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Abstract

Let X be a Gaussian zero mean vector with Var(X) = B . Then ‖X‖2 well concen-

trates around its expectation p = E‖X‖2 = trB provided that the latter is sufficiently

large. Namely, P
(

‖X‖2 − trB > 2
√

x tr(B2) + 2‖B‖x
)

≤ e−x and P
(

‖X‖2 − trB <

−2
√

x tr(B2)
)

≤ e−x ; see Laurent and Massart (2000). This note provides an extension of

these bounds to the case of a sub-gaussian vector X . The results are based on the recent

advances in Laplace approximation from Spokoiny (2022).
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1 Introduction

Let X be a zero mean Gaussian vector in Rp for p large. Denote B = Var(X) . Then

for the squared norm ‖X‖2 , it holds E‖X‖2 = trB , Var(‖X‖2) = tr(B2) , and this

random variable concentrates around its expectation trB in the sense that for any x > 0

P

(

‖X‖2 − trB > 2
√

x tr(B2) + 2‖B‖x
)

≤ e−x,

P

(

‖X‖2 − trB < −2
√

x tr(B2)
)

≤ e−x;
(1.1)

see e.g. Laurent and Massart (2000). The upper bound here can easily be extended to the

sub-gaussian case; see e.g. Hsu et al. (2012) or Section 2.1 later. Rudelson and Vershynin
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2 Sharp deviation bounds for the squared norm of a sub-gaussian vector

(2013) described the effect of sun-gaussian concentration and established deviation bounds

for the centered quadratic form ‖X‖2 − E‖X‖2 by extending the Hanson-Wright in-

equality (see Hanson and Wright (1971)). In the recent years, a number of new results

were obtained in this direction. We refer to Klochkov and Zhivotovskiy (2020) for an ex-

tensive overview and advanced results on Hanson-Wright type concentration inequalities.

This note aims at extending the concentration result from (1.1) to a non-gaussian case

under possibly mild conditions. Namely, we establish a version of the upper bound in

(1.1) using local smoothness of the moment generating function Ee〈u,X〉 and the recent

advances in Laplace approximation from Spokoiny (2022). The lower bound is obtained

by similar arguments applied to the characteristic function Eei〈u,X〉 .

The paper is organized as follows. Section 2.1 provides a simple but rough upper

bound under sub-gaussian condition on X . The main results about concentration of

‖X‖2 are collected in Section 2.2. Section 2.3 specifies the results to the case when X

is a normalized sum of independent random vectors. In Section 2.4 we extend the upper

bound to a sub-exponential case. Some useful technical facts about Gaussian quadratic

forms are collected in the Appendix A and Appendix B.

2 Deviation bounds for non-Gaussian quadratic forms

This section collects some probability bounds for non-Gaussian quadratic forms starting

from the sub-gaussian case. Then we extend the result to the case of exponential tails.

2.1 Sub-gaussian upper bound

Let ξ be a random vector in Rp , p ≤ ∞ satisfying Eξ = 0 . We suppose that there

exists an operator V in Rp such that

logE exp
(

〈u,V−1ξ〉
)

≤ ‖u‖2
2

, u ∈Rp. (2.1)

In the Gaussian case, one obviously takes V 2 = Var(ξ) . In general, V 2 ≥ Var(ξ) .

We consider a quadratic form ‖Qξ‖2 , where ξ satisfies (2.1) and Q is a given linear

operator Rp →Rq such that B = QV 2Q⊤ is a trace operator. Denote

p = tr
(

B
)

, v2
def
= tr(B2).

We show that under (2.1), the quadratic form ‖Qξ‖2 follows the same upper deviation

bound P
(

‖Qξ‖2 ≥ z2(B, x)
)

≤ e−x with z2(B, x) from (B.3) as in the Gaussian case.
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Similar results can be found e.g. in Hsu et al. (2012). We present an independent proof

for reference convenience.

Theorem 2.1. Suppose (2.1). With B = QV 2Q⊤ , it holds for any µ < 1/‖B‖

E exp
(µ

2
‖Qξ‖2

)

≤ exp
( µ2 tr(B2)

4(1 − ‖B‖µ) +
µ tr(B)

2

)

and for any x > 0

P

(

‖Qξ‖2 > p+ 2v
√
x+ 2x

)

≤ e−x. (2.2)

The bounds (B.9) through (B.10) of Theorem B.5 continue to apply as well.

Proof. Normalization by ‖B‖ reduces the proof to ‖B‖ = 1 . For µ ∈ (0, 1) , we use

E exp
(

µ‖Qξ‖2/2
)

= EEγ exp
(

µ1/2〈VQ⊤γ,V−1ξ〉
)

, (2.3)

where γ is standard Gaussian under Eγ independent on ξ . Application of Fubini’s

theorem, (2.1), and (B.5) yields

E exp
(µ

2
‖Qξ‖2

)

≤ Eγ exp
(µ

2
‖VQ⊤γ‖2

)

≤ exp
(µ2 tr(B2)

4(1 − µ)
+

µ tr(B)

2

)

.

Further we proceed as in the Gaussian case.

The bound (2.2) looks identical to the Gaussian case, however, there is an essential

difference: p = tr(B) can be much larger than E‖Qξ‖2 = Q⊤Var(ξ)Q . For sup-

porting the concentration phenomenon of ‖Qξ‖2 around its expectation E‖Qξ‖2 =

tr{Q⊤ Var(ξ)Q} , the result from (2.2) is not accurate enough. Rudelson and Vershynin

(2013) established deviation bounds for the centered quadratic form ‖Qξ‖2 −E‖Qξ‖2

by applying Hanson-Wright inequality (see Hanson and Wright (1971)) to its absolute

value. The next section presents some sufficient conditions for obtaining sharp Gaussian-

like deviation bounds.

2.2 Sharp deviation bounds for the norm of a sub-gaussian vector

Let ξ be a centered random vector in Rp with sub-gaussian tails. We study concen-

tration effect of the squared norm ‖QX‖2 for a linear mapping Q and for X =V−1ξ

being the standardized version of ξ , where V 2 = Var(ξ) . More generally, we allow

V

2 ≥ Var(ξ) yielding Var(X) ≤ IIp to incorporate the case when Var(ξ) is ill-posed.

Later we assume the following condition.
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(X) A random vector X ∈ Rp satisfies EX = 0 , Var(X) ≤ IIp . The function

φ(u)
def
= logEe〈u,X〉 is finite and fulfills for some Cφ

φ(u)
def
= logEe〈u,X〉 ≤ Cφ‖u‖2

2
, u ∈Rp . (2.4)

The constant Cφ can be quite large, it does not show up in the leading term of the

obtained bound. Also we will only use this condition for ‖u‖ ≥ g for some sufficiently

large g .

Given a linear mapping Q : Rp →Rq with ‖Q‖ ≤ 1 , we expect the quadratic form

‖QX‖2 behaves nearly as X were a Gaussian vector. In that case for µ < 1

E exp(µ‖QX‖2/2) = det(IIp − µB)−1/2, B
def
= Q⊤Var(X)Q.

Our results provide a bound on |E exp(µ‖QX‖2/2) − det(IIp − µB)−1/2| for X non-

Gaussian but (X) is fulfilled. Define

p
def
= E‖QX‖2 = tr{Q⊤Var(X)Q} = trB ,

pQ
def
= E‖Qγ‖2 = tr(Q⊤Q).

