 ∈ Sτ

|f(x1, ξ)− f(x2, ξ)| ≤M2(ξ)||x1 − x2||2.
Moreover, ∃κ ∈ (0, 1] such that Eξ[M

1+κ
2 (ξ)] ≤M1+κ

2 .

Lemma 1.1. Assumption 2 implies that f(x) is M2 Lipschitz on S.

The proof can be found in Section 9 (Lemma 9.2).

Assumption 3 (Bounded adversarial noise). For all x ∈ S : |δ(x)| ≤ ∆ <∞.

2 Gradient-free setup.

In this section, we introduce the main objects and notions that are used to construct gradient-free algorithms. We refer
the reader to a review paper [8] devoted to gradient-free algorithms.

As it was mentioned above, in algorithms, we can use only noisy two-point zeroth-order oracle. For points x, y ∈ S
oracle gives

φ(x, ξ) = f(x, ξ) + δ(x), φ(y, ξ) = f(y, ξ) + δ(y)

with the same ξ.

In this work we consider only uniform sampling from unit Euclidean sphere, i.e. e ∼ Uniform({e : ‖e‖2 = 1}) def
=

U(S2).

First of all, we define the smoothed function

f̂τ (x) = E
e∼U(S2)[f(x+ τe)] (2)

that approximates the objective f . Further U(S2) in E
e∼U(S2) is omitted.

The next lemma gives estimates for the quality of the approximation. In contrast to f(x), f̂τ is smooth function and
has several useful properties. The proof of the next lemma can be found in [9, Theorem 2.1].

3See the full version of the paper [7].
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Lemma 2.1. Let Assumptions 1,2 hold. Then,

1. Function f̂τ (x) is convex, Lipschitz with constant M2 on S, and satisfies

sup
x∈S
|f̂τ (x)− f(x)| ≤ τM2.

2. Function f̂τ (x) is differentiable on S with the following gradient

∇f̂τ (x) = Ee

[
d

τ
f(x+ τe)e

]

.

The algorithms proposed below aim at minimizing the smooth approximation f̂τ (x). Given the above results, this will
also produce a good approximate minimizer of f(x) when τ is sufficiently small.

Following [23], the gradient of f̂τ (x) can be estimated by the following vector:

g(x, ξ, e) =
d

2τ
(φ(x + τe, ξ)− φ(x − τe, ξ))e (3)

for τ > 0.

Finally, the following lemma is important and gives a bound for the (1 + κ)-th moment of the estimated gradient for
functions with heavy-tailed noise satisfying Assumptions 1, 2 and 3.

Lemma 2.2. Under Assumptions 1, 2 and 3, for q ∈ [2,+∞), we have

Eξ,e[||g(x, ξ, e)||1+κ
q ] ≤ 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(
daq∆

τ

)1+κ

= σ1+κ
q ,

where aq
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}.

3 Robust Stochastic Mirror Descent.

In this section, we use some definitions and claims from [26].

Definition 3.1. Consider a differentiable convex function ψ : Rd → R, an exponent r ≥ 2, and a constant K > 0.
Then, ψ is called (K, r)-uniformly convex w.r.t. p-norm if, for any x, y ∈ R

d,

ψ(y)− ψ(x) − 〈∇ψ(x), y − x〉 ≥ K

r
||x− y||rp.

When r = 2 this definition is the same as the definition of K-strongly convex function. Examples of functions when
r > 2 can be obtained from next lemma.

Lemma 3.1. For κ ∈ (0, 1], q ∈ [1 + κ,∞) and p s.t. 1
q + 1

p = 1, we define

Kq
def
= 10max

{

1, (q − 1)
1+κ
2

}

. (4)

Then,

φp(x)
def
=

κ

1 + κ
||x||

1+κ
κ

p (5)

is
(

K
− 1

κ
q , 1+κ

κ

)

-uniformly convex w.r.t. p-norm.

Now we describe Stochastic Mirror Descent (SMD) algorithm. Let function Ψ : R
d → R be (K, r)-uniformly

convex w.r.t. the p-norm and continuously differentiable. We denote its Fenchel conjugate and its Bregman divergence
respectively as

Ψ∗(y) = sup
x∈Rd

{〈x, y〉 −Ψ(x)} and DΨ(y, x) = Ψ(y)−Ψ(x) − 〈∇Ψ(x), y − x〉.

The Stochastic Mirror Descent updates with stepsize ν and update vector gk+1 are as follows:

yk+1 = ∇(Ψ∗)(∇Ψ(xk)− νgk+1), xk+1 = argmin
x∈S

DΨ(x, yk+1). (6)

4
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Using the assumptions on the function Ψ, it can be proved that the updates are well defined and that (∇Ψ)−1 = ∇Ψ∗.
The map∇Ψ is called the transformation map.

For SMD Algorithm (6) with standard 1-strongly convex function Ψ, the convergence theory is well known and given,
e.g. in [3]. The next theorem generalizes these results and gives a convergence result of SMD with uniformly convex
Ψ.

Theorem 3.2. Consider some κ ∈ (0, 1], p ∈ [1,∞], q defined by the equality 1
q + 1

p = 1, and function Ψp which is
(
1, 1+κ

κ

)
-uniformly convex w.r.t. p norm. Then, for the SMD Algorithm outlined in (6) with the corresponding map

function∇Ψp, after T iterations with any gk ∈ R
d, k ∈ 1, T and starting point x0 = argmin

x∈S
Ψ(x) we have

1

T

T−1∑

k=0

〈gk+1, xk − x∗〉 ≤
κ

κ+ 1

R
1+κ
κ

Ψ

νT
+

νκ

1 + κ

1

T

T−1∑

k=0

||gk+1||1+κ
q , (7)

where R
1+κ
κ

Ψ

def
= 1+κ

κ sup
x∈S
{Ψp(x) −Ψp(x0)}.

The proof can be found in [26, Theorem 6]. Note, that when κ = 1 Ψ is a 1-strongly convex function.

4 Zeroth-Order Robust SMD Algorithm.

The main idea of the proposed Zeroth-Order Robust SMD algorithm is to combine the above Robust SMD Algorithm
(6) with the two-point gradient approximation (3). The former allows working with the heavy-tailed distribution of
the gradient approximation and the latter allows coping with the non-smoothness of the objective in (1).

Algorithm 1 Zeroth-Order Robust SMD Algorithm

1: procedure ZERO ROBUST SMD(Number of iterations T , stepsize ν, transformation function Ψp, smoothing
constant τ )

2: x0 ← argmin
x∈S

Ψp(x)

3: for k = 0, 1, . . . , T − 1 do
4: Sample ek ∼ Uniform({e : ‖e‖2 = 1}) independently
5: Sample ξk independently

6: Calculate gk+1 = d
2τ (φ(xk + τek, ξk)− φ(xk − τek, ξk))ek

7: Calculate yk+1 ← ∇(Ψ∗
p)(∇Ψp(xk)− νgk+1)

8: Calculate xk+1 ← argmin
x∈S

DΨp(x, yk+1)

9: end for

10: return xT ← 1
T

T−1∑

k=0

xk

11: end procedure

The next theorem gives optimal parameters for Algorithm 1 and its rate of convergence.

Theorem 4.1. Let function f satisfying Assumptions 1, 2, 3, q ∈ [1 + κ,∞], arbitrary number of iterations T ,

smoothing constant τ > 0 be given. Choose
(
1, 1+κ

κ

)
-uniformly convex w.r.t. the p-norm function Ψp(x) (e.g.,

Ψp(x) = K
1/κ
q φp(x), where Kq, φp are defined in (4) and (5) respectively). Set the stepsize ν =

R
1/κ
Ψ

σq
T− 1

1+κ with

σq given in Lemma 2.2, R
1+κ
κ

Ψ

def
= 1+κ

κ sup
x∈S
{Ψp(x) − Ψp(x0)} and D

1+κ
κ

Ψ

def
= 1+κ

κ sup
x,y∈S

DΨp(x, y). Let xT be a point

obtained by Algorithm 1 with the above parameters, and let x∗ ∈ argmin
x∈S

f(x).

1. Then

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +
√
d∆
τ DΨ +

RΨσq

T
κ

1+κ
, (8)

5
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where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. With optimal τ =

√
√
d∆DΨ+4RΨdaq∆T

−
κ

1+κ

2M2

Eξ,e[f(xT )]− f(x∗) ≤
√

8M2

√
d∆DΨ +

√

32M2RΨdaq∆

T
κ

(1+κ)

+
2
√
daqM2RΨ

T
κ

1+κ
. (9)

Main idea behind the proof.

Proof is based on Theorem 3.2 and inequality (7) from it

Eξ,e

[

1

T

T−1∑

k=0

〈gk+1, xk − x∗〉
]

︸ ︷︷ ︸

1

≤ Eξ,e

[

κ

κ+ 1

R
1+κ
κ

Ψ

νT

]

︸ ︷︷ ︸

2

+Eξ,e

[

νκ

1 + κ

1

T

T−1∑

k=0

||gk+1||1+κ
q

]

︸ ︷︷ ︸

3

. (10)

1 term in (10) due to convexity and approximation properties of f̂τ (x) in Lemma 2.1 and measure concentration
Lemma 9.6 can be bounded with

1 ≥ Eξ,e[f(xT )]− f(x∗)− 2M2τ −
√
d∆

τ
DΨ.

3 term in (10) can be bounded with Lemma 2.2

3 ≤ νκ

1 + κ
σ1+κ
q .

Combining bounds together, we get

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

R
1+κ
κ

Ψ

νT
+

νκ

1 + κ
σ1+κ
q .

Next we choose optimal stepsize ν =
R

1/κ
Ψ

σq
T− 1

1+κ , τ and finish the proof.

Full proof can be found in Section 10.

4.1 Zeroth-Order Robust SMD Algorithm discussion.

Maximum level of adversarial noise.

