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ABSTRACT

This paper presents a novel approach to addressing the distributionally robust nonlinear model
predictive control (DRNMPC) problem. Current literature primarily focuses on the static Wasserstein
distributionally robust optimal control problem with a prespecified ambiguity set of uncertain system
states. Although a few studies have tackled the dynamic setting, a practical algorithm remains
elusive. To bridge this gap, we introduce an DRNMPC scheme that dynamically controls the
propagation of ambiguity, based on the constrained iterative linear quadratic regulator. The theoretical
results are also provided to characterize the stochastic error reachable sets under ambiguity. We
evaluate the effectiveness of our proposed iterative DRMPC algorithm by comparing the closed-
loop performance of feedback and open-loop on a mass-spring system. Finally, we demonstrate in
numerical experiments that our algorithm controls the propagated Wasserstein ambiguity.

1 Introduction

1.1 Background and motivation

Model predictive control (MPC) repeatedly solves optimization problems online based on a system model and prescribed
constraints to determine optimal control actions [1]. However, the closed-loop performance of MPC designed based on
the nominal system model could be severely deteriorated when the real system suffers from uncertainty [2].

To effectively develop control methods addressing the detrimental effect of uncertainty, two classes of MPC that
explicitly take the uncertainty into account have emerged: stochastic MPC (SMPC) and robust MPC (RMPC). RMPC
determines the optimal control actions under the worst-case scenario within a pre-specified deterministic uncertainty
set [3], whereas SMPC assumes or estimates the distribution of the uncertainty and selects the best control action for
an objective function under soft constraints [4]. However, the performance of RMPC might be over-conservative as
low-probability uncertainty is also taken into account, whereas the actual performance of SMPC could significantly
deviate from the designed one due to the distribution discrepancy between the true distribution and the nominal
distribution used in the controller design [5].

For the purpose of addressing the challenges mentioned above - conservativeness or misspecified nominal distribution -
we consider a data-driven distributionally robust nonlinear MPC (DRNMPC) problem using the Wasserstein metric. In
the construction of this controller, instead of knowing the probability distribution of disturbances exactly, only samples
of the disturbance realizations are required to construct the Wasserstein ambiguity set. The ambiguity set includes the
empirical distribution of disturbance samples at its center and all distributions within a certain Wasserstein distance.
Control actions are determined based on the worst-case distribution from this set, considering distributional robustness.

1.2 Related work

Recently, distributionally robust control using the Wasserstein ambiguity garners a lot of interest and attention. For
the purpose of state constraint satisfaction, the recent papers [6, 7, 8, 9, 10] consider such a distributionally robust
MPC problem with respect to the Wasserstein ambiguity set defined on the product probability space for linear systems,
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Figure 1: Closed-loop error dynamics (as in tube MPC) of 30 realizations with the feedback gains and nominal inputs
solved by 1. Red: Our method. Blue: Fixed feedback gain. Black: Zero feedback gain, i.e. open-loop. The arrow
indicates the error vector between two consecutive sampling times, i.e. the tail indicates the accumulated error of all the
previous steps and the head indicates the accumulated error including the error from the current step. See Section 4.4
for the theoretical characterization.

wherein the center of the ambiguity set is determined based i.i.d. samples of disturbance sequences. Both [11] and
[12] consider the distributionally robust control problem as a two-player zero-sum game without state constraints and
solve the problem via dynamic programming with a relaxed formulation using a Wasserstein penalty. For nonlinear
systems, [13] considers deterministic systems with disturbed constraints, and [14] solves distributionally robust MPC
for nonlinear systems with additive disturbances via iterative linearization. However, in [14], the propagation of the
ambiguity set is not considered and the feedback gain is static for each sampling time. After the initial submission of
this manuscript, we were brought to the awareness of a recent preprint [15], which is the closest to our work. While both
works consider the dynamic setting in terms of Wasserstein ambiguity, we directly formulate the DRO problem based on
the disturbance ambiguity dynamically, which is mathematically equivalent to their propagation to the state distributions
while enjoying simpler forms; cf. (18), (22). Furthermore, compared with [15], this paper solves DRNMPC based on
iterative LQR, whereas they considered linear systems.

In this work, we consider Wasserstein distributionally robust MPC for nonlinear systems with additive disturbances.
Instead of constructing the Wasserstein ambiguity set for disturbance sequences, we consider the Wasserstein ambiguity
set of disturbance for the single-step dynamics and propagate the Wasserstein ambiguity sets within the prediction
horizon. Also, instead of using a relaxed formulation, we solve the original DRNMPC problem via an iterative method
with the help of Riccati recursion [16]. We will show that our method could dynamically control the propagation of the
Wasserstein ambiguity sets and hence guarantee a non-conservative closed-loop performance.

1.3 Contribution

This paper makes the following main contributions. 1) We solve a Wasserstein distributionally robust nonlinear model
predictive control (DRNMPC) problem for nonlinear systems (5). To the best of our knowledge, this is the only work
that does not assume a priori Wasserstein ambiguity sets of the state distributions for nonlinear systems. 2) We present an
iterative-linearized DRMPC scheme that uses feedback to dynamically control the propagation of Wasserstein ambiguity
sets, whereas open-loop control fails to do so. The derivation of such an approach is summarized in Proposition 1 and
the corresponding algorithm is introduced in Algorithm 1. This approach is a significant improvement over the existing
literature, as previous research only addressed static problems with fixed ambiguity sets or dynamic problems without
a practical algorithm. To the authors’ best knowledge, our proposed algorithm is the first to provide a practical and
efficient method for controlling the propagation of Wasserstein ambiguity sets in nonlinear dynamics. 3) We analytically
characterize the Wasserstein distributional reachable set under dynamic propagation in our algorithm in Proposition 2.
4) We visualize the closed-loop performance of the proposed approach via an error diagram in fig 1. We observe that
our method effectively controls the propagation of the ambiguity sets.

