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SHIFTED SUBSTITUTION IN NON-COMMUTATIVE

MULTIVARIATE POWER SERIES WITH A VIEW

TOWARD FREE PROBABILITY

KURUSCH EBRAHIMI-FARD, FRÉDÉRIC PATRAS, NIKOLAS TAPIA,
AND LORENZO ZAMBOTTI

Abstract. We study a particular group law on formal power series in non-commuting
variables induced by their interpretation as linear forms on a suitable graded connected
word Hopf algebra. This group law is left-linear and is therefore associated to a pre-
Lie structure on formal power series. We study these structures and show how they
can be used to recast in a group theoretic form various identities and transformations
on formal power series that have been central in the context of non-commutative
probability theory, in particular in Voiculescu’s theory of free probability.

1. Introduction

This work aims at explicitly relating two approaches to key arguments in Voiculescu’s
theory of free probability and related areas [2424, 2525, 2626]. On the one hand, the common
approach by formal power series, on the other hand, a more recent one that relies on
group-theoretical and Hopf algebraic arguments. For that purpose, we introduce and
study various group, Lie and pre-Lie structures on formal power series in non-commuting
indeterminates. We obtain as a by-product a dictionary between the two approaches
that allows to translate various Hopf algebraic constructions into (non-trivial and non-
standard) operations on formal power series.

Let us be more precise. In recent work (see [1717] and references therein), a shuffle
group theoretic approach to moment-cumulant and cumulant-cumulant relations in non-
commutative probability was proposed. In this setting, various families of cumulants,
namely monotone, (conditionally) free, and Boolean, are understood as elements in the
Lie algebra g of infinitesimal characters over a particular combinatorial word Hopf al-
gebra H . The series of moments is identified in turn with a particular element in the
group G of Hopf algebra characters on H . Three exponential-type maps happen to relate
bijectively the group G and its Lie algebra g; they therefore imply relations between the
aforementioned families of cumulants and moments as well as relations amid the different
types of cumulants.

On the other hand, it is well-known that the relations between moments and cumu-
lants as well as the relations between the different families of cumulants can be concisely
described in terms of multivariate generating functions, i.e., non-commuting formal power
series [55, 2525]. It is therefore natural to look for a precise understanding of the connection
between formal power series in non-commuting variables with scalar-valued coefficients
and the properties of linear forms on the aforementioned Hopf algebra H .

The shuffle algebra approach was further developed in [1919, 2020] with respect to Wick
polynomials. In the later reference, it was shown that free, Boolean, and conditionally
free Wick polynomials, introduced and studied in great detail by Anshelevich in a series
of papers [11, 22, 33], can be defined and related through the action of the group G on the
identity map in the space of endomorphisms on the tensor algebra T pAq defined over
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the underlying non-commutative probability space pA, ϕq. The paper [2020] extended to
non-commutative probability the setting of the previous work on Wick polynomials by
the same authors [1919].

In this work, we identify and study a particular group law (resp. pre-Lie and Lie prod-
ucts as well as other operations and structures) on formal power series in non-commuting
variables. It is induced, as we just alluded to, by the interpretation of the latter as linear
forms on the Hopf algebra H . This new group law is left-linear11. It generalizes to the
multivariate case –up to an isomorphism– the group of tangent-to-identity formal power
series that gives rise to the classical Faà di Bruno Hopf algebra. Being left-linear, the
group law is therefore associated to a novel pre-Lie structure defined on formal power se-
ries. Eventually, we note that our approach resembles in various respects the link between
Butcher’s group of B-series in numerical analysis [88] and a Hopf algebra of non-planar
rooted trees described by Connes and Kreimer [77, 99, 1313]. See Remark 4.6Remark 4.6 below. We
study these phenomena and show how they can be used to recast in a group-theoretic
form various identities and transformations on formal power series that have shown to be
central in the context of non-commutative probability theory, in particular in Voiculescu’s
theory of free probability [2525].

The paper is organised as follows. In the second section we describe the new group law
on multivariate formal power series. The third section is dedicated to the corresponding
pre-Lie and Lie structures. Sections four and five make the connections with the Hopf and
shuffle algebraic viewpoints and explain how key operations on linear forms on the Hopf
algebraH transport to formal power series. The last section describes explicit connections
with free, Boolean and monotone probability.
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2. The shifted composition group law

The set of (strictly) positive integers is denoted by N and all structures are considered
over the ground field K (of characteristic zero). Let x “ tx1, x2, x3, . . . u be a set of formal
non-commutative variables and let A be a commutative K-algebra with unit 1A (or simply
1 when no confusion can arise). The set of non-empty finite sequences of positive integers
is denoted N˚. We will use the common word notation for elements in N˚. The empty
word is denoted 1, by convention it does not belong to N˚. The subset Nk Ă N˚ contains
words w “ i1 ¨ ¨ ¨ ik of length |w| “ k, that is, sequences with exactly k letters.

We consider the ring

R – Axxx1, x2, x3, . . . yy

1See Definition 3.1Definition 3.1 below.
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of non-commutative formal power series in these variables with coefficients in A. A typical
element f “ fpxq P R has the form

fpxq “ f0 `
8ÿ

k“1

ÿ

pi1,...,ikqPNk

fi1¨¨¨ik
xi1

¨ ¨ ¨xik

with coefficients f0, fi1¨¨¨ik
P A. It is convenient to use word notation for such a series

fpxq “
ÿ

wPN˚Yt1u

fwxw .

Here we have associated to a word w “ i1 ¨ ¨ ¨ im P N
m the non-commutative monomial

xw – xi1
¨ ¨ ¨xim

, with the convention that x1 “ 1A and f1 “ f0. Multiplication in the
ring R is known as Cauchy product, which is denoted for elements f, g P R by

fgpxq –

ÿ

wPN˚Yt1u

pfgqwxw. (2.1)

The coefficient of the empty word is f0g0 and pfgqw P A, for w P N˚ is defined to be

pfgqi1¨¨¨im
:“ fi1¨¨¨im

g0 ` f0gi1¨¨¨im
`

m´1ÿ

j“1

fi1¨¨¨ij
gij`1¨¨¨im

.