Let ε > 0 be a desired accuracy in terms of the function value, i.e., our goal is to guarantee Eξ,e[f(xT )]− f(x∗) ≤ ε.
According to Theorem 4.1 in the absence of the adversarial noise, i.e., when ∆ = 0, the iteration complexity to reach

accuracy ε is T =
(

RΨ

√
daqM2

ε

) 1+κ
κ

if τ is chosen sufficiently small. This complexity is optimal according to [19].

In order to obtain the same complexity in the case when ∆ > 0, we need to choose an appropriate value of τ and

ensure that ∆ is sufficiently small. Thus, the terms 2M2τ and
√
d∆
τ DΨ in (8) should be = ε. These conditions also

make negligible the τ -depending term in σq . Consequently,

when τ =
ε

M2
and ∆ ≤ ε2

M2

√
dDΨ

, we have T =

(

RΨ

√
daqM2

ε

) 1+κ
κ

.

Otherwise, when ∆ > ε2

M2

√
dDΨ

, the convergence rate deteriorates. As we see in (9), in this case, we can not guarantee

the accuracy smaller than
√

M2

√
d∆DΨ. Moreover, the iteration complexity to make the other terms smaller than ε

is T = O

(√
M2RΨdaq∆

ε

) 2(1+κ)
κ

, which is worse than O(ε−
κ+1
κ ) obtained when the error ∆ can be controlled.

6
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Dependency of the bounds on q and d.

In Algorithm 1, we can freely choose p ∈ [1, 2] and Ψ, which, depending on the compact convex set S, lead to different
values ofDΨ, RΨ, aq. It is desirable to reduce aq,DΨ simultaneously, which would allow us to increase maximal noise
level ∆ and converge faster without changing the rate according to (8). Yet, unlike the well-studied SMD algorithm
with strongly convex functions Ψ, there are only few examples of effective choices of uniformly-convex functions Ψ.

5 Zeroth-Order Clipping Algorithm.

In this section Õ(·) denotes log 1
δ factor.

An alternative approach for dealing with heavy-tailed noise distributions in stochastic optimization is based on the
gradient clipping technique, see for example [27]. Given a constant c > 0, the clipping operator applied to a vector g
is given by

ĝ =
g

||g|| min(||g||, c).

Clipped gradient has bunch of useful properties for further proofs.

Lemma 5.1. Let gk = g(xk, ξ, e). For c > 0 we define ĝ = g
||g||q min(||g||q, c).

1.

||ĝ − E[ĝ]||q ≤ 2c. (11)

2. If Eξ,e[||g(x, ξ, e)||1+κ
q ] ≤ σ1+κ

q , then

(a)

Eξ,e[||ĝ||2q ] ≤ σ1+κ
q c1−κ. (12)

(b)

Eξ,e[||ĝ − Eξ,e[ĝ]||2q] ≤ 4σ1+κ
q c1−κ. (13)

(c)

||Eξ,e[g]− Eξ,e[ĝ]||q ≤
σ1+κ
q

cκ
. (14)

If g is an unbiased stochastic gradient, then, on the one hand, ĝ is bounded, and, on the other hand, is a biased stochastic
gradient. Thus, the constant c allows playing with the trade-off between the faster convergence and bias ||E[ĝ − g]||
when c→ 0. The Algorithm implementing this idea in our setting is as follows.

Algorithm 2 Zeroth-Order Clipping Algorithm

1: procedure ZERO CLIP(Number of iterations T , stepsize ν, clipping constant c, transformation function Ψp,
smoothing constant τ )

2: x0 ← argmin
x∈S

Ψp(x)

3: for k = 0, 1, . . . , T − 1 do
4: Sample ek ∼ Uniform({e : ‖e‖2 = 1}) independently
5: Sample ξk independently

6: Calculate gk+1 = d
2τ (φ(xk + τek, ξk)− φ(xk − τek, ξk))ek

7: Calculate ĝk+1 = gk+1

||gk+1||q min(||gk+1||q, c)
8: Calculate yk+1 ← ∇(Ψ∗

p)(∇Ψp(xk)− νĝk+1)
9: Calculate xk+1 ← argmin

x∈S
DΨp(x, yk+1)

10: end for

11: return xT ← 1
T

T−1∑

k=0

xk

12: end procedure

The next result gives a convergence rate for the above algorithm in terms of the expectation of the suboptimality gap.

7
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Theorem 5.2. Let function f satisfying Assumptions 1, 2, 3, q ∈ [1 + κ,∞], arbitrary number of iterations T ,
smoothing constant τ > 0 be given. Choose 1-strongly convex w.r.t. the p-norm function Ψp(x). Set the step-

size ν =
(

R2
Ψ

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

with σq given in Lemma 2.2, R
1+κ
κ

Ψ

def
= 1+κ

κ sup
x∈S
{Ψp(x) − Ψp(x0)} and D

1+κ
κ

Ψ

def
=

1+κ
κ sup

x,y∈S
DΨp(x, y). After set the clipping constant c = 2κDΨ

(1−κ)ν . Let xT be a point obtained by Algorithm 2 with the

above parameters, and let x∗ ∈ argmin
x∈S

f(x).

1. Then,

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +
√
d∆
τ DΨ +

R
2κ

1+κ
Ψ D

1−κ
1+κ
Ψ σq

T
κ

1+κ
, (15)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. With optimal τ =

√
√
d∆DΨ+4R

2κ
1+κ
Ψ D

1−κ
1+κ
Ψ daq∆T

−
κ

1+κ

2M2

Eξ,e[f(xT )]− f(x∗) ≤
√

8M2

√
d∆DΨ +

√
√
√
√32M2R

2κ
1+κ

Ψ D
1−κ
1+κ

Ψ daq∆

T
κ

(1+κ)

+
2
√
daqM2R

2κ
1+κ

Ψ D
1−κ
1+κ

Ψ

T
κ

1+κ
. (16)

The following result is stronger and gives a convergence rate for the above algorithm in terms of the suboptimality gap
with high probability. Yet, this leads to an additional log 1

δ factor, where δ is the desired confidence level.

Theorem 5.3. Let function f satisfying Assumptions 1, 2, 3, q ∈ [1 + κ,∞], arbitrary number of iterations T ,
smoothing constant τ > 0 be given. Choose 1-strongly convex w.r.t. the p-norm function Ψp(x). Set the clipping

constant c = T
1

(1+κ) σq with σq given in Lemma 2.2. After set the stepsize ν = DΨ

c withD
1+κ
κ

Ψ

def
= 1+κ

κ sup
x,y∈S

DΨp(x, y).

Let xT be a point obtained by Algorithm 2 with the above parameters, and let x∗ ∈ argmin
x∈S

f(x).

1. Then, with probability at least 1− δ

f(xT )− f(x∗) ≤ 2M2τ +
∆
√
d

τ DΨ + Õ
(

DΨσq

T
κ

1+κ

)

, (17)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. With optimal τ = Õ

(√
√
d∆DΨ+4DΨdaq∆T

−
κ

1+κ

2M2

)

f(xT )− f(x∗) = Õ

(
√

8M2

√
d∆DΨ +

√

32M2DΨdaq∆

T
κ

(1+κ)

+
2
√
daqM2DΨ

T
κ

1+κ

)

. (18)

Main idea behind the proof in expectation.

Proof is based on Theorem 3.2 and inequality (7) for 1-strongly convex Ψp from it

Eξ,e

[

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉
]

︸ ︷︷ ︸

1

≤ Eξ,e

[
1

2

R2
Ψ

νT

]

+ Eξ,e

[

ν

2

1

T

T−1∑

k=0

||ĝk+1||2q

]

︸ ︷︷ ︸

2

. (19)
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1 term in (19) due to convexity and approximation properties of f̂τ (x) in Lemma 2.1, measure concentration Lemma
9.6 and clipped properties in Lemma 5.1 can be bounded with

1 ≥ Eξ,e[f(xT )]− f(x∗)− 2M2τ −
√
d∆

τ
DΨ −

DΨσ
1+κ
q

cκ
.

2 term in (19) can be bounded with Lemma 5.1

2 ≤ ν

2
c1−κσ1+κ

q .

Combining bounds together, we get

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
Ψ

νT
+
ν

2
σ1+κ
q c1−κ +

(

σ1+κ
q

cκ
+∆

√
d

τ

)

DΨ.

Next we choose optimal clipping constant c = 2κDΨ

(1−κ)ν , then optimal stepsize ν =
(

R2
Ψ

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

, τ and finish

the proof.

Full proof can be found in Section 11.

Main idea behind the proof in high probability. To bound variables with probability at least 1 − δ we use classic
Bernstein inequality for martingale differences (i.e. E[Xi|Xj<i] = 0, ∀i ≥ 1) sum (Lemma 12.1) and sum of squares
of random variables (Lemma 12.2).

Proof is based on Theorem 3.2 and inequality (7) for 1-strongly convex Ψp from it

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 ≤
1

2

R2
Ψ

νT
+
ν

2

1

T

T−1∑

k=0

||ĝk+1||2q
︸ ︷︷ ︸

1

. (20)

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 =
1

T

T−1∑

k=0

〈ĝk+1 − E|k[ĝk+1], xk − x∗〉
︸ ︷︷ ︸

2

+
1

T

T−1∑

k=0

〈E|k[ĝk+1]−∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

3

+
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

4

.

We bound 1 term in (20) using Lemma 12.2 and 2 as martingale difference using lemma 12.1.

1 = Õ

(

σ1+κ
q,κ c1−κ +

1

T
c2
)

.

2 = Õ




4cDΨ

T
+

√

4σ1+κ
q c1−κ

√
T

D2
Ψ



 .

Next we bound 4 due to convexity of f̂τ (x) in Lemma 2.1 and 3 due to measure concentration Lemma 9.6 and
clipped properties in Lemma 5.1

3 ≤
(

σ1+κ
q

cκ
+∆

√
d

τ

)

DΨ.

