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Abstract

This paper proposes a squared smoothing Newton method via the Huber
smoothing function for solving semidefinite programming problems
(SDPs). We first study the fundamental properties of the matrix-valued
mapping defined upon the Huber function. Using these results and exist-
ing ones in the literature, we then conduct rigorous convergence analysis
and establish convergence properties for the proposed algorithm. In par-
ticular, we show that the proposed method is well-defined and admits
global convergence. Moreover, under suitable regularity conditions, i.e.,
the primal and dual constraint nondegenerate conditions, the proposed
method is shown to have a superlinear convergence rate. To evalu-
ate the practical performance of the algorithm, we conduct extensive
numerical experiments for solving various classes of SDPs. Compari-
son with the state-of-the-art SDP solver SDPNAL+ demonstrates that
our method is also efficient for computing accurate solutions of SDPs.
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1 Introduction

A standard primal linear semidefinite programming (SDP) problem is the
problem of minimizing a linear function in the space Sn subject to m linear
equality constraints and the essential positive semidefinite constraint X ∈ Sn+.
Mathematically, the primal SDP has its standard form:

min
X∈Sn

〈C,X〉 s.t. AX = b, X ∈ S
n
+, (1)

where C ∈ Sn, b ∈ Rm are given data, and A : Sn → Rm is a linear mapping

given by AX :=
(
〈A1, X〉 . . . 〈Am, X〉

)T
for all X ∈ Sn, with given matrices

Ai ∈ Sn, for i = 1, . . . ,m, and 〈·, ·〉 denoting the standard trace inner product.
Note that the adjoint of A, denoted by A∗, is a linear mapping from Rm to
Sn defined as A∗y :=

∑m
i=1 yiAi for y ∈ Rm. Associated with problem (1), the

Lagrangian dual problem of (1) is given by

max
y∈Rm,Z∈Sn

〈b, y〉 s.t. A∗y + Z = C, Z ∈ S
n
+. (2)

In this paper, we assume that the primal problem (1) admits at least one
optimal solution and satisfies the Slater’s condition, i.e., there exists X̃ ∈ Sn++

such that AX̃ = b. Under these assumptions, the dual problem (2) has an
optimal solution and the dual optimal value is equal to the primal optimal
value 1. Thus, the duality gap between (1) and (2) is zero. As a consequence,
the following system of KKT optimality conditions, given as

AX = b, A∗y + Z = C, X ∈ S
n
+, Z ∈ S

n
+, 〈X,Z〉 = 0, (3)

admits a solution. We call an arbitrary triple (X̄, ȳ, Z̄) ∈ Sn × Rm × Sn a
KKT point if it satisfies the KKT conditions in (3). Let X̄ be an optimal solu-
tion to the primal problem (1), for simplicity, we denote the set of associated
Lagrangian multipliers M(X̄) as

M(X̄) :=
{
(y, Z) ∈ R

m × S
n : (X̄, y, Z) is a KKT point

}
. (4)

Then, under the aforementioned conditions, M(X̄) is a nonempty set.
The research on SDPs has been active for decades and still receives strong

attention to date. Indeed, SDP has become one of the fundamental model-
ing and optimization tools which encompasses a wide range of applications
in different fields. The increasing interest in SDP has resulted in fruitful and
impressive works in the literature. For theoretical developments and many
important applications of SDP in engineering, finance, optimal control, statis-
tics, machine learning, combinatorics, and beyond, we refer the reader to [1–6],
to mention just a few. In the next few paragraphs, we will briefly review some
influential works on developing efficient solution methods, including interior

1Note, however, that the strong duality may not hold for (1) – (2) in general (see e.g., [1]).
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point methods (IPMs), first-order methods (FOMs), augmented Lagrangian
methods (ALMs), and smoothing Newton methods, for solving SDPs.

Perhaps the most notable and reliable algorithms for solving SDPs are
based on the IPMs, see [6, 7] for comprehensive surveys. IPMs admit polyno-
mial worst-case complexity and are able to deliver highly accurate solutions.
The essential idea of a primal-dual IPM is to solve the KKT conditions in (3)
by solving a sequence of perturbed KKT conditions:

AX = b, A∗y + Z = C, XZ = µI, µ > 0,

with µ being driven to zero. At each iteration of the IPM, one usually needs
to solve a linear system whose coefficient matrix (i.e., the Schur complement
matrix) is of size m×m and generally fully dense and ill-conditioned. Thus,
IPMs may not be suitable for some practical applications since SDPs aris-
ing from such applications are typically of large sizes. To alleviate this issue,
many modifications and extensions of IPMs have been developed. Two main
approaches are: (a) investigating iterative linear system solvers for comput-
ing the search directions [8, 9] in order to handle large-scale linear systems;
(b) exploiting the underlying sparsity structures (such as the chordal struc-
ture of the aggregate sparsity pattern) in the SDP data for more efficiency
[10, 11]. For (a), we note that iterative linear system solvers (such as the PCG
method) require carefully designed preconditioners to handle the issue of ill-
conditioning. However, finding an effective preconditioner is still a challenging
task. For (b), we note that not all SDP problems admit appealing sparsity
structures, and hence the range of applications for this approach remains lim-
ited. In summary, there exist several critical issues that may stop one from
applying an IPM and its variants for solving large-scale SDPs in real-world
applications.

FOMs are at the forefront on developing scalable algorithms for solving
large-scale optimization problems due to the low per-iteration complexity. For
SDPs, we mention some relevant FOMs to capture the picture on recent devel-
opments along this direction. In the early 21th century, Helmberg et al. [12]
applied a spectral bundle method to solve a special regularized problem for the
dual SDP problem (2). The authors proved the convergence of the proposed
method under the condition that the trace of any primal optimal solution
is fixed. FOMs such as the (accelerated) proximal gradient method are also
popular; See for instance the works [13, 14] together with some numerical eval-
uations of their practical performance. Later, Renegar [15] proposed an FOM
which transforms the SDP problem into an equivalent convex optimization
problem. But no numerical experiment was conducted in this work and hence
the practical performance of the proposed algorithm is unclear. Meanwhile,
operator splitting methods and the alternating direction method of multipli-
ers (ADMM) and their variants [16–19] have been demonstrated to be well
suited for solving large-scale SDPs, although high accuracy solutions may not
be achievable in general. More recently, in order to design storage-efficient



4 A squared smoothing Newton method for semidefinite programming

algorithms, Yurtsever et al. [20] proposed a conditional-gradient-based aug-
mented Lagrangian method equipped with random sketching techniques for
solving SDPs with fixed trace constraints. The method has state-of-the-art
performance in memory consumption but whether it is also efficient in compu-
tational time for obtaining high accuracy solutions of general SDPs (with or
without fixed trace constraints) requires further investigations. Another sim-
ilar storage-optimal framework can be found in [21]. Indeed, those existing
works have shown that FOMs are scalable algorithms. However, a commonly
accepted fact for FOMs is that they may not have favorable efficiency for com-
puting accurate solutions or they may even fail to deliver moderately accurate
solutions. Therefore, when high quality solutions are needed, FOMs may not
be attractive.

Being studied for decades, augmented Lagrangian methods (ALMs) have
been shown to be very suitable for solving large-scale optimization problems
(including SDPs) efficiently and accurately. Many efficient algorithms based
on the ALM have been proposed. For example, Jarre and Rendl [22] devel-
oped an augmented primal-dual method. Later, Malick et al. [23] proposed a
Moreau-Yosida regularization method for the primal SDP (1). Both methods
perform reasonably well on some SDPs with a relatively large number of lin-
ear constraints. Zhao et al. [18] developed a dual-based ALM (i.e. the ALM
is applied to the dual problem (2)) whose design principle is fundamentally
different from the one in [23] by relying on the deep connection between the
primal proximal point algorithm and the dual-based ALM [24, 25], and the
highly efficient semi-smooth Newton method [26]. The solver developed in [18]
has shown very promising practical performance for a large collection of SDPs
compared with existing ones. Moreover, practical experience shows that when
a good initial point is available, the performance of the algorithm can be fur-
ther improved. This has motivated the same group of researchers to develop
a hybrid framework, namely SDPNAL+ [27], which combines the dual-based
ALM [18] and the ADMM method [17] with some majorization techniques.
SDPNAL+ has demonstrated excellent numerical performance and it can handle
additional polyhedral constraints. Lastly, we mention another popular ALM-
based approach for solving low-rank SDPs, namely, the Burer-Monteiro (BM)
method [28]. The key ingredient of the BM method is to replace the essential
constraint X ∈ Sn+ with the low-rank factorization X = RRT which refor-
mulates (1) as a nonconvex optimization problem in Rn×r, where r is a prior
bound on the rank of an optimal solution. Many important works on the con-
nection between the factorized problem and the primal SDP (1) have also been
published; see for instance [29–31]. However, choosing a suitable r to balance
a conservative (large) and an aggressive (small) choice is a delicate task as
the former will lead to higher computational cost per iteration while the latter
may lead to convergence failure. As a consequence, the practical performance
of the BM method is sensitive to the choice of r.
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Different from IPMs, one could also consider solving the nonsmooth
reformulation of the KKT conditions in (3):

F(X, y, Z) :=




AX − b
−A∗y − Z + C
X −ΠSn+

(X − Z)


 = 0, (X, y, Z) ∈ S

n × R
m × S

n, (5)

where the conditions X ∈ Sn+, Z ∈ Sn+, 〈X,Z〉 = 0 are replaced by a sin-
gle nonsmooth equation X − ΠSn+

(X − Z) = 0 and ΠSn+
(·) is the projection

operator onto Sn+. Obviously, the function F(·) is nonsmooth due to the non-
smoothness of ΠSn+

(·). Thus, the classical Jacobian of F(·) is not well-defined
and the classical Newton method is not applicable for solving (3). Since the
B-subdifferential and the Clarke’s generalized Jacobian [32] of ΠSn+

(·), namely,

∂BΠSn+
and ∂ΠSn+

, are well-defined, and ΠSn+
(·) is strongly semi-smooth [33],

∂BF and ∂F are both well-defined, and F(·) is also strongly semismooth.
Then, it is natural to apply the semi-smooth Newton (SSN) method [26] that
has a fast local convergence rate under suitable regularity conditions. How-
ever, the global convergence of the SSN method needs a valid merit function
for which the line search procedure for computing a step size is well-defined.
Typically, such a valid merit function should be continuously differentiable
or satisfy other stronger conditions. Yet, defining such a merit function from
F(·) directly turns out to be difficult. This motivates us to develop a smooth-
ing Newton method since a suitable merit function can readily be obtained,
and its global convergence can be established. Moreover, the smoothing New-
ton method inherits the strong local convergence properties from the classical
Newton method and the semismooth Newton method, under similar regularity
conditions.

Existing smoothing Newton methods have been developed and studied
extensively in different areas. To mention just a few of these works, the reader
is referred to [3, 34–40]. These smoothing methods can be roughly divided
into two groups, Jacobian smoothing Newton methods [34, 35] and squared
smoothing Newton methods [3, 37, 38]. The convergence analysis of Jaco-
bian smoothing Newton methods strongly depends on the so-called Jacobian
consistency property and other strong conditions for the underlying smooth-
ing functions. However, many smoothing functions, such as those functions
defined via normal maps [41], do not satisfy these conditions. Furthermore,
to get stronger convergence results, it is often useful to add a small perturba-
tion term to the smoothing function. In this case, conditions ensuring those
stronger results for the Jacobian smoothing Newton methods are generally not
satisfied.

Smoothing Newton methods rely on an appropriate smoothing function for
the plus function ρ(t) := max{0, t}, t ∈ R, in order to deal with the nonsmooth
projector ΠSn+

(·). To the best of our knowledge, the most notable and com-
monly used smoothing function is the so-called Chen-Harker-Kanzow-Smale
(CHKS) function [42–44], ξ(ǫ, t) = (

√
t2 + 4ǫ2+ t)/2, (ǫ, t) ∈ R×R, which has
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been extensively studied and used for solving SDPs and semidefinite linear and
nonlinear complementarity problems. For other smoothing functions whose
properties have also been well-studied, the reader is referred to [38, 45] for
more details. However, it is easy to see that ξ(ǫ, t) maps any negative number
t to a positive one when ǫ 6= 0. Thus, it destroys the possible sparsity structure
when evaluating the Jacobian of the merit function. Hence, smoothing New-
ton methods based on the CHKS function would require more computational
effort. To resolve this issue, we propose to use the Huber smoothing function
[46] which maps any negative number to zero so that the underlying sparsity
structure from the plus function is inherited. To use the Huber smoothing func-
tion, we then need to study some fundamental properties, including continuity,
differentiability and (strong) semismoothness of the matrix-valued mapping
associated with the Huber function.

Although much progress has been made in developing efficient algorithms
for solving SDPs in the literature, the efficiency and cost of these methods are
still far from satisfactory. This motivates us to study and analyze the squared
smoothing Newton method via the Huber smoothing function. To evaluate
the efficiency, we implement the algorithm and conduct extensive numerical
experiments by solving several classes of SDPs. Our theoretical analysis and
numerical results show that the proposed method admits elegant convergence
properties and it is efficient for computing accurate solutions. Compared to the
ALM based method in [18] for solving an SDP problem, our smoothing Newton
method has the advantage that it is applied to a single nonlinear system of
equations, whereas the ALM method needs to solve a sequence of subproblems
for which the total number of Newton directions required is generally more
than the former. Moreover, since the practical performance of the smoothing
Newton method for solving SDPs has not been systematically evaluated in the
literature, our theoretical and numerical studies can certainly help one to gain
better understanding on this class of algorithms.

The rest of the paper is organized as follows. In Section 2, we summary
some existing results that will be used in later analysis. Then, we study the
continuity, differentiability and semismoothness of the matrix-valued mapping
defined upon the Huber function in Section 3. Using these results, we are able
to analyze the correctness, global convergence and local fast convergence rate of
the proposed squared smoothing Newton method in Section 4. In Section 5, we
conduct numerical experiments for solving various classes of SDPs and evaluate
the practical performance of the proposed method. Finally, we conclude the
paper in Section 6.

2 Preliminary

Let Y and Z be any two finite dimensional real vector spaces, each equipped
with an inner product 〈·, ·〉 and its induced norm ‖·‖. Assume that O ⊆ Y

is an open set and Θ : O → Z is a locally Lipschitz continuous function on
O. Then, Θ is Fréchet-differentiable almost everywhere on O [47]. Hence, the
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B-subdifferential [48] of Θ at y ∈ O, denoted by ∂BΘ(y), is well-defined and
given by

∂BΘ(y) :=

{
V : V = lim

k→∞
Θ′(yk), yk → y,Θ′(yk) is the F-differential at yk

}
.

Moreover, the Clarke’s generalized Jacobian [32] of Θ is also well-defined at
any y ∈ O and is denoted as ∂Θ(y) := conv {∂BΘ(y)}, where “conv” denotes
the convex hull of the underlying set.

2.1 Properties of ΠSn
+
(·)

Denote the matrix-valued mapping Ω0(d) : R
N → SN for any integer N > 0 as

[Ω0(d)]ij =
ρ(di) + ρ(dj)

|di|+ |dj |
, i, j = 1, . . . , N, ∀d ∈ R

N , (6)

with the convention that 0/0 := 1. Let the spectral decomposition of W ∈ Sn

be

W = PDPT , D = diag(d), d = (d1, . . . , dn)
T ∈ R

n, d1 ≥ · · · ≥ dn, (7)

where P ∈ Rn×n is orthogonal. For later usage, we also define the following
three index sets: α := {i : di > 0}, β := {i : di = 0}, and γ := {i : di < 0},
corresponding to the positive, zero and negative eigenvalues ofW , respectively.

It is clear that both ∂BΠSn+
(W ) and ∂ΠSn+

(W ) are well-defined for any

W ∈ Sn (since ΠSn+
(·) is globally Lipschitz continuous with modulus 1 on Sn).

We then have the following useful lemma on ∂BΠSn+
(W ) and ∂ΠSn+

(W ) whose

proof can be found in [5, Proposition 2.2].

