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Neutral delay differential equation Kerr cavity model
Andrei G. Vladimirov, Daria A. Dolinina

Abstract

A neutral delay differential equation (NDDE) model of a Kerr cavity with external coherent
injection is developed that can be considered as a generalization of the Ikeda map with second
and higher order dispersions being taken into account. It is shown that this model has solutions in
the form of dissipative solitons both in the limit, where the model can be reduced to the Lugiato-
Lefever equation (LLE), and beyond this limit, where the soliton is eventually destroyed by the
Cherenkov radiation. Unlike the standard LLE the NDDE model is able to describe the overlap of
multiple resonances associated with different cavity modes.

1 Introduction

Over the last two decades, optical frequency combs have found applications in different fields of sci-
ence and industry including spectroscopy, optical ranging, metrology, searching for exoplanets, mi-
crowave photonics and optical communications [5, 27, 25, 29, 30, 38]. Standard methods of the fre-
quency comb generation are based on the use of mode-locked lasers [17] and optical microcavities
subject to an external coherent injection [6]. One of the most commonly used methods to model Kerr
optical cavities is based on the application of the paradigmatic Lugiato-Lefever equation (LLE) [23],
which is known to exhibit bistability of continuous wave (CW) solutions as well as dissipative soli-
ton solutions preserving their shape in the course of propagation along the cavity axis and sitting
on a constant intensity background. The latter solutions correspond to the so-called temporal cav-
ity solitons (TCSs), which were observed experimentally in optical microresonator frequency comb
generators [14], optical fiber cavities [22], and mode-locked lasers [10]. The LLE based on the mean-
field approximation is, however, not free from certain shortcomings. In particular, it describes bistable
behavior and TCS formation only in the vicinity of a single cavity resonance [2, 14]. To overcome this
shortcoming the modeling approaches based on the so-called generalized Ikeda map [24, 12, 3, 4, 13]
and a generalized LLE model with localized injection and losses [20] were developed to describe the
appearance of the overlap of multiple nonlinear resonances, multistability of CW solutions, and super-
solitons [13]. Here we propose an alternative approach to model nonlinear dynamics of an injected
Kerr cavity based on second order neutral type delay differential equation (NDDE), which also can be
considered as a generalization of the Ikeda map [16]. We show that in a certain limit the NDDE model
can be reduced to the LLE. We perform linear stability analysis of the NDDE model in the practically
important large delay limit and present numerical evidence of the existence of stationary and oscillat-
ing dissipative optical solitons in it. We show that beyond the LLE limit the TCSs of the NDDE model
are strongly affected by the Cherenkov radiation induced by the high order dispersion. The modeling
approach proposed here can be adopted to study the dynamics of solid state and fiber lasers, where
the chromatic dispersion of the intracavity media plays an important role in the mechanism of the
short pulse generation as well as to investigate the effect of second and higher order dispersion on
the characteristics of mode-locking regimes in semiconductor lasers. Furthermore, the NDDE model
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might be useful to model the coupled-cavity systems such as microcavity optical frequency comb gen-
erator pumped by a semiconductor mode-locked light source, which is already successfully modeled
by DDE models [33, 34, 32, 31].

2 Model equation

A neutral delay differential equation (NDDE) model of a ring Kerr cavity subject to a coherent optical
injection reads:(

A+ a∂tA+
a2 − ib

2
∂ttA

)
e−iα|A|2/2−iθ/2

=
√
κ

(
Aτ − a∂tAτ +

a2 + ib

2
∂ttAτ

)
eiα|Aτ |2/2+iθ/2 + η,

(1)