4 ≥ f(xT )− f(x∗)− 2M2τ.

9
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Combining bounds together, we get

f(xT )− f(x∗) ≤ 2M2τ +

(

σ1+κ
q

cκ
+∆

√
d

τ

)

DΨ +
1

2

R2
Ψ

νT

+Õ




ν

2
σ1+κ
q c1−κ +

ν

2

1

T
c2 +

4cDΨ

T
+

√

4σ1+κ
q c1−κ

√
T

D2
Ψ



 .

Next we choose stepsize ν = DΨ

c , then clipping constant c = T
1

(1+κ) σq, τ and finish the proof.

Full proof can be found in Section 12.

5.1 Zeroth-Order Clipping Algorithm discussion.

In this discussion, we focus on the high-probability bounds given in Theorem 5.3. The same discussion holds also for
the result of Theorem 5.2 up to omitting the log 1

δ factor.

Maximum level of adversarial noise.

Let ε be desired function value accuracy, i.e. with probability at least 1− δ : f(xT )− f(x∗) ≤ ε.

In Theorem 5.3 if there is no adversarial noise, i.e., ∆ = 0, then the convergence rate is T
κ

1+κ = Õ
(

RΨ

√
daqM2

ε

)

when τ → 0. This rate is optimal according to [19].

In order to keep the same rate when ∆ > 0, 2M2τ and
√
d∆
τ DΨ should be = ε. These conditions also make negligible

the τ -depending term in σq . Consequently,

when τ =
ε

M2
and ∆ ≤ ε2

M2

√
dDΨ

⇒ T
κ

1+κ = Õ

(

DΨ

√
daqM2

ε

)

.

Otherwise, when ∆ > ε2

M2

√
dDΨ

, the convergence rate deteriorates. Similarly to Robust SMD discussion we can’t

achieve accuracy less than
√

M2

√
d∆DΨ. And convergence rate to this bound is T

κ
1+κ = Õ

(
M2DΨdaq∆

ε2

)

, which is

twice worse than Õ
(

DΨ

√
daqM2

ε

)

.

Recommendations for choosing Ψ.

With Algorithm 2, we can freely choose p ∈ [1, 2] and Ψ, which, depending on the compact convex set S, will change
DΨ, RΨ, aq . The main task is to reduce aq,DΨ simultaneously, which will allow us to increase maximal noise ∆ and
converge faster without changing the pace according to (17).

Next, we discuss some standard sets S and transformation functions Ψ taken from [3]. The two main setups are given
by

1.

Ball setup: p = 2,Ψ(x) =
||x||22
2

, (21)

2.

Entropy setup: p = 1,Ψ(x) = (1 + γ)
d∑

i=1

(xi + γ/d) log(xi + γ/d), γ > 0. (22)

Introduce notation Bp = {x ∈ R
d : ||x||p ≤ 1} and ∆+

d = {x ∈ R
d : x ≥ 0,

∑

i xi ≥ 1}. By Lemma 2.2,

aq = d
1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}. The next tables collect the complexity T

κ
1+κ and maximum feasible noise

level ∆ up to O
(
log 1

δ

)
factor for each setup (row) and set (column).

From these tables, we see that for S = ∆+
d or B1, the Entropy setup is preferable, while the Ball setup allows

maximum feasible noise level ∆ to be up to
√
ln d greater. Meanwhile, for S = B2 or B∞, the Ball setup is better in

terms of both convergence rate and noise robustness.

10
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Table 1: T
κ

1+κ up to O
(
log 1

δ

)
factor for Algorithm 2

∆+
d B1 B2 B∞

Ball
√
dM2/ε

√
dM2/ε

√
dM2/ε dM2/ε

Entropy ln dM2/ε ln dM2/ε
√
d ln dM2/ε d ln dM2/ε

Table 2: Maximum feasible noise level ∆ up to O (1) factor for Algorithm 2

∆+
d B1 B2 B∞

Ball ε2/(
√
dM2) ε2/(

√
dM2) ε2/(

√
dM2) ε2/(dM2)

Entropy ε2/(
√
d ln dM2) ε2/(

√
d ln dM2) ε2/(d

√
ln dM2) ε2/(

√
d3 ln dM2)

Zeroth-Order Clipping and Robust SMD Algorithms comparison. Although both convergence Theorems 4.1 and
5.2,5.3 for Algorithms 1, 2 respectively give the same estimates, the Clipping Algorithm 2 is much more flexible due
to the choice of transformation functions Ψ and ability to effectively work with different sets. Also, Algorithm 2 has
high-probability convergence rate guarantees. However, in practice, the convergence of it dramatically depends on the
clipping constant c, which must be carefully chosen, along with stepsize ν and smoothing constant τ .

6 Zeroth-order Algorithms with Restarts.

In this section Õ(·) denotes log d factor unless otherwise said.

For functions with r-growth condition (for more information see [24]) there is restart technique developed in [14] for
algorithms acceleration.

Assumption 4. f is r-growth function if there is r ≥ 1 and µr ≥ 0 such that for all x
µr

2
||x− x∗||rp ≤ f(x)− f(x∗),

where x∗ is problem solution.

In particular, µ-strong convex w.r.t. the p-norm functions are 2-growth. Restart technique will work if ∆ small enough
to keep optimality of Algorithms 1 and 2.

Algorithm 3 IZ Restart Algorithm

1: procedure IZ RESTART(Algorithm type A, number of restarts N , sequence of number of steps {Tk}Nk=1,

sequence of smoothing constants {τk}Nk=1, sequence of stepsizes {νk}Nk=1, sequence of clipping constants

{ck}Nk=1(if necessary), transformation function Ψp)
2: x0 ← argmin

x∈S
Ψp(x) or randomly

3: for k = 0, 1, . . . , N do
4: Set parameters νk, (ck),Ψp, τk of the AlgorithmA
5: Compute Tk iterations of the AlgorithmA with starting point x0 and get xfinal
6: x0 ← xfinal
7: end for
8: return xfinal
9: end procedure

Theorem 6.1. Let function f satisfies Assumptions 1, 2. Next, let ε be fixed accuracy and r-growth Assumption 4 is
held with r ≥ 1+κ

κ .

First, calculate R0
def
= supx,y∈S

(
1+κ
κ DΨp(x, y)

) κ
1+κ and define Rk = R0/2k.

Set number of restarts N = Õ
(

1
r log2

(
µrR

r
0

2ε

))

, sequence of number of steps {Tk}Nk=1 =
{

Õ

([
σq2

(1+r)

µrR
r−1
k

] 1+κ
κ

)}N

k=1

, sequence of smoothing constants {τk}Nk=1 =

{

σqRk

M2T
κ

1+κ
k

}N

k=1

and sequence of

stepsizes {νk}Nk=1 =

{

R
1/κ
k

σq
T

− 1
1+κ

k

}N

k=1

, where σq is from Lemma 2.2.

11
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Moreover, Assumption 3 is held with

∆k = Õ

(

µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)

, 1 ≤ k ≤ N.

If xfinal is final output of Algorithm 3 with basic Robust SMD Algorithm 1 these parameters then

Eξ,e[f(xT )]− f(x∗) ≤ ε,

total number of Algorithms steps is

T = Õ





[

aqM2

√
d

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ



 , aq
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√

2q − 1},

on the last restart maximum ∆ threshold is

∆N = Õ

(

µ
1/r
r

M2

√
d
ε(2−1/r)

)

.

Theorem 6.2. 4 Let function f satisfies Assumptions 1, 2. Next, let ε be fixed accuracy and r-growth Assumption 4 is
held with r ≥ 2 for in expectation estimate or r ≥ 1 for in high probability estimate.

First, calculate R0
def
= supx,y∈S

(
2DΨp(x, y)

) 1
2 and define Rk = R0/2k.

Set number of restarts N = Õ
(

1
r log2

(
µrR

r
0

2ε

))

, sequence of number of steps {Tk}Nk=1 =
{

Õ

([
σq2

(1+r)

µrR
r−1
k

] 1+κ
κ

)}N

k=1

, sequence of smoothing constants {τk}Nk=1 =

{

σqRk

M2T
κ

1+κ
k

}N

k=1

, sequence of clip-

ping constants {ck}Nk=1 =

{

T
1

(1+κ)

k σq

}N

k=1

and sequence of stepsizes {νk}Nk=1 =
{

Rk

ck

}N

k=1
, where σq is from

Lemma 2.2.

Moreover, Assumption 3 is held with

∆k = Õ

(

µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)

, 1 ≤ k ≤ N.

If xfinal is final output of Algorithm 3 with basic Clipping SMD Algorithm 2 and these parameters then

Eξ,e[f(xT )]− f(x∗) ≤ ε,

or with probability at least 1− δ
f(xT )− f(x∗) ≤ ε.

Also total number of Algorithms steps is

T = Õ





[

aqM2

√
d

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ



 , aq
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√

2q − 1},

on the last restart maximum ∆ threshold is

∆N = Õ

(

µ
1/r
r

M2

√
d
ε(2−1/r)

)

.

4In this theorem Õ(·) denotes log d factor for in expectation bounds and log d, log 1

δ
factors for in high probability bounds.

More explicit formulas are provided in proof.
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6.1 Restart Algorithm discussion.

Maximum level of adversarial noise.

Unlike Robust and Clipping SMD Algorithms, Restart Algorithm and r-growth Assumption guarantees a higher max-
imum threshold for ∆

Algorithm 1 or 2 : ∆ =
ε2

M2

√
dDΨ

,

Algorithm 3 : ∆ = Õ

(

µ
1/r
r

M2

√
d
ε(2−1/r)

)

.

Moreover, this threshold doesn’t depend of set S and 1√
d

factor is the best(see Table 5.1). Also, in the beginning ∆k

can be much bigger and start to decrease as ∆k = ∆1

2k(2r−1) only on later restarts in order to achieve necessary accuracy.