Fix g and define for u ∈Rp with ‖u‖ ≤ g a measure Eu by

Eu η
def
=
E(η e〈u,X〉)
Ee〈u,X〉 . (2.5)

Also define

τ3
def
= sup

‖u‖≤g

1

‖u‖3
∣

∣

Eu〈u,X −EuX〉3
∣

∣ ,

τ4
def
= sup

‖u‖≤g

1

‖u‖4
∣

∣

Eu〈u,X −EuX〉4 − 3
{

Eu〈u,X −EuX〉2
}2∣

∣ .

(2.6)

These quantities are typically not only finite but also very small. Indeed, for X Gaussian

they just vanish. If X is a normalized sum of n i.i.d. centred random vectors ξi then

τm ≍ n−m/2+1 ; see Section 2.3.

Theorem 2.2. Fix a linear mapping Q : Rp →Rq s.t. ‖Q‖ = 1 . Let a random vector

X ∈ Rp satisfy EX = 0 , Var(X) ≤ IIp , and (X) . Let also τ3 and τ4 be given by

(2.6) and g be fixed to ensure ω
def
= g τ3/2 ≤ 1/3 . Consider µ > 0 satisfying

Cφ µ ≤ 1/3, µ−1g2 ≥ 9Cφ pQ , (2.7)
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with pQ = tr(Q⊤Q) . Further, define

xµ
def
=

1

4

(
√

C
−1
φ µ−1g2 −√

pQ

)2
,

ǫµ
def
= Cφ µ+ Cφ µ

√

pQ/xµ . (2.8)

It holds with B = Q⊤Var(X)Q

∣

∣

E exp(µ‖QX‖2/2) − det(IIp − µB)−1/2
∣

∣ ≤ ∆µ det(IIp − µB)−1/2 , (2.9)

where, with some small quantities ♦4 and ρµ given below,

∆µ ≤ ♦4 + ρµ +
1

1− ǫµ
exp{Cφ µ pQ/2− (1− ǫµ)xµ} . (2.10)

Remark 2.1. Conditions (2.7) imply xµ ≥ pQ and ǫµ ≤ 2/3 . If µ−1g2 ≫ pQ then

xµ ≫ pQ , and hence the last term in (2.10) is quite small. The same holds for the value

ρµ ; see later in the proof.

Proof. We use representation (2.3) and Fubini theorem: with Eγ = Eγ∼N (0,II)

E exp
(

µ‖QX‖2/2
)

= EEγ exp
(

µ1/2〈Q⊤γ,X〉
)

= Eγ expφ(µ
1/2Q⊤γ). (2.11)

Further,

Eγ expφ(µ
1/2Q⊤γ) = Eγ expφ(µ

1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ ≤ g)

+Eγ expφ(µ
1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ > g). (2.12)

Each summand here will be bounded separately starting from the second one. By (2.4)

and (B.11) of Theorem B.5, it holds under the condition ǫµ < 1 for ǫµ from (2.8)

Eγ expφ(µ
1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ > g)

≤ Eγ exp
(

Cφ µ‖Q⊤γ‖2/2
)

1I(‖Q⊤γ‖2 > µ−1g2)

≤ exp
(

Cφ µ pQ/2
)

Eγ exp
(

Cφ µ(‖Q⊤γ‖2 − pQ)/2
)

1I(‖Q⊤γ‖2 > µ−1g2)

≤ 1

1− ǫµ
exp{Cφ µ pQ/2− (1− ǫµ)xµ} . (2.13)

Now we check that φ(u) satisfies (T3) and (T4) : for any ‖u‖ ≤ g

|δ3(u)| def
=

∣

∣

∣
φ(u)− 1

2
〈φ′′(0),u⊗2〉

∣

∣

∣
≤ τ3

6
‖u‖3 ,

|δ4(u)| def
=

∣

∣

∣
φ(u)− 1

2
〈φ′′(0),u⊗2〉 − 1

6
〈φ′′′(0),u⊗3〉

∣

∣

∣
≤ τ4

24
‖u‖4 .

(2.14)
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Consider first the univariate case. Let a r.v. X satisfy EX = 0 and EX2 ≤ σ2 . Define

for any t ∈ [0, g] a measure Pt s.t. for any r.v. η

Et η
def
=
E(η etX)

EetX
.

Consider φ(t)
def
= logEetX as a function of t ∈ [0, λ] . It is well defined and satisfies

φ(0) = φ′(0) = 0 , φ′′(0) = EX2 ≤ σ2 ,

φ′(t) = EtX ,

φ′′(t) = Et(X −EtX)2 ,

φ′′′(t) = Et(X −EtX)3 ,

φ(4)(t) = Et(X −EtX)4 − 3
{

Et(X −EtX)2
}2

.

Therefore, conditions (T3) and (T4) follow from (2.6). The multivariate case can be

reduced to the univariate one by fixing a direction u ∈Rp and considering the function

φ(tu) of t .

Next consider the first term in the right hand-side of (2.12). Define U = {u : ‖µ1/2Q⊤u‖ ≤
g} . Then with Cp = (2π)−p/2

Eγ expφ(µ
1/2Q⊤γ) 1I(‖µ1/2Q⊤γ‖ ≤ g) = Cp

∫

U
efµ(u) du ,

where

fµ(u) = φ(µ1/2Q⊤u)− ‖u‖2/2

so that fµ(0) = 0 , ∇fµ(0) = 0 . Also define

D2
µ

def
= −∇2fµ(0) = −µQ⊤Var(X)Q+ IIp = IIp − µB.

The function fµ(u) inherits smoothness properties of φ(µ1/2Q⊤u) . In particular,

∣

∣fµ(u)−
1

2
‖Dµu‖2

∣

∣ ≤ τ3
6
‖µ1/2Qu‖3.

We apply Proposition A8 from Spokoiny (2022) to fµ(u) yielding

∣

∣

∣

∣

∫

U efµ(u) du−
∫

U e−‖Dµu‖2/2 du
∫

e−‖Dµu‖2/2 du

∣

∣

∣

∣

≤ ♦4 ,

♦4 =
1

16(1− ω)2

{

τ23 (pµ + 2αµ)
3 + 2τ4(pµ + αµ)

2
}

, (2.15)
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with ω = g τ3/2 ≤ 1/3 and

pµ
def
= tr

{

D−2
µ (µQ⊤Q)

}

,

αµ
def
= ‖D−1

µ (µQ⊤Q)D−1
µ ‖.

Note that ‖B‖ ≤ 1 implies with pQ = tr(Q⊤Q)

pµ ≤ µ

1− µ
pQ, αµ ≤ µ

1− µ
,

and

♦4 ≤ 1

16(1 − ω)2

{τ23 µ
3(pQ + 2)3

(1− µ)3
+

2τ4µ
2(pQ + 1)2

(1− µ)2

}

. (2.16)

Furthermore, it holds

ρµ
def
= 1−

∫

U e−‖Dµu‖2/2 du
∫

e−‖Dµu‖2/2 du
= P

(

‖µ1/2Q⊤D−1
µ γ‖ > g

)

≤ P

(

‖Q⊤γ‖2 > (1− µ)µ−1g2
)

, (2.17)

and the latter value is small provided µ−1g2 ≫ pQ . This and (2.15) yield the bound

∣

∣

∣

∣

∫

U efµ(u) du
∫

e−‖Dµu‖2/2 du
− 1

∣

∣

∣

∣

≤ ♦4 + ρµ . (2.18)

It remains to note that

Cp

∫

e−‖Dµu‖2/2 du =
1

detDµ
= det(IIp − µB)−1/2

and (2.9) follows from (2.13) and (2.18) in view of det(IIp − µB) ≤ 1 .