The rest of the paper is organized as follows. In Section II, we introduce the control problem and the preliminary
DRNMPC. Section III describes the Wasserstein ambiguity set applied to this work. In Section IV, we introduce the
propagation of Wasserstein ambiguity sets and the corresponding algorithm dynamically controls the propagation. Also,
we analyze the reachable sets of dynamic Wasserstein ambiguity and linearization error. In Section V, we provide a
numerical experiment of a mass-spring system to demonstrate our method and comparison results.
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2 Problem statement

2.1 Notations

We use xk for the measured state at time k and xi|k for the state predicted i steps ahead at time k. [A]j and [a]j denote
the j-th row and entry of the matrix A and vector a, respectively. Similarly, we denote the element of i-th row and j-th
column in the matrix A as [A]ij . We define the notation [A]i:j for the i-th to j-th row in the matrix A. The set N>0

denotes the positive integers and N≥0 = {0}∪N>0. The set NN1 denotes the set of integers from 1 to N .M(Ξ) defines
the space of all probability distributions supported on Ξ with finite first moments. (·)(i) denotes the i-th sample from
the training set. The sequence of length N of vectors v0|k, . . . , vN−1|k is denoted by vN |k. γij denotes the element
of a 2-D tensor, such that this element is the i-th, j-th element along the first and second axis, respectively. Similar
for 1-D λi. Let Bnx∞ := {d ∈ Rnx | ‖d‖∞ ≤ 1} denote the unit ball. Let P⊗i := P0 × · · · × Pi−1 denote the product
distribution.

2.2 System dynamics, constraints and objective

We consider the nonlinear time-invariant dynamical system with additive disturbance

xk+1 = fd(xk, uk) + wk, k ∈ N≥0, (1)

where fd : Rnx×Rnu → Rnx is a discrete-time nonlinear dynamics, k is the discrete sampling time, the state xk ∈ Rnx ,
the control uk ∈ Rnu , and the additive disturbance wk ∈ Rnx . Each disturbance wk of the disturbance sequence
{wk}k∈N≥0

is assumed to be a realization of the corresponding random variable (r.v.) Wk from the random process
{Wk}k∈N≥0

satisfying the following assumption.

Assumption 1 (Bounded i.i.d Random Disturbance). All random variables Wk ∼ Pw for k ∈ N≥0 from the family of
random variables {Wk}k∈N≥0

are assumed to be zero-mean and independent and identically distributed (i.i.d) with an
unknown probability distribution Pw and a known polyhedral support Ww , {w | Hww ≤ hw}.

For any given state measurement xk at the sample time k, the predicted system states within the prediction horizon N
are described as

xi+1|k = fd(xi|k, ui|k) +Wi|k, x0|k = xk,

where xi|k, ui|k, and Wi|k := Wk+i are all random variables.

We further introduce the nonlinear dynamics fd,i : Rnx × Rnu × · · · × Rnu︸ ︷︷ ︸
i times

×Rnx × · · · × Rnx︸ ︷︷ ︸
i times

for the predicted

state xi|k with i ≥ 1 dependent on the measurement xk, input sequence u0|k, . . . , ui−1|k, and disturbance sequence
W0|k, . . . ,Wi−1|k

xi|k = fd,i(xk, u0|k, . . . , ui−1|k,W0|k, . . . ,Wi−1|k)

:= fd(fd(. . . fd(xk, u0|k) +W0|k · · · ), ui−1|k) +Wi−1|k.
(2)

To highlight that the predicted state is dependent on the disturbance sequence, we use a slight abuse of notation and
denote

fd,i(xk, u0|k, . . . , ui−1|k,W0|k, . . . ,Wi−1|k) := xi|k(W0|k, . . . ,Wi−1|k).

For any nonlinear system, we consider distributionally robust constraints with ambiguity set propagation to the states

sup
Pm∈Pk+m,m=0,...,i−1

EP⊗i
{

[F ]nxi|k(W0|k, . . . ,Wi−1|k)
}
≤ [f ]n, (3)

whereWm|k ∼ Pm is the disturbance variable, P⊗i := P0×· · ·×Pi−1, k ∈ N≥0, n ∈ NnF1 , i ∈ NN1 , F ∈ RnF×nx , f ∈
RnF . For each additive disturbance Wi|k within the prediction horizon, we centered an ambiguity set Pk+i as the
Wasserstein ball around the empirical distribution P̂k+i := 1

M

∑M
l=1 δŵ(l)

i|k
. Due to the i.i.d assumption, the realization

of additive disturbance is time-independent; hence, we will denote the ambiguity set as P and the corresponding
empirical distribution as P̂ without explicitly indicating the predicted step i.