Lemma 1 Suppose that W ∈ S
n has the spectral decomposition (7). Then V ∈

∂BΠSn+
(W ) (respectively, ∂ΠSn+

(W )) if and only if there exists V|β| ∈ ∂BΠ
S
|β|
+

(0)

(respectively, ∂Π
S
|β|
+

(0)) such that

V (H) = P




H̃αα H̃αβ [Ω0(d)]αγ ◦ H̃αγ

H̃T
αβ V|β|(H̃ββ) 0

HT
αγ ◦ [Ω0(d)]

T
αγ 0 0



PT ,

where H̃ := PTHP for any H ∈ S
n. In particular, V|β| ∈ ∂BΠ

S
|β|
+

(0) if and only if

there exist an orthogonal matrix U ∈ R
|β|×|β| and

Ω|β| ∈
{
Ω ∈ S

|β| : Ω = lim
k→∞

Ω0(z
k), R|β| ∋ zk → 0, zk1 ≥ · · · ≥ zk|β|, z

k 6= 0

}

such that
V|β|(Y ) = U

[
Ω|β| ◦

(
UTY U

)]
UT , ∀Y ∈ S

|β|.
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Another critical and fundamental concept of ΠSn+
(·) is its semismoothness,

which plays an essential role in analyzing the convergence of Newton-type
algorithms. Recall that a mapping Θ : Y → Z is said to be directionally
differentiable at the point y ∈ Y if the limit, defined by

Θ(y; h) := lim
t↓0

Θ(y + th)−Θ(y)

t
,

exists for any h ∈ Y. Then the definition of the semismoothness is given as
follows.

Definition 1 Let Θ : O ⊆ Y → Z be a locally Lipschitz continuous function. Θ is
said to be semismooth at y ∈ O if Θ is directionally differentiable at y and for any
V ∈ ∂Θ(y + h),

‖Θ(y + h) −Θ(y)− V h‖ = o(‖h‖), h→ 0.

Θ is said to be strongly semismooth at y ∈ Y if Θ is semismooth at y and for any
V ∈ ∂Θ(y + h)

‖Θ(y + h)−Θ(y)− V h‖ = O(‖h‖2), h→ 0.

We say that Θ is semismooth (respectively, strongly semismooth) if Θ is semismooth
(respectively, strongly semismooth) at every y ∈ Y.

Semismoothness was originally introduced by Mifflin [49] for functionals.
Qi and Sun [26] extended it to vector-valued functions. It is also well-known
that the projector ΠSn+

(·) is strongly semismooth on Sn [33]. Later, we will also

show that the smoothed counterpart of ΠSn+
(·) is also strongly semismooth on

Sn (see Proposition 4).

2.2 Equivalent conditions

For the rest of this section, we describe several important conditions related to
SDPs and present some connections between these conditions. The presented
materials are borrowed directly from the literature. See for instance [3] and
the references therein.

First, we recall the general concept of constraint nondegeneracy. Let g :
Y → Z be a continuously differentiable function and C be a nonempty closed
convex set in Z. Consider the following feasibility problem:

g(ξ) ∈ C, ξ ∈ Y. (8)

Let ξ̄ ∈ Y be a feasible solution to the above feasibility problem. The tangent
cone of C at the point g(ξ̄) is denoted by TC(g(ξ̄)), and the largest linear
subspace of Y contained in TC(g(ξ̄)), (i.e., the linearity space of TC(g(ξ̄))) is
denoted by lin(TC(g(ξ̄))).
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Definition 2 A feasible solution ξ̄ for (8) is constraint nondegenerate if

g′(ξ̄)Y+ lin(TC(g(ξ̄))) = Z.

The concept of degeneracy was introduced by Robinson [50–52] and the
term “constraint nondegeneracy” was also coined by Robinson [53]. For non-
linear programming (i.e., Y is the Euclidean space Rm and C = {0}m1 × R

m2
+

with m = m1 +m2), the constraint nondegeneracy condition is equivalent to
the well known linear independence constraint qualification (LICQ) [51].

Let I denote the identity map on Sn. Applying Definition 2, we see that
the primal constraint nondegeneracy holds at a feasible solution X̄ ∈ Sn+ of
the primal problem (1) if

(
A
I

)
S
n
+ +

( {0}
lin(TSn+(X̄))

)
=

(
Rm

Sn

)
. (9)

Similarly, the dual constraint nondegeneracy holds at a feasible solution
(ȳ, Z̄) ∈ R

n × S
n
+ of the dual problem (2) if

(
A∗ I
0 I

)(
Rm

Sn

)
+

( {0}
lin(TSn+(Z̄))

)
=

(
Sn

Sn

)
. (10)

Without much difficulty, one can show that the primal constraint nonde-
generacy (9) is equivalent to Alin(TSn+(X̄)) = Rm, and the dual constraint

nondegeneracy (10) is equivalent to A∗Rm+lin(TSn+(Z̄)) = Sn. Moreover, if X̄

is an optimal solution for (1), then under the primal constraint nondegeneracy
condition, we can show that M(X̄) is a singleton [54, Theorem 2].

It is shown in [3, Theorem 18] that the primal and dual constraint non-
degeneracy conditions are both necessary and sufficient conditions for the
nonsingularity of elements in both ∂BF(X̄, ȳ, Z̄) and ∂F(X̄, ȳ, Z̄), where
(X̄, ȳ, Z̄) is a KKT point. Specifically, we have the following theorem.

Theorem 2 ([3]) Let (X̄, ȳ, Z̄) ∈ S
n×R

m×S
n be a KKT point. Then the following

statements are equivalent:

1. The primal constraint nondegeneracy condition holds at X̄ and the dual

constraint nondegeneracy condition holds at (ȳ, Z̄), respectively.
2. Every element in ∂F(X̄, ȳ, Z̄) is nonsingular.

3. Every element in ∂BF(X̄, ȳ, Z̄) is nonsingular.

We next present the concept of strong second-order sufficient condition
for linear SDPs. We note that the concept was introduced in [5] for general
nonlinear SDPs. To this end, let (X̄, ȳ, Z̄) be any KKT point. Write W =
X̄ − Z̄, and assume that W has the spectral decomposition (7). Partition P
accordingly with respect to the index set α, β and γ as P =

(
Pα Pβ Pγ

)
, where
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Pα ∈ Rn×|α|, Pβ ∈ Rn×|β|, and Pγ ∈ Rn×|γ|. Then, by the fact that X̄ and Z̄
commute, it holds that

X̄ = Pαdiag(d1, . . . , d|α|)P
T
α , Z̄ = −Pγdiag(d1+|α|+|β|, . . . , dn)P

T
γ .

For any given matrix B ∈ Sn, let B† be the Moore-Penrose pseudoinverse
of B. We define the linear-quadratic function ΓB : Sn × Sn → R by

ΓB(S,H) := 2
〈
S,HB†H

〉
, ∀(S,H) ∈ S

n × S
n. (11)

Using these notation, the definition of the strong second-order sufficient
condition is given as follows.

Definition 3 Let X̄ be an optimal solution to the primal problem (1).
We say that the strong second-order sufficient condition holds at X̄ if
sup(y,Z)∈M(X̄) {−ΓX̄(−Z,H)} > 0 for any 0 6= H ∈ ⋂(y,Z)∈M(X̄) app(y,Z), where

app(y,Z) :=
{
B ∈ S

n : AB = 0, PT
β BPγ = 0, PT

γ BPγ = 0
}
.

Finally, we present a result that links the strong second-order sufficient
condition and the dual constraint nondegeneracy condition; See [3, Proposition
15] for a proof.

Lemma 3 Let (X̄, ȳ, Z̄) ∈ S
n×R

m×S
n be a KKT point such that M(X̄) =

{
(ȳ, Z̄)

}
.

Then, the following two statements are equivalent:

1. The strong second-order sufficient condition holds at X̄.

2. The dual constraint nondegeneracy condition holds at (ȳ, Z̄).

3 The Huber smoothing function

Since the plus function ρ(t) = max{0, t}, t ∈ R is not differentiable at t = 0,
we consider its Huber smoothing (or approximation) function that is defined
as follows:

h(ǫ, t) =





t− |ǫ|
2 t > |ǫ|

t2

2|ǫ| 0 ≤ t ≤ |ǫ|
0 t < 0

, ∀(ǫ, t) ∈ R\{0}×R, h(0, t) = ρ(t), ∀t ∈ R.

(12)
Clearly, h(ǫ, t) is continuously differentiable for ǫ 6= 0 and t ∈ R. Moreover,
one can easily check that h is directionally differentiable at (0, t) for any t ∈ R.
Since ΠSn+

(W ) = Pdiag(ρ(d1), . . . , ρ(dn))P
T , we can compute ΠSn+

(W ) approx-

imately by evaluating the matrix-valued mapping Φ(ǫ,W ) that is defined
as

Φ(ǫ,W ) := Pdiag(h(ǫ, d1), . . . , h(ǫ, dn))P
T , ∀(ǫ,W ) ∈ R× S

n.
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In this section, we shall study some fundamental properties of Φ. We note
that the techniques used in our analysis are not new but mainly borrowed
from those in the literature. However, existing techniques were mainly used for
analyzing the CHKS-smoothing function. We will show in this section that the
same analysis framework is applicable to the Huber smoothing function (12).

Before presenting our results, we need to introduce some useful notation.
For any (ǫ, d) ∈ R\{0} × RN , where N > 0 is any dimension, we define the
matrix-valued mappings Ω : R× RN → SN and D : R× RN → SN as follows:

[Ω(ǫ, d)]ij :=

{
h(ǫ,di)−h(ǫ,dj)

di−dj
di 6= dj

h′2(ǫ, di) di = dj
, 1 ≤ i, j ≤ N,

D(ǫ, d) := diag(h′1(ǫ, d1), . . . , h
′
1(ǫ, dN )).

(13)

Here h′1 and h′2 denote the partial derivatives with respect to the first and the
second arguments of h, respectively. Note that 0 ≤ [Ω(ǫ, d)]ij ≤ 1, 1 ≤ i, j ≤ N ,
for any (ǫ, d) ∈ R×RN , and that 0 ≤ |h′1(ǫ, di)| ≤ 1

2 , 1 ≤ i ≤ N , for any ǫ 6= 0.
Let W have the spectral decomposition (7) and λ1 > · · · > λr be the

distinct eigenvalues of W with multiplicities m1, . . . ,mr. Define s1 := 0, sj :=∑j−1
i=1 mj for j = 2, . . . , r, and sr+1 := n. For j = 1, . . . , r, denote the matrices

Pj :=
(
psj+1 . . . psj+1

)
∈ Rn×mj and Qj:=PjP

T
j ∈ Sn. Then, it is clear that

W =

r∑

j=1

λjQj, Φ(ǫ,W ) =

r∑

j=1

h(ǫ, λj)Qj .

Now, consider W + tH , which admits a decomposition W + tH =∑n
i=1 di(t)pi(t)pi(t)

T with d1(t) ≥ · · · ≥ dn(t) and {p1(t), . . . , pn(t)} forming
an orthonormal basis for Rn. Similarly, for j = 1, . . . , r, we can define the
matrices Pj(t):=

(
psj+1(t) . . . psj+1 (t)

)
∈ Rn×mj and Qj(t):=Pj(t)Pj(t)

T ∈
Sn. By the definition of directional differential, we may denote

d′i(W ; H) := lim
t↓0

di(t)− di
t

, ∀H ∈ S
n,

if the limit exists, for any i = 1, . . . , n.

Proposition 4 Given any W ∈ S
n having the spectral decomposition (7). The

following hold:

1. For any ǫ 6= 0, Φ is continuously differentiable at (ǫ,W ) and it holds that

Φ′(ǫ,W )(τ,H) = P
[
Ω(ǫ, d) ◦ (PTHP ) + τD(ǫ, d)

]
PT , ∀(τ,H) ∈ R×S

n,
(14)

where Ω(ǫ, d), D(ǫ, d) are defined in (13).
2. Φ is locally Lipschitz continuous on R× Sn.
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3. Φ is directionally differentiable at (0,W ), and for any (τ,H) ∈ R × Sn, it

holds that

Φ′((0,W ); (τ,H)) =
1

2

∑

1≤k 6=j≤r

h(0, λk)− h(0, λj)

λk − λj
(QjHQk +QkHQj)

+
∑

i∈α

(
d′i(W ; H)− |τ |

2

)
pip

T
i +

∑

i∈β

h(τ, d′i(W ; H))pip
T
i ,

(15)
where for any 1 ≤ i ≤ n with di = λj for some 1 ≤ j ≤ r, the elements of

{d′i(W ; H) : i = sj + 1, . . . , sj+1} are the eigenvalues of PT
j HPj, arranged

in decreasing order.

4. Φ is strongly semismooth on R× Sn.

Proof See Appendix A. Interested readers are referred to [37, 55] for similar results
for other popular smoothing functions. �

Notice that the matrix Pj is defined up to an orthogonal transformation,
i.e., it can be replaced with PjU , where U ∈ Rmj×mj is an arbitrary orthogonal
matrix. For any given H ∈ Sn, consider the matrix PT

j HPj which admits the
following spectral decomposition

PT
j HPj = Ujdiag(µ1, . . . , µmj

)UT
j , µ1 ≥ · · · ≥ µmj

,

where Uj ∈ Rmj×mj is orthogonal. Then, we may replace Pj by PjUj. In this
way, PT

j HPj is always a diagonal matrix whose diagonal entries are arranged
in decreasing order. As a consequence, we can easily verify that

Φ′((0,W ); (τ,H)) = P




H̃αα H̃αβ [Ω0(d)]αγ ◦ H̃αγ

H̃T
αβ Φ|β|(τ, H̃ββ) 0

[Ω0(d)]
T
αγ ◦HT

αγ 0 0


PT

− |τ |
2

∑

i∈α

pip
T
i , ∀(τ,H) ∈ R× S

n,

(16)
where H̃ := PTHP and the mapping Φ|β| : R × S|β| → S|β| is defined by
replacing the dimension n in the definition of Φ : R× Sn → Sn with |β|.

Define the mapping L : R× Sn → Sn as

L(τ,H) := Φ′((0,W ); (τ,H)), (τ,H) ∈ R× S
n.

Using (16), we see that the mapping L(·, ·) is F-differentiable at (τ,H) if and
only if τ 6= 0. Obviously, L is locally Lipschitz continuous everywhere. Hence,
∂BL(0, 0) is well-defined. Then, we have the following useful result that builds
an insightful connection between ∂BΦ and ∂BL. To prove the result, we will



A squared smoothing Newton method for semidefinite programming 13

basically follow the proof of [3, Lemma 4]. However, due to the second term
on the right hand side of (16), we need to modify the proof to make the paper
self-contained; See Appendix B for more details.

Lemma 5 Suppose that W ∈ S
n has the eigenvalue decomposition (7). Then, it

holds that
∂BΦ(0,W ) = ∂BL(0, 0).

Recall that Φ|β| is also locally Lipschitz continuous. Hence, ∂BΦ|β| and
∂Φ|β| are both well-defined. The following lemma provides an effective way to
calculate ∂BΦ(0,W ) and ∂Φ(0,W ).

Lemma 6 For any W ∈ S
n with the spectral decomposition (7). V ∈ ∂BΦ(0,W )

(respectively, Φ(0,W )) if and only if there exist V|β| ∈ ∂BΦ|β|(0, 0) (respectively,
∂Φ|β|(0, 0)) and a scalar v ∈ {−1, 1} (respectively, [−1, 1]) such that for all (τ,H) ∈
R× S

n,

V (τ,H) =




H̃αα H̃αβ [Ω0(d)]αγ ◦ H̃αγ

H̃T
αβ V|β|(τ, H̃ββ) 0

H̃T
αγ ◦ [Ω0(d)]

T
αγ 0 0



PT +
vτ

2

∑

i∈α

pip
T
i ,

where H̃ := PTHP and pi is the i-th column of P for i = 1, . . . , n. Moreover,
V|β| ∈ ∂BΦ|β|(0, 0) if and only if there exist an orthogonal matrix U ∈ R

|β|×|β| and
a symmetric matrix

Ω|β| ∈
{
Ω ∈ S

|β| : Ω|β| = lim
k→∞

Ω(ǫk, zk), (ǫk, zk) → (0, 0), ǫk 6= 0, zk1 ≥ · · · ≥ zk|β|

}

such that
V|β|(0, Y ) = U

[
Ω|β| ◦ (UT Y U)

]
UT , ∀Y ∈ S

|β|.

Proof We only prove the case for the B-subdifferential as the case for Clarke’s gen-
eralized Jacobian can be proved in a similar manner. Let the smooth mapping
Ψ : R× S

n → R× S
n be defined as Ψ(τ,H) := (τ, PTHP ) for any (τ,H) ∈ R×S

n. It
is clear that Ψ′(τ,H) : R×S

n → R×S
n is onto. Define the mapping Υ : R×S

n → S
n

as follows:

Υ(ν, Y ) := P




Yαα Yαβ [Ω0(d)]αγ ◦ Yαγ
Y T
αβ Φ|β|(ν, Yββ) 0

Y T
αγ ◦ [Ω0(d)]

T
αγ 0 0



PT

− |ν|
2

∑

i∈α

pip
T
i , ∀(ν, Y ) ∈ R× S

n.