This can be compactly formulated in terms of the deconcatenation coproduct on words
in N˚

pfgqi1¨¨¨ik
“ mApf̂ b ĝqδpi1 ¨ ¨ ¨ ikq,

where δp1q :“ 1 b 1 and

δpi1 ¨ ¨ ¨ ikq “ i1 ¨ ¨ ¨ ik b 1 ` 1 b i1 ¨ ¨ ¨ ik `
k´1ÿ

j“1

i1 ¨ ¨ ¨ ij b ij`1 ¨ ¨ ¨ ik.

The maps f̂ and ĝ are defined to be linear on the linear span of elements in N˚ with

values in A, i.e., f̂pwq :“ fw, ĝpwq :“ gw, and extended to the empty word, f̂p1q “ f0

and ĝp1q “ g0.
In the following, we consider two distinct subsets of the ring R, which will be denoted

G1 and G0. The former consists of elements in R with unit constant coefficient

G1 :“ tfpxq P R | f0 “ 1Au.

Elements h P G1 are written h “ 1A ` h1. One verifies that G1 forms a group under the
usual multiplication (2.12.1). For f P G1, the coefficients of its inverse f´1 P G1 can be
explicitly computed starting from those of fpxq. On the other hand, the set G0 contains
elements in R with zero constant coefficient

G0 :“ tfpxq P R | f0 “ 0u.

We introduce also the set of so-called “tangent-to-identity” elements (according to the
terminology of dynamical systems)

Gc :“ tfpxq P R | f0 “ 0, fi “ 1A, i P Nu.

On the set G1, we consider a new product by combining composition and Cauchy
product (2.12.1). Before giving the definition, we introduce some notation. For g P G1, a
new set of transformed variables

xgpxq :“ tpxgpxqq1, pxgpxqq2, pxgpxqq3, . . . u

is defined for i P N by

pxgpxqqi – xigpxq “
ÿ

wPN˚Yt1u

gwxiw “ xi `
ÿ

wPN˚

gwxixw. (2.2)

For words w “ i1 ¨ ¨ ¨ il P N˚, we set

pxgpxqqi1 ¨¨¨il
– xi1

gpxq ¨ ¨ ¨xil
gpxq. (2.3)
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Definition 2.1. For f, g P G1, the shifted composition group law is defined:

pf ‚ gqpxq :“ gpxqfpxgpxqq. (2.4)

Remark 2.2. Later, it will become clear that from the shuffle algebra viewpoint on non-
commutative probability, shifted composition corresponds to monotone composition.

Observe that, since g P G1, we have xig P Gc Ă G0 for all i ą 0. The composition
fpxgpxqq “ 1A ` f 1pxgpxqq is therefore again an element in G1. In the one-dimensional
case (corresponding to a single variable x “ x1), the set Gc, whose elements are then
called tangent-to-identity formal diffeomorphisms (as they are formal diffeomorphisms of
the one-dimensional line), is equipped with a group law by the composition of univariate
formal power series. One has furthermore the linear isomorphism G1 – Gc given by
µ : f ÞÝÑ xf . We therefore get

µpf ‚ gqpxq “ xgpxqfpxgpxqq “ µpfqpµpgqpxqq.

Corollary 2.3. In the one-dimensional case, G1 is isomorphic to the group of tangent-
to-identity formal diffeomorphisms.

We turn now back to the general case and explicitly compute the product for f “ 1A`f 1

and g “ 1A ` g1 in G1

pf ‚ gqpxq “ gpxqfpxgpxqq

“ 1A ` g1pxq ` f 1pxgpxqq `
ÿ

u,vPN˚

gufvxupxgpxqqv

“ 1A ` g1pxq ` f 1pxgpxqq

`
ÿ

uPN˚,v“i1¨¨¨ikPN˚

u1,...,ukPN˚Yt1u

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

.

(2.5)

The new product on G1 is associative. Indeed, an explicit computation shows that

pf ‚ gq ‚ hpxq “ hpxqpf ‚ gqpxhpxqq

“ hpxqgpxhpxqqfpxhpxqgpxhpxqqq.

We note that hpxqgpxhpxqq “ g ‚ hpxq and

fpxhpxqgpxhpxqqq “ 1A `
ÿ

uPN˚

fupxhpxqgpxhpxqqqu,

where
pxhpxqgpxhpxqqqi “ pxhpxqqigpxhpxqq “ xihpxqgpxhpxqq.

Compare this with

f ‚ pg ‚ hqpxq “ pg ‚ hqpxqfpxpg ‚ hqpxqq

“ hpxqgpxhpxqqfpxpg ‚ hqpxqq.

Here
fpxpg ‚ hqpxqq “ 1A `

ÿ

u

fupxpg ‚ hqpxqqu

and
pxpg ‚ hqpxqqi “ xipg ‚ hqpxq “ xihpxqgpxhpxqq,

which shows associativity of the shifted composition on G1, that is,

pf ‚ gq ‚ hpxq “ f ‚ pg ‚ hqpxq.

The unit for shifted composition (2.42.4) is 1A. Indeed

1A ‚ gpxq “ gpxq1A “ gpxq “ g ‚ 1A “ 1Agpxq.

In fact, we have
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Proposition 2.4. G‚ :“ pG1, ‚q is a non-commutative group with unit 1A.

