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Abstract

This paper provides answers to an open problem: given a nonlinear data-driven dy-
namical system model, e.g., kernel conditional mean embedding (CME) and Koopman
operator, how can one propagate the ambiguity sets forward for multiple steps? This
problem is the key to solving distributionally robust control and learning-based control
of such learned system models under a data-distribution shift. Different from previous
works that use either static ambiguity sets, e.g., fixed Wasserstein balls, or dynamic am-
biguity sets under known piece-wise linear (or affine) dynamics, we propose an algorithm
that exactly propagates ambiguity sets through nonlinear data-driven models using the
Koopman operator and CME, via the kernel maximum mean discrepancy geometry.
Through both theoretical and numerical analysis, we show that our kernel ambiguity
sets are the natural geometric structure for the learned data-driven dynamical system
models.

Introduction

The goal of this paper is to quantify ambiguity—the uncertainty of uncertainty descrip-
tion—in data-driven dynamics models for stochastic differential equations (SDE), e.g., data-
driven approximation of Koopman operator [26] and kernel condition mean embedding [35].
Intuitively, we consider the problem

Problem 1.1 (One-step ambiguity set propgation). Given ambiguity set My at time t and
the nonlinear data-driven dynamics model Xiy1 € f(Xy), find the ambiguity set M1 at
the next time step.

One important impact area of ambiguity quantification is distributionally robust risk-averse
decision-making. There, to hedge against distributional ambiguity, distributionally robust

optimization (DRO) solves a minimax robustifed stochastic program [6]

min sup Eg, [(0; ),
HEM



Figure 1.: Embedded evolution of the system state distribution in a reproducing kernel
Hilbert space (RKHS) H. The blue curve is the evolution path of the embedded state
distribution in H. Each node of the path denotes an embedded system state distribution.
Furthermore, this paper proposes an approach to bound the multistep deviation from the
true (unknown) generating process. This deviation bound is illustrated by the red ambiguity
balls centered at the propagated state distributions along the path. The radius is the
deviation bound in the Hilbert norm.

whose central ingredient ambiguity set M describes the uncertainty of underlying probabil-
ity distribution. In recent cutting-edge studies in DRO, researchers have invented reformula-
tion techniques for solving DRO with geometries in the probability spaces, e.g., Wasserstein
metric [27], i.e., with ambiguity balls of distributions {p | Wy(u, t) < p} centered at an
empirical data distribution /i, where W), is the p-Wasserstein distance [32]. Similar results
also exist for f-divergences [3], and, most relevant to this paper, the kernel maximum mean
discrepancy (MMD) [42]. Compared with ERM, those ambiguity sets describe the level
of trust in the empirical data samples in the corresponding geometry. In the context of
systems and control, recent works in distributionally robust control exploit aforementioned
DRO reformulation techniques [27] in optimal control problems, e.g., [40]. In the context of
stochastic dynamics, for example, ambiguity sets under known dynamics have been studied
using information divergences [11] and the Wasserstein distance [34].

However, despite the already sizable body of literature, the current state-of-the-art learning-
based control falls short of distributionally robust control of uncertain data-driven dynam-
ics models, which are mostly nonlinear such as the Gaussian process models [13], and
data-driven approximation of the Koopman operator [29, 20]. While those methods are
uncertainty-aware, they do not consider that the probability distribution themselves might
be subject to a second layer of uncertainty, the distributional ambiguity. This is due to
the technical difficulty that there exists no method to propagate ambiguity sets, such as
Wasserstein balls, through learned nonlinear data-driven dynamics models . The following
motivating example highlights the technical difficulty and open questions.

Example 1.1. Suppose the dynamics is learned using non-parametric kernel regression,
ie.,

f(x) =Y (k(X,X) +mA) kX, z), (2)

which is also equivalent to the Gaussian process mean dynamics [15]. k is assumed to be a
positive definite kernel, e.g., radial basis kernel. Given a Wasserstein metric ball ambiguity
set at time ¢,

Xt~ pgs e € My = {p | Walpe, fie) < pe}



Then, there exists no tractable method to compute the next time step Wasserstein ambiguity
set M1 for the state distribution Xyy1 ~ pey1, prer1 € Meyq -

To fill this gap, this paper combines the ambiguity sets from distributionally robust opti-
mization , with the nonlinear data-driven modeling techniques from Koopman operators
and kernel conditional embedding. We summarize our contributions below and provide a
brief overview of the results.

1 First and foremost, we propose an algorithm to propagate a distributional ambiguity
set through data-driven Koopman dynamics models and, equivalently, conditional mean
embedding models. Concretely, given learned embedded data-driven Koopman operator
model in the form of its adjoint PF operator 751@1 \» We solve a multistep version of Problem 1.1
under the kernel maximum mean discrepancy metric via Algorithm 1. Different from the
one-step error analysis in the literature [31, 24, 21], we construct the multistep distributional
ambiguity tube of entire trajectories—a set of distributions centered around the empirical

path of the embedded stochastic system M; := {u | MMD(p, éﬁt) < pt} , t=0,1,...,T,

where {c‘fﬁt }j

is the path of the data-driven model obtained using the model 75]%1 \» and py

are the error bounds quantified in this paper. To the best of our knowledge, this is the first
result of this type. To help understand this main contribution of the paper, we illustrate the
intuition of the embedded evolution, along with its multistep error, in an RKHS in Figure 1.
See the caption for more detail.