Then by (16), it holds that L(τ,H) = Υ(Ψ(τ,H)). Now by [3, Lemma 1] and Lemma
5, we have

∂BΦ(0,W ) = ∂BL(0, 0) = ∂BΥ(0, 0)Ψ′(0, 0),

which proves the first part of the lemma. The expression of V|β| ∈ ∂BΦ(0, 0) follows
directly from its definition and Proposition 4. Thus, the proof is completed. �
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As a corollary of Lemma 1 and Lemma 6, we can verify that for any V0 ∈
∂BΠSn+

(W ), there exists V ∈ ∂BΦ(0,W ) such that

V0(H) = V (0, H), ∀H ∈ S
n. (17)

We end this section by presenting a useful inequality for elements in
∂Φ(0,W ).

Lemma 7 Let W ∈ S
n have the spectral decomposition (7). Then for any V ∈

∂Φ(0,W ),
〈H − V (0,H), V (0,H)〉 ≥ 0, ∀H ∈ S

n.

Proof We first consider V ∈ ∂BΦ(0,W ). Using Lemma 6, there exist an orthogonal

matrix U ∈ R
|β|×|β| and a symmetric matrix Ω|β| ∈ S

|β| such that

〈H − V (0,H) , V (0,H)〉 =
〈
PT (H − V (0, H))P, PTV (0,H)P

〉

= 2
〈
(Eαγ − [Ω0(d)]αγ) ◦ H̃αγ , [Ω0(d)]αγ ◦ H̃αγ

〉

+
〈
H̃ββ − U

[
Ω|β| ◦

(
UT H̃ββU

)]
UT , U

[
Ω|β| ◦

(
UT H̃ββU

)]
UT
〉

= 2
〈
(Eαγ − [Ω0(d)]αγ) ◦ H̃αγ , [Ω0(d)]αγ ◦ H̃αγ

〉

+
〈(
Eββ − Ω|β|

)
◦
(
UT H̃ββU

)
,Ω|β| ◦

(
UT H̃ββU

)〉
,

where Eαγ and Eββ denote the matrices of all ones in R
|α|×|γ| and R

|β|×|β|, respec-
tively. Notice that the elements in both the matrices Ω0(d) and Ω|β| are all inside
the interval [0, 1]. Hence, we conclude that 〈H − V (0,H), V (0, H)〉 ≥ 0, for any
V ∈ ∂BΦ(0,W ) and H ∈ S

n.
Next, we let V ∈ Φ(0,W ). By Carathéodory’s theorem, there exist a positive

integer q and V i ∈ ∂BΦ(0,W ), i = 1, . . . , q, such that V is the convex combination
of V 1, . . . , V q . Therefore, there exist nonnegative scalars t1, . . . , tq such that V =∑q

i=1 tiV
i with

∑q
i=1 ti = 1. Define the convex function θ(X) = 〈X,X〉 , X ∈ S

n.
By the convexity of θ, we have

〈V (0,H), V (0, H)〉 = θ(V (0, H)) = θ

( q∑

i=1

tiV
i(0, H)

)

≤
q∑

i=1

tiθ(V
i(0,H)) = 〈H,V (0,H)〉 .

This completes the proof. �

4 A squared smoothing Newton method

In this section, we shall present our main algorithm, a squared smoothing
Newton method via the Huber smoothing function. We then focus on analyzing
its correctness, global convergence, and the fast local convergence rate under
suitable regularity conditions.
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By the results presented in the previous section, we can define the smooth-
ing function for F based on the smoothing function Φ for ΠSn+

. In particular,
let E : R× X → Rm × Sn × Sn be defined as

E(ǫ,X, y, Z) =




AX+κp |ǫ| y − b
−A∗y − Z + C

(1 + κc |ǫ|)X − Φ(ǫ,X − Z)


 , ∀(ǫ,X, y, Z) ∈ R×X, (18)

where κp > 0, κc > 0 are two given constants and X := Sn×Rm×Sn. Then, E
is a continuously differentiable function around any (ǫ,X, y, Z) for any ǫ 6= 0.
Also, it satisfies

E(ǫ′, X ′, y′, Z ′) → F(X, y, Z), as (ǫ′, X ′, y′, Z ′) → (0, X, y, Z).

Note that adding the perturbation terms κp |ǫ| y and κc |ǫ|X for constructing
the smoothing function of F is crucial in our algorithmic design since it ensures
the correctness of our proposed algorithm (see Lemma 8).

Define the function Ê : R× X → R× Rm × Sn × Sn by

Ê(ǫ,X, y, Z) =
(

ǫ
E(ǫ,X, y, Z)

)
, ∀(ǫ,X, y, Z) ∈ R× X. (19)

Then solving the nonsmooth equation F(X, y, Z) = 0 is equivalent to solving
the following system of nonlinear equations

Ê(ǫ,X, y, Z) = 0. (20)

Associated with the mapping Ê , we have the natural merit function ψ :
R× X → R+ that is defined as

ψ(ǫ,X, y, Z) :=
∥∥∥Ê(ǫ,X, y, Z)

∥∥∥
2

, ∀(ǫ,X, y, Z) ∈ R× X. (21)

Given r ∈ (0, 1], r̂ ∈ (0,∞) and τ ∈ (0, 1), we can define two functions
ζ : R× X → R+ and η : R× X → R+ as follows:

ζ(ǫ,X, y, Z) = rmin

{
1,
∥∥∥Ê(ǫ,X, y, Z)

∥∥∥
1+τ

}
, (ǫ,X, y, Z) ∈ R× X, (22)

and

η(ǫ,X, y, Z) = min
{
1, r̂

∥∥∥Ê(ǫ,X, y, Z)
∥∥∥
τ}

, (ǫ,X, y, Z) ∈ R× X. (23)

Then the inexact smoothing Newton can be described in Algorithm 1.
For the rest of this section, we shall show that Algorithm 1 is well-defined

and analyze its convergence properties. Note that the global convergence and
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Algorithm 1 A squared smoothing Newton method

Input: ǫ̂ ∈ (0,∞), r ∈ (0, 1), r̂ ∈ (0,∞), η̂ ∈ (0, 1) be such that δ :=√
2max{rǫ̂, η̂} < 1, ρ ∈ (0, 1), σ ∈ (0, 1/2), τ ∈ (0, 1], ǫ0 = ǫ̂,

(X0, y0, Z0) ∈ Sn×Rm × Sn.
1 for k ≥ 0 do

2 if Ê(ǫk, Xk, yk, Zk) = 0 then

Output: (ǫk, Xk, yk, Zk)
3 else

4 Compute ηk := η(ǫk, Xk, yk, Zk) and ζk := ζ(ǫk, Xk, yk, Zk).
5 Solve the following equation

Ê(ǫk, Xk, yk, Zk) + Ê ′(ǫk, Xk, yk, Zk)




∆ǫk

∆Xk

∆yk

∆Zk


 =




ζk ǫ̂
0
0
0


 (24)

approximately such that

‖Rk‖ ≤ηk
∥∥E(ǫk, Xk, yk, Zk) + E ′

ǫ(ǫ
k, Xk, yk, Zk)∆ǫk

∥∥ ,

‖Rk‖ ≤η̂
∥∥∥Ê(ǫk, Xk, yk, Zk)

∥∥∥ ,
(25)

where ∆ǫk := −ǫk + ζk ǫ̂ and

Rk := E(ǫk, Xk, yk, Zk) + E ′(ǫk, Xk, yk, Zk)




∆ǫk

∆Xk

∆yk

∆Zk


 .

6 Compute ℓk as the smallest nonnegative integer ℓ satisfying

ψ(ǫk + ρℓ∆ǫk, Xk + ρℓ∆Xk, yk + ρℓ∆yk, Zk + ρℓ∆Zk)

≤ [1 − 2σ(1− δ)ρℓ]ψ(ǫk, Xk, yk, Zk).

7 Compute (ǫk+1, Xk+1, yk+1, Zk+1) = (ǫk + ρℓk∆ǫk, Xk + ρℓk∆Xk, yk +

ρℓk∆yk, Zk + ρℓk∆Zk).
8 end

9 end

the fast local convergence rate under the nonsingularity of ∂B Ê or ∂Ê at solu-
tion points of nonlinear equations (20) are studied extensively in the literature
(see e.g., [37]). However, since we are using the Huber function, conditions
that ensure the nonsingularity conditions need to be redeveloped. Further-
more, Algorithm 1 allows one to specify the parameter τ ∈ (0, 1] (which is used
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to control the rate of convergence) whereas existing results mainly focuse on
the case when τ = 1. Consequently, to make the paper self-contained, we also
present the details of the analysis for our key results.

4.1 Global convergence

We first show that the linear system (24) is well-defined and solvable for any
ǫk > 0. Hence the inexactness conditions in (25) are always achievable. This
objective can be accomplished by showing that the coefficient matrix of the
linear system (24) is nonsingular for any ǫk > 0.

Lemma 8 For any (ǫ′, X′, y′, Z′) ∈ R++ × X, there exists an open neighborhood U
of (ǫ′, X′, y′, Z′) such that Ê ′(ǫ,X, y, Z) is nonsingular for any (ǫ,X, y, Z) ∈ U with
ǫ ∈ R++.

Proof Simple calculations give

Ê ′(ǫ,X, y,Z)

=





1 0 0 0
κpy A κpǫIm 0
0 0 −A∗ −I

κcX −Φ′
1(ǫ,X − Z) (1 + κcǫ)I −Φ′

2(ǫ,X − Z) 0 Φ′
2(ǫ,X − Z)



 ,

where Φ′
1 and Φ′

2 denote the partial derivatives of Φ with respect to the first and
second arguments, respectively, and I is the identity map over S

n. To show that
Ê ′(ǫ,X, y,Z) is nonsingular, it suffices to show that the following system of linear
equations

Ê ′(ǫ,X, y, Z)(∆ǫ,∆X,∆y,∆Z) = 0, (∆ǫ,∆X,∆y,∆Z) ∈ R× X,

has only the trivial solution (∆ǫ,∆X,∆y,∆Z) = (0, 0, 0, 0). It is obvious that ∆ǫ = 0.
Since (1 + κcǫ)∆X − Φ′

2(ǫ,X − Z)∆X+Φ′
2(ǫ,X − Z)∆Z = 0, it follows that

∆X = −
(
(1 + κcǫ)I −Φ′

2(ǫ,X − Z)
)−1

Φ′
2(ǫ,X − Z)∆Z. (26)

By the equality −A∗∆y − ∆Z = 0, it follows that ∆Z = −A∗∆y which together
with (26) implies that

∆X =
(
(1 + κcǫ)I − Φ′

2(ǫ, X − Z)
)−1

Φ′
2(ǫ,X − Z)A∗∆y. (27)

Using the fact that A∆X + κpǫ∆y = 0 and (27), we get
(
κpǫIm +A

(
(1 + κcǫ)I − Φ′

2(ǫ,X − Z)
)−1

Φ′
2(ǫ,X − Z)A∗

)
∆y = 0.

Since 0 � Φ′
2(ǫ,X−Z) � I, it is easy to show that the coefficient matrix in the above

linear system is symmetric positive definite. Thus, ∆y = 0, which further implies
that ∆X = ∆Z = 0. Therefore, the proof is completed. �

The next task is to show that the line search procedure is well-defined, i.e.,
ℓk is finite for all k ≥ 0. We will see that the inexactness condition ‖Rk‖ ≤
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η̂
∥∥∥Ê(ǫk, Xk, yk, Zk)

∥∥∥ plays a fundamental role in our analysis. We also note

that the inexactness condition

‖Rk‖ ≤ ηk
∥∥E(ǫk, Xk, yk, Zk) + E ′

ǫ(ǫ
k, Xk, yk, Zk)∆ǫk

∥∥

does not affect the correctness of Algorithm 1 but will be crucial in analyzing
the local convergence rate of Algorithm 1.

Lemma 9 For any (ǫ′, X′, y′, Z′) ∈ R++×X, there exist an open neighborhood U of
(ǫ′, X′, y′, Z′) and a positive scalar ᾱ ∈ (0, 1] such that for any (ǫ,X, y, Z) ∈ U with
ǫ ∈ R++ and α ∈ (0, ᾱ], it holds that

ψ(ǫ+ α∆ǫ, X + α∆X, y + α∆y, Z + α∆Z) ≤ [1− 2σ(1− δ)α]ψ(ǫ,X, y, Z),

where ∆ := (∆ǫ; ∆X; ∆y; ∆Z) ∈ R× X satisfies

∆ǫ = −ǫ+ ζ(ǫ,X, y,Z)ǫ̂,
∥∥E(ǫ,X, y, Z) + E ′(ǫ,X, y,Z)∆

∥∥ ≤ η̂
∥∥∥Ê(ǫ,X, y,Z)

∥∥∥ .

Proof Since ǫ′ ∈ R++, by Lemma 8, Ê ′(ǫ′, X′, y′, Z′) is nonsingular. Since Ê is contin-
uously differentiable around (ǫ′, X′, y′, Z′), there exists an open neighborhood U of

(ǫ′, X′, y′, Z′) such that for any (ǫ,X, y, Z), Ê ′(ǫ,X, y, Z) is nonsingular. Therefore,
the existence of ∆ is guaranteed.

Denote R(ǫ,X, y, Z) := E(ǫ,X, y,Z) + E ′(ǫ,X, y,Z)∆. Then one can verify that
(∆ǫ,∆X,∆y,∆Z) is the unique solution of the following equation

Ê(ǫ,X, y, Z) + Ê ′(ǫ,X, y,Z)∆ =

(
ζ(ǫ, X, y,Z)ǫ̂
R(ǫ,X, y, Z)

)
.

Hence, it holds that

〈∇ψ(ǫ,X, y, Z),∆〉 =
〈
2∇Ê(ǫ,X, y, Z)Ê(ǫ,X, y, Z),∆

〉

=

〈
2Ê(ǫ,X, y,Z),

(
ζ(ǫ,X, y,Z)ǫ̂
R(ǫ,X, y, Z)

)
− Ê(ǫ,X, y, Z)

〉

= − 2ψ(ǫ, X, y,Z) + 2ζ(ǫ,X, y, Z)ǫǫ̂ + 2 〈R(ǫ,X, y, Z), E(ǫ,X, y,Z)〉
≤ − 2ψ(ǫ, X, y,Z) + 2rmin{1, ψ(ǫ,X, y,Z)(1+τ)/2}ǫǫ̂

+ 2η̂ψ(ǫ,X, y,Z)1/2 ‖E(ǫ,X, y,Z)‖ .

(28)

We consider two possible cases when ψ(ǫ,X, y, Z) > 1 and ψ(ǫ,X, y, Z) ≤ 1.
If ψ(ǫ,X, y,Z) > 1, then (28) implies that

〈∇ψ(ǫ,X, y, Z),∆〉

≤ − 2ψ(ǫ, X, y,Z) + 2rǫǫ̂+ 2η̂ψ(ǫ,X, y, Z)1/2
√
ψ(ǫ,X, y,Z) − ǫ2

≤ − 2ψ(ǫ, X, y,Z) + 2max{rǫ̂, η̂}
(
ǫ+ ψ(ǫ,X, y, Z)1/2

√
ψ(ǫ,X, y, Z)− ǫ2

)

≤ − 2ψ(ǫ, X, y,Z) + 2max{rǫ̂, η̂}ψ(ǫ, X, y,Z)

= 2
(√

2max{rǫ̂, η̂} − 1
)
ψ(ǫ,X, y, Z).
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If ψ(ǫ,X, y,Z) ≤ 1, then (28) implies that

〈∇ψ(ǫ,X, y, Z),∆〉
≤ − 2ψ(ǫ, X, y,Z) + 2rψ(ǫ,X, y, Z)(1+τ)/2ǫǫ̂

+ 2η̂ψ(ǫ,X, y,Z)1/2
√
ψ(ǫ,X, y, Z)− ǫ2

≤ − 2ψ(ǫ, X, y,Z) + 2rψ(ǫ,X, y, Z)ǫ̂+ 2η̂ψ(ǫ,X, y, Z)1/2
√
ψ(ǫ,X, y,Z) − ǫ2

≤ − 2ψ(ǫ, X, y,Z)

+ 2max{rǫ̂, η̂}ψ(ǫ,X, y, Z)1/2
(
ǫψ(ǫ,X, y, Z)1/2 +

√
ψ(ǫ,X, y, Z) − ǫ2

)

≤ − 2ψ(ǫ, X, y,Z) + 2max{rǫ̂, η̂}ψ(ǫ, X, y,Z)

= 2
(√

2max{rǫ̂, η̂} − 1
)
ψ(ǫ,X, y, Z).