Proof. The identity

1A “ f‚´1 ‚ fpxq “ fpxqf‚´1pxfpxqq

allows to recursively (and uniquely) compute the coefficients of the series f‚´1 from those
of f . �

Remark 2.5. We note that the definition of the product (2.42.4) is motivated by the shuffle
convolution product defined in [1414], as will become clear in Section (44). Moreover, we
observe that a variation of the sequence defining the product (2.42.4) appears in Anshelevich
[44, Cor. 7]. In fact, here the sequence defining the product f ‚g appears in reversed order,
i.e., fpzgpzqqgpzq “ gpzq´1pf ‚gqpzqgpzq, in relation to a statement on positive definiteness
for the coefficient sequences. However, its group-theoretical properties have not been
considered by Anshelevich. Also, looking at Anshelevich’s free Wick polynomials [11] from
a shuffle Hopf algebraic perspective, as was done in our work [2020], one may extract the
product (2.42.4) at the level of formal power series. See reference [11, Thm. 3.10, Prop. 3.12,
eq. (3.48)].

3. The pre-Lie and Lie algebraic structures

We recall the notion of left-linear group and some of its properties – for details, we refer
the reader to the recent book [1010, Sect. 6.4]. Consider local coordinates x “ px1, . . . , xnq
on a Lie group G in the neighborhood of the identity element e, with the property xipeq “
0, for 1 ď i ď n. For notational convenience, we identify the system of local coordinates
with the element of the group. Using these coordinates, we assume that the group law
reads

z “ F px; yq “
ÿ

pě0
qě0

Fp,qpx; yq, (3.1)

if z “ x ¨ y and where Fp,qpx1, . . . , xn; y1, . . . , ynq is a polynomial in 2n variables, ho-
mogeneous of degrees p and q in the variables x respectively y. Then, the difference
F1,1px; yq ´ F1,1py; xq defines the Lie bracket in the Lie algebra g of G.

Definition 3.1. The group G is said to be left-linear if Fp,q “ 0 for p ě 2, that is, if
F px; yq ´ y is linear in x.

Let us write x Ÿ y for F1,1px; yq. Then, it holds in general that the tangent space g

to a left-linear Lie group is equipped with the binary operation Ÿ with the structure of a
(right) pre-Lie algebra. In fact, from the latter, the Lie algebra structure is inherited as
x Ÿ y ´ y Ÿ x. That is, for arbitrary x,y, z, we have the (right) pre-Lie identity

px Ÿ yq Ÿ z ´ x Ÿ py Ÿ zq “ px Ÿ zq Ÿ y ´ x Ÿ pz Ÿ yq.

The definition extends to the infinite-dimensional case – keeping the requirement that
the components of Fp,q be polynomials in the coordinates. In particular, the group pG1, ‚q
is an (infinite-dimensional) left-linear group. Indeed, from eq. (2.5)eq. (2.5) we see that

pf ‚ g ´ gqpxq “ gpxqf 1pxgpxqq

“ f 1pxgpxqq `
ÿ

uPN˚,v“i1¨¨¨ikPN˚

u1,...,ukPN˚Yt1u

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

, (3.2)

and this expression is linear in the coordinates pfvqvPN˚ of f .

Proposition 3.2. The tangent space g “ G0 at 1 to the left-linear group pG1, ‚q is a
right pre-Lie algebra.
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Proof. Let us check the property explicitly. We consider the coordinates in the basis of
words xi1

¨ ¨ ¨xin
. Using the notation of the previous section and eq. (3.2)eq. (3.2), we obtain for

F1,1 and Ÿ:

xi1
¨ ¨ ¨xin

Ÿ xj1
¨ ¨ ¨xjm

“
nÿ

k“0

xi1
¨ ¨ ¨xik

xj1
¨ ¨ ¨xjm

xik`1
¨ ¨ ¨xin

. (3.3)

Denoting the insertion of y :“ xj1
¨ ¨ ¨xjm

in position k inside x :“ xi1
¨ ¨ ¨xin

by

xi1
¨ ¨ ¨xik

yxik`1
¨ ¨ ¨xin

:“ xi1
¨ ¨ ¨xik

xj1
¨ ¨ ¨xjm

xik`1
¨ ¨ ¨xin

,

we get, with a self-explaining notation,

px Ÿ yq Ÿ z ´ x Ÿ py Ÿ zq “
ÿ

0ďkălďn

xi1
¨ ¨ ¨xik

yxik`1
¨ ¨ ¨xil

zxil`1
¨ ¨ ¨xin

`

`
ÿ

0ďkălďn

xi1
¨ ¨ ¨xik

zxik`1
¨ ¨ ¨xil

y xil`1
¨ ¨ ¨xin

.

As this expression is symmetric in y and z, we deduce that the product Ÿ is (right) pre-Lie
with associated Lie bracket

rxi1
¨ ¨ ¨xin

, xj1
¨ ¨ ¨xjm

s “ xi1
¨ ¨ ¨xin

Ÿ xj1
¨ ¨ ¨xjm

´ xj1
¨ ¨ ¨xjm

Ÿ xi1
¨ ¨ ¨xin

“
n´1ÿ

k“1

xi1
¨ ¨ ¨xik

xj1
¨ ¨ ¨xjm

xik`1
¨ ¨ ¨xin

´
m´1ÿ

l“1

xj1
¨ ¨ ¨xjl

xi1
¨ ¨ ¨xin

xjl`1
¨ ¨ ¨xjm

.

�

Remark 3.3. In the single variable case we deduce from (3.33.3) that

xn Ÿ xm “ pn ` 1qxn`m, (3.4)

so that rxn, xms “ pn´mqxn`m. The corresponding pre-Lie algebra is isomorphic to the
pre-Lie algebra associated to the group of tangent-to-identity formal diffeomorphisms of
the line. The Lie algebra is, up to isomorphism, the Lie algebra of primitive elements in
the cocommutative Hopf algebra dual of the Faà di Bruno Hopf algebra.