2 Unlike the Wasserstein ambiguity sets whose radius is hard to set in practice, unless
using costly procedures such as cross-validation [27], we propose a computationally efficient
bootstrap procedure to estimate the ambiguity tube suitable for practical nonlinear dynam-
ics simulation; see Algorithm 2. To the best of our knowledge, this is the first computable
multistep error estimator in the literature for nonlinear data-driven dynamical systems.
Via numerical experiments, we demonstrate that our multistep bootstrap estimator in the
propagation of MMD ambiguity sets for stochastic systems.

2. Preliminaries

2.1. Data-driven Modeling using Embedded Koopman and Perron-Frobenius
Operators

A data-driven dynamics model closely related to (2) is the data-driven approximation of
Koopman operators or Perron-Frobenius operators (PF operators) for stochastic differential
equations using reproducing kernel Hilbert spaces. For a general dynamical system, the
Koopman operator is the linear conditional expectation operator mapping a given observable
function to its expectation with respect to the conditional distribution after evolving the
dynamical system over a time window ¢ > 0 [19, 26], and the PF operator is its adjoint. Due
to their straightforward approximability based on simulation data, these evolution operators
have emerged as a powerful tool for data-driven modeling, analysis, model reduction and
control of complex dynamical systems, see [4, 17, 25] for recent reviews on these topics.




Major applications include, among many others, fluid dynamics and molecular dynamics
simulations.

Due to the close connection of the Koopman approach to machine learning, a natural exten-
sion is to represent evolution operators on a reproducing kernel Hilbert space (RKHS) [1, 33],
which can serve as an infinite-dimensional and therefore powerful approximation space. This
was first suggested in [39], a rigorous connection to the concept of kernel conditional mean
embedding (CME) [7] was made in [18]. In particular, it was shown that one can realize a
view of the exact dynamics through the lens of an embedding operator by a linear opera-
tor acting only on the RKHS, which can be estimated from data using kernel evaluations.
Intuitively, CME can be viewed as the infinite-dimensional vectorial version of the kernel
regression (2), making it suitable for modeling SDE and PDE systems.

We consider SDE dynamics with governing equation

dXt = b(t,Xt)dt+ O'(t,Xt)th, (3)

where W; is the d-dimensional Wiener process. Let X be the state space, which is a subset
of d-dimensional Euclidean space, X € R?. For example, the Langevin SDE is given by

dXt = —VV(Xt)dt + v 2,8—1th,

where, V: X — R is the potential energy, § > 0 is the diffusion constant (often related
to temperature in statistical physics). In this paper, we are particularly interested in the
Langevin SDE due to the characterization of the stability property below.

Assumption 1. We assume V is smooth enough such that global existence and uniqueness
of solutions to (3) is guaranteed, see [30]. Moreover, we also assume that, if X is unbounded,
then V' grows sufficiently fast at infinity to ensure that du(z) ~ exp(—BV (z))dx is finite
and is the unique invariant measure for X;.

We use L2 (X) for the weighted L-space associated with the measure y, and H}(X) for the
Sobolev space of functions with first order weak derivatives in Li(X).

Assumption 2. The potential V satisfies a Poincaré inequality with constant R > 0, that
is, for all ¢ € Hy(X) such that [i ¢(z) du(z) = 0, we have

191200 < 571V 9lz3
Intuitively, Poincaré inequality ensures that the driving energy of the underlying dynamical
system has favorable geometric properties. It is often used to characterize the convergence
rate of the system state distribution of (3) in, e.g., the x?-divergence. Conditions on the
potential to ensure a Poincaré inequality have been well-studied in the literature, see the
book [2] and the review [23] for exhaustive discussions.

Evolution Operators Associated to the invariant measure is the conditional expectation
operator K' : Li(X) — Li(X), given by

Ki¢(z) = E*[p(X)], ¢ € LA(X),



where the expectation is taken over the state X; conditioned on Xy = x. The conditional
expectation operator is also known as the Koopman operator with respect to the invariant
measure. The study of Koopman operators has received significant attention in recent years
due to its close connection to data-driven methods. A consequence of Assumption 2 is

Proposition 2.1 ([23]). The Koopman operator K! is exponentially stable, that is, for all
NS Li(X) such that [y ¢(x)dpu(z) = 0:

2Rt
HICt¢HLfL(X) <e 7 el

2.2. Reproducing Kernel Hilbert Spaces

In this paper, we consider representations of evolution operators on a reproducing kernel
Hilbert space (RKHS), see e.g. [1, 33]. Let k be a symmetric and positive-definite kernel,
and H be the associated RKHS. The corresponding feature map is denoted ® : X +— H, x —
®(x) := k(z,-). We now state the main assumptions on the RKHS required in this paper
[37]:

Assumption 3. (i) The norm of the feature map is in Li(X):

o= | 0@ duta) = [ ko) dp(e) < .