For both cases, we always have that

〈∇ψ(ǫ,X, y, Z),∆〉 ≤ 2
(√

2max{rǫ̂, η̂} − 1
)
ψ(ǫ,X, y, Z). (29)

Since ∇ψ(·) is uniformly continuous on U , for all (ǫ,X, y, Z) ∈ U with ǫ > 0, we
have from the Taylor expansion that

ψ(ǫ+α∆ǫ,X+α∆X, y+α∆y,Z+α∆Z) = ψ(ǫ,X, y, Z)+α 〈∇ψ(ǫ,X, y,Z),∆〉+o(α).
(30)

Combining (29) and (30), it holds that

ψ(ǫ+ α∆ǫ,X + α∆X, y + α∆y, Z + α∆Z)

= ψ(ǫ,X, y, Z) + 2α(δ − 1)ψ(ǫ,X, y, Z) + o(α)

= [1− 2σ(1− δ)α]ψ(ǫ,X, y,Z) + o(α),

and the proof is completed. �

As showed before, the nonsingularity of the coefficient matrix in (24)
requires ǫk to be positive. The next lemma shows that Algorithm 1 generates
ǫk that is lower bounded by ζ(ǫk, Xk, yk, Zk)ǫ̂. Thus, as long as the optimal
solution is not found, ǫk remains positive. To present the lemma, we need to
define the following set

N := {(ǫ,X, y, Z) : ǫ ≥ ζ(ǫ,X, y, Z)ǫ̂} .

Lemma 10 Suppose that for a given k ≥ 0, ǫk ∈ R++ and (ǫk, Xk, yk, Zk) ∈ N .
Then, for any α ∈ [0, 1] such that

ψ(ǫk+α∆ǫk, Xk+α∆Xk, yk+α∆yk, Zk+α∆Zk) ≤ [1−2σ(1−δ)α]ψ(ǫk, Xk, yk, Zk),

it holds that

(ǫk + α∆ǫk, Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk) ∈ N .
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Proof Since (ǫk, Xk, yk, Zk) ∈ N , we have directly from the definition of N that
ǫk ≥ ζ(ǫk, Xk, yk, Zk)ǫ̂. Recall that ∆ǫk = −ǫk + ζ(ǫk, Xk, yk, Zk)ǫ̂ ≤ 0. It holds
that

ǫk + α∆ǫk − ζ(ǫk + α∆ǫk, Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk)ǫ̂

≥ ǫk +∆ǫk − ζ(ǫk + α∆ǫk , Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk)ǫ̂

= ζ(ǫk, Xk, yk, Zk)ǫ̂− ζ(ǫk + α∆ǫk, Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk)ǫ̂

≥ 0,

which indeed implies that (ǫk + α∆ǫk , Xk + α∆Xk , yk + α∆yk, Zk + α∆Zk) ∈ N .
This completes the proof. �

With those previous results, we can now establish the global convergence
of Algorithm 1.

Theorem 11 Algorithm 1 is well-defined and generates an infinite sequence
{(ǫk, Xk, yk, Zk)} ⊆ N with the property that any accumulation point (ǭ, X̄, ȳ, Z̄) of

{(ǫk, Xk, yk, Zk)} is a solution of Ê(ǫ,X, y, Z) = 0, (ǫ,X, y, Z) ∈ R× X.

Proof It follows from Lemma 9 and Lemma 10 that Algorithm 1 is well-defined
and generates an infinite sequence containing in N . Since the line-search scheme is
well-defined, it is obvious that

ψ(ǫk+1, Xk+1, yk+1, Zk+1) < ψ(ǫk, Xk, yk, Zk), ∀ k ≥ 0.

The monotonically decreasing property of the sequence {ψ(ǫk, Xk, yk, Zk)} then
implies that {ζk} is also monotonically decreasing. Hence, there exist ψ̄ and ζ̄ such
that

ψ(ǫk, Xk, yk, Zk) → ψ̄, ζk → ζ̄, k → ∞.

Let (ǭ, X̄, ȳ, Z̄) be any accumulation point (if it exists) of {(ǫk, Xk, yk, Zk)}. By
taking a subsequence if necessary, we may assume that {(ǫk, Xk, yk, Zk)} converges
to (ǭ, X̄, ȳ, Z̄). Then, by the continuity of ψ(·), it holds that

ψ̄ = ψ(ǭ, X̄, ȳ, Z̄), ζ̄ = ζ(ǭ, X̄, ȳ, Z̄), (ǭ, X̄, ȳ, Z̄) ∈ N .

Note that ψ̄ ≥ 0, we now prove that ψ̄ = 0 by contradiction. To this end, suppose that
ψ̄ > 0. Then ζ̄ > 0. By the fact that (ǭ, X̄, ȳ, Z̄) ∈ N , we see that ǭ ∈ R++. Therefore,
by Lemma 8, we see that there exists a neighborhood of (ǭ, X̄, ȳ, Z̄), denoted by

U , such that Ê ′(ǫ,X, y, Z) is nonsingular for any (ǫ,X, y, Z) ∈ U with ǫ > 0. Note
that for k sufficiently large, we have that (ǫk, Xk, yk, Zk) belongs to U with ǫk > 0.
Furthermore, by Lemma 9, there also exists ᾱ ∈ (0, 1] such that for any α ∈ (0, ᾱ],

ψ(ǫk+α∆ǫk, Xk+α∆Xk, yk+α∆yk, Zk+α∆Zk) ≤ [1−2σ(1−δ)α]ψ(ǫk, Xk , yk, Zk)

for k ≥ 0 sufficiently large. The existence of the fixed number ᾱ ∈ (0, 1] further
indicates that there exists a nonnegative integer ℓ such that ρℓ ∈ (0, ᾱ] and ρℓk ≥ ρℓ

for all k sufficiently large. Therefore, it holds that

ψ(ǫk+1, Xk+1, yk+1, Zk+1) ≤ [1− 2σ(1− δ)ρℓk ]ψ(ǫk, Xk, yk, Zk)

≤ [1− 2σ(1− δ)ρℓ]ψ(ǫk, Xk, yk, Zk),

for all sufficiently large k. The above inequality implies that ψ̄ ≤ 0, which is a contra-
diction to the assumption φ̄ > 0. Hence, ψ̄ = 0, which implies that Ê(ǭ, X̄, ȳ, Z̄) = 0.
The proof is completed. �
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4.2 Superlinear convergence rate

We next establish the superlinear convergence rate of Algorithm 1 under cer-
tain regularity conditions. The following lemma is useful for characterizing the
nonsingularity of an element in ∂Ê at any accumulation point.

Lemma 12 Suppose that (X̄, ȳ, Z̄) ∈ X is a KKT-point. Let X̄ − Z̄ := W̄ ∈ S
n and

V̄ ∈ ∂Φ(0, W̄ ). Then, for any ∆X and ∆Z in S
n such that ∆X = V̄ (0,∆X −∆Z),

it holds that 〈∆X,∆Z〉 ≤ ΓX̄(−Z̄,∆X), where ΓX̄ is defined as in (11).

Proof Suppose that W̄ has the spectral decomposition (7). Denote ∆X̃ := PT∆XP
and ∆Z̃ = PT∆ZP . For the index set β, define Φ|β| as before. Then, by Lemma 6,
there exists V|β| ∈ ∂Φ|β|(0, 0) such that

V (0,∆X −∆Z) = P




∆H̃αα ∆H̃αβ [Ω0(d)]αγ ◦∆H̃αγ

∆H̃T
αβ V|β|(0,∆H̃ββ) 0

∆H̃T
αγ ◦ [Ω0(d)]

T
αγ 0 0



PT ,

where ∆H̃ = ∆X̃−∆Z̃. Comparing both sides of the relation ∆X = V (0,∆X−∆Z)
yields that

∆Z̃αα = 0, ∆Z̃αβ = 0, ∆X̃βγ = 0, ∆X̃γγ = 0,

and that

∆X̃ββ = V|β|(0,∆X̃ββ −∆Z̃ββ), ∆X̃αγ − [Ω0(d)]αγ ◦∆X̃αγ = [Ω0(d)]αγ ◦∆Z̃αγ .

By Lemma 7, it holds that
〈
∆X̃ββ ,−∆Z̃ββ

〉

=
〈
V|β|(0,∆X̃ββ −∆Z̃ββ),

(
∆X̃ββ −∆Z̃ββ

)
− V|β|(0,∆X̃ββ −∆Z̃ββ)

〉
≥ 0

which implies that

〈∆X,∆Z〉 =
〈
∆̃X, ∆̃Z

〉
=
〈
∆X̃ββ ,∆Z̃ββ

〉
+ 2

〈
∆X̃αγ ,∆Z̃αγ

〉

≤ 2
〈
∆X̃αγ ,∆Z̃αγ

〉
.

However, simple calculations show that ΓX̄(−Z̄,∆X) = 2
〈
∆X̃αγ ,∆Z̃αγ

〉
. This

proves the lemma. �

Using the above lemma, we can establish the following equivalent relations.

Proposition 13 Let (ǭ, X̄, ȳ, Z̄) be such that Ê(ǭ, X̄, ȳ, Z̄) = 0. Then the following
statements are equivalent to each other.

1. The primal constraint nondegenerate condition holds at X̄, and the dual

constraint nondegenerate condition holds at (ȳ, Z̄).

2. Every element in ∂B Ê(ǭ, X̄, ȳ, Z̄) is nonsingular.

3. Every element in ∂Ê(ǭ, X̄, ȳ, Z̄) is nonsingular.
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Proof It is obvious that part 3 implies part 2. From (17), we see that for any V0 ∈
∂BΠSn+

(W ), W ∈ S
n, there exists V ∈ ∂BΦ(0,W ) such that

V0(H) = V (0, H), ∀H ∈ S
n.

Therefore, by Theorem 2, part 2 implies part 1. So, it suffices to show that part 1
implies part 3.

Now, suppose that part 1 holds. Recall that the primal constraint nondegeneracy
condition at X̄ implies that M(X̄) =

{
(ȳ, Z̄)

}
, i.e., the dual multiplier is unique.

Now by using Lemma 3, we can see that the dual constraint nondegeneracy at (ȳ, Z̄)
implies that the strong second-order sufficient condition holds at X̄. In particular, it
holds that

− ΓX̄(−Z̄,H) > 0, ∀0 6= H ∈ app(ȳ, Z̄). (31)

Let U ∈ ∂Ê(ǭ, X̄, ȳ, Z̄) (recall that ǭ = 0). Then there exists V ∈ ∂Φ(0, X̄ − Z̄)
such that

U(∆ǫ,∆X,∆y,∆Z) =





∆ǫ
A∆X

−A∗∆y −∆Z
∆X − V (∆ǫ,∆X −∆Z)



 , (∆ǫ,∆X,∆y,∆Z) ∈ R× X.

To show that U is nonsingular, it suffices to show that U(∆ǫ,∆X,∆y,∆Z) = 0
implies that (∆ǫ,∆X,∆y,∆Z) = 0. So, let us assume that U(∆ǫ,∆X,∆y,∆Z) = 0,
i.e., 



∆ǫ
A∆X

−A∗∆y −∆Z
∆X − V (∆ǫ,∆X −∆Z)



 = 0. (32)

We first prove that ∆X = 0 by contradiction. To this end, we assume that
∆X 6= 0. By Lemma 6 and (32), one can verify that

∆X ∈ app(ȳ, Z̄). (33)

Then by (31), (33) implies that

− ΓX̄(−Z̄,∆X) > 0. (34)

On the other hand, by (32), it holds that 〈∆X,∆Z〉 = 〈∆X,−A∗∆y〉 =
〈A∆X,−∆y〉 = 0, which together with Lemma 12, yields that

ΓX̄ (−Z̄,∆X) ≥ 〈∆X,∆Z〉 = 0. (35)

However, (35) contradicts to (34). Thus, ∆X = 0 and V (0,−∆Z) = 0.
We next prove ∆y = 0 and ∆Z = 0. From Lemma 6, V (0,−∆Z) = 0 implies

that that
PT
α ∆ZPα = 0, PT

α ∆ZPβ = 0, PT
α ∆ZPγ = 0.

On the other hand, from (32), we get A∗∆y +∆Z = 0. Since the primal constraint
nondegeneracy condition (9) holds at X̄ , there exist X ∈ S

n and Z ∈ lin(TSn+(X̄))

such that AX = ∆y, and X + Z = ∆Z. As a consequence, it holds that

〈∆y,∆y〉+ 〈∆Z,∆Z〉 = 〈AX,∆y〉+ 〈X + Z,∆Z〉
= 〈AX,∆y〉+

〈
X,−A∗(∆y)

〉
+ 〈Z,∆Z〉

= 〈Z,∆Z〉 =
〈
PTZP, PT∆ZP

〉
= 0,

where we have used the fact that PT
α ∆ZPα = 0, PT

α ∆ZPβ = 0, PT
α ∆ZPγ = 0, Z ∈

lin(TSn+(X̄)). Thus, ∆y = 0, ∆Z = 0 and hence U is nonsingular. Thus, the proof is

completed. �
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Typically, under certain regularity conditions, one is able to establish the
local fast convergence rate of Newton-type methods. Indeed, we show in the
next theorem that Algorithm 1 admits a superlinear convergence rate under
the primal and dual constraint nondegenerate conditions.

Theorem 14 Let (ǭ, X̄, ȳ, Z̄) be an accumulation point of the infinite sequence
{(ǫk, Xk, yk, Zk)} generated by Algorithm 1. Suppose that the primal constraint non-
degeneracy condition holds at X̄, and the dual constraint nondegeneracy condition
holds at (ȳ, Z̄). Then, the whole sequence {(ǫk , Xk, yk, Zk)} converges to (ǭ, X̄, ȳ, Z̄)
superlinearly, i.e.,

∥∥∥(ǫk+1 − ǭ, Xk+1 − X̄, yk+1 − ȳ, Zk+1 − Z̄)
∥∥∥

= O

(∥∥∥(ǫk − ǭ, Xk − X̄, yk − ȳ, Zk − Z̄)
∥∥∥
1+τ

)
.

Proof By Theorem 11, we see that Ê(ǭ, X̄, ȳ, Z̄) = 0 and in particular, ǭ = 0. Then
by Proposition 13, the primal and dual constraint nondegeneracy conditions imply
that every element of ∂Ê(0, X̄, ȳ, Z̄) (hence, of ∂B Ê(0, X̄, ȳ, Z̄)) is nonsingular. As a
consequence (see e.g., [26, Proposition 3.1]), for all k sufficiently large, it holds that

∥∥∥Ê ′(ǫk, Xk, yk, Zk)−1
∥∥∥ = O(1). (36)

For simplicity, in this proof, we denote w̄ := (ǭ, X̄, ȳ, Z̄)T , wk := (ǫk, Xk, yk, Zk)T ,

∆wk := (∆ǫk,∆Xk,∆yk,∆Zk)T , Êk := Ê(ǫk, Xk, yk, Zk), Ê∗ := Ê(ǭ, X̄, ȳ, Z̄) and

Jk := Ê ′(ǫk, Xk, yk, Zk) for k ≥ 0. Then, we can verify that
∥∥∥wk +∆wk − w̄

∥∥∥ =

∥∥∥∥w
k + J−1

k

((
ζk ǫ̂
Rk

)
− Êk

)
− w̄

∥∥∥∥

=

∥∥∥∥−J−1
k

(
Êk −Jk(w

k − w̄)−
(
ζk ǫ̂
Rk

))∥∥∥∥

= O
(∥∥∥Êk − Jk(w

k − w̄)
∥∥∥
)
+O

(∥∥∥Êk
∥∥∥
1+τ

)
+O(‖Rk‖). (37)

Since Ê is locally Lipschitz continuous at (ǭ, X̄, ȳ, Z̄), for all k sufficiently large, it
holds that ∥∥∥Êk

∥∥∥ =
∥∥∥Êk − Ê∗

∥∥∥ = O
(∥∥∥wk − w̄

∥∥∥
)
. (38)

Moreover, since E ′
ǫ is bounded near (ǭ, X̄, ȳ, Z̄), it holds that

‖Rk‖ ≤ ηk

∥∥∥E(ǫk, Xk, yk, Zk) + E ′
ǫ(ǫ

k, Xk, yk, Zk)∆ǫk
∥∥∥

≤ O
(∥∥∥Êk

∥∥∥
τ)(∥∥∥E(ǫk, Xk, yk, Zk)

∥∥∥+O
(∣∣∣∆ǫk

∣∣∣
))

≤ O
(∥∥∥Êk

∥∥∥
τ)(∥∥∥E(ǫk, Xk, yk, Zk)

∥∥∥+O
(∣∣∣−ǫk + ζk ǫ̂

∣∣∣
))

≤ O

(∥∥∥Êk
∥∥∥
1+τ

)
= O

(∥∥∥Êk − Ê∗
∥∥∥
1+τ

)
= O

(∥∥∥wk − w̄
∥∥∥
1+τ

)
.