Lower r ensures higher threshold.

q, d, ε dependencies.

Again unlike Robust and Clipping SMD Algorithms, Restart Algorithm and r-growth Assumption guarantees a faster
convergence rate depending on ε. Below we give in expectation estimates

Algorithm 1 or 2 : T = O





[

DΨ

√
daqM2

ε

] 1+κ
κ



 ,

Algorithm 3 : T = Õ





[

aqM2

√
d

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ



 .

Furthermore, in Restart Algorithm total number of iteration depends only on aq and maximum ∆ threshold doesn’t
depend on q,S at all. Thus, it makes sense to take Entropy setup defined in (22) with basic Clipping Algorithm to
lower aq and leave only log d factor in T estimate.

7 Conclusion.

In this paper, we proposed and theoretically studied new zero-order algorithms for solving non-smooth optimization
problems on a convex compact set with heavy-tailed stochastic noise (random noise has (1 + κ)-th bounded moment)
and adversarial noise in the function value. We believe that there are several possible modifications that can improve
convergence results in future studies.

1. A different sampling strategy for estimating gk. E.g., one can use sampling on the sphere {e : ||e||1 = 1}
considered in [1], [17].

2. Additional assumptions on the properties of adversarial noise. For example, Lipschitz continuity in the spirit
of Assumption 3 in [7]:

|δ(x1)− δ(x2)| ≤M ||x1 − x2||2, ∀x1, x2 ∈ S.

3. Adaptive strategies and heuristic methods for selecting the algorithm’s input parameters such as stepsize ν,
smoothing constant τ , etc. These constants are difficult to estimate in practice, and our algorithms rely on the
accuracy of their evaluation.

We believe that our technique is rather general and allows one to use other stochastic gradient methods to obtain new
complexity results for zero-order algorithms.

8 Acknowledgments.

The work of A. Gasnikov was supported by a grant for research centers in the field of artificial intelligence, provided by
the Analytical Center for the Government of the Russian Federation in accordance with the subsidy agreement (agree-
ment identifier 000000D730321P5Q0002 ) and the agreement with the Ivannikov Institute for System Programming
of the Russian Academy of Sciences dated November 2, 2021 No. 70-2021-00142.

13



Gradient Free Methods for Non-Smooth Convex Optimization with Heavy Tails on Convex CompactA PREPRINT

References

[1] Arya Akhavan, Evgenii Chzhen, Massimiliano Pontil, and Alexandre B Tsybakov. A gradient estimator via
l1-randomization for online zero-order optimization with two point feedback. arXiv preprint arXiv:2205.13910,
2022.

[2] Anastasia Sergeevna Bayandina, Alexander V Gasnikov, and Anastasia A Lagunovskaya. Gradient-free two-
point methods for solving stochastic nonsmooth convex optimization problems with small non-random noises.
Automation and Remote Control, 79:1399–1408, 2018.

[3] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms, and
engineering applications. SIAM, 2001.

[4] Aleksandr Beznosikov, Abdurakhmon Sadiev, and Alexander Gasnikov. Gradient-free methods with inexact or-
acle for convex-concave stochastic saddle-point problem. In Mathematical Optimization Theory and Operations
Research: 19th International Conference, MOTOR 2020, Novosibirsk, Russia, July 6–10, 2020, Revised Selected
Papers 19, pages 105–119. Springer, 2020.

[5] Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to derivative-free optimization. SIAM,
2009.

[6] John C Duchi, Michael I Jordan, Martin J Wainwright, and Andre Wibisono. Optimal rates for zero-order convex
optimization: The power of two function evaluations. IEEE Transactions on Information Theory, 61(5):2788–
2806, 2015.

[7] Darina Dvinskikh, Vladislav Tominin, Yaroslav Tominin, and Alexander Gasnikov. Gradient-free optimization
for non-smooth minimax problems with maximum value of adversarial noise. arXiv preprint arXiv:2202.06114,
2022.

[8] Alexander Gasnikov, Darina Dvinskikh, Pavel Dvurechensky, Eduard Gorbunov, Aleksander Beznosikov,
and Alexander Lobanov. Randomized gradient-free methods in convex optimization. arXiv preprint
arXiv:2211.13566, 2022.

[9] Alexander Gasnikov, Anton Novitskii, Vasilii Novitskii, Farshed Abdukhakimov, Dmitry Kamzolov, Aleksandr
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9 Proofs of Lemmas.

9.1 General results.

Lemma 9.1. 1. For all x, y ∈ R
d′

and κ ∈ (0, 1]:

||x− y||1+κ
q ≤ 2κ||x||1+κ

q + 2κ||y||1+κ
q , (23)

2.
∀x, y ≥ 0, κ ∈ [0, 1] : (x+ y)κ ≤ xκ + yκ. (24)

Proof. • By Jensen’s inequality for convex || · ||1+κ
q with 1 + κ > 1

||x− y||1+κ
q = 21+κ||x/2− y/2||1+κ

q ≤ 2κ||x||1+κ
q + 2κ||y||1+κ

q .

• Proposition 9 from [26].

Lemma 9.2. Assumption 2 implies that f(x) is M2 Lipschitz on S.

Proof. For all x, y ∈ S

|f(x)− f(y)| = |E[f(x, ξ) − f(y, ξ)]|
Jensen’s inq

≤ E[|f(x, ξ) − f(y, ξ)|]

≤ E[M2]||x − y||2
Jensen’s inq

≤ E[M
(1+κ)
2 ]

1
1+κ ||x− y||2 ≤M2||x− y||2. (25)

9.2 Smoothing.

Lemma 9.3. Let f(x) be M2 Lipschitz continuous function w.r.t || · ||2. If e is random and uniformly distributed on
the Euclidean sphere and κ ∈ (0, 1], then

Ee

[

(f(e)− Ee[f(e)])
2(1+κ)

]

≤
(
bM2

2

d

)1+κ

, b =
1√
2
.

Proof. A standard result of the measure concentration on the Euclidean unit sphere implies that ∀t > 0

Pr (|f(e)− E[f(e)]| > t) ≤ 2 exp(−b′dt2/M2
2 ), b′ = 2 (26)

(see the proof of Proposition 2.10 and Corollary 2.6 in [15]). Therefore,

Ee

[

(f(e)− Ee[f(e)])
2(1+κ)

]

=

∞∫

t=0

Pr
(

|f(e)− E[f(e)]|2(1+κ) > t
)

dt =

∞∫

t=0

Pr
(

|f(e)− E[f(e)]| > t
1

2(1+κ)

)

dt

≤
∞∫

t=0

2 exp
(

−b′dt 1
(1+κ) /M2

2

)

dt ≤
(
bM2

2

d

)1+κ

.

The following lemma gives some useful facts about the measure concentration on the Euclidean unit sphere.

Lemma 9.4. For q ≥ 2, κ ∈ (0, 1]

Ee

[

||e||2(1+κ)
q

]

≤ a2(1+κ)
q

def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√

2q − 1}.
.
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This Lemma is generalization of Lemma from [13] for κ < 1.

Proof. We use Lemma 1 auxiliary Lemma from Theorem 1 from [13].

1. Let ek be k-th component of e

E [|e2|q] ≤
(
q − 1

d

) q
2

, q ≥ 2. (27)

2. For any x ∈ R
d and q1 ≥ q2

||x||q1 ≤ ||x||q2 . (28)

Then

E

[

||e||2(1+κ)
q

]

= E










(
d∑

k=1

|ek|q
)2




1+κ
q




 .

Due to Jensen’s inequality and equally distributed ek

E










(
d∑

k=1

|ek|q
)2




1+κ
q




 ≤



E





(
d∑

k=1

|ek|q
)2








1+κ
q

.

We use fact that ∀xk ≥ 0, k = 1, d

d
d∑

k=1

x2k ≥
(

d∑

k=1

xk

)2

.

Therefore,


E





(
d∑

k=1

|ek|q
)2








1+κ
q

≤
(

dE

[
d∑

k=1

|ek|2q
]) 1+κ

q

= (d2E[|e2|2q])
1+κ
q .

Using (27) with 2q

(d2E[|e2|2q])
1+κ
q ≤ d

2(1+κ)
q

(
2q − 1

d

)1+κ

=
(

d
2
q−1(2q − 1)

)1+κ

.

By definition of aq

aq =

√

d
2
q−1(2q − 1).

With fixed d and large q more precise upper bound can be obtained.

We define function hd(q) and find its minimum with fixed d.

hd(q) = ln

(√

d
2
q−1(2q − 1)

)

=

(
1

q
− 1

2

)

ln(d) +
1

2
ln(2q − 1),

dhd(q)

dq
=
− ln(d)

q2
+

1

2q − 1
= 0,

q2 − 2 ln(d)q + ln(d) = 0.

When d ≥ 3 minimal point q0 lies in [2,+∞)

q0 = (ln d)

(

1 +

√

1− 1

ln d

)

, ln d ≤ q0 ≤ 2 ln d.

When q ≥ q0 from (28)

aq < aq0 =

√

d
2
q 0

−1(2q0 − 1) ≤ d 1
ln d− 1

2

√
4 lnd− 1

=
e√
d

√
4 lnd− 1 ≤ d 1

q− 1
2

√
32 lnd− 8.
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Consequently,

aq = d
1
q− 1

2 min{
√
32 lnd− 8,

√

2q − 1}.

Lemma 9.5. For the random vector e uniformly distributed on the Euclidean sphere {e ∈ R
d : ||e||2 = 1} and for

any r ∈ R
d, we have

Ee[|〈e, r〉|] ≤
||r||2√
d
.

Lemma 9.6. Let g(x, ξ, e) be defined in (3) and f̂τ (x) be defined in (2). Then, the following holds under Assumption
3:

Eξ,e[〈g(x, ξ, e), r〉] ≥ 〈∇f̂τ (x), r〉 −
d∆

τ
Ee[|〈e, r〉|]

for any r ∈ R
d.