Upper deviation bounds for ‖QX‖2 can now be derived as in the Gaussian case by

applying (2.9) with a proper choice of µ . This leads to a surprisingly sharp bound on

the upper deviation probability which almost repeats bound (B.8) for X Gaussian.

Corollary 2.3. Let B = Q⊤Var(X)Q . With x > 0 fixed, define µ = µ(x) by µ−1 =

1 +
√

tr(B2)/(4x) . Assume the condition of Theorem 2.2 for this choice of µ . Then

P

(

‖QX‖ > z(B, x)
)

= P
(

‖QX‖2 > trB + 2
√

x tr(B2) + 2x
)

≤ (1 +∆µ)e
−x.

Remark 2.2. Theorem 2.2 requires µ to be a small number to ensure (2.7). Alterna-

tively, we need tr(B2) ≫ x . This is an important message: concentration of the squared
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norm ‖QX‖2 is only possible in high dimension when tr(B2) is sufficiently large. In

typical situations it holds trB ≈ tr(Q⊤Q) and also tr(B2) ≍ trB ≈ pQ . Then the

effective trace of Q⊤Q should be large. The choice of µ by µ−1 = 1 +
√

tr(B2)/(4x)

leads to µ ≍ √
x pQ . This helps to evaluate the term ♦4 from (2.16) in the bound (2.10).

Namely, (2.16) yields

♦4 . τ23 x
3/2 p

3/2
Q + τ4 x pQ .

This value is small provided τ23 ≪ p
−3/2
Q and τ4 ≪ p−1

Q .

For getting the bound on the lower deviation probability, we need an analog of (2.9)

for µ negative. Representation (2.11) reads as

E e−µ‖QX‖2/2 = EEγ e
i
√
µ〈Q⊤γ,X〉 = EγE ei

√
µ〈Q⊤γ,X〉 (2.19)

with i =
√
−1 . Our technique requires that the characteristic function E exp

(

i〈u,X〉
)

does not vanish. This allows to define

f(u)
def
= logE ei〈u,X〉 .

Later we assume that the function f(u) satisfies the condition similar to (X) .

(iX) For some fixed g and Cf , the function f(u) = logE ei〈u,X〉 satisfies

|f(u)| = | logE ei〈u,X〉| ≤ Cf , ‖u‖ ≤ g .

Note that this condition can easily be ensured by replacing X with X+αγ for any

positive α and γ ∼ N (0, IIp) . The constant Cf is unimportant, it does not show up in

our results. It, however, enables us to define similarly to (2.6)

τ3
def
= sup

‖u‖≤g

1

‖u‖3
∣

∣

Eiu〈iu,X −EiuX〉3
∣

∣ ,

τ4
def
= sup

‖u‖≤g

1

‖u‖4
∣

∣

Eiu〈iu,X −EiuX〉4 − 3
{

Eiu〈iu,X −EiuX〉2
}2∣

∣ .

(2.20)

Theorem 2.4. Let ‖Q‖ = 1 , pQ = tr(Q⊤Q) . Let X satisfy EX = 0 , Var(X) ≤ IIp ,

and (iX) for a fixed g . Let also τ3 and τ4 be given by (2.20) and ω
def
= g τ3/2 ≤ 1/3 .

For any µ > 0 s.t. µ−1g2 ≥ 4pQ , it holds with B = Q⊤Var(X)Q

∣

∣

Ee−µ‖QX‖2/2 − det(IIp + µB)−1/2
∣

∣ ≤ (♦4 + ρµ) det(IIp + µB)−1/2 + ρµ ;

ρµ ≤ Pγ

(

‖Qγ‖2 ≥ µ−1g2
)

≤ 1

4

(

√

µ−1g2 −√
pQ

)2
. (2.21)
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Proof. We follow the line of the proof of Theorem 2.2 replacing everywhere φ(u) with

f(u) . In particular, we start with representation (2.19) and apply

E e−µ‖QX‖2/2 = Eγe
f(
√
µQ⊤γ)

= Eγe
f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ ≤ g) +Eγe

f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ > g).

It holds

f(0) = 0, ∇f(0) = 0, −∇2
f(0) = Var(X) ≤ IIp .

Moreover, smoothness conditions (2.14) are automatically fulfilled for f(u) with the

same τ3 and τ4 . The most important observation for the proof is that the bound (2.18)

continues to apply for µ < 0 and

fµ(u) = f(
√
µQ⊤u)− ‖u‖2/2,

with ♦4 from (2.15) and

D2
µ

def
= −∇2fµ(0) = µQ⊤Var(X)Q+ IIp = IIp + µB,

pµ
def
= tr

{

D−2
µ (µQ⊤Q)

}

≤ µ

1 + µ
tr(Q⊤Q) ≤ µ pQ ,

αµ
def
= ‖D−1

µ (µQ⊤Q)D−1
µ ‖ ≤ µ

1 + µ
,

and ρµ ≤ P
(

‖Qγ‖2 ≥ µ−1g2
)

; cf. (2.17). This yields

∣

∣

∣

∣

Eγe
f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ ≤ g)− 1

det(IIp + µB)1/2

∣

∣

∣

∣

≤ ♦4 + ρµ

det(IIp + µB)1/2
.

Finally we use |ef(u)| ≤ 1 and thus,

∣

∣

Eγe
f(
√
µQ⊤γ) 1I(‖√µQ⊤γ‖ > g)

∣

∣ ≤ P
(

‖√µQ⊤γ‖ > g
)

and (2.21) follows.

Corollary 2.5. With x > 0 fixed, define µ = 2v−1√x for v2 = trB2 . Assume the

condition of Theorem 2.4 for this choice of µ . Then with ρµ = P
(

‖Qγ‖2 ≥ µ−1g2
)

P

(

‖QX‖2 < trB − 2v
√
x
)

≤ (1 +♦4 + ρµ)e
−x + ρµ exp

(

v−1 trB
√
x− 2x

)

.
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Proof. By the exponential Chebyshev inequality and (2.21)

P

(

trB − ‖QX‖2 > 2v
√
x
)

≤ exp(−µ v
√
x)E exp

{

µ trB/2− µ‖QX‖2/2
}

≤ exp(µ trB/2− µ v
√
x)
{

(♦4 + ρµ) det(IIp + µB)−1/2 + ρµ
}

.

It remains to note that by x− log(1 + x) ≤ x2/2 and µ = 2v−1√x , it holds

−µ v
√
x+ µ trB/2 + log det(IIp + µB)−1/2 ≤ −µ v

√
x+ µ2v2/4 = −x

and also µ trB/2− µ v
√
x = v−1 trB

√
x− 2x .

Remark 2.3. The statement of Corollary 2.5 is meaningful and informative if µ−1g2 ≫
pQ . If v2 = trB2 ≍ trB ≍ pQ , it suffices to ensure g2 ≫ p

1/2
Q .

2.3 Sum of i.i.d. random vectors

Here we specify the obtained results to the case when X = n−1/2
∑n

i=1 ξi and ξi are

i.i.d. in Rp with Eξi = 0 and Var(ξi) ≤ IIp . In fact, the i.i.d. structure of the ξi ’s

is not used, it suffices to check that all the moment conditions later on are satisfied

uniformly over i ≤ n . However, the formulation slightly simplifies in the i.i.d case. Let

some Q : Rp →Rq be fixed with ‖Q‖ = 1 . It holds

p = E‖QX‖2 = trB, B = Q⊤ΣQ.