(39)
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Since Φ is strongly semismooth everywhere (see Proposition 4), Ê is also strongly
semismooth at (ǭ, X̄, ȳ, Z̄). Thus, for k sufficiently large, it holds that

∥∥∥Êk −Jk(w
k − w̄)

∥∥∥ = O

(∥∥∥wk − w̄
∥∥∥
2
)
,

which together with (37)–(39) implies that
∥∥∥wk +∆wk − w̄

∥∥∥ = O

(∥∥∥wk − w̄
∥∥∥
1+τ

)
. (40)

Now by using the strong semismoothness of Ê again and (36), we can show that for
k sufficiently large, ∥∥∥wk − w̄

∥∥∥ = O
(∥∥∥Êk

∥∥∥
)
. (41)

Combining (40)–(41) and the fact that Ê (hence ψ) is locally Lipschitz continuous
at (ǭ, X̄, ȳ, Z̄), we get for k sufficiently large that

ψ(ǫk +∆ǫk, Xk +∆Xk, yk +∆yk, Zk +∆Zk)

=
∥∥∥Ê(ǫk +∆ǫk, Xk +∆Xk, yk +∆yk,W k +∆W k)− Ê∗

∥∥∥
2

= O

(∥∥∥wk +∆wk − w̄
∥∥∥
2
)

= O

(∥∥∥wk − w̄
∥∥∥
2(1+τ)

)
= O

(∥∥∥Êk
∥∥∥
2(1+τ)

)

= O

(∥∥∥ψ(ǫk, Xk, yk, Zk)
∥∥∥
1+τ

)
= o

(∥∥∥ψ(ǫk, Xk , yk, Zk)
∥∥∥
)
.

This shows that, for k sufficiently large, wk+1 = wk +∆wk, i.e., the unit step size is
eventually accepted. Therefore, the proof is completed. �

4.3 Numerical implementation

Given ν > 0, one can check that the conditionX−ΠSn+
(X−Z) = 0 is equivalent

to the condition X−ΠSn+
(X−νZ) = 0. Thus in our implementation, we in fact

solve the following nonlinear system (with a slight abuse of the notation E):

E(ǫ,X, y, Z) =




AX+κp |ǫ| y − b
−A∗y − Z + C

(1 + κc |ǫ|)X − Φ(ǫ,X − νZ)


 , ∀(ǫ,X, y, Z) ∈ R× X.

Our numerical experience shows that introducing the parameter ν is important
as it balances the norms of X and Z, and thus improving the performance of
the algorithm. However, the convergence properties established in the previous
sections are not affected.

Note that one of the key computational tasks in Algorithm 1 is to solve a
system of linear equations for computing the search direction at each iteration.
Here, we briefly explain how we solve the linear system of the following form:




A µpIm 0
0 −A∗ −I

(1 + µc)I − V 0 νV






∆X
∆y
∆Z


 =



R1

R2

R3


 , (42)
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where µp := κp |ǫ| > 0, µc := κc |ǫ| > 0, V :=Φ′
2(ǫ,X − νZ), I is the identity

mapping over Sn and (R1, R2, R3) ∈ Rm×Sn×Sn is the right-hand-side vector
constructed from the current iterate (X, y, Z) ∈ X. From the last two equations
of (42), we have

∆Z = −A∗∆y −R2, ∆X = [(1 + µc)I − V ]−1 (R3 − νV∆Z),

which implies that ∆X = [(1 + µc)I − V ]
−1

(R3 + νVA∗∆y+ νV R2). Substi-
tuting this equality into the first equation in (42), we get

A [(1 + µc)I − V ]
−1

(R3 + νVA∗∆y + νV R2) + µp∆y = R1,

which leads to the following smaller m×m symmetric positive definite system:

(
µpIm + νA [(1 + µc)I − V ]

−1
VA∗

)
∆y

= R1 −A [(1 + µc)I − V ]
−1

(νV R2 +R3).
(43)

We then apply the preconditioned conjugate gradient (PCG) method to solve
the last linear system to get ∆y. After obtaining ∆y, we can compute ∆X
and ∆Z in terms of ∆y. In our experiments, we set κp to be a small number,
say κp = 10−10, while κc should be larger and may be changed for different
classes of problems.

Next, we shall see how to evaluate the matrix-vector products involv-
ing [(1 + µc)I − V ]

−1
V which are needed when solving (43). Suppose that

(ǫ,X, y, Z) with ǫ > 0 is given and thatW := X−Z has the spectral decompo-
sition in (7). Then, the linear mapping V : Sn → Sn takes the following form:
V (H) = P

[
Ω(ǫ, d) ◦

(
PTHP

)]
PT , ∀H ∈ Sn, where Ω(ǫ, d) ∈ Sn is defined in

(13) and [Ω(ǫ, d)]ij ∈ [0, 1], for 1 ≤ i, j ≤ n. Consider the following three index
sets: α := {i : di ≥ ǫ}, β := {i : 0 < di < ǫ}, and γ := {i : di ≤ 0}. Then,
we can simply write Ω(ǫ, d) as

Ω(ǫ, d) =



Eαα Ωαβ Ωαγ

ΩT
αβ Ωββ 0

ΩT
αγ 0 0


 ,

where Eαα ∈ R|α|×|α| is the matrix of all ones, and Ωαβ ∈ R|α|×|β|, Ωββ ∈
R|β|×|β| and Ωαγ ∈ R|α|×|γ| have all the entries belonging to the interval (0, 1).
We also partition the orthogonal matrix P as P =

(
Pα Pβ Pγ

)
accordingly.

Define the matrix Ω̂ ∈ Sn as [Ω̂]ij := [Ω(ǫ, d)]ij/(1 + µc − [Ω(ǫ, d)]ij) for
i, j = 1, . . . , n, which takes the following form

Ω̂ =




1
µc
Eαα Ω̂αβ Ω̂αγ

Ω̂T
αβ Ω̂ββ 0

Ω̂T
αγ 0 0


 ,
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Then one can check that [(1 + µc)I − V ]−1 V (H) = P
[
Ω̂ ◦

(
PTHP

)]
PT ,

∀H ∈ Sn. If |α|+ |β| ≪ n, one may use the following scheme to compute

[(1 + µc)I − V ]
−1
V (H)

=
1

µc
Pα

(
PT
α HPα

)
PT
α + Pβ

(
Ω̂ββ ◦ (PT

β HPβ)
)
PT
β

+ Pα

(
Ω̂αβ ◦ (PT

α HPβ)
)
PT
β +

(
Pα

(
Ω̂αβ ◦ (PT

α HPβ)
)
PT
β

)T

+ Pα

(
Ω̂αγ ◦ (PT

α HPγ)
)
PT
γ +

(
Pα

(
Ω̂αγ ◦ (PT

α HPγ)
)
PT
γ

)T

.

On the other hand, if n−|α| ≪ n, one may consider using the following scheme
to compute

[(1 + µc)I − V ]
−1
V (H) =

1

µc
H − P

[
Ω̃ ◦

(
PTHP

)]
PT ,

where Ω̃ := 1
µc
E − Ω̂ would have more zero entries than Ω̂. As a consequence,

since the Huber function maps any non-positive number to zero, we can exploit
the sparsity structure in Ω̂ or Ω̃ to cut down the computational cost. However,
if the CHKS-smoothing function is used, we will get dense matrices and the
aforementioned sparsity structure will be lost. This also explains why we choose
the Huber function instead of the CHKS function to perform the smoothing
of the projection operator.

We observe from our numerical tests that when the dual iter-
ates (yk, Zk) does not make a significant progress, it is helpful for
us to project the primal iterate Xk onto the affine subspace Hk :={
X ∈ Sn : A(X) = b, 〈C,X〉 =

〈
b, yk

〉}
. To perform such a projection oper-

ation, we only need to performance a Cholesky factorization for a certain
operator (depending only on A and C) once at the beginning of the Algorithm
1. However, in the case when the factorization fails (i.e., the operator is no
positive definite) or m is too large, we will not perform such projections.

5 Numerical experiments

To evaluate the practical performance of Algorithm 1 described in the last
section, we conduct numerical experiments to solve various classes of SDPs
that are commonly tested in the literature. We will compare our proposed
algorithm with the general purposed solver SDPNAL+ [27].
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5.1 Experimental settings and implementation

Similar to [27], the following relative KKT residues are used as the termination
criteria of our algorithm:

ηp :=
‖AX − b‖
1 + ‖b‖ , ηd :=

‖A∗y + Z − C‖
1 + ‖C‖ , ηc :=

∥∥∥X −ΠSn+
(X − Z)

∥∥∥
1 + ‖X‖+ ‖Z‖ .

Particularly, we terminate the algorithm as long as ηkkt := max{ηp, ηd, ηc} ≤
tol where tol > 0 is a given tolerance. Moreover, denote the maximum num-
ber of iterations of Algorithm 1 as maxiter. We also stop the algorithm when
the iteration count reaches this number. In our experiments, we set tol = 10−6

and maxiter = 50. Note that the same stopping tolerance is used for SDPNAL+.
For more efficiency, we apply a certain first-order method to generate a

starting point (X0, y0, Z0) to warmstart Algorithm 1. Our choice is the rou-
tine based on a semi-proximal ADMM method [27], namely admmplus, which
is included in the package of SDPNAL+. The stopping tolerance (in terms of the
maximal relative KKT residual, i.e., ηkkt) and the maximum number of iter-
ations for admmplus are denoted by tol0 and maxiter0, respectively. In our
experiments, we set maxiter0 = 2000. We also notice that the performance of
Algorithm 1 depends sensitively on the choice of tol0. Hence, we set the value
of tol0 differently for different classes of SDPs for more efficiency.

For the parameters required in Algorithm 1, we set r = r̂ = 0.6, η = τ =
0.2, ρ = 0.5 and σ = 10−8. However, since the initial smoothing parameter ǫ̂ >
0 affects the performance of Algorithm 1, it is chosen differently for different
classes of problems.

Finally, we should mention that our algorithm is implemented in MATLAB
(R2021b) and all the numerical experiments are conducted on a Linux PC
having Intel Xeon E5-2680 (v3) cores.

5.2 Testing examples

Example 1 (MaxCut-SDP) Consider the SDP relaxation [56] of the maximum cut
problem of a graph which takes the form of

min
X∈Sn

〈C,X〉 s.t. diag(X) = e, X ∈ S
n
+,

where e ∈ R
n denotes the vector of all ones and C := −(diag(Wen) −W )/4 with

W being the weighted adjacency matrix of the underlying graph. The above SDP
problem has been a commonly used test problem for evaluating the performance of
different SDP solvers. A popular data set for this problem is the GSET collection
of randomly generated graphs. The GSET is available at: https://web.stanford.edu/
∼yyye/yyye/Gset/.

Example 2 (Theta-SDP) Let G = (V,E) be a graph with n nodes V and edges E. A
stable set of G is a subset of V containing no adjacent nodes. The stability number

https://web.stanford.edu/~yyye/yyye/Gset/
https://web.stanford.edu/~yyye/yyye/Gset/
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α(G) is the cardinality of a maximal stable set of G. More precisely, it holds that

α(G) := max
x∈Rn

{
eTx : xixj = 0, (i, j) ∈ E, x ∈ {0, 1}n

}
.

However, computing α(G) is difficult. A notable lower bound of α(G) is called the
Lovász theta number [57] which is defined as

θ(G) := max
X∈Sn

〈
eeT , X

〉
s.t.

〈
Eij , X

〉
= 0, (i, j) ∈ E, 〈I,X〉 = 1, X ∈ S

n
+,

where Eij = eie
T
j + eje

T
i ∈ S

n. For our experiments, the test data sets are chosen
from [18, Section 6.3].

Example 3 (BIQ-SDP) The NP-hard binary integer quadratic programming (BIQ)
problem has the following form:

min
x∈Rn

1

2
〈x,Qx〉+ 〈c, x〉 s.t. x ∈ {0, 1}n.

It has many important practical applications due to its modeling power in repre-
senting the structure of graphs; see for example [58] for a recent survey. Under some
mild conditions, Burer showed in [59] the BIQ problem can be reformulated as a
completely positive conic programming problem. Since the completely positive cone
is numerically intractable, we consider its SDP relaxation:

min
X∈Sn,x∈Rn,α∈R

1

2
〈Q,X〉+ 〈c, x〉 s.t. diag(X) = x, α = 1,

(
X xT

x α

)
∈ S

n+1
+ .

In our experiments, the matrix Q and the vector c is obtained from the BIQMAC
library [60].

Example 4 (Clustering-SDP) The clustering problem is to group a set of data points
into several clusters. The problem is in general NP-hard. According to [61], we can
consider the following SDP relaxation of the clustering problem:

min
X∈Sn

−〈W,X〉 s.t. Xen = en, 〈I,X〉 = k, X ∈ S
n
+,

where W is the affinity matrix whose entries represent the pairwise similarities of
the objects in the input data set. In our experiments, the test data sets are obtained
from the UCI Machine Learning Repository: http://archive.ics.uci.edu/ml/datasets.
html. For more information on how we generate the test SDP problems from the raw
input data sets, readers are refered to [27].

Example 5 (Tensor-SDP) Consider the following SDP relaxation of a rank-1 tensor
approximation problem [62]:

max
y∈R

Nnm

〈f, y〉 s.t. M(y) ∈ S
n
+, 〈g, y〉 = 1,

where N
n
m := {t = (t1, . . . , tn) ∈ N

n : t1 + · · ·+ tn = m} and M(y) is a linear pencil
in y. The dual of the above problem is given by

min
γ∈R,X∈Sn

γ s.t. γg − f =M∗(X), X ∈ S
n
+,

whereM∗ is the adjoint ofM . The above problem can be transformed into a standard
SDP [27].

http://archive.ics.uci.edu/ml/datasets.html
http://archive.ics.uci.edu/ml/datasets.html
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5.3 Computational results

In this subsection, we present our numerical results for each class of SDP prob-
lems in detail. We use tables to summarize our results. In our tables, we report
the sizes (i.e., m and n) of the tested problems, number of iterations (i.e., it0,
it1 and it2), total computational times (i.e., cpu) in seconds, relative KKT
residues (i.e., ηp, ηd and ηc), and objective function values (i.e., 〈C,X〉). In
particular, for the number of iterations, it0 represents the number of itera-
tions for admmplus, it1 is the number of main iterations and it2 is the total
number of PCG iterations needed for solving the linear systems in (24). Under
the column “solver”, we use “a” and “b” to denote the solver SDPNAL+ and
Algorithm 1, respectively. As mentioned before, since the performance of our
algorithm may depend sensitively on the choices of parameters tol0, ǫ̂ and κc,
we also report the values for these parameters in the captions of the presented
tables. The computational results for Example 1–5 are presented in Table 1–5,
respectively.

From these results in Table 1–4, we observe that our proposed algorithm
performs better than SDPNAL+. In fact, Algorithm 1 is usually several times
more efficient than SDPNAL+. These results have indeed shown that Algorithm
1 is efficient. In term of accuracy, we see that both algorithms are able to
compute optimal solutions with η < 10−6 for almost all the tested problems,
which further shows that both algorithms are robust and suitable for solving
SDPs relatively accurately. We observe that for the SDPs in Table 1–4, their
optimal solutions are usually of very low-rank. Consequently, the primal con-
straint nondegenerate condition usually fails to hold, and SDPNAL+ requires
more computational effort to converge than Algorithm 1.

From Table 5, we see that Algorithm 1 is able to solve all the problems but
perform much worse than SDPNAL+ in terms of computational time. The rea-
son is that for those SDPs, the ranks of the optimal solutions are high. In fact,
we always observe that the rank is nearly n − 1, where n denotes the matrix
dimension. In such cases, the primal constraint nondegenerate condition usu-
ally holds, making SDPNAL+ to have a very fast convergence rate. On the other
hand, for these SDPs, because the dual constraint nondegeneracy condition
typically fails to hold, Algorithm 1 would require computational effort than
SDPNAL+ to solve the problems.

Based on the relative performance of SDPNAL+ and Algorithm 1 in Table 1–
5, we may conclude that when the primal constraint nondegeneracy condition
is likely to hold at the optimal solution, SDPNAL+ would be more preferable.
However, when such a prior information is not available, Algorithm 1 could be
a good choice based on the promising numerical performance demonstrated in
Table 1–4, even though the primal constraint nondegeneracy condition may
not hold.

Note finally that for our algorithm, the errors ηp and ηd are usually very
small while ηc is driven to a value slightly smaller than tol = 10−6. On the
contrary, SDPNAL+ keeps ηc to be very small while progressively decreases ηp
and ηd.
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Table 1: Computational results for Example 1 with tol0 = 5 × 10−1, ǫ̂ = 5 × 10−1, ν = 104

and κc = 1.