Proof. By definition

g(x, ξ, e) =
d

2τ
(f(x+ τe, ξ) + δ(x+ τe)− f(x− τe, ξ)− δ(x − τe))e.

Then

Eξ,e[〈g(x, ξ, e), r〉] =
d

2τ
Eξ,e[〈(f(x + τe, ξ)− f(x− τe, ξ))e, r〉] + d

2τ
Eξ,e[〈(δ(x + τe)− δ(x− τe))e, r〉].

In the first term we use fact that e symmetrically distributed

d

2τ
Eξ,e[〈(f(x + τe, ξ)− f(x− τe, ξ))e, r〉]

=
d

τ
Eξ,e[〈f(x+ τe, ξ)e, r〉]

=
d

τ
Ee[〈Eξ[f(x+ τe, ξ)]e, r〉] = d

τ
〈Ee[f(x+ τe)e], r〉.

Using Lemma 2.1
d

τ
〈Ee[f(x+ τe)e], r〉 = 〈∇f̂τ (x), r〉.

In the second term we use Assumption 3

d

2τ
Eξ,e[〈(δ(x + τe)− δ(x− τe))e, r〉] ≥ −d∆

τ
Ee[|〈e, r〉|].

Adding two terms together we get necessary result.

Lemma 9.7. Under Assumptions 1, 2 and 3, for q ∈ [1,+∞), we have

Eξ,e[||g(x, ξ, e)||1+κ
q ] ≤ 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(
daq∆

τ

)1+κ

= σ1+κ
q ,

where aq
def
= d

1
q− 1

2 min{
√
32 lnd− 8,

√
2q − 1}.

Proof.

Eξ,e[||g(x, ξ, e)||1+κ
q ] = Eξ,e

[

|| d
2τ

(φ(x + τe, ξ)− φ(x − τe, ξ))e||1+κ
q

]

≤
(
d

2τ

)1+κ

Eξ,e

[
||e||1+κ

q |(f(x+ τe, ξ)− f(x− τe, ξ) + δ(x+ τe) − δ(x− τe))|1+κ
]

≤ 2κ
(
d

2τ

)1+κ

Eξ,e

[
||e||1+κ

q |f(x+ τe, ξ)− f(x− τe, ξ)|1+κ
]

(29)

+ 2κ
(
d

2τ

)1+κ

Eξ,e

[
||e||1+κ

q |δ(x+ τe) − δ(x− τe))|1+κ
]
. (30)
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Lets deal with (29) term. For all α(ξ)

Eξ,e

[
||e||1+κ

q |f(x+ τe, ξ)− f(x− τe, ξ)|1+κ
]

≤ Eξ,e

[
||e||1+κ

q |(f(x+ τe, ξ)− α)− (f(x − τe, ξ)− α)|1+κ
]

(23)

≤ 2κEξ,e

[
||e||1+κ

q |f(x+ τe, ξ) − α|1+κ
]
+ 2κEξ,e

[
||e||1+κ

q |f(x− τe, ξ)− α|1+κ
]
. (31)

Distribution of e is symmetric,

(31) ≤ 2κ+1
Eξ,e

[
||e||1+κ

q |f(x+ τe, ξ)− α|1+κ
]
. (32)

Let α(ξ) = Ee[f(x+ τe, ξ)], then because of Cauchy-Schwartz inequality and conditional expectation properties,

(32) ≤ 2κ+1
Eξ,e

[
||e||1+κ

q |f(x+ τe, ξ) − α|1+κ
]
= 2κ+1

Eξ

[
Ee

[
||e||1+κ

q |f(x+ τe, ξ) − α|1+κ
]]

≤ 2κ+1
Eξ

[√

Ee

[

||e||2(1+κ)
q

]

Ee

[
|f(x+ τe, ξ) − Ee[f(x+ τe, ξ)]|2(1+κ)

]

]

. (33)

Next, we use Ee

[

||e||2(1+κ)
q

]

≤ a2(1+κ)
q and Lemma 9.3 for f(x+ τe, ξ) with fixed ξ and Lipschitz constantM2(ξ)τ ,

(33) ≤ 2κ+1a1+κ
q Eξ





√
(
2−1/2τ2M2

2 (ξ)

d

)1+κ




= 2κ+1a1+κ
q

(
τ22−1/2

d

)(1+κ)/2

Eξ

[
M1+κ

2 (ξ)
]
≤ 2κ+1

(√

2−1/2

d
aqM2τ

)1+κ

. (34)

Lets deal with (30) term. We use Cauchy-Schwartz inequality, Assumption 3 and Ee

[

||e||2(1+κ)
q

]

≤ a
2(1+κ)
q by

definition

Eξ,e

[
||e||1+κ

q |δ(x+ τe)− δ(x − τe))|1+κ
]

≤
√

Ee

[

||e||2(1+κ)
q

]

Ee

[
|δ(x+ τe)− δ(x− τe))|2(1+κ)

]

≤ a1+κ
q 21+κ∆1+κ = (2aq∆)1+κ. (35)

Adding(34) and (35) we get final result

Eξ,e[〈g(x, ξ, e), r〉] ≤
1

2

(
d

τ

)1+κ


21+κ

(√

2−1/2

d
aqτM2

)1+κ

+ (2aq∆)1+κ



 =

= 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(
daq∆

τ

)1+κ

.

10 Proof of Zeroth-Order Robust SMD Algorithm in Expectation Convergence.

Theorem 10.1. Let function f satisfying Assumptions 1, 2, 3, q ∈ [1 + κ,∞], arbitrary number of iterations T ,

smoothing constant τ > 0 be given. Choose
(
1, 1+κ

κ

)
-uniformly convex w.r.t. the p-norm function Ψp(x) (e.g.,

Ψp(x) = K
1/κ
q φp(x), where Kq, φp are defined in (4) and (5) respectively). Set the stepsize ν =

R
1/κ
Ψ

σq
T− 1

1+κ with

σq given in Lemma 2.2, R
1+κ
κ

Ψ

def
= 1+κ

κ sup
x∈S
{Ψp(x) − Ψp(x0)} and D

1+κ
κ

Ψ

def
= 1+κ

κ sup
x,y∈S

DΨp(x, y). Let xT be a point

obtained by Algorithm 1 with the above parameters, and let x∗ ∈ argmin
x∈S

f(x).
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1. Then

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

RΨσq

T
κ

1+κ
, (36)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. With optimal τ =

√
√
d∆DΨ+4RΨdaq∆T

−
κ

1+κ

2M2

Eξ,e[f(xT )]− f(x∗) ≤
√

8M2

√
d∆DΨ +

√

32M2RΨdaq∆

T
κ

(1+κ)

+
2
√
daqM2RΨ

T
κ

1+κ
. (37)

Proof. By definition x∗ ∈ argmin
x∈S

f(x).

For T iterations we use 3.2 Theorem of Convergence for gk(xk, ξk, ek)

1

T

T−1∑

k=0

〈gk+1, xk − x∗〉 ≤
κ

κ+ 1

R
1+κ
κ

Ψ

νT
+

νκ

1 + κ

1

T

T−1∑

k=0

||gk+1||1+κ
q .

Take expectation Eξ,e from both sides

1

T

T−1∑

k=0

Eξ,e [〈gk+1, xk − x∗〉] ≤
κ

κ+ 1

R
1+κ
κ

Ψ

νT
+

νκ

1 + κ

1

T

T−1∑

k=0

Eξ,e

[
||gk+1||1+κ

q

]
. (38)

Use Lemma 9.7 for the right part of inequality (38)

νκ

1 + κ

1

T

T−1∑

k=0

Eξ,e

[
||gk+1||1+κ

q

]
≤ νκ

1 + κ

1

T

T−1∑

k=0

σ1+κ
q ≤ νκ

1 + κ
σ1+κ
q . (39)

Use Lemma 9.6 for the left part of inequality (38)

1

T

T−1∑

k=0

Eξ,e [〈gk+1, xk − x∗〉] ≥
1

T

T−1∑

k=0

E≤k

[
E|≤k[〈gk+1, xk − x∗〉]

]

≥ 1

T

T−1∑

k=0

E≤k[〈∇f̂τ (xk), xk − x∗〉]−
1

T

T−1∑

k=0

d∆

τ
E≤kEe|≤k[|〈e, xk − x∗〉|]. (40)

1. For the first term of (40) we use Lemma 2.1 and convexity of f̂τ (x)

1

T

T−1∑

k=0

E|≤k[〈∇f̂τ (xk), xk − x∗〉] ≥
1

T

T−1∑

k=0

(

E|≤k[f̂τ (xk)]− f̂τ (x∗)
)

.

Define xT = 1
T

T−1∑

k=0

xk and use Jensen’s inequality

1

T

T−1∑

k=0

(

E|≤k[f̂τ (xk)]− f̂τ (x∗)
)

≥ Eξ,e[f̂τ (xT )]− f̂τ (x∗).

Use approximation property from Lemma 2.1

Eξ,e[f̂τ (xT )]− f̂τ (x∗) ≥ Eξ,e[f(xT )]− f(x∗)− 2M2τ. (41)
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2. For the second term of (40) we use Lemma 9.5

−d∆
Tτ

T−1∑

k=0

E
e|≤k[|〈e, xk − x∗〉|]

≥ −d∆
Tτ

T−1∑

k=0

1√
d
||xk − x∗||2

p≤2

≥ −d∆
Tτ

T−1∑

k=0

1√
d
||xk − x∗||p. (42)

Let’s notice that Ψp is
(
1, 1+κ

κ

)
-uniformly convex function w.r.t. p norm. Then by definition

||xk − x∗||p ≤
(
1 + κ

κ
DΨp(xk, x

∗)

) κ
1+κ

≤ sup
x,y∈S

(
1 + κ

κ
DΨq∗

(x, y)

) κ
1+κ

= DΨ

Hence,

(42) ≥ −d∆
Tτ

T−1∑

k=0

1√
d
||xk − x∗||p ≥ −

√
d∆

τ
DΨ. (43)

We combine (39), (41), (43) together

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

R
1+κ
κ

Ψ

νT
+

νκ

1 + κ
σ1+κ
q . (44)

By choosing optimal ν =
R

1/κ
Ψ

σq
T− 1

1+κ we get

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ + 2RΨσqT

− κ
1+κ .