4. Coordinate Hopf algebra

From now on, we will use freely general and standard results and notions from the
theory of bialgebras and Hopf algebras such as convolution products, characters, infini-
tesimal characters, and the Baker–Campbell–Hausdorff formula. The reader is referred
to [1010] for details.

The group pG1, ‚q is pro-unipotent (that is, an inverse limit of unipotent groups).
This can be deduced for example from the observation that the ring R of formal power
series is the inverse limit of the quotients A ă x1, . . . , xk, . . . ą {Ipnq, where I is the
ideal of the algebra of non-commutative polynomials spanned by degree n monomials
xi1

¨ ¨ ¨xin
. As such, pG1, ‚q is the group of characters of a commutative Hopf algebra

(see [1010, Section 3.6]). Technically, this Hopf algebra is, as an algebra, the direct limit
of the polynomial algebras over finite subsets of the set of coordinate functions pfvqvPN˚

on G1. The algebra structure is the product of polynomials. The coproduct is obtained
automatically by dualizing the group law.

However, it is convenient to identify pG1, ‚q with the group of characters of a larger
and, more importantly, non-commutative Hopf algebra. This will put at our disposal the
tools and techniques available for studying shuffle groups in the sense of [1717].

Recall that N
˚ is the free semigroup over the alphabet of positive integers, N “

t1, 2, 3, . . .u. Let V denote the vector space spanned by it. Elements in V are linear
combinations of non-empty words in the letters of the alphabet and it naturally possesses
the structure of a non-unital associative algebra, the product being the unique bilinear
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extension of the concatenation of words. We write V ` for the augmentation of the algebra
V by a unit (that we identify as before with the empty word denoted here 1).

There is a natural bijection Λ: LinpV `, Aq Ñ R given by

Λpφq – φp1q `
ÿ

wPN˚

φpwqxw , (4.1)

where Λpφq can be understood as a generating series for the functional φ. Let

T pV q –
à
ně0

V bn

be the tensor algebra over V , where V b0 – K1 is one-dimensional. To avoid confusion
over the use of several tensor products, we denote elements w1 b ¨ ¨ ¨ bwk of T pV q, where
wi P V , by w1| ¨ ¨ ¨ |wk, that is, by inserting vertical bars instead of the usual tensor
product symbol22. In particular, the concatenation product m| : T pV q b T pV q Ñ T pV q
sends words w1, w2 P V to m|pw1 bw2q :“ w1|w2 and, more generally, m|ppw1| ¨ ¨ ¨ |wkq b
pwk`1| ¨ ¨ ¨ |wnqq “ w1| ¨ ¨ ¨ |wk|wk`1| . . . |wn. We denote T`pV q –

À
ně1 V

bn the augmen-

tation ideal. The bijection above from LinpV `, Aq to R extends to a linear map from
LinpT pV q, Aq to R, which we still write abusively Λ, using the formula (4.14.1). It is im-
portant to notice that the value of φ on the spaces V bn are not taken into account for
n ě 2.

Let us denote by GpAq – HomalgpT pV q, Aq the set of algebra morphisms, i.e., multi-
plicative unital maps (or characters) in LinpT pV q, Aq, and by LpAq the set of so-called
infinitesimal characters in LinpT pV q, Aq. These are the linear maps that vanish on 1 as
well as non-trivial products of words, i.e., on

À
ně2 V

bn. By their very definition, ele-
ments in GpAq and LpAq are entirely characterized by their values on the elements of the
semigroup N˚ that form a basis of V . By restricting Λ to GpAq, respectively LpAq, the
existence of two bijections of sets follows:

Λgr : GpAq Ñ G1, ΛLie : LpAq Ñ G0. (4.2)

Given a word w “ a1 ¨ ¨ ¨ an P V and a subset S “ ti1 ă ¨ ¨ ¨ ă iku Ď rns we set
wS :“ ai1

¨ ¨ ¨ aik
P V . The complement Sc

– rnszS can be written as the disjoint union
of m “ mpSq maximal intervals JS

1 , . . . , J
S
m defined through the set S.

We introduce a coproduct ∆: V Ñ V b T pV q by setting ∆1 “ 1 b 1 and for w “
a1 ¨ ¨ ¨ an P V

∆pa1 ¨ ¨ ¨ anq –

ÿ

SĎrns

wS b wJS
1

| ¨ ¨ ¨ |wJS
m
, (4.3)

which is multiplicatively extended to T pV q:

∆pw1| ¨ ¨ ¨ |wnq :“ ∆pw1q ¨ ¨ ¨ ∆pwnq P T pV q b T pV q.

Theorem 4.1 ([1414]). The space T pV q with product m| and coproduct ∆ defined in
(4.34.3) is a graded connected non-commutative non-cocommutative bialgebra, denoted H :“
pT pV q,∆,m|, ǫ, ηq.

Here, the unit map η : K Ñ T pV q, respectively the counit map ǫ : T pV q Ñ K, are
the obvious inclusion of, respectively projection to the scalar component K “ V b0 in the
space T pV q.

Let now LinpT pV q, Aq denote the space of linear maps taking values in the unital
commutative algebra A. Recall that this space has a natural unital algebra structure
given by convolution, that is, for φ, ψ P LinpT pV q, Aq we set

φ ˚ ψ – mApφb ψq∆,

where mA denotes the product in A. The unit for the convolution product is given by
εA :“ ηA ˝ ǫ, where ǫ is the counit of T pV q and ηA : K Ñ A is the unit-map of A
(ηAp1q :“ 1A).

2This resembles the algebraic part of the double bar construction [66].
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Recall also that H is automatically a Hopf algebra. It is well known that the set GpAq
forms a group under convolution; the inverse of an element is given by composition with
the antipode of T pV q. Similarly, LpAq is a Lie algebra for the Lie bracket obtained by
anti-symmetrizing the convolution product, i.e., rφ, ψs “ φ ˚ ψ ´ ψ ˚ φ. We also have the
existence of inverse bijections

exp˚ : LpAq Ñ GpAq, log˚ : GpAq Ñ LpAq,

with exp˚ ˝ log˚ “ idGpAq and log˚ ˝ exp˚ “ idLpAq.