(i) The inclusion map ¢ : H — L7 (X) is injective.

Part (i) of Assumption 3 implies that the RKHS is compactly embedded into LZ (X),i.e ¢is
compact. Moreover, its adjoint is given by the integral operator associated with the RKHS
H,

E(¢) = "¢ = /X 6(2)®() dp(z).

Both ¢ and ¢* are Hilbert-Schmidt, hence the concatenation G := w* is trace class. By
the spectral theorem, there is a complete orthonormal system of eigenfunctions ¢ of G,
associated with strictly positive eigenvalues (by Part (ii)).

2.3. Embedded evolution operators and conditional mean embedding

We now recall the learning framework for evolution operators using their embeddings into
reproducing kernel Hilbert spaces, often referred to as the kernel conditional mean embed-
ding, see [7, 8, 18]. The starting point is the following rank-one operators:

Definition 2.2 (rank-one operators). : Forx,y € X, define the following rank-one operators
on H:

Coz = (®(2), )y (), Cay = (D), )m P(2)-

Proposition 2.3 ([18]). Under Assumption 3, the following co-variance and cross-covariance
operators are Hilbert-Schmidt operators on H:

Cxx ZZ/szdu(l‘), Cxy iZ//Czdeo,t(%y),
X XJX



where [ is the probability measure of the initial state Xo, and oy is the joint probability
measure of Xog and the X;.
Moreover, we have for all ¢, ¥ € H:

<¢7 CXX¢>H = <¢7 1/)>u7 <¢7 CXY¢>H = <¢7 K;t¢>u' (4)

This embedding means that the evolution described by the Koopman operator can now be
studied within the embedding RKHS H.

Remark 2.4. Strictly speaking, we should write
(9, Cxx¥)y = (b, 1), (6, Cxy )y = (1o, K')),

instead of (4), using the inclusion map ¢. However, we will only make this distinction when
a precise distinction between functions in H and their Li representatives is required.

We now discuss the numerical approximation of embedded evolution operators. First, for
any two matrices of m data points X,Y € R¥™ we use the notation Kxy € R™*™ to
denote the matrix of all pairwise evaluations of the kernel k, i.e., Kxy = [k(xivyj)]z;:r
Also, we denote the linear span of the feature maps for all data points in a collection X by
Hx, that is Hy = span{®(z)}}" ;. The features ®(z)) serve as a canonical basis for this
space, we denote the formal m-dimensional vector of all these functions by ®x (or ®x (z)
if evaluated at a point x). Now, let {x1}}"; be a collection of data points sampling the
measure u, and let {y,}7", be obtained by integrating the dynamics over time ¢ from x.
Alternatively, x; and y; can also be chosen as time-lagged samples from a single ergodic

trajectory of the dynamics (3). We then define

Definition 2.5. The empirical counterparts of the co-variance operators are denoted by
£ Lz — H and Cxx, Cyx : H— H. Their definitions are:

m m m
1 4 1 4 1
E g 7 CXXd) = E g Cap,xps CYX¢ = E § Cyp,
k=1 k=1 k=1

In the literature of kernel methods for machine learning, the operation € and & is typically
referred to as kernel mean embedding. Explicit calculation of the inverse operator C;é( or

CA)_(AIX is often avoided by means of regularization. For A > 0, regularized embedded operators
are defined by

Piza = Cyx(Cxx + Ald) ™, Pliy = Cyx(Cxx + Ald)™!

These operators are automatically well-defined and bounded on all of H, even without
the invariance Assumption 1. Furthermore, we note that any function ¢ orthogonal to Hx
satisfies ¢(x) = 0 for all k, which implies that both Cxx and Cy x vanish on HL Therefore,
we also have PH y=0on ]HIX, and it is sufficient to consider PH \ as a map between the
finite-dimensional spaces Hx and Hy . 7



Matrix Representations The matrix representations of these operators are obtained as
follows. For a function ¢ = <I>§oz € Hy, a € R™, we can verify that

Cxx = %Z D (zr) [(Kxx)k,: - ¢, Cyxt = o) [(Kxx )k, - o, (5)

S|

k=1 k=1

=3 @) (K o], Q=3 ®) (K)ol (6)
k=1 k=1

where the matrix Kg( y is obtained by subtracting the vector kx of column sums of Kxx
from the kernel matrix:

m

1
K%x :KXX—E]I@)ICX; [kx]s :Zk(xr,xs).

r=1

Concatenating both representations, the regularized empirical operators possess the matrix
representations (with respect to the canonical bases of Hx, Hy:

Py = Kyx(Kxx +mAld)™. (7)

2.4. Kernel maximum mean discrepancy and ambiguity sets

The kernel maximum mean discrepancy (MMD) is defined as the difference between integral
maps of the kernel functions measured in the aforementioned reproducing kernel Hilbert
space (RKHS) norm associated with the kernel function k.

MMmew=n/%mfmu—/%ufwwH (8)

The MMD is a metric on the space of probability measures. It can be easily estimated
using the Hilbert space inner product structure. Given two samples from the distribution
of interest x; ~ p,i=1...M;y; ~v,j=1...N,

MMD (u, v)? = By yriki(z, 7)) + By k(4. Y') — 2B ynk(2,y), (9)

Furthermore, the MMD has a dual formulation MMD(u, v) = supy s.<1 J f d(p —v), which
bears the interpretation as an integral probability metric [36].