Finally, we bound σq with Lemma 9.1

σq ≤ 2

( √
d

21/4
aqM2

)

+ 2

(
daq∆

τ

)

.

And set optimal τ

τ =

√√
d∆DΨ + 4RΨdaq∆T

− κ
1+κ

2M2
.

11 Proof of Clipping Algorithm in Expectation Convergence.

First, we prove some useful statements about clipped gradient vector properties. Similar proof can be found in [28].

Lemma 11.1. Let gk = g(xk, ξ, e). For c > 0 we define ĝ = g
||g||q min(||g||q, c).

1.
||ĝ − E[ĝ]||q ≤ 2c. (45)

2. If Eξ,e[||g(x, ξ, e)||1+κ
q ] ≤ σ1+κ

q , then

(a)
Eξ,e[||ĝ||2q ] ≤ σ1+κ

q c1−κ. (46)

(b)
Eξ,e[||ĝ − Eξ,e[ĝ]||2q] ≤ 4σ1+κ

q c1−κ. (47)
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(c)

||Eξ,e[g]− Eξ,e[ĝ]||q ≤
σ1+κ
q

cκ
. (48)

Proof. 1. By Jensen’s inequality for || · ||q and definition of ĝ,

||ĝ − E[ĝ]||q ≤ ||ĝ||q + ||E[ĝ]||q

≤
∣
∣
∣
∣

∣
∣
∣
∣

g

||g||q
min(||g||q, c)

∣
∣
∣
∣

∣
∣
∣
∣
q

+ E

[∣
∣
∣
∣

∣
∣
∣
∣

g

||g||q
min(||g||q, c)

∣
∣
∣
∣

∣
∣
∣
∣
q

]

= min(||g||q, c) + E[min(||g||q, c)]
≤ c+ c = 2c. (49)

2. (a) Considering Eξ,e[||g(x, ξ, e)||1+κ
q ] ≤ σ1+κ

q and ||ĝ||q ≤ c get

Eξ,e[||ĝ||1+κ
q ||ĝ||1−κ

q ] ≤ σ1+κ
q c1−κ.

(b) By Jensen’s inequality for || · ||q

Eξ,e[||ĝ − Eξ,e[ĝ]||2q] ≤ 2Eξ,e[||ĝ||2q + 2||Eξ,e[ĝ]||2q]
≤ 2Eξ,e[||ĝ||2q] + 2Eξ,e[||ĝ||2q]]

(46)

≤ 2σ1+κ
q,κ c1−κ + 2σ1+κ

q,κ c1−κ ≤ 4σ1+κ
q,κ c1−κ. (50)

(c) Due to convexity of norm function and Jensen’s inequality

||Eξ,e[g]− Eξ,e[ĝ]||q ≤ Eξ,e[||g − ĝ||q] ≤ Eξ,e[||g||q1{||g||q>c}].

From ||g||1+κ
q 1{||g||q>c} ≥ ||g||qcκ1{||g||q>c} follows

Eξ,e[||g||q1{||g||q>c}] ≤ Eξ,e[||g||q1{||g||q>c}] ≤
σ1+κ
q,κ

cκ
. (51)

Theorem 11.2. Let function f satisfying Assumptions 1, 2, 3, q ∈ [1 + κ,∞], arbitrary number of iterations T ,
smoothing constant τ > 0 be given. Choose 1-strongly convex w.r.t. the p-norm function Ψp(x). Set the step-

size ν =
(

R2
Ψ

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

with σq given in Lemma 2.2, R
1+κ
κ

Ψ

def
= 1+κ

κ sup
x∈S
{Ψp(x) − Ψp(x0)} and D

1+κ
κ

Ψ

def
=

1+κ
κ sup

x,y∈S
DΨp(x, y). After set the clipping constant c = 2κDΨ

(1−κ)ν . Let xT be a point obtained by Algorithm 2 with the

above parameters, and let x∗ ∈ argmin
x∈S

f(x).

1. Then,

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ +

R
2κ

1+κ

Ψ D
1−κ
1+κ

Ψ σq

T
κ

1+κ
, (52)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.

2. With optimal τ =

√
√
d∆DΨ+4R

2κ
1+κ
Ψ D

1−κ
1+κ
Ψ daq∆T

−
κ

1+κ

2M2

Eξ,e[f(xT )]− f(x∗) ≤
√

8M2

√
d∆DΨ +

√
√
√
√32M2R

2κ
1+κ

Ψ D
1−κ
1+κ

Ψ daq∆

T
κ

(1+κ)

+
2
√
daqM2R

2κ
1+κ

Ψ D
1−κ
1+κ

Ψ

T
κ

1+κ
. (53)

22



Gradient Free Methods for Non-Smooth Convex Optimization with Heavy Tails on Convex CompactA PREPRINT

Proof. Lets notice from proof of the Theorem 4.1 for the first term of (40) that for any xk

f(xT )− f(x∗) ≤
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉+ 2M2τ. (54)

We define functions

lk(x)
def
= 〈E|≤k[ĝk+1], x− x∗〉.

Note that lk(x) is convex for any k and ∇lk(x) = E|≤k[ĝk+1]. Therefore sampled estimation gradient is unbiased.
With them we can rewrite (54)

1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉+ 2M2τ

=
1

T

T−1∑

k=0

(

〈∇f̂τ (xk)− E|≤k[ĝk+1], xk − x∗〉
)

︸ ︷︷ ︸

D

+
1

T

T−1∑

k=0

(lk(xk)− lk(x∗))
︸ ︷︷ ︸

E

+2M2τ. (55)

We bound D term by Lemma 11.1

Eξ,e

[

1

T

T−1∑

k=0

(

〈∇f̂τ (xk)− E|≤k[ĝk+1], xk − x∗〉
)
]

≤ Eξ,e

[

1

T

T−1∑

k=0

(

〈∇f̂τ (xk)− E|≤k[gk+1], xk − x∗〉+ 〈E|≤k[gk+1]− E|≤k[ĝk+1], xk − x∗〉
)
]

. (56)

To bound the first term in (56) let’s notice that Ψp is (1, 2)-uniformly convex function w.r.t. p norm. Then by definition

||xk − x∗||p ≤
(
2DΨp(xk, x

∗)
) 1

2 ≤ sup
x,y∈S

(
2DΨp(x, y)

) 1
2 = DΨ.

Hence, we estimate ||xk − u||p ≤ DΨ, ∀u ∈ S.
By Cauchy–Schwarz inequality

Eξ,e

[

1

T

T−1∑

k=0

(
〈E|≤k[gk+1]− E|≤k[ĝk+1], xk − x∗〉

)

]

≤ 1

T

T−1∑

k=0

(
E≤kE|≤k

[
||E|≤k[gk+1]− E|≤k[ĝk+1]||q||xk − x∗||p

]) (48)

≤ DΨ

σ1+κ
q

cκ
. (57)

To bound the second term in (56) we use Lemma 9.6 and Lemma 9.5

Eξ,e

[

1

T

T−1∑

k=0

(

〈∇f̂τ (xk)− E|≤k[gk+1], xk − x∗〉
)
]

≤ 1

T

T−1∑

k=0

d∆

τ
E<kEe|<k[|〈e, xk − x∗〉|]

≤ 1

T

T−1∑

k=0

d∆

τ

1√
d
E<k[||xk − x∗||2]

p≤2

≤ 1

T

T−1∑

k=0

d∆

τ

1√
d
E<k[||xk − x∗||p] ≤

∆
√
d

τ
DΨ. (58)

Next, we bound E term

Eξ,e

[

1

T

T−1∑

k=0

(lk(xk)− lk(x∗))
]

≤ 1

T

T−1∑

k=0

E≤kE|≤k[〈E|≤k[ĝk+1], xk − x∗〉]
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≤ 1

T

T−1∑

k=0

E≤kE|≤k[〈ĝk+1, xk − x∗〉].

For SGD algorithm with ĝk by Convergence Theorem 3.2 with bounded second moment

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 ≤
1

2

R2
Ψ

νT
+
ν

2

1

T

T−1∑

k=0

||ĝk+1||2q. (59)

Using (59) with taken Eξ,e from both sides

1

T

T−1∑

k=0

E≤kE|≤k[〈ĝk+1, xk − x∗〉] ≤
1

2

R2
Ψ

νT
+
ν

2

1

T

T−1∑

k=0

E|≤k[||ĝk+1||2q ].

By Lemma 11.1

E|≤k(||ĝk+1||2q) ≤ σ1+κ
q c1−κ.

Hence,

1

T

T−1∑

k=0

E≤kE|≤k[〈ĝk+1, xk − x∗〉] ≤
1

2

R2
Ψ

νT
+
ν

2
σ1+κ
q c1−κ. (60)

Combining bounds (57), (58), (60) together, we get

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
Ψ

νT
+
ν

2
σ1+κ
q c1−κ +

(

σ1+κ
q

cκ
+∆

√
d

τ

)

DΨ.

In order to get minimal upper bound we find optimal c

min
c>0

σ1+κ
q

(
1

cκ
DΨ +

ν

2
c1−κ

)

= min
c
σ1+κ
q h1(c)

h′1(c) =
ν
2 (1 − κ)c−κ − κ 1

c1+κDΨ = 0⇒ c∗ = 2κDΨ

(1−κ)ν .