where t is the time, A(t) is the normalized electric field envelope, Aτ = A (t− τ) is the retarded
field amplitude with the delay time τ equal to the linear round-trip time of the cavity. α is the Kerr
coefficient, κ is the linear intensity attenuation factor per cavity round-trip, η is the normalized injection
rate, and θ describes the detuning between the injection frequency and the frequency of a cavity
mode. The coefficients a > 0 and b are responsible for the intracavity dispersion. Note, that, as it will
be shown below, in the LLE limit only the coefficient b contributes to the second order dispersion, while
the parameter a describes the group delay due to the first order dispersion. In the absence of injection
and losses, η = 0 and κ = 1, Eq. (1) is similar to the conservative version of the Gires–Tournois
interferometer model introduced in [28]. Similarly to this model Eq. (1) with η = 0 and κ = 1 is
symmetric under the transformation t → −t and A → A∗ combined with the time shift and, hence, it
is reversible in the non-dissipative limit. Note, however, that unlike the first order NDDE Gires–Tournois
interferometer model studied in [28] the second order derivative terms responsible for the second order
dispersion in the LLE limit are present in Eq. (1), see also Ref. [26]. This is an important difference
between Eq. (1) and the model of Ref. [28]. Note, that for a = b = 0 Eq. (1) becomes similar to
the well known Ikeda map [16]. The derivation of Eq. (1) is given in the next section together with the
derivation of three other versions of the NDDE model including the mean field one. An advantage of
the model equation (1) is that in the non-dissipative limit, η = 0 and κ = 1, similarly to the first order
NDDE discussed in [28] it admits a relatively simple conserved quantity ∂tW (t) = 0 with

W (t) = a3 |∂tA (t)|2 + ib [A (t) ∂tA
∗ (t)− A∗ (t) ∂tA (t)] + 2a |A (t)|2

+

t+τ∫
t

∣∣∣∣A (x) + a∂xA (x) +
a2 − ib

2
∂xxA (x)

∣∣∣∣2 dx.
Therefore this study is mainly focused on the analysis of Eq. (1).

3 Model derivation

To derive the NDDE model let us consider the schematic representation of a ring Kerr cavity with a
pair of thin dispersive (phase) filters and two identical Kerr media shown in Fig. 1. The field envelope
on the output of the left Kerr medium is given by A2 (t+ τ1) = A1 (t) e

iα|A1(t)|2/2+iϕ1 , where α is the
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Figure 1: Ring cavity with two Kerr media (green) and a pair of identical thin phase filters (orange)
responsible for the intracavity dispersion.

Kerr coefficient, ϕ1 and τ1 are the phase shift and the delay time due to the propagation in the cavity,
see Fig. 1(a).

The Fourier transform of the field envelope at the output from a phase filter is given by Â3 (ω) =
f̂ (ω) Â2 (ω), where Â2 (ω) is the Fourier transform of the input field A2 (t) and f̂ (ω) = e−iΦ(ω)

with real Φ (ω), see e. g. Ref. [15]. Close to ω = 0 we can use the expansion

f̂ (ω) = e−iΦ(0)
{
1 + iωΦ′ (0)−

[
Φ′ (0)2 − iΦ′′ (0)

]
ω2/2 +O

(
ω3

)}
.

Taking this relation into account, the electric field envelope A3 can be expressed as

A3 (t) = F−1
[
f̂ (ω) Â2 (ω)

]
= F−1

{
e−iϕ/2

[
1 + iωa− a2 + ib

2
ω2 +O

(
ω3

)]
Â2 (ω)

}
=

[
1− a∂t +

a2 + ib

2
∂tt +O (∂ttt)

]
A2 (t) e

−iϕ/2, (2)

where F−1 is the inverse Fourier transform and the notations Φ (0) ≡ ϕ, Φ′ (0) ≡ a, and Φ′′ (0) ≡
−b are used. The field amplitude A4 is obtained from A3 by taking into account time delay τ2 , phase
shift ϕ2, and introducing the injection rate η, and the intensity attenuation factor κ due to the cavity
losses. Thus we get

A4

(
t+

τ

2

)
=

√
κ

[
1− a∂t +

a2 + ib

2
∂tt +O (∂ttt)

](
A1e

iα|A1|2/2+iθ/2
)
+ η, (3)

with the one half of the cavity round trip time τ/2 = τ1+τ2 and the phase shift θ/2 = − (ϕ1 + ϕ+ ϕ2).