In the context of this paper, we use MMD, which is an RKHS norm, to measure the devi-
ation of the data-driven estimation from the ground truth. For example, we later establish
error analysis of the form ||€p; — Epy||, where p; is the embedded (in H) data-driven es-
timator of the system state distribution at time ¢, and the Ep, is the (unknown) embedded
ground-truth dynamics. Similar to the Wasserstein metric, the previous work [42] has dis-
covered reformulation techniques for the aforementioned DRO under the MMD metric-balls
{p | MMD(u, it) < p}. Compared to the DRO setting, this paper studies how to propagate
such static ambiguity set through nonlinear dynamics models. In previous studies of Koop-
man theory and conditional kernel embedding, researchers have focused on the empirical
estimation and one-step error analysis [31, 24, 21] . This paper shows that the concept of
ambiguity set using the aforementioned MMD is a natural tool for establishing multistep
error analysis for dynamical systems.



3. Propagating MMD ambiguity sets through nonlinear
data-driven dynamics models

3.1. Multistep ambiguity set propagation

In the literature, error analysis of CME typically focuses on concentration properties. For
example, estimation errors of the one-step estimators for embedded evolution operators have
been studied extensively in the literature on conditional mean embeddings, see [8, 31, 24, 21].
These results have been applied in the context of Koopman theory by [18].

However, in practice, error analysis of such learned models alone is not enough — the mul-
tistep evolution of uncertainty and ambiguity must be understood. For example, given the
initial system state X distributed according to pg, standard results, which we will expand
on later, can be applied to characterize the one-step prediction error

11 — Ep1llm = | Pl AEP0 — PirrEpolm,

where p1, p1 are the densities at time ¢ obtained by applying the exact and empirical prop-
agator, respectively. Note that we use the notation p to indicate that this process is the
estimated path of our data-driven model. However, our interest is often to understand the
prediction error after multiple steps of applying the data-driven models, i.e., characterizing
Hg’ﬁT — Eprllm for some specified integer T' > 1, corresponding to propagation over phys-
ical time T - t. Therefore, the compounding error caused by applying our error analysis
repeatedly must be taken into account. We now focus on the multistep propagation of the
sampling error. This corresponds to characterizing the error due to the randomness of em-
pirical estimation from data. As we shall see, the multistep error behaves quite differently
from the one-step analysis we have analyzed so far.

Our starting point is the following result. We denote the terms

B |Pha|, . F =Py~ Phalligs: (10)

L(H)
We summarize the result below.

Proposition 3.1 (Propagate multistep MMD ambiguity). Suppose po,qo are two initial
state distributions. Let Epr denote the embedded distribution propagated by applying the
true unknown push-forward operator Pﬁ’/\ to po for T times; é’ch denote the embedded
distribution propagated by applying the empirical push-forward operator 75]]21)\ to qo for T
times, i.e.,

Epr = (Pig\) Epo,  Eqr = (Piz )" Eao. (11)
Then, at time T, the error bound in MMD is given by the formula
T—1
MMD(Eqr, Epr) < ET - MMD(Eqo,Epo) + Y | E'F||Epr—i—1m, (12)
i=1

where the factors E, F are defined in (10).

Note that, in practical applications, the first term reflects the level of trust in the initial
empirical data samples, and can be set to the existing concentration bounds characterized
in kernel methods literature such as in [36].



In practice, the above formula is not yet computable since we do not know the true values
of ||Epr—i—1|lm- To provide a computable error bound, we establish:

Proposition 3.2. In the same setting as in Proposition 3.1, we have

N

1
MMD (Egr, Epr) < (E+ F)T - MMD(Eq0, Epo) + Y (E + F)'F||Eqr—i—1]|m, (13)

i=1

where the factors E, F are defined in (10).

Corollary 3.3. The multistep empirical estimation error bound in MMD for propagating
distribution pgy is given by

T—1
MMD(Epr, Epr) < Y (B + F)'F|[Epr—i || (14)
i=1

Note that all the terms on the right-hand sides in Proposition 3.2 and Corollary 3.3 are
computable. Finally, we also provide an implementable recursive scheme of the above error
bound in Algorithm 1 for propagating the MMD error bound forward in time. We later
demonstrate the multistep error bounds in numerical experiments. It is important to note
that, using Algorithm 1, the key quantities that incur computational effort in (10) are only
estimated once at the beginning of the algorithm, resulting in computational efficiency. In
our algorithm, only one system trajectory, {ﬁi}ZTZO is propagated through (15), which differs
from traditional bootstrap estimators for kernel regression that relies on multiple bootstrap
replicate of the regression estimator, see, e.g., [12][Chapter 8]. The idea of the multistep
operator estimation error is illustrated in Figure 1.