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
Ψ

νT
+∆

√
d

τ
DΨ

+σ1+κ
q,κ

(

D1−κ2−κνκ
[
(1− κ)κ
κκ

+
κ(1−κ)

(1− κ)(1−κ)

])

.

Considering bound of κ ∈ [0, 1]
[
(1− κ)κ
κκ

+
κ(1−κ)

(1− κ)(1−κ)

]

≤ 2.

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +
1

2

R2
Ψ

νT
+∆

√
d

τ
DΨ + σ1+κ

q

(
2D1−κ

Ψ νκ
)
. (61)

Choosing optimal ν∗ similarly we get

ν∗ =

(
R2

Ψ

4Tκσ1+κ
q D1−κ

Ψ

) 1
1+κ

And

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ +

R
2κ

1+κ

Ψ D
1−κ
1+κ

Ψ σq

T
κ

1+κ

2
[

κ
1

1+κ + κ−
κ

1+κ

]

.

Considering bound of κ ∈ [0, 1]
[

κ
1

1+κ + κ−
κ

1+κ

]

≤ 2.

Then

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ + 2

R
2κ

1+κ

Ψ D
1−κ
1+κ

Ψ σq

T
κ

1+κ
. (62)
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In order to avoid ν →∞ when κ→ 0 one can also choose ν∗ =
(

R2
Ψ

4Tσ1+κ
q D1−κ

Ψ

) 1
1+κ

. Estimation (62) doesn’t change.

Finally, we bound σq with Lemma 9.1

σq ≤ 2

( √
d

21/4
aqM2

)

+ 2

(
daq∆

τ

)

.

And set optimal τ

τ =

√
√
√
√

√
d∆DΨ + 4R

2κ
1+κ

Ψ D
1−κ
1+κ

Ψ daq∆T
− κ

1+κ

2M2
.

12 Proof of Zeroth-Order Clipping Algorithm in High Probability Convergence.

For next proof we need some classic measure concentration results. Bernstein inequality for martingale differences
sum. Lemma 23 from [28].

Lemma 12.1. Let {Xi}i≥1 be martingale difference sequence, i.e. E[Xi|Xj<i] = 0, ∀i ≥ 1. Also b, σ is such

deterministic constants that |Xi| < b and E[X2
i |Xj<i] < σ2 almost surely. Then for arbitrary fixed number µ and for

all T with probability at least 1− δ
∣
∣
∣
∣
∣

t∑

i=1

µXi

∣
∣
∣
∣
∣
≤ 2b|µ| log 1

δ
+ σ|µ|

√

2T log
1

δ
.

And sum of squares of bounded random variables. Theorem 20 from [28].

Lemma 12.2. Let Zi is a sequence of random variables adapted to a filtrationFt. Further, suppose |Zi| < b,E[Z2
i ] ≤

σ2 almost surely. Then for any µ > 0 with probability at least 1− δ
T∑

k=1

Z2
k ≤ 3Tσ2 log




4

δ

[

log

(√

σ2T

µ2

)

+ 2

]2

+

+20max(µ2, b2) log

(

112

δ

[

log

(
2max(µ, b)

µ

)

+ 1

]2
)

.

By choosing µ = b ≥ σ
T∑

k=1

Z2
k ≤ 3Tσ2 log

(
4

δ

[

log
(√

T
)

+ 2
]2
)

+

+20b2 log

(
12

δ

)

.

Theorem 12.3. Let function f satisfying Assumptions 1, 2, 3, q ∈ [1 + κ,∞], arbitrary number of iterations T ,
smoothing constant τ > 0 be given. Choose 1-strongly convex w.r.t. the p-norm function Ψp(x). Set the clipping

constant c = T
1

(1+κ) σq with σq given in Lemma 2.2. After set the stepsize ν = DΨ

c withD
1+κ
κ

Ψ

def
= 1+κ

κ sup
x,y∈S

DΨp(x, y).

Let xT be a point obtained by Algorithm 2 with the above parameters, and let x∗ ∈ argmin
x∈S

f(x). Additionally, for

δ ∈ [0, 1) we denote δ̃−1 = 4
δ

[

log
(√

T
)

+ 2
]2

and β =
[

3 + 8 log 1
δ + 12 log 1

δ̃
+ 20 log 4

δ + 4
√

2 log 1
δ

]

.

1. Then, with probability at least 1− δ

f(xT )− f(x∗) ≤ 2M2τ +
∆
√
d

τ
DΨ +

DΨσqβ

2T
κ

1+κ
, (63)

where σ1+κ
q = 2κ

( √
d

21/4
aqM2

)1+κ

+ 2κ
(

daq∆
τ

)1+κ

.
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2. With optimal τ =

√
√
d∆DΨ+2βDΨdaq∆T

−
κ

1+κ

2M2

f(xT )− f(x∗) ≤
√

8M2

√
d∆DΨ + 4

√

βM2DΨdaq∆

T
κ

(1+κ)

+
β
√
daqM2DΨ

T
κ

1+κ
. (64)

Proof. Lets notice from proof of the Theorem 4.1 for the first term of (40) that for any xk

f(xT )− f(x∗) ≤
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉+ 2M2τ. (65)

For SGD algorithm with ĝk by Convergence Theorem 3.2

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 ≤
1

2

R2
Ψ

νT
+
ν

2

1

T

T−1∑

k=0

||ĝk+1||2q. (66)

Let’s define random variable Zk = ||ĝk+1||q and notice that |Zk| ≤ c by definition of clipping and E[Z2
i ] ≤

4σ1+κ
q,κ c1−κ by (47) from Lemma 11.1. Thus by Lemma 12.2 with probability at least 1− δ

1

T

T−1∑

k=0

||ĝk+1||2q ≤ 12σ1+κ
q,κ c1−κ log

(
4

δ

[

log
(√

T
)

+ 2
]2
)

+
20

T
c2 log

(
12

δ

)

. (67)

The left part of (66) can be rewritten as

1

T

T−1∑

k=0

〈ĝk+1, xk − x∗〉 =
1

T

T−1∑

k=0

〈ĝk+1 −∇f̂τ (xk), xk − x∗〉+
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉

=
1

T

T−1∑

k=0

〈ĝk+1 − E|k[ĝk+1], xk − x∗〉
︸ ︷︷ ︸

1

+
1

T

T−1∑

k=0

〈E|k[ĝk+1]−∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

2

+
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉
︸ ︷︷ ︸

3

.

In the 1 term we can proof that this is the sum of the martingale sequence difference. Indeed,

E|k[〈ĝk+1 − E|k[ĝk+1], xk − x∗〉] = 0.

By (45) from Lemma 11.1

|〈ĝk+1 − E|k[ĝk+1], xk − x∗〉| ≤ ||ĝk+1 − E|k[ĝk+1]||q||xk − x∗||p ≤ 2c · ||xk − x∗||p.
By (47) from Lemma 11.1

E
[
|〈ĝk+1 − E|k[ĝk+1], xk − x∗〉|2

]
≤ 4σ1+κ

q c1−κ · ||xk − x∗||2p.
Lets notice that Ψp is (1, 2)-uniformly convex function w.r.t. p norm. Then by definition

||xk − x∗||p ≤
(
2DΨp(xk, x

∗)
) 1

2 ≤ sup
x,y∈S

(
2DΨp(x, y)

) 1
2 = DΨ.

And we estimate ||xk − u||p ≤ D, ∀u ∈ S. Hence, by Bernstein’s inequality Lemma 12.1 with probability at least

1− δ and µ = 1
T

1

T

T−1∑

k=0

|〈ĝk+1 − E|k[ĝk+1], xk − x∗〉| ≤
4cDΨ

T
log

1

δ
+

√

4σ1+κ
q c1−κ

√
T

D2
Ψ

√

2 log
1

δ
. (68)
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For the 2 we use bound of D term from (55)

|〈E|k[ĝk+1]−∇f̂τ (xk), xk − x∗〉| ≤
(

σ1+κ
q

cκ
+∆

√
d

τ

)

DΨ. (69)

For the 3 we use (65)

f(xT )− f(x∗)− 2M2τ ≤
1

T

T−1∑

k=0

〈∇f̂τ (xk), xk − x∗〉. (70)

Putting (67), (68), (69), (70) in (66), we get with probability at least 1− δ

f(xT )− f(x∗) ≤ 2M2τ +

(

σ1+κ
q

cκ
+∆

√
d

τ

)

DΨ +
1

2

R2
Ψ

νT

+
ν

2

[

12σ1+κ
q c1−κ log

(
4

δ

[

log
(√

T
)

+ 2
]2
)]

+
ν

2

20

T
c2 log

(
12

δ

)

+
4cDΨ

T
log

1

δ
+

√

4σ1+κ
q c1−κ

√
T

D2
Ψ

√

2 log
1

δ
. (71)

Choosing c = T
1

(1+κ) σq and putting it in (71), we get

f(xT )− f(x∗) ≤ 2M2τ +

(

σq

T
κ

1+κ

+∆

√
d

τ

)

DΨ +
1

2

R2
0

νT

+
ν

2

[

12σ2
qT

1−κ
(1+κ) log

(
4

δ

[

log
(√

T
)

+ 2
]2
)]

+
ν

2

20σ2
q

T
κ−1
1+κ

log

(
12

δ

)

+
4σqDΨ

T
κ

1+κ
log

1

δ
+

2σq

T
κ

1+κ
DΨ

√

2 log
1

δ
. (72)

Define δ̃−1 = 4
δ

[

log
(√

T
)

+ 2
]2

and choose ν = DΨ

c

f(xT )− f(x∗) ≤ 2M2τ +

(

σq

T
κ

1+κ
+∆

√
d

τ

)

DΨ +
DΨσq

2T
κ

1+κ

[

1 + 12 log
1

δ̃
+ 20 log

4

δ

]

+

+
4σqDΨ

T
κ

1+κ
log

1

δ
+

2σq

T
κ

1+κ
DΨ

√

2 log
1

δ
. (73)

Simplifying (73), we get

f(xT )− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ

+
DΨσq

2T
κ

1+κ

[

3 + 8 log
1

δ
+ 12 log

1

δ̃
+ 20 log

4

δ
+ 4

√

2 log
1

δ

]

.