The field envelope on the input of the left Kerr medium is given byA6 (t− τ1) = A1 (t) e
−iα|A1(t)|2/2−iϕ1

with |A1 (t)|2 = |A6 (t− τ1)|2. The Fourier transform of the field envelope A6 is given by Â6 (t) =
f̂ (ω) Â5 (ω), which can be rewritten as Â5 (t) = f̂−1 (ω) Â6 (ω) = f̂ ∗ (ω) Â6 (ω). Hence we get

A5 (t) = F−1
[
f̂ ∗ (ω) Â6 (ω)

]
=

[
1 + a∂t +

a2 − ib

2
∂tt +O (∂ttt)

]
A6 (t) e

−iϕ/2.

Therefore, similarly to (3) we obtain

A4

(
t− τ

2

)
=

[
1 + a∂t +

a2 − ib

2
∂tt +O (∂ttt)

](
A1e

−iα|A1|2/2−iθ/2
)
. (4)
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Finally, shifting the time in Eq. (3) by −τ , equating the resulting equation to Eq. (4), and neglecting
high order dispersion terms O (∂ttt) we get(

1 + a∂t +
a2 − ib

2
∂tt

)(
Ae−iα|A|2/2−iθ/2

)
=

√
κ

(
1− a∂t +

a2 + ib

2
∂tt

)(
Aτe

iα|Aτ |2/2+iθ/2
)
+ η,

(5)

where A ≡ A1 and Aτ = A (t− τ).

The model (1) can be derived in a similar way to Eq. (5), see Fig. 1(b). Here neglecting the high order
dispersions we get:

A2 ≈ A1 − a∂tA1 +
a2 + ib

2
∂ttA1, (6)

and
A4

(
t+

τ

2

)
≈

√
κA2e

iα|A2|2/2+iθ/2 + η. (7)

Substituting Eq. (6) into Eq. (7), assuming that a, b, and α are sufficiently small, and neglecting the
O (αa) and O (αb) terms in the exponential we obtain

A4

(
t+

τ

2

)
≈

√
κ

(
A1 − a∂tA1 +

a2 + ib

2
∂ttA1

)
eiα|A1|2/2+iθ/2 + η. (8)

Similarly, for another half of the cavity, we get

A4

(
t− τ

2

)
≈

(
A1 + a∂tA1 +

a2 − ib

2
∂ttA1

)
e−iα|A1|2/2−iθ/2. (9)

Finally, combining Eqs. (8) and (9) we arrive at the NDDE model (1). The latter equation can be further
simplified under the approximation αa, αb ≪ 1, which was already used above:(

Ae−iα|A|2/2 + a∂tA+
a2 − ib

2
∂ttA

)
e−iθ/2

=
√
κ

(
Aτe

iα|A|2/2 − a∂tAτ +
a2 + ib

2
∂ttAτ

)
eiθ/2 + η,

(10)

In the mean field approximation, where the field amplitude is small, expanding the exponentials in Eq.
(10) we get the following equation:(

A+ a∂tA+
a2 − ib

2
∂ttA− i

α

2
|A|2

)
e−iθ/2

=
√
κ

(
Aτ − a∂tAτ +

a2 + ib

2
∂ttAτ + i

α

2
|Aτ |2

)
eiθ/2 + η. (11)

Neutral DDEs (1), (5), (10), and (11) are reversible in the non-dissipative limit η = 0 and κ = 1. This
property is similar to that of the LLE, which will be derived from these equations in the next section.
As it will be shown in the next section, the parameter b corresponds to the second order dispersion
coefficient in the LLE limit. In the absence of dispersion according to Eq. (6) the field amplitude on the
output of the phase filter is defined by

A2 ≈ A1 − a∂tA1 +
a2

2
∂ttA1 = A1 (t− a) +O

(
a3
)
.
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Therefore, the parameter a has the meaning of the group delay introduced by the filter. The inequality
a > 0 follows from the casuality principle. As it will be shown below this inequality is the necessary
but not sufficient condition of the absence of a spurious instability in the NDDE models.