3.2. An efficient empirical bootstrap estimator of operator error

To characterize the deviation of the estimated operator from the true operator in (27),
researchers have typically relied on concentration inequalities, such as those provided in
the previous section. Bounds derived from concentration inequalities are well-known to
be conservative, especially if applied to the composed operator PJ; \, where only coarse
estimates for the inversion are available. Furthermore, error analysis in multistep ambiguity
propagation is even more conservative due to the compounding of error over the time steps.
Those issues continue to impede the practical use of existing error analysis, including, e.g.,
the results in Proposition B.3.

To remedy those issues and provide a practical approach toward error analysis, we propose
a bootstrap estimator of the operator deviation in (27). Given the training data set (X,Y),
we create a bootstrap copy of the empirical estimator 75]%1 » denoted as 75@1,)\, by using a

re-sampled (with replacement) data set (X,Y) (ie., (X,Y)is a resampled with replacement
data set of (X,Y)). We then compute the deviation ||Pf , — P ,|lr@ by the following
formula

. - T -
||73]1E11,/\ - Pﬁ,AHL(H) = \/Amax (KZE(A +B-C— CT)KZZQ> o)

=\ huax (K5 (A+ B —C - CT)).



Algorithm 1: Multistep propagation of the MMD error bound

Data: Initial ambiguity set radius estimate py > MMD(E’qO, Epp), initial empirical
state distribution embedding c‘:’qo
Result: The entire ambiguity tube, i.e., embedded distributional trajectory
{£4:}, and MMD error bound at time i

pi = MMD(EG, Epi), i=0,...,T

Algorithm:

Estimate ||Pf; y — Pf; \|lLam), either via concentration results in Section B.2 or the
bootstrap scheme in Algorithm 2; compute 75]%1 , and its operator norm
IPE Nl Ly similarly

fori=0,1,..., 7 —1do

Compute the next-step empirical embedding, also known as the center of the
ambiguity set

Ediv1 = Pl Eds (15)
Compute the next-step error bound, also known as the ambiguity set radius
using (?77)

pit1 = Hﬁﬁ,)\ — Pzl Lom - (I€dillm + pi) + ||73}f11,,\||L(H) “pi

end
where we use the notation Z := [X , X]T for the concatenated data vector, and K is the
kernel Gram matrix for the concatenated vector Z, i.e., Kzz = [k(z, 2j)];5_; . The terms

A, B, and C are defined through
A=K, (Kgg+mA) Koo (K g +mA) 'Ky
B=K,;(Kggz+m\) 'Kpp (Kgg +mA) 'Ky, (17)
C=K,x(Kggo+mM) 'Kpo (Kgg +mA) 'Ky,

The derivation is provided in Section A.

We then repeat this bootstrap process my times. The results can be used to determine
a confidence bound for the error quantile of the operator deviation in (27), i.e., we can
numerically compute the quantile § such that

P(|P s — Phialloa <6) > 1-«a (18)

where 1 — « is a given confidence level, e.g., set to @ = 5%. This procedure is outlined
in Algorithm 2 and illustrated in Figure 2. The ability to produce bootstrap estimates
hinges on the advantage that the RKHS operator norm admits a straightforward computable
estimate in at-most polynomial time. This trait is not shared by some other metrics such
as the Wasserstein distance. In the existing literature, bootstrap techniques for MMD have
been used to produce sharp test thresholds in two-sample tests for machine learning [9, 14]
as well as to produce sharp approximate ambiguity set estimation for distributionally robust
optimization [28].

10



Algorithm 2: Bootstrap estimation of operator deviation

Data: Training data (X,Y’), number of bootstrap samples my, confidence level «
Result: Approximate quantile for operator deviation § such that

P[Py — Phialloe <6) > 1— o (19)

for j=1,...,my do
Resample a data set (X,Y) from (X,Y) using sampling with replacement;
Compute the deviation Hﬁﬁ)\ — 75%1,,\”L(H) using (16);
Alj] « ||73]1€]I,,\ - P]fm)\HL(H);

end

A + sort(A);

§ + Alceil(mp(1 — ))];

25

20

15

count

10

5 K
0

0.0 0.1 0.2 0.3 0.4
error value

Figure 2.: Bootstrapped approximate quantile for operator deviation. The horizontal axis
denotes the value of the operator deviation in the bootstrapped data copy produced by the
bootstrap procedures described in Section 3.2. The errors are then reported in a histogram.
The vertical redline indicates the approximate quantile bootstrap 9.

4. Numerical experiments

4.1. One-step prediction error analysis

We consider the one-dimensional Ornstein-Uhlenbeck process
dX; = —aXdt + v/ 2B_Ith, (20)

where o = 1,8 = 1. In this experiment, we will refer to this stochastic system as the true
(unknown) dynamical system.

We first time-discretize the system and simulate it forward from the sampled initial state
X} ~ po until the desired time 7. We then use the data {X¢, X7} to form the embedded
estimator as described in the previous sessions. The evolution of the system state distri-

11



0.3 — u(0)
>
2 —— p(0.1)
T 0.2 —— u(0.5)
©
— u(1.0)
0.1 — u(2.0)
—— 1(100.0)
0.0
0 5

Figure 3.: Density evolution over the lag time interval of the learned data-driven system.
We plot the distribution from 0 to 2 seconds in the simulation. Additionally, we plot the
state density at a longer time at 100 seconds, which is close to the equilibrium state.
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Figure 4.: (left) Bootstrap error over time of the empirical estimate of the push-forward
operator P - (right) We plot the same figure in a log scale to visualize the rate of change.

bution is plotted in Figure 3. We report the prediction error of this learned estimator in
Figure 4.