Remark 1. Through our formulation of the worst-case distributionally robust state constraints, the predicted states
are affected by the accumulated error of the worst-cast distributions from each previous step within the prediction
horizon. Hence, the control actions will be determined with an explicit consideration of the propagated effect of the
worst distribution at each step of prediction. More details will be introduced in Section 4.
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Without loss of generality, we characterize the control target as tracking the equilibrium point, which we assume to
be the origin of the coordinate system, from an initial state while satisfying the prespecified constraints. The control
objective is hence defined as the minimization of the expected value with the reference trajectory uniformly equal to
zero

EP

{
N−1∑
i=0

(
∥∥xi|k∥∥2

Q
+
∥∥ui|k∥∥2

R
) +

∥∥xN |k∥∥2

Qf

}
. (4)

Here Q,Qf ∈ Rnx×nx and Rnu×nu are penalty matrices for the quadratic stage costs. The corresponding optimization
problem of DRNMPC for nonlinear systems is defined as

Problem 1.
min
u

EP

{∑N−1
i=0 (

∥∥xi|k∥∥2

Q
+
∥∥ui|k∥∥2

R
) +

∥∥xN |k∥∥2

Qf

}
s.t. x0|k = xk

xi+1|k = fd(xi|k, ui|k) +Wk+i

sup
Pm∈Pk+m,m=0,...,i−1

EP⊗i{[F ]nxi|k(W0|k, . . . ,Wi−1|k)} ≤ [f ]n,

∀ i ∈ NN1 , n ∈ NnF1 , k ∈ N≥0.

(5)

where Wm|k ∼ Pm is the disturbance variable.

3 Distributionally robust optimization and Wasserstein Ambiguity Sets

Distributionally robust optimization is an optimization framework that utilizes partial information about the underlying
probability distribution of the random variables in a stochastic model. We consider the Wasserstein ambiguity set [17, 18]
in this paper, which is modelled as a Wasserstein ball centered at a discrete empirical distribution. The Wasserstein
metric defines the distance between all probability distributions Q supported on the uncertainty set Wξ ∈ Rnξ with finite
p-moment, i.e.

∫
Wξ
‖ξ‖pQ(dξ) <∞.

Definition 3.1 (Wasserstein Metric [19]). The Wasserstein metric of order p ≥ 1 is defined as dw :M(Wξ)×M(Wξ)→
R for all distribution Q1,Q2 ∈M(Wξ) and arbitrary norm on Rnξ :

dpw (Q1,Q2) := inf
Π

∫
W2
ξ

‖ξ1 − ξ2‖p Π (dξ1, dξ2) , (6)

where Π is a joint distribution of ξ1 and ξ2 with marginals Q1 and Q2 respectively.

The Wasserstein metric originates from the optimal transportation problem [20], which studies the most efficient way to
transport the mass of a distribution to another. In (6), the Wasserstein distance between the distribution Q1 and Q2 can
be interpreted as the minimal cost spent on the allocation if the Euclidean norm is selected and p = 2. In the following,
we will regard one distribution as the empirical distribution and the other as one of the unknown distributions which
we assess whether to include or not in the ambiguity set. All these unknown distributions, whose distance from the
empirical distribution is lower than a certain value in the Wasserstein sense, are included in the ambiguity set.

Specifically, we will only consider the type-1 Wasserstein metric in the remainder of this paper, i.e. p = 1. In principle,
it is also possible to use other p values given the corresponding reformulation techniques [21]. Then we could define
the ambiguity set P centered at the empirical distribution leveraging the Wasserstein metric as

Bε
(

P̂
)

:=
{

Q ∈M(Wξ) : dw

(
P̂,Q

)
≤ ε
}

(7)

which specifies the Wasserstein ball with radius ε > 0 around the discrete empirical probability distribution P̂.M(Wξ)

denotes the set of Borel probability measures on Wξ. The empirical probability distribution P̂ := 1
M

∑M
l=1 δξ̂(l) is

the mean of M Dirac distributions which concentrates mass at the disturbance realization ξ̂(l) ∈ Wξ. We denote the

training set of offline collected realizations ξ as Ξ̂M :=
{
ξ̂(l)
}
l∈NM1

⊂ Wξ, which contains M observed disturbance

realizations.

The radius ε determines the size of the Wasserstein ball (7), of which the size has been argued from various statistical
perspective in the literature [17, 22, 23] . Furthermore, as a function of the radius, the solution of this Wasserstein
ambiguity-based DRO lies between the classical robust optimization and sample average approximation [18].
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4 Propagation of ambiguity sets for nonlinear systems: Iterative distributionally robust
LQR

In this section, we propose an algorithm to solve the optimal control problem (5) leveraging the techniques of Wasserstein
ambiguity set propagation with dynamic feedback gains and iterative Linear Quadratic Regulator (iLQR) [24].

For any given sampling time k, we solve the optimal control problem (5) via sequentially deriving the linearized system
and the corresponding feedback gains via Riccati recursion [16, Sec. 8.8.3], solving a perturbed nominal problem, and
updating the perturbations based on the solution from a DRO problem. Such an iterative method could be similarly
found in, for example, [25]. However, our method significantly differs from the robust MPC approach [25] mainly in two
aspects: (1) Instead of propagating the state uncertainty based on the ellipsoid support set of additive disturbances, we
propagate the Wasserstein ambiguity through the dynamics. (2) We consider soft constraint satisfaction in expectation
instead of robust constraint satisfaction.

4.1 LTV formulation and error dynamics

We first consider predicting the system dynamics with the help of tube-based MPC and a linear time-varying (LTV)
error system as used in tube-based RMPC [26].