Note, that a straightforward derivation of the model equation without splitting Kerr and dispersive media
into two symmetric parts would result in a “regular” DDE model instead of NDDE:

A+ 2a∂tA+
(
a2 − ib

)
∂ttA =

√
κA (t− τ) eiα|A(t−τ)|2+iθ + η, (12)

which is a generalization of the Ikeda map and is very similar to the model derived in [26] to describe
a Kerr cavity with two spectral filters. However, unlike the NDDE model (1) having no spectral filtering,
the LLE obtained from Eq. (12) contains an additional large diffusion term proportional to a2 [26] in
addition to the second order dispersion term proportional to b. Therefore, this model is not suitable
to describe a multimode Kerr cavity characterized by a strong dispersion in combination with small
spectral filtering.

To conclude this section, we note that the derivation presented here can be trivially generalized by
including higher order dispersion terms into the model equation.

4 Reduction to the LLE

Using the multiscale method described in [21] we can derive the same LLE from any one of the four
model equations (1), (5), (10), and (11). To be more specific, we choose Eq. (1) and in the large delay
limit τ = ϵ−1 ≫ 1 rescale the time as x = ϵt to get(

A+ ϵa∂xA+ ϵ2
a2 − ib

2
∂xxA

)
eiα|A|2/2+iθ/2 =

√
κ

(
Aτ1 − ϵa∂xAτ1 + ϵ2

a2 + ib

2
∂xxAτ1

)
eiα|Aτ1|

2
/2+iθ/2 + η, (13)

whereAτ1 = A (t− 1). Next, we introduce two time scalesA (t) = u (t0, t2), where t0 = (1− ϵc1+
+ϵ2c2 + . . . )x, t2 = ϵ2x, and rescale the parameters as

α = ϵ2χ, κ = e−2ϵ2k, η = ϵ2r. (14)

Substituting these expressions into Eq. (13), collecting the first order terms in ϵ, and using the Fred-
holm alternative we obtain the following boundary condition

u (t0, t2) = u (t0 − 1, t2) e
iθ, (15)

together with the relation c1 = 2a for the group delay parameter. Finally, collecting the second order
terms in ϵ we get c2 = 4a2 and the LLE model:

∂t2u = −ku+ iχu |u|2 + ib∂t0t0u+ r. (16)

Note that Eq. (16) with the boundary condition (15), where the parameter θ plays the role of the de-
tuning, is able to describe multiple resonances corresponding to different cavity modes. However, it
cannot describe the overlap of these resonances. In order to get overlapping resonances and coexist-
ing different solitons one needs to replace distributed injection and losses with the localized ones, as
it was proposed in [20]. It is seen from Eq. (16) that the coefficient b in front of the second derivative

DOI 10.20347/WIAS.PREPRINT.3025 Berlin 2023



A. G. Vladimirov, D. A. Dolinina 6

terms is responsible for the second order dispersion in the LLE limit, see also [26]. Therefore, these
derivatives cannot be neglected in the model equation. Away from the LLE limit coefficient a might also
contribute to the second order dispersion, which, in particular, can follow from the numerical results of
[28], where a first order NDDE was studied.

Using the additional assumption that the detuning is small,

θ = −ϵ2Θ, (17)

instead of (16) we get the standard LLE describing a vicinity of a single cavity resonance

∂t2u = −ku− iΘu+ iχu |u|2 + ib∂t0t0u+ r (18)

with the periodic boundary condition u (t0, t2) = u (t0 − 1, t2).