Remark 4.2. In the context of non-commutative probability, it has been shown elsewhere
that if the linear unital map ϕ : A Ñ K on a non-commutative probability space pA, ϕq is
extended to a character Φ on the double tensor algebra over A, suitably equipped with a
Hopf algebra structure very similar to the one we defined on T pV q, then log˚pΦq computes
the associated multivariate monotone cumulants. We refer to [1616] for details. The reader
should keep in mind that these results are in the background of the developments in the
present article.

Theorem 4.3. The map Λgr defines a group isomorphism between the group pGpAq, ˚q
and the group pG1, ‚q.

Proof. We already know that the map is a bijection. We would like to show that for
characters φ, ψ P GpAq

Λgrpφ ˚ ψqpxq “ f ‚ gpxq, (4.4)

where fpxq – Λgrpφqpxq and gpxq – Λgrpψqpxq.
We first recall that for a word v “ i1 ¨ ¨ ¨ ik and element g P G1, we have

pxgpxqqv “ pxgpxqqi1
¨ ¨ ¨ pxgpxqqik

“ xi1
gpxqxi2

gpxq ¨ ¨ ¨xik
gpxq

“ xv `
ÿ

u1,...,ukPt1uYN
˚

u1¨¨¨uk‰1

gu1
¨ ¨ ¨ guk

xi1
xu1

¨ ¨ ¨xik
xuk

.

Copying (2.52.5), we have

f ‚ gpxq “ gpxqfpxgpxqq

“
ÿ

u,vPt1uYN˚

gufvxupxgpxqqv (4.5)

“ gpxq `
ÿ

u,u1,...,ukPt1uYN
˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

.

Then, writing fw “ φpwq and gu “ ψpuq, the above sum collapses to

gpxq `
ÿ

u,u1,...,ukPt1uYN
˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

“ 1 `
ÿ

wPN˚

pφ ˚ ψqpwqxw (4.6)

“ Λgrpφ ˚ ψqpxq.

The proof is complete. �

A similar calculation shows that the analog statement holds at the level of Lie algebras:

Theorem 4.4. The map ΛLie defines a Lie algebra isomorphism between the Lie algebras
LpAq and pG0, r´,´sq.
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4.1. The BCH group law. Recall now the Baker–Campbell–Hausdorff (BCH) formula
in the free associative algebra over two variables X,Y :

exppXq exppY q “ exppBCHpX,Y qq,

where BCHpX,Y q is an element in the free Lie algebra over X and Y , that is, a linear
combination of iterated Lie brackets of X and Y (rX,Y s :“ XY ´ Y X) such as rX,Y s,
rX, rX,Y ss, rrX,Y s, rX,Y ss, and so on. Setting f ˚BCH g :“ BCHpf, gq, this formula
defines the BCH group law on the Lie algebra pG0, r´,´sq of the infinite-dimensional
group pG1, ‚q. A BCH group law is defined on LpAq similarly. Equivalently, it is defined
by transportation of the group law on GpAq along exp˚: for φ, ρ in LpAq, we have

BCHpφ, ρq :“ log˚pexp˚pφq ˚ exp˚pρqq.

Corollary 4.5. The BCH group law on LpAq is transported by ΛLie to the BCH group
law on G0.

Notice that it follows from our arguments that there exists a bijection (in fact, an
isomorphism) expG between G0 and G1 (recall that the former is the Lie algebra of the
latter) given by:

expG :“ Λgr ˝ exp˚ ˝Λ´1
Lie

with inverse

logG :“ ΛLie ˝ log˚ ˝Λ´1
gr .

These bijections are given by complex formulas (the same that relate monotone cumulants
to moments in free probability, see our Remark 4.2Remark 4.2 above).

Remark 4.6. An example of similar nature to the construction of the map Λ, resp. Λgr,
ΛLie, is provided by Butcher’s group of B-series in numerical analysis [88, 2121] and its
link to a certain combinatorial Hopf algebra on rooted trees. We recall that a B-series
may be characterised as the Taylor expansion of numerical integration schemes such as
Runge–Kutta methods:

Bpα;hf, yq :“
ÿ

tPT

αptqFhf rtspyq,

where the sum on the righthand side runs over the set T of non-planar rooted trees,
including the empty tree, and α is a function on T determined by the numerical method.
The other objects involved are a smooth vector field f on Rd, the step size parameter
h P R and the map Ff which associates a so-called elementary differential to a trees t P T

and the aforementioned vector field f (it was first described by Cayley in the context
of differential equations [1111]). See [2121] for details. It turns out that composition of two
B-series, i.e., Bpα;hf,Bpβ;hf, yqq “ Bpβ ˚ α;hf, yq, is tightly linked to a combinatorial
Hopf algebra defined on non-planar rooted trees. Indeed, the coefficients of the B-series
Bpβ ˚ α;hf, yq are computed in terms of the convolution product of the group of Hopf
algebra characters over the Butcher–Connes–Kreimer Hopf algebra, [77, 1212, 1313].