Finally, we bound σq with Lemma 9.1

σq ≤ 2

( √
d

21/4
aqM2

)

+ 2

(
daq∆

τ

)

.

And set optimal τ

τ =

√√
d∆DΨ + 2βDΨdaq∆T

− κ
1+κ

2M2
.
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13 Sketch of Proof of Zeroth-Order Restart Algorithms Convergence.

Proof of the Theorems 6.1, 6.2.

Proof. In this proof Õ(·) denotes log d factor.

Step 1: Zeroth-Order Robust SMD in Expectation.

Now x0 in algorithm 1 can be chosen in stochastic way.

Similarly to proof of Theorem 4.1 but with ν =
E[DΨp (x0,x

∗)]
1

1+κ

σq
T− 1

1+κ and boundR0 ≤ DΨ one can get from (44)

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +

√
d∆

τ
DΨ + 2E

[
DΨp(x0, x

∗)
] κ

1+κ σqT
− κ

1+κ . (74)

Under obligatory condition ∆ ≤ σ2
qE[DΨp (x0,x

∗)]
κ

1+κ

M2

√
dT

2κ
1+κ

picking τ =
σqE[DΨp (x0,x

∗)]
κ

1+κ

M2T
κ

1+κ
, we obtain from (74) estimate

Eξ,e[f(xT )]− f(x∗) ≤ (2 + 1 + 2)
σqE

[
DΨp(x0, x

∗)
] κ

1+κ

T
κ

1+κ
. (75)

In σq τ -depending term has T
−2κ
1+κ decreasing rate, so we neglect it. Next, let’s use fact that DΨp(x0, x

∗) = Õ(||x0 −

x∗||
1+κ
κ

p ) from [12](Remark 3) and denote Rk = E

[

||xk − x∗||
1+κ
κ

p

] κ
1+κ

.

Under r-growth Assumption 4

µr

2
E
[
||xT − x∗||rp

]
≤ Eξ,e[f(xT )]− f(x∗) ≤ Õ

(

R0
σq

T
κ

1+κ

)

. (76)

Due to Jensen’s inequality(r ≥ 1+κ
κ )

µr

2
E

[

||xT − x∗||
1+κ
κ

p

]r/ 1+κ
κ ≤ µr

2
E
[
||xT − x∗||rp

]
≤ Õ

(

R0
σq

T
κ

1+κ

)

. (77)

Let’s find out after how many iterations R0 value halves

µr

2
Rr

1 ≤ Õ
(

R0
σq

T
κ

1+κ

)

≤ µr

2

(
R0

2

)r

. (78)

From right inequality of (78)

T1 ≥ Õ





(
2(1+r)σq
µr

) 1+κ
κ 1

R
(r−1)(1+κ)

κ
0



 .

For convenience we define A
def
=

2(1+r)σq

µr
.

After T1 iterations we restart algorithm with starting point x0 = xT1 and Rk = Rk−1/2 = R0/2
k.

After N restarts total number of iterations T will be

T =

N∑

k=1

Tk = Õ




A

1+κ
κ

R
(r−1)(1+κ)

κ
0

N−1∑

k=0

2k(
(r−1)(1+κ)

κ )



 = Õ




A

(1+κ)
κ

R
(r−1)(1+κ)

κ
0

[

2N(
(r−1)(1+κ)

κ ) − 1
]



 . (79)

In order to get ε accuracy

Eξ,e[f(xT )]− f(x∗) ≤ ε = Õ

(

RN−1
σq

T
κ

1+κ

N

)

≤ Õ
(
µr

2

(
RN−1

2

)r)

≤ Õ
(
µr

2

Rr
0

2(N−1)r

)

.

Consequently,

N = Õ

(
1

r
log2

(
µrR

r
0

2ε

))

, (80)
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T = Õ






[

2
r2+1

r σq

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ




 , Tk = Õ





[
σq2

(1+r)

µrR
r−1
0

2k(r−1)

] 1+κ
κ



 . (81)

In each restart section we get different bounds for noise absolute value. From Tk formula from (79)

∆k = Õ

(

µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)

. (82)

Hence, ∆k will be the smallest on the last iteration, when k = N .

∆N = Õ

(

µ
1/r
r

M2

√
d
ε(2−1/r)

)

.

Step 2: Zeroth-Order Clipping in Expectation.

Now x0 in algorithm 2 can be chosen in stochastic way.

Similarly to proof of Theorem 5.2 but with ν∗ = E
[
DΨp(x0, x

∗)
] 1

2

(
1

4Tσ1+κ
q

) 1
1+κ

, c∗ =
E[DΨp (x0,x

∗)]
1
2

ν∗
one can get

from (61)

Eξ,e[f(xT )]− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ + 2

σqE
[
DΨp(x0, x

∗)
] 1

2

T
κ

1+κ

. (83)

Under obligatory condition ∆ ≤ σ2
qE[DΨp (x0,x

∗)]
1
2

M2

√
dT

2κ
1+κ

picking τ =
σqE[DΨp (x0,x

∗)]
1
2

M2T
κ

1+κ
, we obtain from (83) estimate

Eξ,e[f(xT )]− f(x∗) ≤ (2 + 1 + 2)
σqE

[
DΨp(x0, x

∗)
] 1

2

T
κ

1+κ
. (84)

In σq τ -depending term has T
−2κ
1+κ decreasing rate, so we neglect it. Next, let’s use fact that DΨp(x0, x

∗) = Õ(||x0 −
x∗||2p) from [12](Remark 3) and denote Rk = E

[
||xk − x∗||2p

] 1
2 .

Under r-growth Assumption 4

µr

2
E
[
||xT − x∗||rq∗

]
≤ Eξ,e[f(xT )]− f(x∗) ≤ Õ

(

R0
σq

T
κ

(1+κ)

)

.

Due to Jensen’s inequality (r ≥ 2)

µr

2
E
[
||xT − x∗||2q∗

]r/2 ≤ µr

2
E
[
||xT − x∗||rq∗

]
≤ Õ

(

R0
σq

T
κ

(1+κ)

)

.

Next part of the proof is the same from Step 1 starting from (77). Analogically, we get the same T2,N2 and noise
bounds from (81), (80) and (82) correspondingly.

Step 3: Zeroth-Order Clipping in High Probability.

Now x0 in algorithm 2 can be chosen in stochastic way.

Important moment about convergence in high probability in restart setup is to control final probability. Let number of
restarts be N3, if each restart has probability to be in bounds at least 1 − δ/N3 then final probability to be in bounds
will be greater than 1− δ which is probability of ’all restarts to be in bounds’. Usually N3 ∼ log(1ε ), thus

log
N3

1
= log log

1

ε
≪ log

1

δ

1

ε
1+κ
κ

.

It means that we can use log 1
δ instead of log N3

δ .

Similarly to proof of Theorem 5.3 but ν∗ =
[
DΨp(x0, x

∗)
]1/2

(
1

Tσ1+κ
q

) 1
1+κ

, c∗ =
E[DΨp (x0,x

∗)]
1
2

ν∗
one can get from

(72) with probability at least 1− δ/N3

f(xT )− f(x∗) ≤ 2M2τ +∆

√
d

τ
DΨ
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+

[
DΨp(x0, x

∗)
]1/2

σq

2T
κ

1+κ

[

3 + 8 log
1

δ
+ 12 log

1

δ̃
+ 20 log

4

δ
+ 4

√

2 log
1

δ

]

.

Denote δ̃−1 = 4
δ

[

log
(√

T
)

+ 2
]2

, β =
[

3 + 8 log 1
δ + 12 log 1

δ̃
+ 20 log 4

δ + 4
√

2 log 1
δ

]

.

Under obligatory condition ∆ ≤ β2σ2
qD

1
2
Ψp

(x0,x
∗)

M2

√
dT

2κ
1+κ

picking τ =
βσqD

1
2
Ψp

(x0,x
∗)

M2T
κ

1+κ
, we obtain estimate

f(xT )− f(x∗) ≤ (2 + 1 + 1)
σqβ

[
DΨp(x0, x

∗)
] 1

2

T
κ

1+κ
.

In σq τ -depending term has T
−2κ
1+κ decreasing rate, so we neglect it. Next, let’s use fact that DΨp(x0, x

∗) = Õ(||x0 −
x∗||2p) from [12](Remark 3) and denote Rk = ||xk − x∗||p.

Under r-growth Assumption 4 (r > 1)

µr

2
||xT − x∗||rp ≤ f(xT )− f(x∗) ≤ Õ

(

R0
σqβ

T
κ

(1+κ)

)

.

Next part of the proof is the same from Step 1 starting from (77) with

A
def
=

2(1+r)βσq
µr

.

Analogically, we get T3,N3 and noise bounds from (81), (80) and (82) correspondingly.

N = Õ

(
1

r
log2

(
µrR

r
0

2ε

))

, (85)

T = Õ






[

2
r2+1

r σqβ

µ
1/r
r

· 1

ε
(r−1)

r

] 1+κ
κ




 , Tk = Õ





[
σqβ2

(1+r)

µrR
r−1
0

2k(r−1)

] 1+κ
κ



 . (86)

In each restart section we get different bounds for noise absolute value. From Tk formula from (86)

∆k = Õ

(

µ2
rR

(2r−1)
0

M2

√
d

1

2k(2r−1)

)

. (87)

Hence, ∆k will be the smallest on the last iteration, when k = N .

∆N = Õ

(

µ
1/r
r

M2

√
d
ε(2−1/r)

)

.
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