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Abstract We propose a method for fast and automatic estimation
of spatially dependent regularization maps for total variation-based
(TV) tomography reconstruction. The estimation is based on two
distinct sub-networks, with the first sub-network estimating the
regularization parameter-map from the input data while the second
one unrolling T iterations of the Primal-Dual Three-Operator Split-
ting (PD3O) algorithm. The latter approximately solves the corre-
sponding TV-minimization problem incorporating the previously
estimated regularization parameter-map. The overall network is
then trained end-to-end in a supervised learning fashion using pairs
of clean-corrupted data but crucially without the need of having
access to labels for the optimal regularization parameter-maps.

1 Introduction

Over recent years, Low Dose X-ray Computed Tomogra-
phy (LDCT) has received a growing interest in the medi-
cal imaging field due to its ability to reduce the radiation
dose. Patients are exposed to low levels of radiation by
reducing the energy of the photons emitted from the X-
ray source. Using traditional and analytic reconstruction
methods such as filtered back projection (FBP), several
imaging artifacts are introduced, compromising the qual-
ity of the reconstructed image and clinical diagnosis.
To overcome this problem, iterative reconstruction meth-
ods have been proposed such as algebraic reconstruc-
tion technique (ART), simultaneous algebraic reconstruc-
tion technique (SART) and projection onto convex sets
(POCS). In addition, such reconstruction procedures of-
ten require the use of regularization methods in order to
eliminate noise and artifacts, such as for instance, the well-
known Tikhonov and Total Variation (TV) regularization
[1].
The acquired measured tomography data can be described
by the equation z = Axtrue + e, where xtrue ∈ Rn is the
ground truth image, A : Rn → Rm is a linear operator
which models the data-acquisition process, i.e. the dis-
cretized Radon transform, and e ∈ Rm denotes some ran-
dom noise component. Regularized iterative methods
solve minimization problems of the form

min
x

D(Ax,z)+R(x), (1)

where D( · , ·) denotes a data-discrepancy measure and
R( ·) a regularization term. A classical example is the
TV tomography reconstruction problem under Gaussian
noise which can be written as

min
x

1
2
‖Ax− z‖2

2 +λ‖∇x‖1 + I{x>0}(x). (2)

A key factor which impacts the quality of the recon-
structed image is the careful choice of the regularization
parameter λ which balances the strength between the reg-
ularization and the data fidelity term. Underestimating λ

yields poor regularization, while overestimating it results
in smooth images with an artificial “cartoon-like” appear-
ance. Particularly in medical imaging applications, where
images are at the basis of diagnostic decisions and therapy
planning, a proper choice of any regularization parameter
is crucial.
Employing a single scalar parameter λ implies that the
regularization is enforced with equal strength for each
pixel/voxel. Depending on the application, this might
be undesirable due to different features contained in the
image. In this case, one can replace the scalar parameter
with a spatially varying, i.e. a pixel/voxel dependent one,
denoted now by Λ ∈ Rqn

+ . Here, q denotes the number of
directions for which the partial derivatives are computed.
Implementation-wise, Λ corresponds to a stack of diag-
onal operators which contain a different regularization
parameter for every single pixel/voxel in the respective
gradient domain of the image. Then, the resulting prob-
lem has the form

min
x

D(Ax,z)+‖Λ∇x‖1 + I{x>0}(x). (3)

However, this problem requires a precise data-adaptive es-
timation of the spatially varying parameter-map Λ which
is a highly non-trivial task.

2 Methods

One approach for the automatic estimation of the spatially
varying regularization parameter Λ is employing bilevel
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Figure 1: Network architecture for the LDCT reconstruction problem. It consists of a sub-network NETΘ that estimates the
regularization parameter-map (blue), and a sub-network that unrolls T iterations of the PD3O algorithm (red).

optimization techniques. Given M pairs of measured data
and the corresponding ground truth (zi,xi

true)
M
i=1, the gen-

eral bilevel formulation is
min

Λ

M

∑
i=1

l(xi(Λ),xi
true) subject to

xi(Λ) = argmin
x

D(Ax,z)+‖Λ∇x‖1 + I{x>0}(x),

(4)
where l is a suitable upper level objective. For instance,
if l(x1,x2) = ‖x1− x2‖2

2, the bilevel problem (4) seeks to
compute the parameters Λ which are “the best on aver-
age”, i.e. PSNR-maximizing, for the given M data pairs.
Hence, given some new data ztest which has been mea-
sured in a similar way as (zi)

M
i=1, solving (3) with the

precomputed Λ will yield a good reconstruction.
Although this scheme has been extensively studied both
for scalar and spatially varying regularization parame-
ters, it has been mainly applied in image denoising ap-
plications, i.e. A = In with Gaussian noise, see [2–4].
Further, unsupervised approaches employing upper level
energies that do not depend on the ground truth xtrue,
i.e., l := l(x(Λ)), have also been considered in a series
of works [5–8]. Even though these bilevel optimization
methods are typically supported by rigorous mathematical
theories, they are computationally demanding which has
limited their use on tomographic problems.

2.1 An Unrolled Neural Network Framework

Here, inspired by the recent success of unrolled neural net-
works (NNs) [9], we consider an unrolled neural network
approach in order to learn the regularization parameter Λ.
The proposed framework is summarized in Figure 1 and
it is outlined next.
An unrolled NN which corresponds to an implementation
of an iterative scheme of finite length is constructed to
approach the solution of problem (2) assuming a fixed
regularization parameter-map. Within the unrolled NN,
the regularization parameter-map is estimated from the
input data via a sub-network NETΘ and is used throughout
the whole reconstruction scheme. To be more precise,
given some initial estimate x0 we work with an iterative

scheme (speficied in the next section)

xT = ST (x0,z,Λ,A), T = 0,1,2, . . . , (5)

that solves (3) in the limit T → ∞. Then, for some fixed
number of iterations T ∈ N, our unrolled NN reads as
follows: 

ΛΘ = NETΘ(x0),

x1 = S1(x0,z,ΛΘ,A),

...

xT = ST (x0,z,ΛΘ,A).