We consider the predicted nonlinear dynamics (1) in the form of the first-order Taylor series expansion:

xi+1|k = fd(xi|k, ui|k) +Wi|k

= fd(zi|k, vi|k) +A(zi|k, vi|k)(xi|k − zi|k) +B(zi|k, vi|k)(ui|k − vi|k) + r(xi|k, ui|k, zi|k, vi|k) +Wi|k,
(8)

where A(zi|k, vi|k) := ∂fd
∂x

∣∣∣
(x,u)=(zi|k,vi|k)

, B(zi|k, vi|k) := ∂fd
∂u

∣∣∣
(x,u)=(zi|k,vi|k)

and the remainder r : Rnx × Rnu ×
Rnx × Rnu 7→ Rnx .

Let ∆xi|k := xi|k − zi|k,∆ui|k := ui|k − vi|k denote the errors between nominal and real quantities, we have the
following LTV error system

∆xi|k = Ai|k∆xi|k +Bi|k∆ui|k +Wi|k + ri|k,∆x0 = 0nx
, (9)

with Ai|k := A
(
zi|k, vi|k

)
, Bi|k := B

(
zi|k, vi|k

)
, ri|k := r(xi|k, u,i|k zi|k, vi|k). Furthermore, we apply the follow-

ing control policy with dynamic feedback gain Ki|k at each step

ui|k = Ki|kxi|k + ci|k, (10)

where ci|k ∈ Rnu are decision variables in the optimal control problem. Also, we have the corresponding nominal
policy

vi|k = Ki|kzi|k + ci|k, (11)

Given the error dynamics (9), control policy (10) and nominal policy (11), we have

∆xi+2|k = Acl,i+1∆xi+1|k +Wi+1|k + ri+1|k

= Acl,i+1(Acl,i∆xi|k +Wi|k + ri|k) + wi+1|k + ri+1|k,
(12)

where Acl,i := Ai|k +Bi|kKi|k. Next, let

ei+1|k = Acl,iei|k +Wi|k e0|k = 0.
εi+1|k = Acl,iεi|k + ri|k ε0|k = 0.

If x0|k = z0|k, i.e. ∆x0|k = 0, we have

∆xi|k = ei|k + εi|k,∀i ∈ NN0 (13)

by induction.

Remark 2. In this paper, we consider three cases of feedback gains: fixed feedback with zero gain (open-loop control),
fixed feedback with stabilizing gain, and feedback gain computed using iLQR. We will show that if the feedback gain
is zero (i.e. open-loop control), the closed-loop performance is significantly worse than with fixed feedback gain and
dynamic feedback gain as the size of the propagated ambiguity sets cannot be effectively controlled under open-loop
control.
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4.2 Distributionally robust nonlinear model predictive control

Given the error dynamics (13), we consider solving an approximated version of the prototype DRNMPC problem (5).
In this subsection, similar to [25], we consider the approximated dynamics till the first-order approximation - i.e. ignore
the term of linearization error r in (8) - via

xi+1|k ≈ fd(zi|k, vi|k) +Ai|k(xi|k − zi|k) +Bi|k(ui|k − vi|k) +Wi|k. (14)

Based on the approximated linearized dynamics (14), we find the following LTV error dynamics

∆xi+1|k ≈ ei+1|k. (15)

Hence the predicted state can be formulated as

xi+1|k ≈ zi+1|k +Acl,iei|k +Wi|k. (16)

Each of the terms evolves under the feedback control (10)

zi+1|k = fd(zi|k, vi|k) z0|k = xk
ei+1|k = Acl,iei|k +Wi|k e0|k = 0
vi|k = Ki|kzi|k + ci|k,

where vi|k is the predicted nominal input. As systems’ behavior is predicted within a finite prediction horizon, we let
ck = [c>0|k, . . . , c

>
N−1|k]> and set ci|k = 0 for all i ≥ N to ensure a finite number of decision variables. Similarly, we

denote vk and zk for the prediction problem with the horizon N .
Remark 3. We will also introduce the error propagation with an explicit consideration of the linearization errors
in Section 4.5. However, we will consider only the dynamic ambiguity propagation in this paper for the interest of
practical application.

Now we define the objective function for the linearized dynamics at time k as EP{
∑N−1
i=0 (‖zi|k + ei|k‖2Q + ‖ci|k +

K(zi|k + ei|k)‖2R) + ‖zN |k + eN |k‖2Qf }. Here Q,Qf ∈ Rnx×nx and R ∈ Rnu×nu are positive definite penalty
matrices for the quadratic stage costs. Furthermore, based on the assumption of zero-mean additive disturbances, all the
accumulated errors ei|k∀i ∈ NN0 are also zero mean. We could hence reformulate the objective function equivalently to∑N−1
i=1 ‖zi|k‖2Q + ‖vi|k‖2R + ‖zN |k‖2Qf .