Also define pQ = Q⊤Q . We study the concentration phenomenon for ‖QX‖2 under

two basic . Later we assume that p ≈ pQ is a large number and v2 = tr(B2) ≈ p ≈ pQ .

The goal is to apply Corollary 2.3 and Corollary 2.5 claiming that ‖QX‖2 − p can be

sandwiched between −2v
√
x and 2v

√
x + 2x with probability at least 1 − 2e−x . The

major required condition is sub-gaussian behavior of ξ1 . The whole list is given here.

(ξ1) A random vector ξ1 ∈Rp satisfies Eξ1 = 0 , Var(ξ1) ≤ IIp . Also

1. The function φ1(u)
def
= logEe〈u,ξ1〉 is finite and fulfills for some Cφ

φ1(u)
def
= logEe〈u,ξ1〉 ≤ Cφ‖u‖2

2
, u ∈Rp .

2. For some ̺ > 0 and some constants c3 , c4 , it holds with Eu from (2.5)

sup
‖u‖≤̺

1

‖u‖3
∣

∣

Eu〈u, ξ1 −Euξ1〉3
∣

∣ ≤ c3 ,

sup
‖u‖≤̺

1

‖u‖4
∣

∣

Eu〈u, ξ1 −Euξ1〉4 − 3
{

Eu〈u, ξ1 −Euξ1〉2
}2∣

∣ ≤ c4 .
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3. The function logE ei〈u,ξ
1
〉 is well defined and

sup
‖u‖≤̺

1

‖u‖3
∣

∣

Eiu〈iu, ξ1 −Eiuξ1〉3
∣

∣ ≤ c3 ,

sup
‖u‖≤̺

1

‖u‖4
∣

∣

Eiu〈iu, ξ1 −Eiuξ1〉4 − 3
{

Eiu〈iu, ξ1 −Eiuξ1〉2
}2∣

∣ ≤ c4 .

We are now well prepared to state the result for the i.i.d. case. Apart (ξ1) , we need

pQ to be sufficiently large to ensure the condition Cφ µ ≤ 1/3 ; see (2.7). Also we require

n to be large enough for the relation p
3/2
Q ≪ n , where a ≪ b means that a/b ≤ c

for some small absolute constant c . Similarly a . b means a/b ≤ C for an absolute

constant C .

Theorem 2.6. Let X = n−1/2
∑n

i=1 ξi , ξi are i.i.d. in Rp with Eξ1 = 0 and

Var(ξ1) ≤ IIp . For a fixed x , assume (ξ1) with n ̺2 ≫ x pQ . Let also pQ ≫ C2φ x and

n ≫ p
3/2
Q . Then

P

(

‖QX‖2 > trB + 2
√

x tr(B2) + 2x
)

≤ (1 +∆µ)e
−x,

P

(

‖QX‖2 < trB − 2v
√
x
)

≤ (1 +∆µ)e
−x,

with

∆µ .
x3/2p

3/2
Q

n
.

Proof. The definition and i.i.d structure of the ξi ’s yield

φ(u) = logEe〈X,u〉 = nφ1(n
−1/2u).

Moreover, for any u

Eu〈u,X −EuX〉2 = Eu〈u, ξ1 −Euξ1〉2,

Eu〈u,X −EuX〉3 = n−1/2
Eu〈u, ξ1 −Euξ1〉3,

and

Eu〈u,X −EuX〉4 − 3
{

Eu〈u,X −EuX〉2
}2

= n−1
Eu〈u, ξ1 −Euξ1〉4 − 3n−1

{

Eu〈u, ξ1 −Euξ1〉2
}2

.

This implies (2.6) for any g with g/
√
n ≤ ̺ and

τ3 ≤ n−1/2
c3 , τ4 ≤ n−1

c4 .
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Moreover, the quantity ♦4 from (2.16) satisfies

♦4 .
x3/2p

3/2
Q

n
,

while the other terms like ρµ in the definition (2.10) of ∆µ are exponentially small. Now

the upper bound follows from Corollary 2.3. Similar arguments can be used for checking

the lower bound by Corollary 2.5.

2.4 Light exponential tails

Now we turn to the main case of light exponential tails of ξ . Namely, we suppose that

Eξ = 0 and for some fixed g > 0

φ(u)
def
= logE exp

(

〈u,V−1ξ〉
)

≤ ‖u‖2
2

, u ∈Rp, ‖u‖ ≤ g, (2.22)

for some self-adjoint operator V in Rp , V ≥ IIp . In fact, it suffices to assume that

sup
‖u‖≤g

E exp
(

〈u,V−1ξ〉
)

≤ C . (2.23)

The quantity C can be very large but it is not important and does not enter in the

established bounds. In fact, condition (2.23) implies an analog of (2.22) for a g < g : by

(2.14)

φ(u) ≤ ‖u‖2
2

+
τ3‖u‖3

6
≤ ‖u‖2

2

(

1 +
τ3g

3

)

, ‖u‖ ≤ g ,

for a small value τ3 . Moreover, reducing g allows to take V 2 equal or close to Var(ξ) .

Now we continue with a vector ξ satisfying (2.22). As previously, the goal is to

establish possibly sharp deviation bounds on ‖Qξ‖2 for a given linear mapping Q : Rp →
R

q . Remind the notation B = QV 2Q⊤ . By normalization, one can easily reduce the

study to the case ‖B‖ = 1 . Let p = tr(B) , v2 = tr(B2) , and µ(x) be defined by

µ(x) =
(

1 + v

2
√
x

)−1
; see (B.4). Obviously µ(x) grows with x . Define the value xc as

the root of the equation

g−
√

pµ(x)

µ(x)
= z(B, x) + 1. (2.24)

The left hand-side here decreases with x , while the right hand-side is increasing in x to

infinity. Therefore, the solution exists and is unique. Also denote µc = µ(xc) and

gc = g−√
pµc , (2.25)
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so that

gc/µc = z(B, xc) + 1.

Theorem 2.7. Let (2.22) hold and let Q be such that B = QV 2Q⊤ satisfies ‖B‖ = 1

and p = tr(B) < ∞ . Define xc by (2.24) and gc by (2.25), and suppose gc ≥ 1 . Then

for any x > 0

P

(

‖Qξ‖2 ≥ z2c (B, x)
)

≤ 2e−x + e−xc 1I(x < xc) ≤ 3e−x, (2.26)

where zc(B, x) is defined by

zc(B, x)
def
=







√

p+ 2v x1/2 + 2x , x ≤ xc ,

gc/µc + 2(x− xc)/gc , x > xc ,

≤







√
p+

√
2x , x ≤ xc ,

gc/µc + 2(x− xc)/gc , x > xc .

Moreover, if, given x , it holds

g ≥ x1/2/2 + (px/4)1/4, (2.27)

then

P

(

‖Qξ‖ ≥ √
p+

√
2x

)

≤ 3e−x. (2.28)

Remark 2.4. Depending on the value x , we have two types of tail behavior of the

quadratic form ‖Qξ‖2 . For x ≤ xc , we have essentially the same deviation bounds as in

the Gaussian case with the extra-factor two in the deviation probability. For x > xc , we

switch to the special regime driven by the exponential moment condition (2.22). Usually

g2 is a large number (of order n in the i.i.d. setup) yielding xc also large, and the second

term in (2.26) can be simply ignored. The function zc(B, x) is discontinuous at the point

xc . Indeed, zc(B, x) = z(B, x) for x < xc , while by (2.24), it holds gc/µc = z(B, xc)+1 .