Note finally, that in the conservative limit the LLE transforms into the nonlinear Schrödinger equation
(NLSE), see also Ref. [28]. However, the existence of stable soliton solutions is hardly possible in the
NDDE model near this limit. Since unlike the standard NLSE the NDDE contains the dispersion of all
the orders, the next dominating order after the second one will be the third oder dispersion. However,
it is well known that the solitons of the NLSE are destroyed by the Cherenkov radiation [19, 1] in the
presence of an arbitrary small third order dispersion term [37, 7, 9].

5 Linear stability analysis in the small amplitude conservative
limit

Let us consider the linear equation

A+ a∂tA+
a2 − ib

2
∂ttA

=

(
Aτ − a∂tAτ +

a2 + ib

2
∂ttAτ

)
eiθ, (19)

obtained by the linearization of the NDDE models with κ = 1 and η = 0 at the trivial solution A = 0.
Substituting A (t) = A0e

λt into (19) we get the characteristic equation

1 + aλ+
a2 − ib

2
λ2 =

(
1− aλ+

a+ ib

2
λ2

)
e−λτ . (20)

In the large delay limit using the approach of Ref. [39] we substitute e−λτ ≡ Y into Eq. (20), solve the
resulting equation with respect to Y , and set λ = iν. Thus, we get the following expression for the
pseudo-continuous spectrum in the limit τ → ∞

λτ = − ln

[
1 + iaν − (a2 − ib) ν2/2

1− iaν − (a2 + ib) ν2/2
e−iθ

]
=

− ln eiΨ(ν)−iθ = −iΨ(ν) + iθ (21)

with real Ψ(ν). The fact that the pseudo-continuous spectrum of Eq. (19) is purely imaginary is obvi-
ously the consequence of the reversibility of this equation, see also Ref. [28]. However, whether this
system exhibits spurious instability depends on the discrete spectrum of the characteristic equation
(20). In the large delay limit discrete eigenvalues with positive real parts correspond to small |Y | ≪ 1
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Figure 2: Real parts of the eigenvalues λ± defined by (22) with a = 1 (blue) and a = −1 (red).

in the limit τ → ∞. Therefore, they can be obtained by equating to zero the left hand side of Eq. (20),
1 + aλ+ (a2 − ib)λ2/2 = 0, which gives

λ± =
−a±

√
−a2 + 2ib

a2 − ib
. (22)

The real parts of the eigenvalues λ± are shown in Fig. 2 as functions of the “second order dispersion
coefficient” b. It is seen that for a < 0 at one of the two discrete eigenvalues always has a positive
real part. This means that Eq. (19) with a < 0 should demonstrate a spurious instability. For a > 0
both the eigenvalues λ± have negative real parts if

|b| <
√
2a2. (23)

Hence, in order to avoid spurious instabilities below we choose a > 0 in the NDDE models and
assume that the inequality (23) is satisfied. Note, that positive coefficient a can be rescaled to unity by
rescaling the time variable in the model equations.

6 CW solutions

In this section we study the linear stability of the CW solutions of Eq. (1). The amplitude A of the CW
solutions satisfies the equation

Ae−iα|A|2/2−iθ/2 =
√
κAeiα|A|2/2+iθ/2 + η. (24)

Substituting into Eq. (24) A =
√
Ieiφ, where I and φ are the intensity and the phase of the CW so-

lution, and separating real and imaginary parts of the resulting equation we get the following equation
for the CW intensity [

1 + κ− 2
√
κ cos (θ + αI)

]
I = η2, (25)

which is transformed into the corresponding relation of the LLE in the limit (14) and (17). The phase of
the CW solution is given by

tanφ =
sin

(
αI
2

)
+
√
κ sin

(
θ + αI

2

)
cos

(
αI
2

)
−
√
κ cos

(
θ + αI

2

) .
DOI 10.20347/WIAS.PREPRINT.3025 Berlin 2023
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Figure 3: Intensity of CW solitions of Eq. (1) as a function of the detuning parameter θ for η = 0.5 (a).
Saddle-node bifurcations of CW solutions on (η2, θ)-plane (b). White, light gray, and dark gray areas
limited by the saddle-node bifurcations indicate the existence of one, three, and five CW solutions,
respectively. The parameter values κ = 0.923 and α = 0.04 correspond to ϵ = 0.2 in Eq. (14).