Next, to empirically verify the concentration properties of the estimator, we plot the boot-
strapped error bound as we increase the training data size. This is plotted in Figure 5. To
further visualize the convergence rate, we plot the log-log scale in Figure 5 bottom. We
fit a linear regression and obtain the approximate slope —0.4 of the log-log curve, which
is an estimate of the rate of convergence. This implies that the empirical bootstrap error
estimate converges at the rate of approximately n=04. To get a sense of how well our error
estimation is, we additionally generate independent samples from the Ornstein-Uhlenbeck
process (20), denoted by { X", X7 i]\il. We compute an approximate oracle of the deviation

12
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Figure 5.: (left) Empirical bootstrap error (y-axis) plot over a varying number of training
samples (x-axis). (right) Both axes are plotted in log scale to show the rate of decay.

by the large-sample (M = 5000) Monte Carlo estimation

M M
1 N 1 ;
MMD(=- 37 S(X'5), Py D B(XD)).
=1 =1
We compare our empirical bootstrap error with this large-sample oracle in Figure 5. We
observe that the empirical bootstrap estimator does produce error bounds that tend towards
the oracle as the number of training samples increases.

4.2. Multistep prediction error analysis

We now demonstrate the multistep error propagation method proposed in Section 3.1. Fig-
ure 3 depicts the evolution of RKHS embedding of the state distribution, i.e., fix,. Note that
those are empirical estimates of the state distribution subject to estimation error. Different
from the settings reported in [18], which characterizes the one-step error bound, we com-
pute the multistep error estimation via the ambiguity set propagation algorithm outlined in
Algorithm 1. We set the initial ambiguity radius to be MMD (ux,, fix,) = 0.1, which can be
obtained via measure concentration bounds in practice [36]. The initial state distribution
Po is set to a Gaussian with mean 0.5 and variance 2. We then sample m = 250 trajectories
as our training data and run Algorithm 1.

We now visualize our multistep error bound, i.e., the (dynamic) ambiguity sets that de-
scribe the distributional uncertainty of the embedded system states. Since the squared
MMD distance is simply a quadratic distance in the embedded Hilbert space, we plot the
ambiguity tube (consisting of Hilbert norm-balls) centered around the empirical trajectory
Epy = >, Bi®(X}), where X} are the sampled states and f3; are the estimated coefficients,
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Figure 6.: (left) Evolution of the distribution embedding with regression-regularization
coefficient A = 0.01. (right) Evolution of embedded system states and error bound.
The x,y-axes are the coefficients §; for two random components of the kernel embedding
S Bi®(X}). The red balls denote the multistep MMD estimation bound, i.e., the propa-
gated ambiguity sets. See also Figure 1 for a similar plot, but using the span of two principal
components, instead of two random components of (3;, for visualization.

computed via (15), i.e., we plot the ambiguity sets Ay CH, t=0...T,

Ay = {u = (X)) 1w < pt}. (21)

=1

Since the embedded Hilbert space H is infinite-dimensional, we project down to two dimen-
sions by selecting randomly two features ®(X}), and plot the evolution of their coefficients
B; in Figure 6 (right). The propagated ambiguity set radii, i.e., MMD error bounds over
time, are plotted in Figure 7. See the caption therein for more details, as well as Figure 1
for a similar illustrative plot, but using the span of two principal components, instead of
two random components of 3;, for visualization.

4.3. Further related works

Different from previous works that use either static ambiguity sets [27, 6] or dynamic ambi-

guity sets under known piece-wise linear (or affine) dynamics [34], we show that our RKHS

ambiguity sets are the natural modeling choice for the learned data-driven dynamical system

models.

The centerpiece of data-driven Koopman operator approximation is the conceptually straight-
forward estimation algorithm called Extended Dynamic Mode Decomposition (EDMD) [38,

16], which can be used to learn a finite-dimensional approximation to evolution operators

from finite simulation data. Clearly, two major sources of error arise from its application -
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Figure 7.: Multistep error estimate in MMD (ambiguity radius) plotted over time of the
simulation. (top) The case with regression-regularization coefficient A = 0.01.

the estimation error, which measures the error between the computed model and the ana-
lytical Galerkin approximation onto the finite-dimensional subspace on one hand, and the
approximation error, which accounts for the data-independent projection error onto this
finite-dimensional space, on the other hand. Both sources of error have been addressed
previously in the literature, see [22, 41, 29].

Due to the close connection of the Koopman approach to machine learning, a natural exten-
sion is to represent evolution operators on a reproducing kernel Hilbert space (RKHS) [1, 33],
which can serve as an infinite-dimensional and therefore powerful approximation space. The
first kernel-based variant of EDMD was suggested in [39], and a rigorous connection to the
concept of conditional mean embedding [7] was made in [18]. In particular, it was shown that
one can realize a view of the exact dynamics through the lens of an embedding operator by
a linear operator acting only on the RKHS, which can be estimated from data using kernel
evaluations.