However, the jump at xc is at most one.

As a corollary, we state the result for the norm of ξ ∈Rp corresponding to the case

V

−2 = Q = IIp and p < ∞ . Then

p = v2 = p.
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Corollary 2.8. Let (2.22) hold with V = IIp . Then for each x > 0

P

(

‖ξ‖ ≥ zc(p, x)
)

≤ 2e−x + e−xc 1I(x < xc),

where zc(p, x) is defined by

zc(p, x)
def
=







(

p+ 2
√
p x+ 2x

)1/2
, x ≤ xc,

gc/µc + 2g−1
c (x− xc), x > xc.

If g ≥ x1/2/2 + (px/4)1/4 , then

P

(

‖ξ‖ ≥ z(p, x)
)

≤ 3e−x.

Proof of Theorem 2.7. First we consider the most interesting case x ≤ xc . We expect

to get Gaussian type deviation bounds for such x . The main tool of the proof is the

following lemma.

Lemma 2.9. Let µ ∈ (0, 1) and z(µ) = g/µ−
√

p/µ > 0 . Then (2.22) implies

E exp
(

µ‖Qξ‖2/2
)

1I
(

‖VQ⊤Qξ‖ ≤ z(µ)
)

≤ 2 exp
( µ2v2

4(1 − µ)
+

µ p

2

)

. (2.29)

Proof. Let us fix for a moment some ξ ∈Rp and µ < 1 and define

a =V−1ξ, Σ = µVQ⊤QV .

Consider the Gaussian measure Pa,Σ = N (a, Σ−1) , and let U ∼ N (0, Σ−1) . By the

Girsanov formula

log
dPa,Σ

dP0,Σ
(u) = 〈Σa,u〉 − 1

2

〈

Σa,a
〉

and for any set A ∈Rp

Pa,Σ(A) = P0,Σ(A− a) = E0,Σ

[

exp
{

〈ΣU ,a〉 − 1

2

〈

Σa,a
〉

}

1I(A)
]

.

Now we select A =
{

u : ‖Σu‖ ≤ g
}

. Under P0,Σ , one can represent ΣU = Σ1/2γ

with a standard Gaussian γ . Therefore,

P0,Σ(A− a) = Pγ∼N (0,II)

(

‖Σ1/2(γ −Σ1/2a)‖ ≤ g
)

≥ Pγ∼N (0,II)

(

‖Σ1/2γ‖ ≤ g− ‖Σa‖
)

.
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We now use that Pγ∼N (0,II)

(

‖Σ1/2γ‖2 ≤ tr(Σ)
)

≥ 1/2 with tr(Σ) = µ tr(B) = µ p .

Therefore, the condition ‖Σa‖+√
µ p ≤ g implies in view of 〈Σa,a〉 = µ‖Qξ‖2

1/2 ≤ Pa,Σ(A) = E0,Σ

[

exp
{

〈ΣU ,V−1ξ〉 − µ‖Qξ‖2/2
}

1I(‖ΣU‖ ≤ g)
]

or

exp
(

µ‖Qξ‖2/2
)

1I
(

‖ΣV−1ξ‖ ≤ g−√
µ p

)

≤ 2E0,Σ

[

exp
{

〈ΣU ,V−1ξ〉 1I(‖ΣU‖ ≤ g)
]

.

We now take the expectation of the each side of this equation w.r.t. ξ , change the

integration order, and use (2.22) yielding

E exp
(

µ‖Qξ‖2/2
)

1I
(

‖ΣV−1ξ‖ ≤ g−√
µ p

)

≤ 2E0,Σ exp
(

‖ΣU‖2/2
)

= 2Eγ∼N (0,II) exp
(

‖Σ1/2γ‖2/2
)

= 2det
(

II −Σ
)−1/2

= 2det
(

II − µB
)−1/2

.

We also use that for any µ > 0

log det
(

II − µB
)−1/2 − µ tr(B)

2
≤ µ2 tr(B2)

4(1− µ)
;

see (B.5), and the first statement follows in view of ΣV−1ξ = µVQ⊤Qξ .

The use of µ from (B.4) in (2.29) yields similarly to the proof of Theorem B.1

P

(

‖Qξ‖2 > z2(B, x), ‖VQ⊤Qξ‖ ≤ z(µ)
)

≤ 2e−x. (2.30)

It remains to consider the probability of large deviation P
(

‖VQ⊤Qξ‖ > z(µ)
)

.

Lemma 2.10. For any xc > 0 such that z(B, xc) + 1 ≤ gc/µc , it holds with µc =
{

1 + v/(2
√
xc)

}−1
and zc = z(µc) = g/µc −

√

p/µc

P

(

‖VQ⊤Qξ‖ > zc
)

≤ P
(

‖Qξ‖2 > z2c
)

≤ e−xc .

Proof. Define

Φ(µ)
def
=

µ2v2

4(1− µ)
+

µ p

2
.

It follows due to (B.4) and (B.6) for any µ ≤ µc

Φ(µ) ≤ Φ(µc) ≤
µcz

2(B, xc)

2
− xc,
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where the right hand-side does not depend on µ . Denote η = ‖Qξ‖ and use that

‖VQ⊤Qξ‖ ≤ ‖QV 2Q⊤‖1/2‖Qξ‖ ≤ η . Then by (2.29)

E exp(µη2/2) 1I
(

η ≤ z(µ)
)

≤ 2 expΦ(µ) ≤ 2 expΦ(µc). (2.31)

Define the inverse function µ(z) = z−1(µ) . For any z ≥ zc , it follows from (2.31) with

µ = µ(z)

E exp
{

µ(z)(z− 1)2/2
}

1I
(

z− 1 ≤ η ≤ z
)

≤ 2 expΦ(µc)

yielding

P

(

z− 1 ≤ η ≤ z
)

≤ 2 exp
(

−µ(z) (z− 1)2/2 + Φ(µc)
)

and hence,

P

(

η > z
)

≤ 2

∫ ∞

z

exp
{

−µ(z)(z − 1)2/2 + Φ(µc)
}

dz.

Further, µ z(µ) = g−√
pµ and

gc = µc zc ≤ µ z(µ) ≤ g, µ ≤ µc.

This implies the same bound for the inverse function:

gc ≤ zµ(z) ≤ g, z ≥ zc ,

and for z ≥ 2

P

(

η > z
)

≤ 2

∫ ∞

z

exp
{

−µ(z)
(

z2/2 − z
)

+ Φ(µc)
}

dz

≤ 2

∫ ∞

z

exp
{

−gc (z/2 − 1) + Φ(µc)
}

dz

≤ 4

gc
exp

{

−gc (z/2− 1) + Φ(µc)
}

. (2.32)

Conditions gczc = µ−1
c g2c ≥ µc

{

z(B, xc) + 1
}2

and gc ≥ 1 ensure that P
(

η > zc
)

≤
e−xc .

Remind that xc is the largest x -value ensuring the condition gc ≥ z(B, xc) + 1 .