Nonlinear resonances of CW solutions of Eq. (1) near cusp bifurcations corresponding to different
cavity modes are shown in Fig. 3(a).

The saddle-node bifurcations of the CW solutions are defined by the conditions

4α2κI4 − α2I2
[
η2 − (κ+ 1) I

]2
= η4,

θ± = arctan

[
− (1 + κ)αI ±

√
κ (4α2I2 + 2− κ)− 1

1 + κ± αI
√

κ (4α2I2 + 2− κ)− 1

]
−αI + 2πn,

where θ± define a pair of saddle-node bifurcations limiting the bistability domain corresponding to a
single cavity resonance. Figure 3(b) illustrates the coexistence of multiple CW solutions of Eq. (1).
It is seen that at sufficiently high injection rates the CW resonances start overlapping. Unlike the
resonances shown in Fig. 3(b), the bistability domains of Eq. (11) with cubic nonlinearity are much
more narrow and never overlap. This can be easily understood by noticing that for cubic nonlinearity
Eq. (25) transforms into a cubic equation in I having not more than three solutions. Hence, the mean
field model (11) does not describe well the dynamics of Eq. (1) beyond the LLE limit. Therefore, below
we focus mainly on the model (1), which does not assume the mean field approximation.

To study the linear stability of the CW solution we linearize Eq. (1) around this solution, A(t) =(√
I + δAeλt

)
eiφ. Thus we get the following characteristic equation:

c2Y
2 + c1Y + c0 = 0, (26)

where Y (λ) = exp(−λτ), and the coefficients c0,1,2 are polynomoals in λ:

c2 = κ+
κλ

4

[(
a4 + b2

)
λ3 − 4a3λ2 + 2

(
4a2 − bαI

)
λ− 8a

]
,

DOI 10.20347/WIAS.PREPRINT.3025 Berlin 2023



Neutral delay differential equation Kerr cavity model 9

In
te
ns
ity

0 0.2 0.4 0.6
0

1

2

3

4 (a)

(b)

(c)

(d)

MI

-4 -2 0 2 4

-4 -2 0 2 4

γ

-4 -2 0 2 4

(b)

(c)

(d)

γ
γ

-0.4
0

-0.8
-0.4
0

-0.8
-0.4
0

2
0 0.4 0.8 1.2 1.6 2
-3

-2

-1

0 (e)

In
te
ns
ity

0 1 2 3 4 5 6 7
0
5
10
15
20
25
30
35
(f)

MI

FB

Figure 4: S-shaped dependence of the intensity I of CW solutions on the injection rate η (a). Curves of
pseudocontinuous spectrum for different values of I (b) I ≈ 1.7032, (c) I ≈ 2.4643, (d) I ≈ 4.0221.
Saddle-node bifurcations (black curves) and modulational instability (red curve) around a single cavity
resonance on the (θ, η2)-plane (e). CW solutions from (a) in the region of larger η and I (f). Parameters
are: ϵ = 0.5, κ = e−2ϵ2 , α = 1ϵ2, θ = −3.5ϵ2, a = 1ϵ, b = −1ϵ2. Unstable solutions are shown by
dashed line. MI (FB) indicates the modulational (flip) bifurcation points.

c1 =

√
κ

2

{[(
b2 − a4

)
λ4 − 2bαIλ2 − 4

]
cos (αI + θ) + 2(2 + a2λ2)(αI − bλ2) sin (αI + θ)

}
(27)

c0 =
1

4

[(
a4 + b2

)
λ4 + 4a3λ3 + 2

(
4a2 − bαI

)
λ2 + 8aλ+ 4

]
.