The finite-data estimation error for embedded evolution operators has already been con-
sidered in the literature using concentration inequalities, see, for example, [8, 31, 24]. For
stationary and exponentially stable systems, the analytical evolution operators often possess
a low-rank structure for intermediate time windows, as all rapidly equilibrating processes
have decayed at these timescales. However, intermediate time windows are often the most
relevant time windows in numerous applications.

5. Discussion and future works

Designing closed-loop distributionally robust control for nonlinear data-driven dynamics
models remains an open problem. This paper’s results lift a major roadblock in that we
have proposed an algorithm that is capable of propagating MMD ambiguity sets through
nonlinear data-driven dynamics models using Koopman operators and kernel CME. This
can serve as the first necessary step to apply this propagation scheme in data-driven distri-
butionally robust control. Furthermore, we envision that feedback distributionally robust
control can further control the growth of multistep distributional ambiguity sets character-
ized by this paper.
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A. Derivation of the empirical bootstrap estimator

Estimating the operator norm of the conditional embedding operator is straightforward and
given in the following proposition and lemma. Expanding all three terms, we obtain the
bootstrap estimation in (16). Note that similar techniques have been used to estimate the
kernel-constrained covariance to detect data dependence in [10].

Proposition A.1. The norm of the difference of operator, Hﬁﬁx — 751@1,,\”L(H); is given by

~ ~ _1
||Pﬁ,A—Pﬁ,A||L(H)=\/Amax< ZZ(A+B C-CNK 2)

=\ huax (K5 (A+ B —C —CT)).

where we use the notation Z = [X,X}T for the concatenated data vector, and Kzz is the
kernel Gram matriz for the concatenated vector Z. The constants A, B, and C are defined
through

—1 71
A=K, ¢(Kgg +mAN) 'Kyp (Ko +mA) 'Ky,
B=K,3(Kgz+m\) Koo (Kgg +mM) 'Ky, (22)
C=K,¢(Kgz+mA) 'Kpo (Kgg +mA) ' Kg .

Proof. Similar to the proof of Lemma A.2; we write the norm estimate

1Phs — Phiallzey = sup /Pl — Pl ul?
|l <1
= s VPl + 1Pl spll? = 20Ph s, Pl s
plln<

Using a similar orthogonal decomposition as in the proof of Lemma A.2, it suffices to
consider the elements p of the form p = Zf;"l a;k(z;,-). The conclusion follows from the

same derivation of the proof of Lemma A.2. O

Lemma A.2. The CMFE operator norm estimation is given by

R 1 _ 1
1PiAll = \/)‘max <K§X (Kxx +mAl) 'Kyy (Kxx +mAl) 1K§X> . (23)

Proof. We start by expanding the inner product

HPH Al = <7D1HI AM»P]HI A H (24)

where we consider the embedding in the form of an orthogonal decomposition p = fi + p,
where the empirical embedding is given by fi = Y"1 | a;k(z;,+) and pt its project onto the
orthogonal subspace with the property that

ﬁﬁ,xﬂ = Zai : ﬁﬁ,Ak(%a )

i=1
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Phapt =0
<ﬂ7 ML>H =0.
By the definition of operator norms,

[Phall = sup [Pl
|l <1
= s [P AR + 20Ph i Pl i+ [Pl a2
lallze -+t <1

= s\ JIPEaP
i+ llpt <1

= sup \/OJTKXX(KXX—i—m)\I)iley(KXX+m)\I)71KXon.

(XTKX)(O(§1

This optimization problem is equivalent to a generalized eigenvalue problem, whose solution
is given by

\//\max (K)%X (Kxx +mAl) " Kyy (Kxx + mAI)1K§X> :

where Anax denotes the largest singular value of a matrix. Hence the conclusion. O

If we choose those empirical points Z to be the X in the training data, we arrive at the
empirical estimator

N 1 _ _ 1
N \/ Amas (K)%X (Kxx +mAL) ™ Kyy (Kxx +mAl) 1K§X) . @)

B. Moments of the Cross-Covariance Operator

The moments and variance of the cross-covariance operator are central quantities for the
derivation of time-dependent finite-data error bounds for embedded evolution operators.

B.1. Set-up

We start by analyzing the dependence of the estimation error for embedded Koopman
operators on the lag time ¢. This time dependence enters through our estimate of the cross-
covariance operators. Our approach is to characterize the time-dependence of the second
moment and the variance of the operator-valued random variable c,:

Map = EF [[leqyIs), of = My — |[E*** ez ]lfis = M2 — ||ICxv |l fis-
To this end, we introduce a separate symbol for the diagonal of the kernel:
©1(x) = |®(2)f = k(, ). (26)

We will require that ®; is square-integrable in what follows, which essentially means that k
must also be square-integrable, in addition to the previous assumptions on k. Moreover, we

20



introduce a two-argument Koopman operator, acting on two-argument functions ¢(z, ! ) in

the product space Lf@“(X x X):

Kip(z, ') == B> [6( X, X{)| Xo = 2, Xo = 2],

where the two processes Xy, X| are independent. The two-argument Koopman operators

form a strongly continuous semigroup on L%@M(X x X). We also introduce the orthogonal

complement of the constant function in Li(X) as:

z&mxw:WeLﬁxn/¢unmm>=m.