Next, we consider the closed-loop propagation of additive disturbances under closed-loop matrices Acl,i,∀NN1 . For
expected constraints satisfaction (3), we roll out the predicted state (i ≥ 1) in terms of additive disturbances within the
prediction horizon as

xi|k ≈ zi|k + ei|k = zi|k +

i−1∑
m=0

i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j Wm|k, (17)

where
∏i−1−m
j=0 A

min{1,i−1−m−j}
cl,i−1−j = Acl,i−1 . . . Acl,i−1−mI for m < i − 1. Take x3|k as an example, it can be

formulated in terms of additive disturbances via x3|k = Acl,2Acl,1Acl,0x0|k +Acl,2Acl,1w0|k +Acl,2w1|k + w2|k.
Remark 4. The relation

ei|k =

i−1∑
m=0

i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j Wm|k (18)

is the key to our ambiguity set propagation through the (nonlinear) dynamics. The most significant difference between
our work and existing DRMPC works such as [6] is that we do not assume having data samples of the predicted
states x̂i|k, which would simply reduce the optimal control problem to static Wasserstein DRO. However, in practice,
one is often faced with the question of having to predict future state distributions and the corresponding ambiguity.
We shall demonstrate that, in such dynamic settings, the real power of feedback control is to control the size of the
dynamic Wasserstein ambiguity sets in a closed-loop fashion, see Fig. 1. The only previous work considering the setting
equivalent to our dynamic ambiguity set propagation is [12, 15], but only in the much simpler setting of linear systems.
Also, in order to solve dynamic ambiguity set propagation, [12] solves a relaxed problem called the Wasserstein
penalty problem ( without state constraints), which still requires solving a semi-infinite problem. The technical difficulty
that prevents previous works to go beyond that simple setting lies in the very core of Wasserstein DRO reformulation
techniques – it does not treat complex nonlinear objectives as in nonlinear OCPs. In contrast, this work proposes the
first dynamic Wasserstein closed-loop DRC with nonlinear dynamics and constraints. The Wasserstein distributional
reachable set under dynamic propagation will be analytically characterized in Proposition 2.
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Hence, based on the linearized dynamics, we consider an approximated optimal control problem corresponding to the
prototype DRNMPC problem (5).

Problem 2.
min
z,v,K

∑N−1
i=0 (

∥∥zi|k∥∥2

Q
+
∥∥vi|k∥∥2

R
) +

∥∥zN |k∥∥2

Qf

s.t. z0|k = xk, zi+1|k = fd(zi|k, vi|k)
vi|k = Ki|kzi|k + ci|k

sup
Pm∈Pk+m,m=0,...,i−1

EP⊗i{[F ]n(zi|k +

i−1∑
m=0

A
(i,j,m)
cl Wm|k)} ≤ [f ]n

∀ i ∈ NN1 , n ∈ NnF1 , k ∈ N≥0,

(19)

where Wm|k ∼ Pm is the disturbance variable and A(i,j,m)
cl :=

∏i−1−m
j=0 A

min{1,i−1−m−j}
cl,i−1−j .

In the following, we will provide the exact reformulation of the optimization problem (19). Before showing the final
reformulation, we require the following Lemma to reformulate the distributionally robust constraints.

Lemma 1. Consider the polytopic uncertainty set Ww and the Wasserstein ambiguity set P as the Wasserstein ball
around the empirical distribution P̂ = 1

M

∑M
l=1 δŵ(l) with type-1 Wasserstein metric and ball radius ε. Then, the

worst-case expectation supPm∈P EPm

{
[F ]n(A

(i,j,m)
cl Wm|k)

}
evaluates to

inf
λ,sl,γl

λε+
1

N

M∑
l=1

sl

s.t. [F ]n(A
(i,j,m)
cl )ŵl + γ>l (h−Hŵlm) ≤ sl

‖H>w γl −
[
[F ]nA

(i,j,m)
cl

]>
‖∗ ≤ λ

γl ≥ 0, ∀l ∈ NM1 ,

(20)

where λ ∈ R, sl ∈ R, γl ∈ RnH , and ‖ · ‖∗ is the dual norm corresponding to the norm applied in (6).

Proof. The equivalent reformulation can be derived with ak := [F ]nA
(i,j,m)
cl in [18, Corollary 5.1].

Proposition 1. Consider the polytopic uncertainty set Ww. Then, the DRMPC problem (19) evaluate to

min
z,v,K,λm,sml,γml

∑N−1
i=0 (

∥∥zi|k∥∥2

Q
+
∥∥vi|k∥∥2

R
) +

∥∥zN |k∥∥2

Qf

s.t. z0|k = xk
zi+1|k = fd(zi|k, vi|k)
vi|k = Ki|kzi|k + ci|k∑i−1
m=0 λε+ 1

N

∑M
l=1 sml ≤ [f ]n − [F ]nzi|k

[F ]nA
(i,j,m)
cl ŵl + γ>l (h−Hŵl) ≤ sml

‖H>w γl − [[F ]nA
(i,j,m)
cl ]>‖∗ ≤ λm

γml ≥ 0, ∀l ∈ NM1 ,∀m ∈ Ni−1
0

∀ i ∈ NN1 , n ∈ NnF1 , k ∈ N≥0.