5. Half-shuffle products

The coproduct ∆ on V , given in (4.34.3), can be split into the sum of two so-called left
and right half-coproducts

∆ăpa1 ¨ ¨ ¨anq – a1 ¨ ¨ ¨ an b 1 `
ÿ

1PSĹrns

wS b wJS
1

| ¨ ¨ ¨ |wJS
m

(5.1)

and

∆ąpa1 ¨ ¨ ¨ anq – 1 b a1 ¨ ¨ ¨an `
ÿ

1RSĹrns
S‰H

wS b wJS
1

| ¨ ¨ ¨ |wJS
m
. (5.2)

Both these half-coproducts are extended to T`pV q by defining

∆ăpw1|w2| ¨ ¨ ¨ |wnq “ ∆ăpw1q∆pw2| ¨ ¨ ¨ |wnq
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and similarly for ∆ą, so that the coproduct (4.34.3) on T pV q can be written as a sum,
∆ “ ∆ă `∆ą. It can be shown that the two half-coproducts define an unshuffle bialgebra
structure on T pV q [1414].

This induces a splitting of the convolution product on the dual side into a sum of a
“left half-shuffle product” and a “right half-shuffle product” for A-valued linear forms on
T`pV q (identified with A-valued linear forms on T pV q that vanish on K)

φ ă ψ – mApφb ψq∆ă, φ ą ψ – mApφb ψq∆ą

such that the associative convolution product of such linear forms decomposes

φ ˚ ψ “ φ ą ψ ` φ ă ψ. (5.3)

The left and right half-shuffle products are then extended partially by setting

φ ă εA :“ φ, εA ą φ :“ φ, φ ą εA :“ 0, εA ă φ :“ 0.

The products εA ă εA, εA ą εA are left undefined.
Associativity of the convolution product (5.35.3) can be deduced from the fact that

pLinpT`pV q, Aq,ă,ąq is a (non-commutative) shuffle algebra [1414] as the left half-shuffle
product and a right half-shuffle product satisfy the shuffle identities:

pφ ă ψq ă ρ “ φ ă pψ ˚ ρq (5.4)

pφ ą ψq ă ρ “ φ ą pψ ă ρq (5.5)

φ ą pψ ą ρq “ pφ ˚ ψq ą ρ. (5.6)

Note that these are the identities satisfied by shuffle products in algebraic topology and
products of iterated integrals of time-dependent matrices in classical calculus and stochas-
tic integration à la Stratonovich [1818].

Proposition 5.1. Let φ P LinpT`pV q, Aq and γ P GpAq. We set f :“ Λpφq P G0 and
g :“ Λgrpγq P G1. Then, we have:

Λpφ ă γq “
ÿ

u1,...,ukPt1uYN
˚

v“i1¨¨¨ikPN˚

fvgu1
¨ ¨ ¨ guk

xi1
xu1

¨ ¨ ¨xik
xuk

“ fpxgpxqq,

(5.7)

respectively

Λpφ ą γq “
ÿ

u1,...,ukPt1uYN
˚

uPN˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

“ pgpxq ´ 1qfpxgpxqq.

Proof. The statement follows by dualizing the formulas (5.15.1)-(5.25.2), using that γ is a
character. �

Observe that when εA ` φ P GpAq, the decomposition of Λpφ ˚ γq “ Λpφ ă γ ` φ ą γq
reflects the splitting of the series in (4.54.5) at the level of the sum over words u as

gpxq `
ÿ

u,u1,...,ukPt1uYN
˚

v“i1¨¨¨ikPN˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

“ 1 `
ÿ

u1,...,ukPt1uYN
˚

v“i1 ¨¨¨ikPN˚

fvgu1
¨ ¨ ¨ guk

xi1
xu1

¨ ¨ ¨xik
xuk

`
ÿ

u1,...,ukPt1uYN
˚

uPN˚

v“i1¨¨¨ikPt1uYN
˚

fvgugu1
¨ ¨ ¨ guk

xuxi1
xu1

¨ ¨ ¨xik
xuk

.

This splitting corresponds to the left and right half-shuffles in the shuffle algebra pLinpT pV q, Aq,ă,ąq.
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We define now two binary operations mapping G1 ˆG0 into G0:
`
g ñ f

˘
pxq – fpxgpxqq “

ÿ

wPN˚

fwpxgpxqqw P G0

and `
g ð f

˘
pxq – pg ´ 1qfxgpxq

“ pgpxq ´ 1qfpxgpxqq

“
ÿ

wPN˚

uPN˚

fwguxupxgpxqqw P G0.

Let us consider two power series fpxq, gpxq P G1, then the product (2.42.4) can be written

f ‚ g “ gpxq `
`
g ñ pf ´ 1q

˘
pxq `

`
g ð pf ´ 1q

˘
pxq.

Hence, Λ maps the group product G1 to shifted composition whenever γ is a character. On
the other hand, the next statement may be considered as a linearized form the statement
in Proposition 5.1Proposition 5.1.

Proposition 5.2. Let φ P LinpT pV q, Aq and γ P LpAq. We set f :“ Λpφq P R and
g :“ ΛLiepγq P G0. Then we have

Λpφ ă γq “
kÿ

j“1

ÿ

uPN˚

v“i1¨¨¨ikPN˚

fvguxi1
¨ ¨ ¨xij

xuxij`1
¨ ¨ ¨xik

,

respectively

Λpφ ą γq “
ÿ

u,vPN˚

fvguxuxv “ gpxqfpxq. (5.8)

In particular, going back to (3.33.3), we find:

Λpφ ă γ ` φ ą γq “ Λpφ ˚ γq “ f Ÿ g.

Hence, the pre-Lie product defined in Section 3Section 3 can be seen as the linearization of the
group law of G1.

Proof. The statement follows again by dualizing the formulas (5.15.1) and (5.25.2), using that
γ is now an infinitesimal character. �

Remark 5.3. There is a general difficulty with series: the space is too small to build
consistently all shuffle operations on it. This is why we always have to carefully distin-
guish what happens in the group G1 and the Lie algebra G0. Defining operations that
would make sense simultaneously on the two and would also fit with what happens in
LinpT pV q, Aq is impossible. The conclusion is precisely that the shuffle approach provides
an unifying and elegant algebraic alternative to the generating series framework.