We also use that for x ≤ xc , it holds z(µ) ≥ z(µc) = zc . Therefore, by (2.30) and
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Lemma 2.10

P

(

‖Qξ‖2 ≥ z2(B, x)
)

≤ P
(

‖Qξ‖2 ≥ z2(B, x), ‖VQ⊤Qξ‖ ≤ z(µ)
)

+P
(

‖Qξ‖2 ≥ z2c
)

≤ 2e−x + e−xc .

Finally we consider x > xc . Applying (2.32) yields by z ≥ zc

P

(

η > z
)

≤ 2

µc zc
exp

{

−µc z
2
c/2 + g+ µc z

2(B, xc)/2 − xc
}

exp
{

−µc zc(z − zc)/2
}

≤ e−xc exp
{

−gc(z− zc)/2
}

.

The choice z by

gc(z− zc)/2 = x− xc

ensures the desired bound.

Now, for a prescribed x , we evaluate the minimal value g ensuring the bound (2.26)

with xc ≥ x . For simplicity we apply the sub-optimal choice µ(x) =
(

1 + 2
√

p/x
)−1

;

see Remark B.3. Then for any x ≥ 1

µ(x)
{

z(B, x) + 1
}

≤
√
x√

x+ 2
√
p

(

√

p+ 2(xp)1/2 + 2x+ 1
)

,

pµ(x) =

√
x p√

x+ 2
√
p
.

It is now straightforward to check that

µ(x)
{

z(B, x) + 1
}

+
√

pµ(x) ≤ √
x/2 + (x p/4)1/4.

Therefore, if (2.27) holds for the given x , then (2.24) is fulfilled with xc ≥ x yielding

(2.28).
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A Moments of a Gaussian quadratic form

Let γ be standard normal in Rp for p ≤ ∞ . Given a self-adjoint trace operator B ,

consider a quadratic form
〈

Bγ,γ
〉

.

Lemma A.1. It holds

E

〈

Bγ,γ
〉

= trB,

Var
〈

Bγ,γ
〉

= 2 trB2.

Moreover,

E

(〈

Bγ,γ
〉

− trB
)2

= 2 trB2,

E

(〈

Bγ,γ
〉

− trB
)3

= 8 trB3,

E

(〈

Bγ,γ
〉

− trB
)4

= 48 trB4 + 12(trB2)2,

and

E

〈

Bγ,γ
〉2

= (trB)2 + 2 trB2,

E

〈

Bγ,γ
〉3

= (trB)3 + 6 trB trB2 + 8 trB3,

E

〈

Bγ,γ
〉4

= (trB)4 + 12(trB)2 trB2 + 32(trB) trB3 + 48 trB4 + 12(trB2)2,

Var
〈

Bγ,γ
〉2

= 8(trB)2 trB2 + 32(trB) trB3 + 48 trB4 + 8(trB2)2.

Moreover, if B ≤ IIp and p = trB , then trBm ≤ p‖B‖m−1 for m ≥ 1 and

E

〈

Bγ,γ
〉2 ≤ p2 + 2p‖B‖ ≤ (p + ‖B‖)2,

E

〈

Bγ,γ
〉3 ≤ p3 + 6p2‖B‖+ 8p‖B‖2 ≤ (p + 2‖B‖)3,

E

〈

Bγ,γ
〉4 ≤ p4 + 12p3‖B‖+ 44p2‖B‖2 + 48p‖B‖3 ≤ (p + 3‖B‖)4,

Var
〈

Bγ,γ
〉2 ≤ 8p3 + 40p2‖B‖+ 48p‖B‖2.

Proof. Let χ = γ2 − 1 for γ standard normal. Then Eχ = 0 , Eχ2 = 2 , Eχ3 = 8 ,

Eχ4 = 60 . Without loss of generality assume B diagonal: B = diag(λ1, λ2, . . . , λp) .

Then

ξ
def
=

〈

Bγ,γ
〉

− trB =

p
∑

j=1

λj(γ
2
j − 1),
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where γj are i.i.d. standard normal. This easily yields

Eξ2 =

p
∑

j=1

λ2
jE(γ2j − 1)2 = Eχ2 trB2 = 2 trB2,

Eξ3 =

p
∑

j=1

λ3
jE(γ2j − 1)3 = Eχ3 trB3 = 8 trB3,

Eξ4 =

p
∑

j=1

λ4
j(γ

2
j − 1)4 +

∑

i 6=j

λ2
iλ

2
jE(γ2i − 1)2E(γ2j − 1)2

=
(

Eχ4 − 3(Eχ2)2
)

trB4 + 3(Eχ2 trB2)2 = 48 trB4 + 12(trB2)2,

ensuring

E

〈

Bγ,γ
〉2

=
(

E

〈

Bγ,γ
〉)2

+Eξ2 = (trB)2 + 2 trB2,

E

〈

Bγ,γ
〉3

= E
(

ξ + trB
)3

= (trB)3 +Eξ3 + 3 trB Eξ2

= (trB)3 + 6 trB trB2 + 8 trB3,

and

Var
〈

Bγ,γ
〉2

= E
(

ξ + trB
)4 −

(

E

〈

Bγ,γ
〉)2

=
(

trB
)4

+ 6(trB)2Eξ2 + 4 trBEξ3 +Eξ4 −
(

(trB)2 + 2 trB2
)2

= 8(trB)2 trB2 + 32(trB) trB3 + 48 trB4 + 8(trB2)2.

This implies the results of the lemma.

Now we compute the exponential moments of centered and non-centered quadratic

forms.

Lemma A.2. Let ‖B‖op = λ and γ ∼ N (0, IIp) . Then for any µ ∈ (0, λ−1) ,

E exp
{µ

2

(

〈Bγ,γ〉 − p
)

}

= det(II − µB)−1/2 .

Moreover, with p = trB and v2 = trB2

logE exp
{µ

2

(

〈Bγ,γ〉 − p
)

}

≤ µ2v2

4(1 − λµ)
. (A.1)

If B is positive semidefinite, λj ≥ 0 , then

logE exp
{

−µ

2

(

〈Bγ,γ〉 − p
)

}

≤ µ2v2

4
. (A.2)



20 Sharp deviation bounds for the squared norm of a sub-gaussian vector

Proof. W.l.o.g. assume λ = 1 . Let λj be the eigenvalues of B , |λj | ≤ 1 . By an

orthogonal transform, one can reduce the statement to the case of a diagonal matrix

B = diag
(

λj

)

. Then 〈Bγ,γ〉 = ∑p
j=1 λjγ

2
j and by independence of the γj ’s

E

{µ

2
〈Bγ,γ〉

}

=

p
∏

j=1

E exp
(µ

2
λjε

2
j

)

=

p
∏

j=1

1
√

1− µλj

= det
(

II − µB
)−1/2

.

Below we use the simple bound:

− log(1− u)− u =
∞
∑

k=2

uk

k
≤ u2

2

∞
∑

k=0

uk =
u2

2(1 − u)
, u ∈ (0, 1),

− log(1− u) + u =
∞
∑

k=2

uk

k
≤ u2

2
, u ∈ (−1, 0).

Now it holds

logE
{µ

2

(

〈Bγ,γ〉 − p
)

}

= log det(II − µB)−1/2 − µ p

2

= −1

2

p
∑

j=1

{

log(1− µλj) + µλj

}

≤
p

∑

j=1

µ2λ2
j

4(1− µ)
=

µ2v2

4(1− µ)
.

The last statement can be proved similarly.