(21)

Proof. The reformulation (21) is the consequence of the exact reformulation of the distributionally robust con-
straints. For any given i and k, based on the linearity property of expectation, the distributionally robust constraints
suprm|k,P0∈P,...,Pi−1∈P EP⊗i{[F ]n(zi|k +

∑i−1
m=0A

(i,j,m)
cl Wm|k)} ≤ [f ]n is equivalent to

i−1∑
m=0

sup
Pm∈P

EPm

{
[F ]n(A

(i,j,m)
cl Wm|k)

}
+ [F ]nzi|k ≤ [f ]n. (22)

Let Zf := {z | z is feasible in (22) ∀i ∈ NN1 }. By applying Lemma 1 to supPm∈P EPm

{
[F ]n(A

(i,j,m)
cl Wm|k)

}
for each m, we acquire that the inequality (22) containing the summation of distributionally robust optimizations is
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equivalent to
i−1∑
m=0

inf
λm,sml,γml

λε+
1

N

M∑
l=1

sml ≤ [f ]n − [F ]nzi|k

s.t. [F ]nA
(i,j,m)
cl ŵl + γ>l (h−Hŵl) ≤ sml

‖H>w γl − [[F ]nA
(i,j,m)
cl ]>‖∗ ≤ λm

γml ≥ 0, ∀l ∈ NM1 ,∀m ∈ Ni−1
0 .

(23)

Hence the feasible set Zf is equivalent to

Zf := {z | ∃λm, sml, γml s.t. z is feasible in
i−1∑
m=0

λε+
1

N

M∑
l=1

sml ≤ [f ]n − [F ]nzi|k

[F ]nA
(i,j,m)
cl ŵl + γ>l (h−Hŵl) ≤ sml

‖H>w γl − [[F ]nA
(i,j,m)
cl ]>‖∗ ≤ λm

γml ≥ 0, ∀l ∈ NM1 ,∀m ∈ Ni−1
0

∀i ∈ NN1 }.

Together with the objective function and equality constraints corresponding to the nominal dynamic, we complete the
proof.

Remark 5. All the results about the worst-case expected constraints in this paper can be easily replaced by the
worst-case chance constraints via the CVaR formulation introduced by [27, 28]. Also, this work can be easily extended
to the control problem with polytopic input constraints, e.g. [14].

4.3 Iterative distributionally robust LQR

Optimization problem (19) is difficult to solve as the matrices of the linearized system depend on the unknown nominal
trajectory and the back-off β is dependent on the unknown system matrices. Hence, we propose in the following an
algorithm iterating by sequentially deriving the linearized system and the corresponding feedback gains via Riccati
recursion [16, Sec. 8.8.3], solving a perturbed nominal problem, and updating the perturbations based on the solution
from a DRO problem.

We consider below the setting of distributionally robust optimal control, i.e. the problem (21) with the initial sam-
pling time k = 0 and a fixed prediction horizon N . Given initial trajectories of nominal state and input z̄, v̄ (e.g.
nominal nonlinear MPC), we solve an iterative LQR problem by Riccati Recursion [24, 29, 16] to get the matri-
ces A,B,K corresponding to the linearized system, where A = {A0|k, . . . , AN |k}, B = {B0|k, . . . , BN |k}, and
K = {K0|k, . . . ,KN |k}. The feedback gain derived from Riccati recursion makes the closed-loop system matrix Acl
stable locally around the linearization point. Then, we solve (20) to update the back-off β = {β0|k, . . . , βN |k}, where

βi|k := sup
Pm∈P,m=0,...,i−1

EP⊗i{[F ]n(

i−1∑
m=0

A
(i,j,m)
cl Wm|k)}. (24)

After determining the back-off, we solve the constraint-tightened program

min
z,v

∑N−1
i=0 (

∥∥zi|k∥∥2

Q
+
∥∥vi|k∥∥2

R
) +

∥∥zN |k∥∥2

Qf

s.t. z0|k = xk
zi+1|k = fd(zi|k, vi|k)
vi|k = Ki|kzi|k + ci|k
[F ]nzi|k ≤ [f ]n − βi|k,
∀ i ∈ NN1 , n ∈ NnF1 , k = 0.

(25)

We iterate the process above until convergence. The proposed algorithm is summarized in Algorithm 1.
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Algorithm 1 Iterative distributionally robust LQR
1: Input: Initial guess z̄, v̄, ε, {ŵ}Mi=1
2: while Not Converge do
3: A,B,K ← Riccati Recursion (z̄, v̄) [16, Sec. 8.8.3]
4: β← DRO (A,B,K, ε, {ŵ}Mi=1) (20)
5: z̄, v̄, c̄← Nonlinear optimal control problem with fixedA,B,K,β (25)
6: end while
7: Return: z̄, v̄, c̄,K

Remark 6. For the original distributionally robust MPC problem (5), we could recursively solve Algorithm 1 at each
sampling time k for the given measurement xk. The initial guess could be generated from a nominal NMPC or a shifted
trajectory derived from the previous step.

4.4 Wasserstein distributional reachable sets for error dynamics

We now further show that the stochastic error characterized by the LTV dynamics

ei+1 = Acl,iei +Wi, Wi
i.i.d.∼ Pw (26)

can be contained in a dynamic Wasserstein ambiguity set given below. This gives a theoretical bound for the experimental
results in Figure 1.

Let êi ∼ Q̂N,i be the empirical error vector at predicted time step i, and Q̂N,i be its empirical error distribution, given
by the empirical LTV error dynamics

êi+1 = Acl,iêi + Ŵi, e0 = 0, Ŵi
i.i.d.∼ P̂.

We now consider a dynamic ambiguity set—Wasserstein ambiguity tube associated with the LTV dynamics, with a
slight abuse of notation,

Tε(P̂N ) :=
{
Qi, i = 0, . . . , T | ei ∼ Qi, ei+1 = Acl,iei +Wi,Wi ∼ Pw, d

p
w

(
Pw, P̂

)
≤ ε, e0 = 0

}
.