6. Link with non-commutative probability

Let us consider now pB,ϕq a non-commutative probability space over the complex
numbers. That is, B is an associative unital algebra over A :“ C and ϕ a C-valued unital
linear form on B [2525]. Let pbnqnPN be a countable family of non-commutative random
variables in B (that is, of elements of B).

In the setting of Section 4Section 4, we associate to these data the linear form φ : V Ñ C

defined for words w “ i1 ¨ ¨ ¨ ik P N
˚ by

φpwq :“ ϕpbi1
¨B ¨ ¨ ¨ ¨B bik

q,

where ¨B stands for the algebra product in B. This linear form is further extended to a
linear form Φ : T pV q ÞÑ C by

Φpw1| ¨ ¨ ¨ |wpq :“ φpw1q ¨ ¨ ¨φpwpq.

Notice that the linear form Φ P GpCq.
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Remark 6.1. All our results would of course hold for R “ Cxxx1, . . . , xnyy and a finite
family b1, . . . , bn of elements of B. However, as handling the countable case does not
present any extra difficulty, we state our results in that case and specialize them to the
finite setting when appropriate.

Recalling (4.24.2), the series ΛgrpΦq P G1 Ă Cxxx1, x2, x3, . . . yy is by definition the (multi-
variate) generating series of moments associated to pbnqnPN. For example, the coefficient
of xn

1 in ΛgrpΦq is φpbn
1 q, the moment of order n of the random variable b1 P B in the

sense of non-commutative probability. We will write Mpx1q for the series in Cxxx1yy
whose coefficients are the same on the xn

1 as those of ΛgrpΦq. This amounts to looking at
the univariate case.

6.1. Free probability. It was shown in [1515, 1616] (to which we refer for details) that the
fixed point equation

Φ “ εC ` κ ă Φ (6.1)

defines an infinitesimal character κ P LpCq that corresponds to multivariate free cumu-
lants. That is, in the language of the present article, ΛLiepκq P G0 is the multivariate
generating series of free cumulants associated to pbnqnPN; again, recall (4.24.2).

Let us set from now on µ̂ :“ Λpµq P Cxxx1, x2, x3, . . . yy for µ : T pV q Ñ C an arbitrary
linear form, recall (4.14.1).

Proposition 6.2. We have the functional multivariate free moment-cumulant relation

pΦpxq “ 1 ` pκ
´
x pΦpxq

¯
. (6.2)

Proof. This follows from (6.16.1) and (5.75.7). �

Now
pΦpxq “ 1 `

ÿ

wPN˚

mpwqxw , pκpxq “
ÿ

wPN˚

κpwqxw ,

where mpwq “ ϕpbi1
¨B ¨ ¨ ¨ ¨B bik

q and κpwq “ kpbi1
, . . . , bik

q is the multivariate free
cumulant, for the word w “ i1 ¨ ¨ ¨ ik. The functional multivariate free moment-cumulant
relation then becomes

pΦpxq “ 1 `
ÿ

kě1

ÿ

u1,...,ukPN˚

v“i1¨¨¨ikPNk

κpvqmpu1q ¨ ¨ ¨mpukqxi1
xu1

¨ ¨ ¨xik
xuk

.

This statement implies the well-known free multivariate moment-cumulant relations ex-
pressed in terms of non-crossing partitions [2525]

mpwq “
ÿ

πPNCp|w|q

ź

πiPπ

kpbi1
, . . . , bin

|πiq.

Here kpbi1
, . . . , bin

|πiq :“ kpbij1
, . . . , bijp

q for the block πi “ tj1 ă ¨ ¨ ¨ ă jpu Ă rns of the

non-crossing partition π P NCp|w|q.

6.2. Boolean probability. The notation used in this section is the same as in the pre-
vious one. It was shown in [1515, 1616] (to which we refer for details) that the fixed point
equation

Φ “ εC ` Φ ą β, (6.3)

defines an infinitesimal character β P LpCq that corresponds to multivariate Boolean
cumulants. That is, in the language of the present article, ΛLiepβq is the multivariate
generating series of Boolean cumulants associated to pbnqnPN.

Applying Λgr to the identity (6.36.3) yields by (5.85.8) the multivariate functional Boolean
moment-cumulant relation

pΦpxq “ 1 ` pβpxqpΦpxq. (6.4)
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Note that the summation on the righthand side of (5.85.8) simplifies drastically because
β P LpCq linearizes the right half-coproduct (5.25.2). More explicitly, the Boolean moment-
cumulant relation reads

pΦpxq “ 1 `
ÿ

w

ÿ
w“uv
u‰w

mpuqβpvqxw .

Identity (6.46.4) rewrites

1 ´ pβpxq “
1

pΦpxq
.

Let us exemplify how to relate such identities with computations in the group GpCq
of Hopf algebra characters. Theorem 4.3Theorem 4.3 has rather interesting implications. Indeed, let
Φ P GpCq and consider the image of Φ ˚ Φ´1 “ εC

ΛgrpΦ ˚ Φ´1qpxq “ ΛgrpΦq ‚ ΛgrpΦ´1qpxq “ yΦ´1pxqpΦ
´
xyΦ´1pxq

¯
.