Denote its orthogonal projector by Py. Similarly, we denote the orthogonal projector onto
the orthogonal complement of the constant function in the product space by P 2.

Lemma B.1. Let ®; € L2(X). Then:
(i) The second moment Ms; is finite for allt > 0 and is given by

Moy = EFO[[leayllg] = (@1, K'®1) .

(i) The squared Hilbert-Schmidt norm of Cxy is given by

Iy x IIfis —//k(w,x')k(y,y/) dppo,e(z,y) dpo(a'y') = (k, Kok) o,

Proof. (i) We choose an orthonormal basis {e;}3°; of H to determine the Hilbert-Schmidt
norm of the rank-one operator cgy:

chyH%IS = Z (Cay€i, Cayei)y = Z (@(y), ei>12ﬁl (@(z), ®(2))y
i=1 =1

= | 2(@) |12 W) lF = P1(2) @1 (y)-

using Parseval’s equality in the third step. Therefore
Moy =B (e lfhs] = [ 1(2)01(0) dposliry) = (@1, K'01),

which is finite for all ¢ if &; € LZ(X).
(i) Similarly, we determine the second term in the variance as:

e}

ICxvllis = (Cxvei, Cxvei

=1
=3 [ [ (@@, e (@), e (20). )y dhos(iy) dos(a'y)
=1

=//Ww%%%@m@wwM%w.

21



We can now deduce the following asymptotic behavior of the two components of the variance:

Proposition B.2. Let ®; € LZ(X). Then the second moment and the norm of CYy have
the following asymptotics in t:

g

2Rt
109 xlfis < IH1E + exp (- 25" ) Poak

Proof. We first split the function ®; into its stationary and centered parts:

2Rt
Mo < | @1]2 + exp (—) 1Po1 2.

Py = (P1, 1), 1+ Po®1 = |11 1 + Po®1.
Then, by the Poincaré inequality for the second term, and the invariance of K! on Li,O(X)7
we get that:
2Rt
Mgl = | (@1, K1), | < ol + exp (=250 ) [Pua

For the second part, we can use that the product measure Lf@u also satisfies a Poincaré
inequality with the same constant R [23]. Therefore, we can apply the same argument, i.e.
first decompose the kernel function as

k= <k‘, 1>M 1 +730,2k‘ = ”k‘Hl 1+ 73072/{7,
and then apply the Poincaré inequality to the centered part:

2Rt

ey s =1 b K580, < IR +exp (25

) [Pkl

O]

B.2. One-step prediction error estimation for Embedded Evolution Operators

Consider the embedded Perron-Frobenius operator Pj;. The goal is to bound the regularized
estimation error:

1P, — Phiall - (27)

Applying a standard decomposition, following [8], we can write:

Hﬁﬁ,,\ — PizallLay < 1(CYx — Cgfx)(égfx,,\)_IHL(H) (28)

+ Hclo/x(é())(x,,\)*l(égcx,,\ - Cg(X,,\)(C()J(X,,\)A”L(Hy (29)

Using that ||Cx [l and [|Cx /@) are bounded by A~!, and that the Hilbert-Schmidt
norm dominates the operator norm, we obtain:

||7511t41,,\ - Pﬁ,AHL(H) <ATHICY x — Cxllus + AT2[CY x lns|ICk x — Cx llus. (30)

This bound can be combined with the results from above and concentration inequalities in
order to obtain a probabilistic bound for the estimation error. For example, using Bernstein’s
inequality in Hilbert space, the following result can be shown:
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Proposition B.3. Let the rank-one operators c, and ch satisfy the following moment

bounds for all m > 2 and some L € R:
po,tf|| 0 ||m 1 | +2 7 m—2 wiil 0 m 1 | 2 7 m—2
EFOlleye s < §m"7tL , E*[[lezallfis] < §m‘UoL :

Then for any 6 > 0 and m € N, we have with probability at least 1 — 2

2 IIC?/XHHS) L
N N m)

Proof. We apply the Bernstein inequality [5][Proposition 2] separately to both terms in (30),
to find that with probability at least 1 — §:

2 CY
log(g) [at + 7H Y;(HHS oo+ (14

1Pl — Pl < (31)

5 2 o L A 9 o )’
1695 ~ Cxlus < 2103 | Tt Z| L 108 — Challns < 21085) | T+ .

The result then follows from (30) and an intersection bound. O

Remark B.4. The assumptions of Proposition B.3 are satisfied in particular if @1 is uni-
formly bounded, by Lemma B.1. In turn, this will hold if the kernel is bounded.

Note that we do not attempt to provide the sharpest possible estimate here. The estimate
from Bernstein’s equality nicely allows accounting for the time dependence by means of the
variance. For a bounded kernel, we could use Hoeffding’s inequality instead, but the time
dependence would be lost in that case.
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