The intuition is that the Wasserstein ambiguity tube contains all evolution paths of the ambiguous stochastic system, i.e.,
the state distribution of our MPC problem lives in this ambiguity tube {Qi} ∈ Tε(P̂).

The following result characterizes the size of the Wasserstein ambiguity tube.

Proposition 2 (Wasserstein distributional reachable sets). We have, ∀{Qi} ∈ Tε(P̂),

dpw

(
Qi, Q̂N,i

)
≤ ε ·

i−1∑
m=0

i−1−m∏
j=0

‖Amin{1,i−1−m−j}
cl,i−1−j ‖p,

for i = 0, . . . , T , where ‖ · ‖ is the corresponding induced matrix norm.

Proof. By the definition of the Wasserstein distance,

dpw

(
Qi, Q̂N,i

)
= inf

Π

∫
W2
w

‖e∗i − êi‖p dΠ (e∗i , êi) ,

where Π is a joint distribution (transport plan) with marginals Qi, Q̂N,i.

Plugging in the error dynamics decomposition (18),

inf
Γ

∫
W2
w

∥∥∥∥∥
i−1∑
m=0

i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j (W ∗m − Ŵm)

∥∥∥∥∥
p

dΓ
(
W ∗m, Ŵm

)

≤
i−1∑
m=0

∥∥∥∥∥
i−1−m∏
j=0

A
min{1,i−1−m−j}
cl,i−1−j

∥∥∥∥∥
p

· inf
Γ

∫
W2
w

∥∥∥W ∗m − Ŵm

∥∥∥p dΓ
(
W ∗m, Ŵm

)

≤ ε ·
i−1∑
m=0

i−1−m∏
j=0

∥∥∥Amin{1,i−1−m−j}
cl,i−1−j

∥∥∥p ,
9



where Γ is the joint distribution of W ∗m, Ŵm. Due to the dynamics structure (26), the joint distribution Π is determined
by the joint distributions Γ. The last inequality estimate above is due to the Wasserstein distance estimate dpw

(
Pw, P̂

)
≤

ε.

Proposition 2 equips us with a reachable set for the error in the Wasserstein distance. We illustrate this in a Figure 1.
It further implies that the aforementioned ambiguity tube can be bounded in a more straightforward and computable
dynamic ambiguity set (tube)

Tε(P̂) ⊂
{
Qi, i = 0, . . . , T | dpw

(
Qi, Q̂N,i

)
≤ ε ·

i−1∑
m=0

i−1−m∏
j=0

‖Amin{1,i−1−m−j}
cl,i−1−j ‖p,

êi ∼ Q̂N,i, êi+1 = Acl,iêi + Ŵi, Ŵi
i.i.d.∼ P̂, e0 = 0.

} (27)

Unlike aforementioned works in the existing literature where the ambiguity sets are often given a priori, our dynamic
Wasserstein ambiguity set is obtained by propagating through the LTV error dynamics.
Remark 7 (Wasserstein invariant ambiguity sets). While this paper does not deal with infinite-horizon control or positive
invariant sets, it is easy to see that Proposition 2 can be used to construct Wasserstein invariant ambiguity sets by examin-
ing the series

∑∞
m=0

∏m
j=0 ‖A

min{1,i−1−m−j}
cl,i−1−j ‖p, i.e., if ∃C <∞ such that

∑∞
m=0

∏m
j=0 ‖A

min{1,i−1−m−j}
cl,i−1−j ‖p ≤ C,

then the following set of distributions is a Wasserstein invariant set for the ambiguous system state distribution{
Q | dpw

(
Q, Q̂N,∞

)
≤ ε · C

}
, where Q̂N,∞ is the equilibrium state distribution of the nominal error dynamics (26).

4.5 Linearization error reachable sets

Let us now consider the error dynamics propagation for linearization errors with the following standard assumption.
Assumption 2. The nonlinear dynamics (1) fd : Rnx× Rnu 7→ Rnx are three times continuously differentiable.

To bound the linearization error, we consider the following condition of locally bounded eigenvalues on Hessian,
similar as in [26]. Let X ∈ Rnx and U ∈ Rnu denote the state and input space, respectively and Hn : Rnx+nu 7→
R(nx+nu)×(nx+nu) denote the Hessian corresponding to the n-th component of fd, i.e.

Hn(ξx, ξu) =

[
∂2fd,n
∂x2

∂2fd,n
∂x∂u

∗ ∂2fd,n
∂u2

]∣∣∣∣∣
(x,u)=(ξx,ξu)

,

where ξx ∈ X and ξu ∈ U . We further denote the constant µn as the corresponding locally maximal eigenvalue, i.e.

µn :=
1

2
max

ξx∈X ,ξu∈U,‖h‖∞≤1

∣∣h>Hn(ξx, ξu)h
∣∣ .

Then we have the following bound for each n-th element of the vector of linearization errors r(x, u, z, v) in (8).
Lemma 2. [26, Proposition III.1.] Given Assumption 2, the remainder in (8) satisfies

|rn(x, u, z, v)| ≤ ‖η‖2∞µn,

for any z, x ∈ X , u, v ∈ U , where η =

[
∆x
∆u

]
.