(6)

Here, NETΘ denotes a U-Net [10] with learnable parame-
ters Θ. We denote by N T

Θ
the overall resulting network,

i.e.

N T
Θ (x0) = ST (x0,z,ΛΘ,A) = ST (x0,z,NETΘ(x0),A).

The unrolled NN can then be end-to-end trained in a
supervised manner on a set of input-target image-pairs.
This resulting network can be identified as a pipeline that
combines in a sequential way 1) the estimation of the
regularization parameter-map which is adapted to the data
z (and hence in medical imaging to the new patient) and 2)
the iterative scheme that solves the image reconstruction
problem.

2.2 Primal-Dual Three-Operator Splitting

The iterative scheme selected here for the LDCT re-
construction problem is the Primal-Dual Three-Operator
(PD3O) splitting algorithm. The PD3O was introduced
in [11] and it is a generalized version of the Primal-Dual
Hybrid Gradient (PDHG) algorithm [12]. It is used to
minimize objectives that consist of a proximable function
g, a composite function f with the linear operator K and
a differentiable function h with a Lipschitz constant L:

min
x

f (Kx)+g(x)+h(x).

The algorithm is summarized in Algorithm 1 and ex-
plained next. Unlike the standard L2-squared fidelity
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Algorithm 1 Unrolled PD3O algorithm

Input: L = Lip(∇h), τ = 2/L, σ = 1/(τ‖KKT‖),
initial guess x̄0

Output: reconstructed image xTV
1: p0 = x̄0
2: q0 = 0
3: for k < T do
4: qk+1 = proxσ f ∗(qk +σKx̄k)

5: pk+1 = proxτg(pk− τ∇h(pk)− τKTqk+1)
6: x̄k+1 = 2pk+1−pk + τ∇h(pk)− τ∇h(pk+1)
7: end for
8: xTV = xT

term that is commonly used in tomography reconstruc-
tion problems with Gaussian noise, here we employ the
Kullback-Leibler divergence which is more suitable to de-
scribe the noise distribution of the measured tomographic
data z. We have that z = Ax+ e, where

e =−Ax− log(Ñ1/N0) , Ñ1 ∼ Pois(N0 exp(−Axµ)).

We denote with µ and N0 the normalization constant and
the mean photon count per detector bin without attenu-
ation, respectively. The data-discrepancy in (3) can be
derived from a Bayesian viewpoint and is

D(Ax,z) =
m

∑
i=1

e−(Ax)iµN0− e−ziµN0
(
− (Ax)iµ + log(N0)

)
,

(7)

see [13] for more details. To configure PD3O for (3) we
define the following

f (q) = ‖Λq‖1, g(p) = I{p>0}(p), K = ∇,

h(p) =
m

∑
i=1

e−piµN0− e−ziµN0
(
−piµ + log(N0)

)
.

Notice that with the standard L2-squared fidelity term, it is
sufficient to use the PDHG algorithm since its convex con-
jugate has a closed-form proximal operator, which is not
the case with (7). However, the additional function in the
PD3O algorithm allows to express the data discrepancy in
the differentiable term h. Note that ∇h is not globally Lip-
schitz continuous but due to the non-negativity constraint,
we only have to consider ∇h(p) for p with non-negative
entries. Consequently, we can find an upper bound of the
Lipschitz constant of ∇h by Lip(∇h)≤ ‖A‖2µ2N0.

3 Results

To evaluate our proposed unrolled NN, we use the
LoDoPaB dataset [14] for low-dose CT imaging. It is
based on scans of the Lung Image Database Consortium
and Image Database Resource Initiative which serve as

ground truth images, while the measurements are simu-
lated. The dataset contains 35820 training images, 3522
validation images and 3553 test images. Here the ground
truth images have a resolution of 362× 362 on a do-
main of 26cm× 26cm. We only use the first 300 train-
ing images and the first 10 validation images. For the
forward operator we consider a normalization constant
µ = 81.35858, the mean photon count per detector bin
N0 = 4096 as well as 513 equidistant detector bins and
1000 equidistant angles between 0 and π .
In Figure 2 we compare the FBP reconstruction with the
PD3O reconstructions where we use (i) a scalar param-
eter (λ ), chosen to maximize the PSNR “on average”,
and (ii) our computed spatially dependent parameter map
(ΛΘ). Using the latter, we obtain a significant improve-
ment in the reconstruction both visually and in terms of
quality measures, e.g., PSNR and SSIM. In particular,
sharp edges are retained, while the constant regularizing
parameter results in blurry and blocky-like reconstruc-
tions. One can observe that the network attributes higher
regularization parameters to image content with smooth
structures while it yields lower regularization parameters
at the edges to prevent smoothing.

4 Discussion

We have presented a data-driven approach to automat-
ically estimate spatially dependent parameter-maps for
TV regularization for the low dose X-ray CT tomogra-
phy reconstruction problem. Although only the TV reg-
ularization is considered in this paper, higher order or
combinations of regularizers can be used for different
CT applications, see [15, 16]. Moreover, our unrolled
framework is quite flexible and can be easily used for
other modalities such as qualitative and quantitative MRI
reconstruction, image denoising as well as their dynamic
versions, see [17]. Finally, more sophisticated network
architectures than the U-Net have been proposed recently,
e.g. [18, 19], which could be potentially adopted for the
estimation of the regularization parameter-maps as well.
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