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C, X〉

g1 a 800, 13, 140 54.4 1.3e-07, 8.8e-08, 2.7e-13 -1.20831976e+04
800, 800 b 2, 14, 548 14.4 0.0e+00, 9.1e-17, 1.2e-07 -1.20831961e+04

g2 a 800, 12, 144 48.2 1.4e-07, 1.3e-07, 1.4e-12 -1.20894297e+04
800, 800 b 2, 14, 540 14.4 0.0e+00, 9.0e-17, 2.5e-07 -1.20894257e+04

g3 a 400, 15, 161 28.7 3.3e-07, 4.9e-07, 2.7e-12 -1.20843329e+04
800, 800 b 2, 14, 539 13.8 0.0e+00, 9.5e-17, 3.0e-07 -1.20843279e+04

g4 a 400, 14, 176 29.0 3.2e-07, 8.5e-07, 6.5e-12 -1.21114510e+04
800, 800 b 2, 14, 472 13.4 0.0e+00, 1.0e-16, 9.0e-07 -1.21114346e+04

g5 a 909, 11, 131 49.6 5.9e-15, 1.0e-06, 3.3e-07 -1.20998869e+04
800, 800 b 2, 14, 532 13.5 0.0e+00, 9.7e-17, 1.5e-07 -1.20998846e+04

g22 a 821, 18, 147 403.6 9.5e-07, 3.5e-07, 6.1e-12 -1.41359474e+04
2000, 2000 b 2, 15, 677 164.1 0.0e+00, 1.0e-16, 2.0e-07 -1.41359397e+04

g23 a 821, 18, 148 395.5 8.0e-07, 2.6e-07, 6.8e-12 -1.41421096e+04
2000, 2000 b 2, 15, 722 181.0 0.0e+00, 1.0e-16, 1.5e-07 -1.41421056e+04

g24 a 821, 18, 171 399.5 1.6e-07, 9.7e-07, 1.5e-13 -1.41408558e+04
2000, 2000 b 2, 15, 637 169.9 0.0e+00, 1.1e-16, 1.6e-07 -1.41408511e+04

g25 a 821, 18, 156 402.7 2.4e-08, 3.8e-07, 5.7e-12 -1.41442454e+04
2000, 2000 b 2, 15, 613 165.6 0.0e+00, 1.0e-16, 1.4e-07 -1.41442426e+04

g26 a 821, 18, 152 398.6 1.7e-07, 9.3e-07, 1.1e-11 -1.41328706e+04
2000, 2000 b 2, 15, 670 177.3 0.0e+00, 8.7e-17, 1.7e-07 -1.41328660e+04

g43 a 400, 16, 197 43.9 6.4e-07, 2.5e-07, 3.7e-12 -7.03222176e+03
1000, 1000 b 2, 14, 612 23.3 0.0e+00, 9.8e-17, 5.1e-07 -7.03221524e+03

g44 a 400, 14, 187 44.7 9.3e-07, 9.9e-07, 3.6e-12 -7.02788487e+03
1000, 1000 b 2, 14, 614 23.0 0.0e+00, 1.1e-16, 2.7e-07 -7.02788112e+03

g45 a 555, 14, 200 59.0 9.5e-07, 8.5e-07, 9.3e-07 -7.02478572e+03
1000, 1000 b 2, 14, 626 23.1 0.0e+00, 9.7e-17, 2.0e-07 -7.02477888e+03

g46 a 400, 16, 187 44.8 7.1e-07, 2.6e-07, 1.1e-12 -7.02993319e+03
1000, 1000 b 2, 14, 558 21.4 0.0e+00, 9.1e-17, 7.5e-07 -7.02992466e+03

g47 a 703, 14, 178 69.2 8.0e-07, 1.0e-06, 4.0e-07 -7.03665811e+03
1000, 1000 b 2, 14, 609 22.8 0.0e+00, 1.0e-16, 3.3e-07 -7.03665816e+03

g48 a 3451, 22, 60 10002.0 1.3e-16, 8.4e-03, 2.5e-02 -6.05098926e+03
3000, 3000 b 3, 16, 45 205.7 0.0e+00, 1.3e-16, 4.2e-08 -5.99999689e+03

g49 a 6192, 29, 88 10001.8 1.1e-15, 1.1e-05, 2.3e-07 -5.99989318e+03
3000, 3000 b 3, 16, 47 204.5 0.0e+00, 1.3e-16, 1.0e-07 -5.99999943e+03

g50 a 3128, 15, 62 10003.9 6.6e-14, 1.3e-05, 6.9e-06 -5.98757867e+03
3000, 3000 b 3, 15, 45 202.3 0.0e+00, 1.3e-16, 1.4e-07 -5.98816920e+03

Table 2: Computational results for Example 2 with tol0 = 1 × 10−3, ǫ̂ = 1 × 10−3 , ν = 102

and κc = 1 × 103.

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C,X〉

theta4 a 451, 9, 351 3.3 3.9e-08, 1.6e-07, 4.0e-16 -5.03212233e+01
200, 1949 b 172, 3, 210 1.2 1.4e-19, 2.4e-08, 2.1e-07 -5.03211624e+01

theta42 a 176, 4, 496 1.5 1.2e-07, 9.1e-08, 4.0e-15 -2.39317078e+01
200, 5986 b 77, 3, 210 0.8 1.4e-16, 2.3e-08, 4.0e-07 -2.39317215e+01

theta6 a 286, 4, 152 3.5 6.3e-07, 3.9e-07, 5.1e-15 -6.34771580e+01
300, 4375 b 187, 3, 210 2.6 1.3e-16, 2.1e-08, 1.3e-07 -6.34770467e+01

theta62 a 180, 3, 365 2.7 3.6e-07, 8.0e-07, 1.6e-15 -2.96412514e+01
300, 13390 b 75, 4, 310 2.0 1.3e-16, 1.3e-08, 1.8e-07 -2.96412833e+01

theta8 a 299, 3, 214 6.1 2.2e-07, 7.7e-07, 4.0e-15 -7.39535658e+01
400, 7905 b 200, 3, 210 4.6 5.3e-16, 1.9e-08, 1.4e-07 -7.39535163e+01

theta82 a 179, 3, 352 4.8 1.0e-07, 2.1e-07, 2.4e-16 -3.43668939e+01
400, 23872 b 82, 3, 210 3.1 5.8e-16, 2.2e-08, 1.2e-07 -3.43668925e+01

theta83 a 265, 4, 739 9.2 1.2e-07, 7.4e-08, 1.2e-15 -2.03018925e+01
400, 39862 b 65, 3, 210 3.5 2.4e-16, 2.7e-08, 7.4e-07 -2.03019697e+01

theta10 a 200, 4, 595 8.1 1.5e-07, 5.1e-07, 1.7e-15 -8.38059660e+01
500, 12470 b 202, 3, 210 6.7 7.0e-16, 2.6e-08, 1.1e-07 -8.38059211e+01

theta102 a 281, 4, 522 11.3 1.4e-07, 6.2e-08, 5.5e-15 -3.83905444e+01
500, 37467 b 78, 5, 410 7.0 1.6e-16, 3.0e-07, 8.0e-07 -3.83904989e+01

theta103 a 165, 3, 510 9.0 6.6e-07, 1.7e-07, 1.7e-15 -2.25285599e+01
500, 62516 b 65, 3, 210 5.6 2.2e-16, 2.7e-08, 8.2e-07 -2.25287026e+01

theta104 a 166, 3, 651 9.9 9.1e-07, 2.6e-07, 1.6e-15 -1.33361353e+01
500, 87245 b 66, 5, 410 9.5 2.2e-16, 4.1e-10, 2.5e-07 -1.33363826e+01

theta12 a 400, 8, 428 19.1 1.7e-07, 5.0e-07, 2.5e-15 -9.28016868e+01
600, 17979 b 193, 4, 310 10.9 5.3e-16, 1.2e-08, 2.5e-07 -9.28015772e+01

theta123 a 166, 3, 455 13.7 1.6e-07, 6.1e-08, 2.0e-15 -2.46686518e+01
600, 90020 b 66, 4, 310 11.5 2.4e-16, 2.0e-08, 8.6e-07 -2.46688660e+01

theta162 a 169, 3, 709 32.3 8.8e-08, 3.7e-08, 1.6e-16 -3.70097368e+01
800, 127600 b 68, 4, 310 19.7 4.1e-19, 2.2e-08, 9.4e-07 -3.70100248e+01

MANN-a27 a 300, 4, 31 4.5 6.4e-07, 5.0e-07, 1.5e-14 -1.32760995e+02
378, 703 b 165, 7, 55 3.3 3.3e-16, 2.6e-10, 7.2e-07 -1.32761828e+02

johnson8-4-4 a 123, 2, 4 0.2 5.0e-08, 4.9e-09, 1.1e-15 -1.39999979e+01
70, 561 b 85, 3, 9 0.1 1.5e-23, 2.2e-08, 2.3e-07 -1.39999894e+01

johnson16-2-4 a 117, 0, 0 0.3 4.5e-07, 6.9e-09, 5.0e-07 -7.99993991e+00
120, 1681 b 55, 3, 9 0.1 2.0e-24, 2.0e-08, 3.8e-08 -7.99999922e+00

san200-0.7-1 a 300, 5, 669 2.2 1.3e-07, 3.7e-07, 1.1e-15 -2.99999931e+01
200, 5971 b 1000, 4, 22 3.3 7.0e-17, 2.5e-09, 8.5e-08 -2.99999443e+01

sanr200-0.7 a 175, 4, 560 1.6 7.3e-08, 2.3e-07, 2.4e-16 -2.38361575e+01
200, 6033 b 76, 3, 210 0.8 7.0e-17, 2.5e-08, 2.8e-07 -2.38361666e+01
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Table 2 continued from previous page

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C,X〉

c-fat200-1 a 229, 2, 221 1.4 5.0e-08, 1.8e-07, 6.8e-16 -1.19999991e+01
200, 18367 b 141, 4, 310 1.2 4.9e-16, 7.4e-10, 2.2e-07 -1.19999906e+01

hamming-6-4 a 67, 2, 4 0.1 9.7e-11, 1.2e-11, 1.8e-16 -5.33333333e+00
64, 1313 b 35, 3, 12 0.1 9.3e-24, 8.5e-09, 2.8e-07 -5.33332949e+00

hamming-8-4 a 172, 1, 2 1.6 1.0e-10, 6.1e-07, 2.7e-16 -1.60000000e+01
256, 11777 b 77, 3, 15 0.8 3.9e-17, 2.5e-08, 6.3e-08 -1.59999969e+01

hamming-9-8 a 200, 3, 14 7.3 1.8e-07, 7.7e-08, 1.2e-14 -2.24000081e+02
512, 2305 b 139, 4, 15 4.0 1.6e-16, 2.4e-07, 4.8e-08 -2.23999937e+02

hamming-10-2 a 200, 3, 17 34.5 2.1e-07, 2.9e-08, 3.1e-15 -1.02400016e+02
1024, 23041 b 23, 12, 161 21.3 6.5e-16, 2.6e-16, 8.1e-08 -1.02399963e+02

hamming-7-5-6 a 300, 2, 6 0.5 3.2e-08, 7.0e-07, 4.0e-15 -4.26666634e+01
128, 1793 b 294, 3, 11 0.6 5.7e-17, 2.6e-08, 2.7e-07 -4.26666131e+01

hamming-8-3-4 a 117, 2, 6 0.8 5.8e-08, 3.8e-07, 4.5e-16 -2.56000038e+01
256, 16129 b 93, 3, 11 0.7 1.2e-16, 2.6e-08, 1.1e-07 -2.55999900e+01

hamming-9-5-6 a 200, 3, 13 5.6 1.0e-07, 3.5e-07, 9.0e-15 -8.53333428e+01
512, 53761 b 53, 4, 16 2.2 1.1e-16, 8.8e-08, 8.5e-08 -8.53332673e+01

brock200-1 a 187, 4, 283 1.3 7.7e-07, 2.7e-07, 2.5e-15 -2.74566741e+01
200, 5067 b 88, 3, 210 0.9 1.4e-16, 2.7e-08, 2.4e-07 -2.74566332e+01

brock200-4 a 273, 4, 666 2.2 2.4e-07, 2.3e-07, 3.0e-15 -2.12934762e+01
200, 6812 b 72, 3, 210 0.8 1.4e-16, 2.6e-08, 7.2e-07 -2.12934991e+01

brock400-1 a 194, 3, 347 5.0 1.6e-07, 3.9e-07, 1.4e-15 -3.97018998e+01
400, 20078 b 95, 3, 210 3.2 3.9e-16, 2.0e-08, 1.3e-07 -3.97018904e+01

keller4 a 172, 3, 420 0.9 2.4e-07, 6.4e-07, 4.1e-16 -1.40122363e+01
171, 5101 b 76, 4, 310 0.7 3.9e-16, 2.6e-08, 5.2e-07 -1.40122928e+01

p-hat300-1 a 191, 6, 6728 18.5 8.7e-07, 5.9e-07, 3.1e-16 -1.00679872e+01
300, 33918 b 92, 6, 510 3.8 2.1e-16, 3.9e-10, 7.5e-07 -1.00684728e+01

1dc.64 a 300, 5, 2559 1.6 6.3e-07, 7.7e-07, 1.8e-15 -1.00000371e+01
64, 544 b 258, 50, 4910 1.9 7.5e-21, 2.1e-16, 6.2e-06 -1.00030855e+01

1et.64 a 204, 3, 67 0.4 1.2e-07, 6.0e-07, 4.4e-16 -1.88000018e+01
64, 265 b 105, 3, 105 0.1 1.2e-16, 2.1e-08, 7.3e-07 -1.87999012e+01

1tc.64 a 224, 3, 332 0.5 6.5e-07, 9.9e-07, 1.6e-15 -1.99999867e+01
64, 193 b 126, 50, 4884 1.6 1.7e-16, 2.0e-12, 1.1e-06 -2.00000555e+01

1dc.128 a 2943, 60, 38588 24.6 9.8e-07, 9.8e-07, 2.6e-15 -1.68419006e+01
128, 1472 b 230, 50, 4910 4.0 5.7e-17, 2.2e-16, 1.2e-06 -1.68432284e+01

1et.128 a 273, 3, 69 0.8 5.4e-07, 8.0e-07, 1.4e-15 -2.92308924e+01
128, 673 b 173, 4, 296 0.6 7.4e-21, 2.5e-08, 6.5e-07 -2.92307806e+01

1tc.128 a 300, 5, 60 0.7 2.5e-07, 1.5e-07, 6.9e-16 -3.80000070e+01
128, 513 b 371, 4, 234 0.9 1.1e-16, 7.5e-10, 1.7e-07 -3.79998952e+01

1zc.128 a 200, 3, 30 0.6 8.6e-07, 4.1e-07, 2.0e-15 -2.06667050e+01
128, 1121 b 108, 3, 58 0.3 5.7e-17, 2.6e-08, 1.6e-07 -2.06666495e+01

2dc.128 a 363, 13, 12752 9.0 9.3e-07, 2.9e-07, 2.4e-17 5.24240971e+00
130, 3083 b 175, 50, 4910 5.4 4.5e-17, 1.4e-17, 7.9e-04 5.24263373e+00

1dc.256 a 1040, 10, 2709 9.4 8.5e-11, 4.7e-07, 1.8e-15 -3.00000000e+01
256, 3840 b 328, 10, 910 4.2 3.9e-17, 6.4e-15, 8.1e-07 -2.99999030e+01

1et.256 a 300, 7, 7288 11.7 6.1e-07, 1.5e-07, 1.1e-14 -5.51142364e+01
256, 1665 b 396, 4, 310 2.9 2.4e-16, 8.0e-10, 2.4e-07 -5.51162561e+01

1tc.256 a 522, 19, 13335 20.6 6.8e-07, 3.9e-07, 1.4e-07 -6.33997469e+01
256, 1313 b 424, 10, 910 4.9 3.9e-17, 2.2e-11, 9.1e-07 -6.34023351e+01

1zc.256 a 349, 5, 115 3.2 1.3e-07, 3.6e-07, 6.6e-15 -3.79999929e+01
256, 2817 b 140, 3, 90 1.0 3.9e-17, 1.7e-08, 7.8e-08 -3.79999825e+01

2dc.256 a 450, 18, 15933 35.8 8.8e-07, 8.4e-07, 4.9e-17 7.46181510e+00
256, 15713 b 173, 50, 4910 16.4 6.5e-17, 1.1e-16, 6.0e-04 7.47121358e+00