Now we consider the case of a non-centered quadratic form 〈Bγ,γ〉/2 + 〈A,γ〉 for a

fixed vector A .

Lemma A.3. Let λmax(B) < 1 . Then for any A

E exp
{1

2
〈Bγ,γ〉+ 〈A,γ〉

}

= exp
{‖(II −B)−1/2A‖2

2

}

det(II −B)−1/2.

Moreover, for any µ ∈ (0, 1)

logE exp
{µ

2

(

〈Bγ,γ〉 − p
)

+ 〈A,γ〉
}

=
‖(II − µB)−1/2A‖2

2
+ log det(II − µB)−1/2 − µp

≤ ‖(II − µB)−1/2A‖2
2

+
µ2v2

4(1− µ)
. (A.3)

Proof. Denote a = (II −B)−1/2A . It holds by change of variables (II −B)1/2x = u for
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Cp = (2π)−p/2

E exp
{1

2
〈Bγ,γ〉+ 〈A,γ〉

}

= Cp

∫

exp
{

−1

2
〈(II −B)x,x〉+ 〈A,x〉

}

dx

= Cp det(II −B)−1/2

∫

exp
{

−1

2
‖u‖2 + 〈a,u〉

}

du = det(II −B)−1/2 e‖a‖
2/2.

The last inequality (A.3) follows by (A.1).

B Deviation bounds for Gaussian quadratic forms

The next result explains the concentration effect of ‖Qξ‖2 for a centered Gaussian vector

ξ ∼ N (0,V 2) and a linear operator Q : Rp → R

q , p, q ≤ ∞ . We use a version from

Laurent and Massart (2000). For completeness, we present a simple proof of the upper

bound.

Theorem B.1. Let ξ ∼ N (0,V 2) be a Gaussian element in Rp and let Q : Rp →Rq

be such that B = QV 2Q⊤ is a trace operator in Rq . Then with p = tr(B) , v2 =

tr(B2) , and λ = ‖B‖ , it holds for each x ≥ 0

P

(

‖Qξ‖2 − p > 2v
√
x+ 2λx

)

≤ e−x, (B.1)

P

(

‖Qξ‖2 − p ≤ −2v
√
x

)

≤ e−x. (B.2)

It also implies

P

(
∣

∣‖Qξ‖2 − p
∣

∣ > z2(B, x)
)

≤ 2e−x,

with

z2(B, x)
def
= 2v

√
x+ 2λx . (B.3)

Proof. W.l.o.g. assume that λ = ‖B‖ = 1 . We use the identity ‖Qξ‖2 = 〈Bγ,γ〉 with

γ ∼ N (0, IIq) . We apply the exponential Chebyshev inequality: with µ > 0

P

(

〈Bγ,γ〉 − p > z2(B, x)
)

≤ E exp
(µ

2

(

〈Bγ,γ〉 − p
)

− µ z2(B, x)

2

)

.

Given x > 0 , fix µ < 1 by the equation

µ

1− µ
=

2
√
x

v
or µ−1 = 1 +

v

2
√
x
. (B.4)
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Let λj be the eigenvalues of B , |λj | ≤ 1 . It holds with p = trB in view of (A.1)

logE
{µ

2

(

〈Bγ,γ〉 − p
)

}

≤ µ2v2

4(1− µ)
. (B.5)

For (B.1), it remains to check that the choice µ by (B.4) yields

µ2v2

4(1 − µ)
− µ z2(B, x)

2
=

µ2v2

4(1− µ)
− µ

(

v
√
x+ x

)

= µ
(

v
√
x

2
− v

√
x− x

)

= −x. (B.6)

The bound (B.2) is obtained similarly by applying the exponential Chebyshev inequality

to −〈Bγ,γ〉+ p with µ = 2v−1√x . The use of (A.2) yields

P

(

〈Bγ,γ〉 − p < −2v
√
x

)

≤ E exp
{µ

2

(

−〈Bγ,γ〉+ p
)

− µ v
√
x

}

≤ exp
(µ2v2

4
− µ v

√
x

)

= e−x

as required.

Corollary B.2. Assume the conditions of Theorem B.1. Then for z > v

P

(
∣

∣‖Qξ‖2 − p
∣

∣ ≥ z
)

≤ 2 exp

{

− z2
(

v+
√
v2 + 2λz

)2

}

≤ 2 exp

(

− z2

4v2 + 4λz

)

. (B.7)

Proof. Given z , define x by 2v
√
x+ 2λx = z or 2λ

√
x =

√
v2 + 2λz − v . Then

P

(

‖Qξ‖2 − p ≥ z
)

≤ e−x = exp

{

−
(√

v2 + 2λz − v
)2

4λ2

}

= exp

{

− z2
(

v+
√
v2 + 2λz

)2

}

.

This yields (B.7) by direct calculus.

Of course, bound (B.7) is sensible only if z ≫ v .

Corollary B.3. Assume the conditions of Theorem B.1. If also B ≥ 0 , then

P

(

‖Qξ‖2 ≥ z2(B, x)
)

≤ e−x (B.8)

with

z2(B, x)
def
= p+ 2v

√
x+ 2λx ≤

(√
p+

√
2λx

)2
.

Also

P

(

‖Qξ‖2 − p < −2v
√
x

)

≤ e−x.
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Proof. The definition implies v2 ≤ pλ . One can use a sub-optimal choice of the value

µ(x) =
{

1 + 2
√

λp/x
}−1

yielding the statement of the corollary.

As a special case, we present a bound for the chi-squared distribution corresponding

to Q =V 2 = IIp , p < ∞ . Then B = IIp , tr(B) = p , tr(B2) = p and λ(B) = 1 .

Corollary B.4. Let γ be a standard normal vector in Rp . Then for any x > 0

P

(

‖γ‖2 ≥ p+ 2
√
p x+ 2x

)

≤ e−x,

P

(

‖γ‖ ≥ √
p+

√
2x

)

≤ e−x,

P

(

‖γ‖2 ≤ p− 2
√
p x

)

≤ e−x.

The bound of Theorem B.1 can be represented as a usual deviation bound.

Theorem B.5. Assume the conditions of Theorem B.1. For y > 0 , define

x(y)
def
=

(
√
y+ p−√

p)2

4λ
.

Then

P

(

‖Qξ‖2 ≥ p+ y
)

≤ e−x(y), (B.9)

E

{

(‖Qξ‖2 − p) 1I
(

‖Qξ‖2 ≥ p+ y
)}

≤ 2
(

y+ p

λ x(y)

)1/2
e−x(y) . (B.10)

Moreover, let µ > 0 fulfill ǫ = µλ+ µ
√

λp/x(y) < 1 . Then

E

{

eµ(‖Qξ‖2−p)/2 1I(‖Qξ‖2 ≥ p+ y)
}

≤ 1

1− ǫ
exp{−(1 − ǫ)x(y)} . (B.11)

Proof. Normalizing by λ reduces the statements to the case with λ = 1 . Define η =

‖Qξ‖2 − p and

z(x) = 2
√
p x+ 2x. (B.12)

Then by (B.1) P(η ≥ z(x)) ≤ e−x . Inverting the relation (B.12) yields

x(z) =
1

4

(√
z + p−√

p
)2

and (B.9) follows by applying z = y . Further,

E

{

η 1I(η ≥ y)
}

=

∫ ∞

y

P(η ≥ z) dz ≤
∫ ∞

y

e−x(z) dz =

∫ ∞

x(y)
e−x z′(x) dx .
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As z′(x) = 2 +
√

p/x monotonously decreases with x , we derive

E

{

η 1I(η ≥ y)
}

≤ z′(x(y))e−x(y) =
1

x′(y)
e−x(y) =

4
√
y+ p√

y+ p−√
p
e−x(y)

and (B.10) follows.