This yields
yΦ´1pxqpΦ

´
xyΦ´1pxq

¯
“ 1. (6.5)

From ΛgrpΦ´1 ˚ Φqpxq “ 1, on the other hand, we obtain instead

pΦpxq yΦ´1

´
xpΦpxq

¯
“ 1, (6.6)

which implies that

yΦ´1

´
xpΦpxq

¯
“

1

pΦpxq
(6.7)

in the sense of generating series. In particular,

Proposition 6.3. i) For the multivariate generating series of free cumulants, pκpxq, we
have

yΦ´1pxq “
1

1 ` pκpxq
. (6.8)

ii) For the multivariate generating series of Boolean cumulants, we have

pβpxq “ 1 ´ yΦ´1

´
xpΦpxq

¯
. (6.9)

Proof. Identity (6.86.8) follows from (6.76.7) and (6.26.2) upon composition with the compositional

inverse, pxpΦpxqqă´1ą. We underline that (6.86.8) expresses the inverse of the Hopf algebra
character Φ P GpCq in the group G1. Identity (6.96.9) is a consequence of (6.76.7). �

6.3. Monotone probability. It was shown in [1616] (to which we refer for details) that

Φ “ exp˚pρq (6.10)

defines an infinitesimal character ρ P LpCq that corresponds to multivariate monotone
cumulants. That is, in the language of the present article, ΛLiepρq is the multivariate
generating series of monotone cumulants associated to pbnqnPN.

Now, introduce a formal parameter t. Define Φt – exp˚ptρq, and observe that it
defines a 1-parameter semigroup, since Φt ˚ Φs “ Φt`s and Φ0 “ εC. Formally taking a
derivative we arrive at the equation

9Φt “ ρ ˚ Φt “ Φt ˚ ρ.

Using Λgr and defining Mt – ΛgrpΦtq P G1, h “ ΛLiepρq P G0, we arrive by using
Propositions 5.1Propositions 5.1 and 5.25.2 at the equations

9Mtpxq “ MtpxqhpxMtpxqq “ hpxq ` ppMt ´ 1q Ÿ hqpxq.

The first equation is present in [2222, Theorem 6.3] and [55, eq. (4.10)]. The second equation
leads to the expansion:

Mt “ 1 ` th ` phŸ hq
t2

2
` pph Ÿ hq Ÿ hq

t3

6
` ¨ ¨ ¨ “ 1 `

8ÿ

n“1

R
pn´1q
Ÿh phq

tn

n!
. (6.11)
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Here, R
pnq
Ÿhphq :“ pR

pn´1q
Ÿh phqq Ÿ h with R

p0q
Ÿhphq :“ h. Consider now for simplicity the

univariate case and expand Mt as a power series in x, i.e.,

Mt “ 1 `
8ÿ

n“1

mnptqxn.

We can perform some explicit computations using eq. (3.4)eq. (3.4): if pρpxq “: hpxq “
ř

ně1 hnx
n

is the generating series of the monotone cumulants, then

R
pn´1q
Ÿh phq “

8ÿ

k“n

´ ÿ

i1`¨¨¨`in“k

pi1 ` 1qpi1 ` i2 ` 1q ¨ ¨ ¨

¨ ¨ ¨ pi1 ` ¨ ¨ ¨ ` in´1 ` 1qhi1
¨ ¨ ¨hin

¯
xk.

Therefore, by matching terms in eq. (6.11)eq. (6.11), we see that

mnptq “
nÿ

k“1

ÿ

i1`¨¨¨`ik“n

pi1 ` 1q ¨ ¨ ¨ pi1 ` ¨ ¨ ¨ ` ik´1 ` 1qhi1
¨ ¨ ¨hik

tk

k!
.

In low degrees:

m1ptq “ h1t

m2ptq “ h2t` h2
1t

2

m3ptq “ h3t` 5h1h2

t2

2
` h3

1t
3

m4ptq “ h4t`

ˆ
3h1h3 `

3

2
h2

2

˙
t2 `

13

3
h2

1h2t
3 ` h4

1t
4.

For t “ 1 the above formula coincides with [2323, eq (6.9)], see also [1616, Theorem 2].

Remark 6.4. As
ř8

n“1 R
pn´1q
Ÿh phq 1

n!
is, by definition, the image of h under the Agrachev–

Gamkrelidze operator or “pre-Lie exponential” of h (see [1010, Section 6.6] for details), one
can formally lift its computation to the free pre-Lie algebra over a generator . Using
the Chapoton–Livernet basis of non-planar rooted trees for the latter, the coefficient of a
tree τ in the expansion of the pre-Lie exponential of ‚ is known to be the corresponding
Connes–Moscovici coefficient cmpτq. See [77] for details and also for an explanation of the
terminology and notation. We obtain

Mt “ expŸpthq

“ 1 `
ÿ

τPT

cmpτqPhpτq
t|τ |

|τ |!

“ 1 `
ÿ

τPT

1

τ !σpτq
Phpτqt|τ |,

where Ph : T Ñ G0 is the unique pre-Lie morphism such that Php q “ h. For example

Php q “ hŸ h, Php q “ phŸ hq Ÿ h´ hŸ ph Ÿ hq.

Recall that h “ hpxq “
ř

ně1 hnx
n. Here, τ ! and σpτq are respectively the so-called tree

factorial and the symmetry factor of the rooted tree τ P T , both are defined inductively.
We refer to [77] for details.

Conclusion. In this paper, we have established a dictionary between the shuffle Hopf
algebra formulation of moment-cumulant relations in non-commutative probability and
the classical approach based on non-commutative formal power series (Theorem 4.3Theorem 4.3). It
is based on identifying a new left-linear group law on the set of non-commutative formal
power series with unit constant term (Proposition 2.4Proposition 2.4). We also identify a (right) pre-Lie
law on the latter, which follows from right-linearization of the aforementioned group law.
For example, the dictionary identifies the shuffle convolution inverse with the reciprocal of
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the unit-shifted R-transform (Proposition 6.3Proposition 6.3). This is particularly interesting as we used
the group-inverse of the moment character to construct Wick polynomials (see [1919, 2020]
for details). The dictionary also permits to describe the monotone moment-cumulant
relations as a pre-Lie exponential in non-commutative formal power series (Remark 6.4Remark 6.4).
The dictionary shows that both the shuffle Hopf algebra and the formal power series
approaches are tightly related. The former, however, seems to add new perspectives
in the understanding of computational and conceptional aspects in the combinatorial
approach to non-commutative probability theory.
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