1dc.512 a 434, 29, 19405 101.1 9.6e-07, 5.6e-07, 3.1e-07 -5.30300531e+01
512, 9728 b 441, 4, 310 14.5 5.5e-17, 8.1e-10, 3.5e-07 -5.30334075e+01

1et.512 a 200, 10, 7244 39.3 4.9e-07, 2.9e-07, 6.5e-15 -1.04424017e+02
512, 4033 b 395, 5, 410 14.0 9.7e-19, 2.4e-11, 9.7e-08 -1.04434087e+02

1tc.512 a 610, 31, 20500 128.1 9.7e-07, 5.9e-07, 8.5e-08 -1.13400931e+02
512, 3265 b 638, 9, 810 23.5 2.2e-16, 1.5e-13, 7.3e-07 -1.13420135e+02

2dc.512 a 586, 27, 19171 175.1 8.7e-07, 7.4e-07, 2.3e-07 -1.17676507e+01
512, 54896 b 338, 17, 1610 29.0 3.3e-16, 1.5e-16, 1.0e-06 -1.17858696e+01

1zc.512 a 200, 4, 280 9.8 2.3e-07, 1.0e-07, 3.8e-15 -6.87499407e+01
512, 6913 b 230, 3, 165 8.6 1.1e-16, 1.8e-08, 4.0e-08 -6.87499812e+01

1dc.1024 a 500, 21, 9984 285.1 5.7e-07, 8.9e-07, 1.6e-15 -9.59854174e+01
1024, 24064 b 687, 4, 310 100.0 1.1e-16, 8.1e-10, 4.5e-07 -9.59889922e+01

1et.1024 a 467, 24, 16162 493.3 6.9e-07, 9.4e-07, 5.8e-08 -1.84227049e+02
1024, 9601 b 423, 4, 310 66.9 2.7e-16, 8.1e-10, 2.5e-07 -1.84260153e+02

1tc.1024 a 300, 26, 21575 505.3 9.2e-07, 7.7e-07, 6.4e-15 -2.06305132e+02
1024, 7937 b 743, 9, 810 128.2 7.6e-17, 4.6e-12, 1.3e-07 -2.06335860e+02

1zc.1024 a 200, 4, 325 39.5 6.8e-07, 4.0e-07, 9.5e-16 -1.28667295e+02
1024, 16641 b 401, 2, 110 59.0 4.6e-16, 5.6e-07, 6.8e-07 -1.28666054e+02

1dc.2048 a 200, 17, 11885 1785.4 7.1e-07, 4.5e-07, 6.1e-15 -1.74730215e+02
2048, 58368 b 1000, 5, 410 839.2 1.1e-16, 2.5e-11, 9.1e-08 -1.74745972e+02

1et.2048 a 400, 33, 23372 3829.5 4.3e-07, 8.4e-07, 1.4e-15 -3.42029537e+02
2048, 22529 b 974, 5, 410 857.1 8.0e-16, 6.1e-10, 1.3e-07 -3.42061413e+02

1tc.2048 a 1200, 31, 25455 4673.7 8.2e-07, 9.9e-07, 6.9e-15 -3.74646698e+02
2048, 18945 b 999, 10, 910 965.9 1.6e-16, 2.2e-11, 1.9e-07 -3.74699047e+02

1zc.2048 a 200, 6, 735 441.2 2.5e-08, 3.4e-08, 8.7e-15 -2.37400024e+02
2048, 39425 b 193, 5, 410 434.2 8.6e-16, 4.0e-08, 7.0e-07 -2.37402601e+02

1zc.4096 a 200, 7, 890 3124.7 2.3e-07, 8.4e-07, 7.6e-16 -4.49165510e+02
4096, 92161 b 237, 6, 510 3247.2 1.1e-15, 9.2e-07, 1.5e-07 -4.49173618e+02
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Table 3: Computational results for Example 3 with tol0 = 5 × 10−2, ǫ̂ = 1 × 10−2, ν = 103

and κc = 1 × 101.

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C, X〉

be150.3.1 a 900, 27, 5990 7.9 3.4e-07, 5.6e-08, 6.3e-11 -2.01751700e+04
151, 151 b 357, 7, 300 1.9 3.0e-16, 2.8e-12, 1.1e-07 -2.01749921e+04

be150.8.1 a 800, 29, 6426 8.4 5.8e-07, 5.4e-08, 1.7e-11 -2.96716584e+04
151, 151 b 294, 6, 210 1.3 3.0e-16, 6.4e-12, 9.5e-07 -2.96694342e+04

be200.3.1 a 1990, 24, 8572 23.1 1.0e-14, 1.0e-06, 7.2e-07 -2.82755919e+04
201, 201 b 383, 7, 303 2.9 3.6e-16, 3.2e-12, 2.3e-07 -2.82749700e+04

be200.8.1 a 2998, 21, 6129 24.4 1.3e-10, 3.8e-07, 2.0e-06 -5.17181377e+04
201, 201 b 189, 12, 626 1.9 3.5e-16, 4.7e-12, 4.9e-07 -5.17154802e+04

be250.1 a 2100, 30, 11801 38.5 1.0e-07, 3.2e-07, 1.9e-12 -2.55516534e+04
251, 251 b 180, 12, 567 2.5 3.5e-16, 1.3e-13, 3.0e-07 -2.55506173e+04

bqp250-1 a 2653, 27, 8491 37.6 9.8e-07, 4.1e-07, 8.7e-07 -4.87325086e+04
251, 251 b 182, 12, 582 2.5 3.9e-16, 1.9e-13, 6.8e-07 -4.87279423e+04

bqp500-1 a 4933, 32, 2951 196.3 6.1e-14, 7.4e-07, 2.0e-06 -1.28402975e+05
501, 501 b 236, 17, 725 11.2 6.0e-16, 2.3e-16, 7.4e-07 -1.28380065e+05

gka1e a 2100, 28, 7254 21.6 6.1e-07, 4.5e-07, 1.7e-11 -1.73869700e+04
201, 201 b 155, 11, 518 1.5 3.8e-16, 6.1e-12, 9.9e-07 -1.73850666e+04

gka1f a 4400, 35, 5082 189.1 2.1e-07, 2.7e-07, 1.3e-11 -6.68177773e+04
501, 501 b 290, 18, 714 15.0 5.2e-16, 2.6e-16, 9.5e-07 -6.68027091e+04

Table 4: Computational results for Example 4 with tol0 = 9 × 10−1, ǫ̂ = 1 × 10−3, ν = 103

and κc = 1 × 103.

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C, X〉

soybean-small.2 a 300, 3, 8 0.2 1.2e-07, 8.2e-07, 1.3e-15 -2.85459820e+03
47, 48 b 73, 4, 15 0.1 2.6e-16, 3.6e-08, 6.3e-08 -2.85459785e+03

soybean-large.2 a 300, 5, 23 2.7 8.9e-08, 4.4e-09, 1.5e-16 -1.05819099e+04
307, 308 b 2, 7, 28 0.4 6.3e-16, 3.1e-09, 8.6e-07 -1.05818767e+04

spambase-small.2 a 300, 5, 12 2.4 5.1e-09, 1.7e-07, 2.2e-16 -1.14776479e+08
300, 301 b 1, 6, 25 0.3 6.4e-16, 1.2e-08, 3.2e-07 -1.14775890e+08

spambase-medium.2 a 200, 7, 41 60.8 1.0e-08, 4.3e-07, 4.5e-15 -6.57364585e+08
900, 901 b 1, 6, 25 3.6 1.2e-15, 1.3e-08, 1.4e-07 -6.57361738e+08

spambase-large.2 a 200, 11, 129 367.8 1.4e-08, 5.9e-07, 3.8e-15 -1.37542086e+09
1500, 1501 b 1, 6, 25 13.2 1.4e-15, 1.4e-08, 8.9e-08 -1.37541598e+09

abalone-small.2 a 300, 4, 17 1.2 2.2e-09, 1.3e-07, 1.9e-16 -2.58821083e+04
200, 201 b 2, 7, 28 0.2 5.1e-16, 1.4e-09, 2.1e-07 -2.58820977e+04

abalone-medium.2 a 300, 5, 16 4.3 4.5e-09, 4.0e-07, 6.2e-16 -5.67601863e+04
400, 401 b 2, 5, 20 0.6 6.4e-16, 7.2e-08, 2.6e-07 -5.67601336e+04

abalone-large.2 a 200, 7, 31 48.1 1.2e-08, 4.0e-09, 2.8e-17 -1.36000345e+05
1000, 1001 b 2, 5, 21 4.3 1.1e-15, 7.5e-08, 1.7e-07 -1.36000212e+05

segment-small.2 a 300, 5, 17 3.6 8.4e-09, 3.9e-07, 1.2e-15 -1.88711369e+07
400, 401 b 2, 7, 29 0.7 6.4e-16, 3.4e-09, 2.1e-07 -1.88711158e+07

segment-medium.2 a 200, 6, 38 12.1 8.2e-11, 2.5e-09, 1.4e-15 -3.32233510e+07
700, 701 b 2, 7, 29 2.5 1.0e-15, 3.7e-09, 2.0e-07 -3.32233040e+07

segment-large.2 a 200, 5, 58 44.2 4.1e-08, 1.2e-08, 3.2e-16 -4.74399120e+07
1000, 1001 b 2, 7, 29 5.0 1.2e-15, 3.7e-09, 1.8e-07 -4.74398407e+07

housing.2 a 200, 5, 21 5.9 2.0e-09, 6.6e-07, 8.0e-16 -1.67407790e+08
506, 507 b 2, 7, 29 1.3 8.1e-16, 1.4e-09, 1.3e-07 -1.67407726e+08

Table 5: Computational results for Example 5 with tol0 = 1 × 10−4, ǫ̂ = 2 × 10−3, ν = 5 × 103

and κc = 5 × 102.

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C,X〉

nonsym(7,4) a 300, 5, 208 3.5 6.5e-08, 4.8e-08, 6.4e-17 5.07407706e+00
343, 21951 b 2000, 5, 277 16.8 2.7e-16, 4.6e-12, 4.0e-07 5.07410884e+00

nonsym(8,4) a 200, 5, 270 6.9 1.0e-07, 6.7e-08, 1.5e-17 5.74082890e+00
512, 46655 b 2000, 5, 231 41.1 2.3e-16, 3.0e-12, 6.7e-07 5.74091793e+00

nonsym(9,4) a 200, 6, 749 24.3 2.8e-08, 4.2e-08, 9.6e-18 1.06613332e+00
729, 91124 b 2000, 5, 173 89.4 3.6e-16, 6.0e-12, 7.0e-07 1.06615469e+00

nonsym(10,4) a 200, 7, 1017 57.3 1.4e-07, 7.4e-08, 6.0e-16 1.69471513e+00
1000, 166374 b 521, 16, 1501 207.6 2.8e-16, 1.5e-16, 2.4e-07 1.69472856e+00

nonsym(11,4) a 200, 7, 1004 113.9 9.3e-08, 1.1e-07, 1.6e-16 2.91348562e+00
1331, 287495 b 2000, 8, 205 379.5 5.3e-16, 2.0e-16, 7.3e-08 2.91349308e+00

nonsym(5,5) a 200, 6, 690 14.8 5.5e-07, 2.6e-08, 4.3e-17 3.08257445e+00
625, 50624 b 2000, 6, 250 67.5 2.7e-16, 1.1e-13, 4.1e-07 3.08260164e+00

nonsym(6,5) a 200, 6, 896 96.4 7.9e-07, 4.6e-07, 5.6e-17 3.09572653e+00
1296, 194480 b 2000, 10, 578 387.2 3.4e-16, 3.0e-16, 5.0e-07 3.09577257e+00

sym rd(3,25) a 237, 3, 97 3.3 1.9e-07, 3.9e-07, 5.4e-18 1.62974610e+00
351, 23750 b 598, 8, 2330 23.5 1.3e-16, 2.3e-16, 6.6e-08 1.62974618e+00

sym rd(3,30) a 300, 3, 294 9.2 4.3e-07, 6.0e-07, 7.5e-18 1.82416334e+00
496, 46375 b 793, 8, 2209 51.5 1.2e-16, 8.7e-17, 3.1e-07 1.82416600e+00

sym rd(3,35) a 200, 3, 790 19.4 5.0e-07, 8.4e-07, 2.3e-17 1.82999294e+00
666, 82250 b 1253, 9, 4270 229.0 1.3e-16, 1.1e-16, 1.1e-07 1.82999326e+00

sym rd(3,40) a 200, 3, 651 34.9 8.2e-07, 7.7e-07, 1.5e-17 1.99315615e+00
861, 135750 b 1125, 9, 3102 313.5 1.4e-16, 1.9e-16, 7.7e-08 1.99315460e+00

sym rd(3,45) a 200, 3, 1136 73.4 5.1e-07, 8.1e-07, 1.0e-17 2.14077028e+00
1081, 211875 b 1114, 9, 3594 610.6 1.4e-16, 1.5e-16, 7.6e-08 2.14077153e+00
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Table 5 continued from previous page

problem solver it cpu kkt obj
size it0, it1, it2 [s] ηp, ηd, ηc 〈C,X〉

sym rd(3,50) a 200, 5, 1375 141.5 8.9e-08, 2.1e-07, 1.6e-17 2.06949920e+00
1326, 316250 b 1042, 9, 3783 1062.8 1.4e-16, 1.1e-16, 5.6e-08 2.06949928e+00

sym rd(4,25) a 236, 3, 522 5.4 8.2e-07, 5.9e-08, 1.5e-17 8.56184456e+00
325, 20474 b 992, 7, 2615 26.5 1.1e-16, 4.4e-16, 9.6e-08 8.56184319e+00

sym rd(4,30) a 183, 3, 690 9.5 4.0e-07, 6.7e-08, 3.5e-17 9.56021326e+00
465, 40919 b 640, 9, 3848 69.8 1.3e-16, 4.1e-17, 7.4e-08 9.56021733e+00

sym rd(4,40) a 280, 12, 876 56.9 5.3e-08, 2.9e-08, 1.6e-17 1.15471511e+01
820, 123409 b 251, 6, 4506 212.3 1.2e-16, 2.2e-14, 7.9e-07 1.15471604e+01

sym rd(4,45) a 278, 11, 464 86.6 8.8e-07, 6.0e-09, 4.3e-09 1.18424676e+01
1035, 194579 b 266, 7, 5359 439.3 1.2e-16, 8.1e-16, 7.8e-07 1.18424671e+01

sym rd(4,50) a 178, 11, 420 102.9 3.9e-08, 9.8e-07, 1.5e-17 1.30418152e+01
1275, 292824 b 273, 7, 4987 691.5 1.2e-16, 1.3e-15, 3.1e-07 1.30418139e+01

sym rd(5,15) a 196, 3, 716 28.1 5.4e-07, 1.5e-07, 4.0e-18 3.49345484e+00
816, 54263 b 321, 12, 7248 464.6 1.4e-16, 7.8e-16, 2.0e-07 3.49346038e+00

sym rd(5,20) a 200, 3, 1800 354.8 2.6e-07, 7.9e-08, 1.2e-17 4.17920915e+00
1771, 230229 b 621, 7, 2727 1696.7 1.4e-16, 1.5e-15, 6.5e-07 4.17923349e+00

sym rd(6,15) a 200, 3, 1604 29.2 1.1e-07, 6.9e-08, 2.3e-17 2.70986961e+01
680, 38759 b 536, 8, 2518 115.9 1.4e-16, 2.3e-16, 9.2e-08 2.70986955e+01

sym rd(6,20) a 185, 3, 1531 218.7 4.4e-08, 4.6e-07, 5.5e-18 3.15083192e+01
1540, 177099 b 1374, 10, 5545 1685.0 1.4e-16, 9.3e-16, 3.2e-07 3.15083629e+01

nsym rd([20,20,20]) a 300, 4, 855 7.9 2.3e-07, 2.2e-07, 1.1e-16 3.47771560e+00
400, 44099 b 2000, 6, 532 27.2 1.5e-16, 1.0e-13, 2.7e-07 3.47771693e+00

nsym rd([20,25,25]) a 200, 4, 797 10.6 1.2e-07, 8.7e-08, 3.7e-17 2.78569320e+00
500, 68249 b 1969, 13, 2313 84.0 1.3e-16, 3.7e-16, 1.4e-07 2.78569252e+00

nsym rd([25,20,25]) a 200, 4, 807 11.3 1.1e-07, 4.4e-08, 1.1e-18 2.77557182e+00
500, 68249 b 1311, 10, 1230 54.1 1.2e-16, 2.8e-17, 3.6e-07 2.77557148e+00

nsym rd([25,25,20]) a 200, 4, 481 9.3 1.1e-07, 6.2e-09, 1.8e-17 2.87657210e+00
500, 68249 b 1236, 12, 1668 58.6 1.4e-16, 4.6e-17, 1.3e-07 2.87657222e+00

nsym rd([25,25,25]) a 200, 5, 1886 30.2 9.7e-07, 2.6e-08, 1.2e-17 2.83000543e+00
625, 105624 b 1787, 10, 6095 260.7 1.3e-16, 1.9e-16, 8.8e-08 2.83000239e+00

nsym rd([30,30,30]) a 200, 5, 995 46.5 8.2e-07, 1.4e-07, 8.7e-18 3.03776026e+00
900, 216224 b 2000, 12, 6889 690.1 1.2e-16, 2.2e-16, 5.8e-07 3.03775583e+00

nsym rd([35,35,35]) a 200, 4, 1464 136.6 1.2e-07, 8.0e-07, 4.0e-17 3.07047349e+00
1225, 396899 b 2000, 8, 1741 621.2 1.3e-16, 6.4e-16, 8.4e-07 3.07047539e+00

nsym rd([40,40,40]) a 200, 3, 461 168.8 7.2e-07, 5.2e-07, 3.4e-17 3.87873704e+00
1600, 672399 b 2000, 22, 3925 2311.1 1.2e-16, 2.8e-17, 4.0e-07 3.87873669e+00

nsym rd([7,7,7,7]) a 300, 4, 220 3.6 4.3e-07, 1.1e-07, 2.2e-17 3.33237018e+00
343, 21951 b 2000, 6, 245 16.8 1.3e-16, 1.7e-13, 1.3e-07 3.33237088e+00

nsym rd([8,8,8,8]) a 200, 4, 377 8.5 6.1e-08, 3.4e-08, 6.2e-18 2.83768767e+00
512, 46655 b 2000, 10, 1068 60.4 1.2e-16, 9.9e-16, 5.2e-08 2.83768891e+00

nsym rd([9,9,9,9]) a 200, 4, 520 19.2 3.0e-07, 3.1e-07, 2.4e-17 3.10894878e+00
729, 91124 b 2000, 10, 886 126.4 1.6e-16, 3.3e-15, 8.2e-07 3.10895225e+00