Proof. By second-order Mean Value Theorem, we know that there exist ξx ∈ [x, z] and ξu ∈ [u, v] (with a little abuse

of notation) such that rn(x, u, z, v) = 1
2

[
x− z
u− v

]T
Hn(ξx, ξu)

[
x− z
u− v

]
. Hence we have

|rn(x, u, z, v)| ≤ max
ξx,ξu

1

2

∣∣∣∣∣
[
∆x
∆u

]T
Hn(ξx, ξu)

[
∆x
∆u

]∣∣∣∣∣
≤
∥∥∥∥[∆x∆u

]∥∥∥∥2

max
ξx∈X ,ξu∈U,‖h‖≤1

1

2

∣∣hTHn(ξx, ξu)h
∣∣ .

If the infinity norm is considered here, we have |rn(x, u, z, v)| ≤ ‖η‖2∞µn.
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Given Lemma 2, dynamics (13) and the control policy, we have the following lemma characterizing the upper bound of
the linearization error.

Lemma 3. Given Assumption 2, the remainder in (8) is upper bounded by

rn(xk+i, uk+i, zk+i, vk+i) ≤
(∥∥∥∥[ ek+i

Kk+iek+i

]∥∥∥∥
∞

+

∥∥∥∥[ εk+i

Kk+iεk+i

]∥∥∥∥
∞

)2

µn, (28)

for any z, x ∈ X , u, v ∈ U , where i ∈ N+ and n ∈ Nnx1 .

Proof. This can be directly derived from Lemma 2 with the error dynamics (13).

Furthermore, let µ := diag (µ1, . . . , µnx
), then the linearization error satisfies

rk+i ∈
(∥∥∥∥[ ek+i

Kk+iek+i

]∥∥∥∥
∞

+

∥∥∥∥[ εk+i

Kk+iεk+i

]∥∥∥∥
∞

)2

µBnx
∞ ,

where rk+i :=

 r1(xk+i, uk+i, zk+i, vk+i)
...

rnx(xk+i, uk+i, zk+i, vk+i)

.

Remark 8. The back-off due to the linearization error can be derived from Lemma 3. However, we observed that, in
practical experiments, the linearization error propagation might result in an over-conservative closed-loop performance;
hence, we will only consider the dynamic propagation of ambiguity sets in practical numerical experiments below.

5 Case study

The system considered is a nonlinear mass spring system with m = 2 kg, k1 = 3 N/m, k2 = 2 N/m:

ẋ1 = x2

ẋ2 = −k2

m
x5

1 −
k1

m
x2 +

1

m
u.

The discrete-time system is acquired by using the Runge-Kutta method with fourth order with the sampling period 0.1 s.
We simulate the control performance for the discrete-time system suffering from the uniformly distributed additive
disturbance bounded within [−1e− 3, 1e− 3] on the state element x1, and [−0.1, 0.1] on x2. The prediction horizon
for this system is set to N = 140.

The control goal of this system is to track the state xr = [0, 0]> starting from the initial state xinit = [−2, 0]>, while
satisfying the distributionally robust state constraint corresponding to x2 ≤ 0.5 m/s. The parameters are selected as

Q = Qf =

[
100 0
0 1

]
, R = [1]. We compare the closed-loop performance of three different methods: our method,

fixed feedback gain, and no feedback gain in this section. The fixed feedback gain K = [−7.97,−7.16] is derived from
the LQR controller for the nonlinear system linearized around the equilibrium point with the same penalty matrices.

With M = 5 offline collected disturbance samples and ball radius ε = 0.03, simulation results of nominal trajectories
solved by Algorithm 1 with the three different methods mentioned above (for the method with the fix or zero feedback
gain we only linearize the nominal nonlinear system without updateK) can be found in fig. 2. We apply uk = Kkxk+ck
to the disturbed nonlinear system from k = 0 to k = N , where Kk = 0 for the method with zero feedback gain and
Kk = [−7.97,−7.16] for the method with fixed feedback gain. Fig 3 illustrates 20 realizations of the closed-loop
performance. Fig. 1 illustrates the accumulated error between the closed-loop state and the nominal state shown in
fig. 2. The arrow indicates the error difference between two consecutive sampling times, i.e. the tail indicates the
accumulated error with respect to the nominal state of the previous steps and the head indicates the accumulated error
with respect to the nominal state at the current step.

Based on our experiments, we conclude that though the open-loop controller is capable of controlling the nominal
trajectory, it is not effective in reducing the growth of ambiguity, as depicted in Fig 1. Conversely, our feedback
controller successfully controls the size of ambiguity, which is the main insight of our paper.
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Figure 2: Nominal state trajectories solved by Algorithm 1 with Wasserstein ball radius ε = 0.03.
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Figure 3: Closed-loop performance of 30 realizations with the feedback gains and nominal inputs solved by 1. Red:
Out method. Blue: Fixed feedback gain. Black: Zero feedback gain.

6 Conclusions

Our key insight is that the sizes of Wasserstein ambiguity sets for nonlinear systems can be controlled using nonlinear
feedback control. To demonstrate that, this paper proposes the DRNMPC with dynamic Wasserstein ambiguity. We
propose an iterative MPC scheme to dynamically control the propagation of Wasserstein ambiguity sets. We analytically
characterize the Wasserstein distributional reachable set under dynamic propagation in our algorithm. To evaluate
the effectiveness of our proposed algorithm, we compare the closed-loop performances of dynamic feedback, fixed
feedback, and no feedback on a mass-spring system. The simulation results demonstrate that the proposed iterative
scheme can effectively control the ambiguity set propagation, which is a critical step in solving the DRNMPC problem.
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