In a similar way, define z(x) from the relation µ−1 log z(x) =
√
p x+ x yielding

z(x) = exp
(

µ
√
p x+ µ x

)

.

The inverse relation reads

xe(z) =
(
√

µ−1 log z+ p/4−
√

p/4
)2
.

Then with x(y) = xe(e
µy/2) =

(√
y+ p−√

p
)2
/4

E

{

eµη/2 1I(η ≥ y)
}

=

∫ ∞

eµy/2
P(eµη/2 ≥ z) dz =

∫ ∞

eµy/2
P(η ≥ 2µ−1 log z) dz

≤
∫ ∞

eµy/2
e−xe(z) dz =

∫ ∞

x(y)
e−x

z
′(x) dx.

Further, in view of µ+ 0.5µ
√

p/x < µ+ µ
√

p/x(y) = ǫ < 1 for x ≥ x(y) , it holds

z
′(x) =

(

µ+ 0.5µ
√

p/x
)

exp
(

µ
√
p x+ µ x

)

≤ exp
(

µ x
√

p/x(y) + µ x
)

= exp(ǫ x)

and

E

{

eµη/2 1I(η ≥ y)
}

≤
∫ ∞

x(y)
e−(1−ǫ)x dx =

1

1− ǫ
e−(1−ǫ)x(y)

and (B.11) follows.

C Local smoothness conditions

This section discusses different local smoothness characteristics of a multivariate function

f(υ) = EL(υ) , υ ∈Rp .

C.1 Smoothness and self-concordance in Gateaux sense

Below we assume the function f(υ) to be strongly concave with the negative Hessian

F(υ)
def
= −∇2f(υ) ∈ Mp positive definite. Also assume f(υ) three or sometimes even

four times Gateaux differentiable in υ ∈ Υ . For any particular direction u ∈ Rp , we

consider the univariate function f(υ + tu) and measure its smoothness in t . Local
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smoothness of f will be described by the relative error of the Taylor expansion of the

third or four order. Namely, define

δ3(υ,u) = f(υ + u)− f(υ)− 〈∇f(υ),u〉 − 1

2
〈∇2f(υ),u⊗2〉,

δ′3(υ,u) = 〈∇f(υ + u),u〉 − 〈∇f(υ),u〉 − 〈∇2f(υ),u⊗2〉 ,

and

δ4(υ,u)
def
= f(υ + u)− f(υ)− 〈∇f(υ),u〉 − 1

2
〈∇2f(υ),u⊗2〉 − 1

6
〈∇3f(υ),u⊗3〉.

Now, for each υ , suppose to be given a positive symmetric operator D(υ) ∈ Mp with

D
2(υ) ≤ F(υ) = −∇2f(υ) defining a local metric and a local vicinity around υ :

U(υ) =
{

u ∈Rp : ‖D(υ)u‖ ≤ r
}

for some radius r .

Local smoothness properties of f are given via the quantities

ω(υ)
def
= sup

u : ‖D(υ)u‖≤r

2|δ3(υ,u)|
‖D(υ)u‖2 , ω′(υ)

def
= sup

u : ‖D(υ)u‖≤r

2|δ′3(υ,u)|
‖D(υ)u‖2 . (C.1)

The Taylor expansion yields for any u with ‖D(υ)u‖ ≤ r

∣

∣δ3(υ,u)〉
∣

∣ ≤ ω(υ)

2
‖D(υ)u‖2 ,

∣

∣δ′3(υ,u)
∣

∣ ≤ ω′(υ)
2

‖D(υ)u‖2 . (C.2)

The introduced quantities ω(υ) , ω′(υ) strongly depend on the radius r of the local

vicinity U(υ) . The results about Laplace approximation can be improved provided a

homogeneous upper bound on the error of Taylor expansion. Assume a subset Υ ◦ of Υ

to be fixed.

(T3) There exists τ3 such that for all υ ∈ Υ ◦

∣

∣δ3(υ,u)
∣

∣ ≤ τ3
6
‖D(υ)u‖3 ,

∣

∣δ′3(υ,u)
∣

∣ ≤ τ3
2
‖D(υ)u‖3 , u ∈ U(υ).

(T4) There exists τ4 such that for all υ ∈ Υ ◦

∣

∣δ4(υ,u)
∣

∣ ≤ τ4
24

‖D(υ)u‖4 , u ∈ U(υ).

Lemma C.1. Under (T3) , the values ω(υ) and ω′(υ) from (C.1) satisfy

ω(υ) ≤ τ3 r

3
, ω′(υ) ≤ τ3 r , υ ∈ Υ ◦.
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Proof. For any u ∈ U(υ) with ‖D(υ)u‖ ≤ r

∣

∣δ3(υ,u)
∣

∣ ≤ τ3
6
‖D(υ)u‖3 ≤ τ3 r

6
‖D(υ)u‖2,

and the bound for ω(υ) follows. The proof for ω′(υ) is similar.

The values τ3 and τ4 are usually very small. Some quantitative bounds are given

later in this section under the assumption that the function f(υ) = ELG(υ) can be

written in the form −f(υ) = nh(υ) for a fixed smooth function h(υ) with the Hessian

∇2h(υ) . The factor n has meaning of the sample size.

(S3) −f(υ) = nh(υ) for h(υ) convex with ∇2h(υ) ≥ m
2(υ) = D

2(υ)/n and

sup
u : ‖m(υ)u‖≤r/

√
n

∣

∣〈∇3h(υ + u),u⊗3〉
∣

∣

‖m(υ)u‖3 ≤ c3 .

(S4) the function h(·) satisfies (S3) and

sup
u : ‖m(υ)u‖≤r/

√
n

∣

∣〈∇4h(υ + u),u⊗4〉
∣

∣

‖m(υ)u‖4 ≤ c4 .

(S3) and (S4) are local versions of the so called self-concordance condition; see Nesterov

(1988). In fact, they require that each univariate function h(υ + tu) of t ∈ R is self-

concordant with some universal constants c3 and c4 . Under (S3) and (S4) , we can

use D
2(υ) = nm

2(υ) and easily bound the values δ3(υ,u) , δ4(υ,u) , and ω(υ) , ω′(υ) .

Lemma C.2. Suppose (S3) . Then (T3) follows with τ3 = c3n
−1/2 . Moreover, for

ω(υ) and ω′(υ) from (C.1), it holds

ω(υ) ≤ c3 r

3n1/2
, ω′(υ) ≤ c3 r

n1/2
. (C.3)

Also (T4) follows from (S4) with τ4 = c4n
−1 .

Proof. For any u ∈ U(υ) and t ∈ [0, 1] , by the Taylor expansion of the third order

|δ(υ,u)| ≤ 1

6

∣

∣〈∇3f(υ + tu),u⊗3〉
∣

∣ =
n

6

∣

∣〈∇3h(υ + tu),u⊗3〉
∣

∣ ≤ n c3

6
‖m(υ)u‖3

=
n−1/2

c3

6
‖D(υ)u‖3 ≤ n−1/2

c3 r

6
‖D(υ)u‖2 .

This implies (T3) as well as (C.3); see (C.2). The statement about (T4) is similar.
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