6 Concluding remarks

We have analyzed and implemented a squared smoothing Newton method via
the Huber smoothing function for solving semidefinite programming problems
(SDPs). With a careful design of the algorithmic framework, our theoretical
analysis has shown that the proposed algorithm is well-defined, guarantees
global convergence and admits a superlinear convergence rate under the primal
and dual constraint nondegenerate conditions. Besides establishing the elegant
convergence properties, we have also conducted extensive numerical experi-
ments on solving various classes of SDPs to evaluate the practical performance
of our algorithms. We have compared our method with the state-of-the-art
SDP solver SDPNAL+ and the numerical results have demonstrated the excellent
efficiency of our algorithm. We note that the current implementation of the
algorithm is not as mature as we would hope for since the performance may
depend sensitively on some parameters. However, given the promising numer-
ical results on the tested examples, we are inspired to conduct a more robust
implementation in our future work.
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A Proof of Proposition 4

Part 1 is a direct consequence of [39, Proposition 4.3]. We next prove part 2.
Since h(·, ·) is locally Lipschitz continuous on R × R, then by [47, Theorem
9.67], there exist continuously differentiable functions hℓ : R× R → R, ℓ ≥ 1,
converging uniformly to h and satisfying

‖h′ℓ(τ, ξ)‖ ≤ L, ∀(τ, ξ) ∈ J := [ǫ − ν, ǫ+ ν]× (

n⋃

i=1

[di − νi, di + νi]),

with some constants L > 0, ν > 0 and νi > 0. For any (τ,H) ∈ R × Sn with
H = P̃diag(d̃1, . . . , d̃n)P̃

T , define

Φℓ(τ,H) = P̃diag(hℓ(τ, d̃1), . . . , hℓ(τ, d̃n))P̃
T , ℓ ≥ 1.

From [63], we may assume that there exists a neighborhood of (ǫ,W ), denoted
by U , such that (τ, d̃i) ∈ J , for all i = 1, . . . , n, and (τ,H) ∈ U . Note that Φℓ

converges to Φ uniformly on U . Fix (τ1, H1), (τ2, H2) ∈ U such that (τ1, H1) 6=
(τ2, H2). Then, for any L̂ > 0 and ℓ sufficiently large, it holds that

‖Φℓ(τ,H)− Φ(τ,H)‖ ≤ L̂ ‖(τ1, H1)− (τ2, H2)‖, ∀(τ,H) ∈ U . (44)

Using (44), for any (τ,H) ∈ U , it follows that

‖Φ(τ1, H1)− Φ(τ2, H2)‖
≤ ‖Φ(τ1, H1)− Φℓ(τ1, H1)‖+ ‖Φℓ(τ1, H1)− Φℓ(τ2, H2)‖

+ ‖Φℓ(τ2, H2)− Φ(τ2, H2)‖
≤ 2L̂ ‖(τ1, H1)− (τ2, H2)‖

+

∥∥∥∥
∫ 1

0

Φ′
ℓ(τ1 + t(τ2 − τ1), H1 + t(H2 −H1))(τ1 − τ2, H2 −H1)dt

∥∥∥∥

≤ (2L̂+ L) ‖(τ1, H1)− (τ2, H2)‖

for ℓ ≥ 1 sufficiently large. Since L̂ > 0 is arbitrary, we see that Φ is locally
Lipschitz continuous with modulus L > 0.
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Then, we turn to prove part 3. Let us recall that Φ(0,W ) =∑r
j=1 h(0, λj)Qj and write

Φ(tτ,W + tH) =

r∑

j=1

h(0, λj)Qj(t) +

n∑

i=1

(h(tτ, di(t))− h(0, di)) pi(t)pi(t)
T .

Then, it follows that

lim
t↓0

1

t
(Φ(tτ,W + tH)− Φ(0,W ))

=

r∑

j=1

h(0, λj) lim
t↓0

1

t
(Qj(t)−Qj) +

n∑

i=1

lim
t↓0

1

t
(h(tτ, di(t)) − h(0, di)) pi(t)pi(t)

T .

By [64, Eq. (2.9)], for any j = 1, . . . , r, the following holds:

lim
t↓0

1

t
(Qj(t)−Qj) = Q′(0)(H)

=
1

2

∑

1≤k 6=j≤r

h(0, λk)− h(0, λj)

λk − λj
(QjHQk +QkHQj) .

From [64, Proposition 3.1], for any i = 1, . . . , n, we know that d′i(W ; H) is
well-defined, and it holds that

lim
t↓0

1

t
(h(tτ, di(t)) − h(0, di)) = h′((0, di); (τ, d

′
i(W ; H)))

=
∑

i∈α

(
d′i(W ; H)− |τ |

2

)
pip

T
i +

∑

i∈β

h(τ, d′i(W ; H))pip
T
i ,

where we have used the fact that h is directionally differentiable with

h′((0, u); (τ, v)) =




v − |τ |

2 u > 0
h(τ, v) u = 0
0 u < 0

, ∀(τ, v) ∈ R× R.

Since pi(t) → pi as t ↓ 0, lim
t↓0

1

t
(Φ(tτ,W + tH)− Φ(0,W )) exists. Hence Φ is

directionally differentiable at (0,W ), and (15) holds true. Finally, the explicit
expression of the directional differential d′i(W ; H) (1 ≤ i ≤ n) is again
obtained from [64, Proposition 3.1].

Finally, we prove part 4. Based on part 1, Φ is continuously differentiable
at any (ǫ,W ) with ǫ 6= 0. Hence, Φ is naturally strongly semismooth at these
points. Thus, we only need to show that Φ is strongly semismooth at (0,W )
for anyW ∈ Sn. We have already known that Φ is locally Lipschitz continuous
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and directionally differentiable everywhere. By [33, Theorem 3.7], we only need
to show that for any (τ,H) ∈ R× Sn with ‖(τ,H)‖ → 0,

Φ(τ,W +H)− Φ(0,W )− Φ′((τ,W +H); (τ,H)) = O
(
‖(τ,H)‖2

)
. (45)

First, similar to the proof of part 3, one can show for any (τ,H) ∈ R× S
n,

Φ′((τ,W +H); (τ,H)) =

r∑

j=1

h(τ, λj(1))Q
′
j(1)(H)

+

n∑

i=1

h′((τ, di(1)); (τ, d
′
i(W +H ; H)))pi(1)pi(1)

T .

(46)

Then, by the fact that di is strongly semismooth everywhere (see for example
[64, Proposition 3.2]), we deduce that

Φ(τ,W +H)− Φ(0,W )

=

r∑

j=1

h(τ, λj(1)) (Qj(1)−Qj) +

n∑

i=1

(h(τ, di(1))− h(0, di)) pip
T
i

=

r∑

j=1

h(τ, λj(1))Q
′
j(1)(H) +O

(
‖H‖2

)

+

n∑

i=1

(h′((τ, di(1)); (τ, d
′
i(W +H ; H)))) pip

T
i +O

(
‖(τ,H)‖2

)

=

r∑

j=1

h(τ, λj(1))Q
′
j(1)(H)

+

n∑

i=1

(h′((τ, di(1)); (τ, d
′
i(W +H ; H)))) pi(1)pi(1)

T +O
(
‖(τ,H)‖2

)
,

which together with (46) and the fact that pi is analytic around W implies
(45). Thus, the proof is completed.

B Proof of Lemma 5

First, let V ∈ ∂BΦ(0,W ). By the definition of ∂BΦ(0,W ), there exists
a sequence {(ǫk,W k)} converging to (0,W ) with ǫk 6= 0 such that V =
lim
k→∞

Φ′(ǫk,W k). Let each W k have the following spectral decomposition:

W k = P kDk(P k)T , Dk := diag
(
Dk

α, D
k
β, D

k
γ

)
,
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where Dk
α = diag(dk1 , . . . , d

k
|α|), D

k
β = diag(dk|α|+1, . . . , d

k
|α|+|β|), and Dk

γ =

diag(dk|α|+|β|+1, . . . , d
k
n), with dk1 ≥ · · · ≥ dkn. For simplicity, denote dk =

(dk1 , . . . , d
k
n)

T ∈ Rn. By taking a subsequence if necessary, we may assume
without loss of generality that (a) lim

k→∞
Dk = D, lim

k→∞
P k = P , and (b) both

sequences {Ω(ǫk, dk)} and {D(ǫk, dk)} converge, where Ω(ǫk, dk) and D(ǫk, dk)
are defined as in (12). In particular, we see that {Ω(ǫk, dk)αα}, {Ω(ǫk, dk)αβ}
converge to two matrices of all ones of suitable sizes, respectively, {Ω(ǫk, dk)αγ}
converges to Ω0(d)αγ and the limit of the sequence {Ω(ǫk, dk)ββ} exists.
Moreover, let

D(ǫk, dk) = diag(D(ǫk, dk)α,D(ǫk, dk)β ,D(ǫk, dk)γ).

It holds that {D(ǫk, dk)γ} converges to the zero matrix, and the limits of
{D(ǫk, dk)α} and {D(ǫk, dk)β} exist.

From Proposition 4 and ǫk 6= 0, for any (τ,H) ∈ R× Sn, we see that

Φ′(ǫk,W k)(τ,H) = P k
[
Ω(ǫk, dk) ◦ H̃k + τD(ǫk, dk)

]
(P k)T , (47)

where H̃k := (P k)THP k. Taking limit of both sides in (47) yields that

V (τ,H) = P




H̃αα H̃αβ Ω0(d) ◦ H̃αγ

H̃T
αβ lim

k→∞
Ω(ǫk, dk)ββ ◦ H̃ββ 0

H̃T
αγ ◦ Ω0(d)

T 0 0


PT

+ τP




lim
k→∞

D(ǫk, dk)α 0 0

0 lim
k→∞

D(ǫk, dk)β 0

0 0 0


PT .

For each k ≥ 1, define Y k := Pdiag(0, Dk
β, 0)P

T and Ỹ k := PTY kP . Note

that the mapping L is F-differentiable at (ǫk, Y k) since ǫk 6= 0. For k sufficiently
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large, we have from (16) and Proposition 4 that

L′(ǫk, Y k)(τ,H)

= lim
t↓0

L(ǫk + tτ, Y k + tH)− L(ǫk, Y k)

t

= P




H̃αα H̃αβ [Ω0(d)]αγ ◦ H̃αγ

H̃T
αβ Φ′

|β|(ǫ
k, Dk

β)(τ, H̃ββ) 0

[Ω0(d)]
T
αγ ◦HT

αγ 0 0


PT

− τ

2
sgn(ǫk)

∑

i∈α

pip
T
i

= P




H̃αα H̃αβ [Ω0(d)]αγ ◦ H̃αγ

H̃T
αβ Ω(ǫk, dk)ββ ◦ H̃ββ 0

[Ω0(d)]
T
αγ ◦HT

αγ 0 0


PT

+ τP



D(ǫk, d

k)α 0 0
0 D(ǫk, dk)β 0
0 0 0


PT ,

which implies that V (τ,H) = lim
k→∞

L′(ǫk, Y k)(τ,H). Hence, V ∈ ∂BL(0, 0).
Conversely, choose V ∈ ∂BL(0, 0). By definition, there exists a sequence

{(ǫk, Y k)} converging to (0, 0) with ǫk 6= 0 such that V = lim
k→∞

L′(ǫk, Y k).

Let Ỹ k := PTY kP . Assume that Ỹ k
ββ has the spectral decomposition: Ỹ k

ββ =

UkD̃k
β(U

k)T , where D̃k
β = diag(z̃k), z̃k := (z̃k1 , . . . , z̃

k
|β|)

T ∈ R
|β|, z̃k1 ≥ · · · ≥

z̃k|β|, and Uk ∈ R|β|×|β| is orthogonal. Then, for any (τ,H) ∈ R × Sn with

H̃ := PTHP , we get from (16) and Proposition 4 that

L′(ǫk, Y k)(τ,H)

= P




H̃αα H̃αβ [Ω0(d)]αγ ◦ H̃αγ

H̃T
αβ Ĥββ 0

[Ω0(d)]
T
αγ ◦HT

αγ 0 0


PT − τ

2
sgn(ǫk)

∑

i∈α

pip
T
i ,

where Ĥββ := Uk
[
Ω(ǫk, z̃k) ◦

(
(Uk)T H̃ββU

k
)
+ τD(ǫk, z̃k)

]
(Uk)T . For any

k ≥ 1, define

W k =W + P



0 0 0

0 Ỹ k
ββ 0

0 0 0


PT , W̃ k = PTW kP =



Dα 0 0

0 Ỹ k
ββ 0

0 0 Dγ




where
Dα = diag(d1, . . . , d|α|), Dγ = diag(d|α|+|β|+1, . . . , dn).
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Moreover, we partition P as P = (Pα, Pβ , Pγ), set P
k = (Pα, PβU

k, Pγ) and
construct a vector dk ∈ Rn as follows

dki =

{
di i ∈ α ∪ γ
z̃ki−|α| i ∈ β

.

Clearly, it holds that W k = P kdiag(dk)(P k)T . Since ǫk 6= 0, Φ is F-
differentiable at (ǫk,W k), and

Φ′(ǫk,W k)(τ,H) = P k
[
Ω(ǫk, dk) ◦

(
(P k)THP k

)
+ τD(ǫk, dk)

]
(P k)T .

Let us now assume without loss of generality that the three sequences {Uk},
{Ω(ǫk, dk)} and {D(ǫ, dk)} converge (since they are all uniformly bounded).
Then, simple calculations show that

lim
k→∞

[Ω(ǫk, dk)]ij =





1 i ∈ α, j ∈ α ∪ β
Ω0(d) i ∈ α, j ∈ γ
0 i ∈ β ∪ γ, j ∈ γ

[ lim
k→∞

Ω(ǫk, z̃k)](i−|α|)(j−|α|) i ∈ β, j ∈ β

,

and that

lim
k→∞

D(ǫk, dk) =




lim
k→∞

D(ǫk, dα) 0 0

0 lim
k→∞

D(ǫk, z̃k) 0

0 0 0


 ,

where dα := (d1, . . . , d|α|)
T ∈ R|α|. As a consequence, we get

lim
k→∞

(P k)T
(
L′(ǫk, Y k)(τ,H)− Φ′(ǫk,W k)(τ,H)

)
P k = 0, ∀(τ,H) ∈ R× S

n,

which further implies that V (τ,H) = lim
k→∞

Φ′(ǫk,W k)(τ,H), for all (τ,H) ∈
R× S

n. Then, V ∈ ∂BΦ(0,W ). Therefore, the proof is completed.
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