In the limit of large delay time τ → ∞ the eigenvalues of the pseudo-continuous spectrum (PCS) can
be represented as λ ≈ iµ + γ/τ with real µ and γ [39]. The pseudo-continuous spectrum is given
by the two solution branches of the quadratic equation (26):

γ (µ) = −Re {ln [Y (iµ)]} . (28)

Stable CW solutions are characterized by γ (µ) < 0 and, in particular, γ (0) < 0. At the saddle-
node (flip) bifurcation point we have γ (0) = 0 and Y (0) = 1 (γ (0) = 0 and Y (0) = −1), while
modulational instability takes place when one or both branches of preudocontinuous spectrum are
tangent to the imaginary axis at µ = ±µm with |µm| > 0.

S-shaped CW curve of Eq. (1) is shown in Fig. 4(a). It is seen that modulational instability takes
place on the unstable middle part of the CW curve and destabilizes its upper part. Figures 4(c)-(d)
present the real parts of the pseudo-continuous eigenvalues γ (µ) calculated at the points indicated in
4(a). Figure 4(e) illustrates the location of the modulational instability curve between two saddle-node
bifurcations around a single cavity resonance in (η2, θ)-plane. Finally, Fig. 4(f) illustrates a growing
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Figure 5: Largest real part of the discrete eigenvalues of the CW solution with b = (
√
2 + 0.01)a2 as

a function of the CW intensity I (a). a = 0.1. Evolution of the (modulationary unstable) state from the
upper bifurcation branch with η = 0.02 (b). The solution diverges with time. Other parameters are the
same as in Fig. 4 except ϵ = 0.1.

multiplicity of the solutions of Eq. (25) due to the overlap of resonances with increasing the injection
rate.

It is important also to check the discrete spectrum of nonlinear CW solutions. The discrete spectrum is
defined by the instantaneous part of the model equation and can be obtained by solving the equation
c0 = 0 with respect to λ, where c0 is defined by Eqs. (26) and (27). It is seen from Fig. 5 corresponding
to b = (

√
2 + 0.01)a2 that when b exceeds slightly the critical value defined by (23) the lower part

of the CW branch can become unstable with respect to the discrete spectrum, see Fig. 5(a). The
increase of the CW intensity I has a stabilizing effect on the discrete spectrum. However, as it is seen
from Fig. 5(b) the solution of Eq. (1) starting from the upper CW state becomes unbounded in the limit
t → ∞. This behavior might be attributed to a spurious instability.

7 Cavity solitons

In this section we investigate numerically TCS solutions of the NDDE models using the RADAR5 code
written in FORTRAN [11]. We start with the delay time τ = 25 and the parameter values close to
the LLE limit defined by Eqs. (14) and (17) , κ = e−2ϵ2 , α = ϵ2, a = ϵ, b = ϵ2, θ = −3.5ϵ2,
η = 1.855ϵ2 with ϵ = 0.02. The calculated TCS solution of Eq. (1) is shown in Fig. 6(a) by black
line. This soliton is very close to the TCS of the model (5) shown by green line. Dissipative soliton of
the LLE (18) is indicated by red dashed line in the same figure for the LLE parameter values obtained
using the relations (14) and (17), k = 1, Θ = −3.5, χ = 1, b = 1, r = 1.855 in Eq. (18). With
increasing ϵ the soliton profile gets more asymmetric, see Figs.6(c) and (d) obtained with ϵ = 0.1.
As it is seen in Fig. (d), the soliton tails exhibit slowly decaying oscillations, which can be attributed to
the so-called Cherenkov radiation induced by high order dispersion [18, 1]. The Cherenkov radiation
amplitude increases with ϵ, see Fig. 6(b) obtained with ϵ = 0.34 and eventually destroys the TCS.

The dependence of the TCS peak power on the parameter ϵ calculated using the models (1) (black
line) and (5) (blue line) with exponential nonlinearity, and the model (11) (red line) with cubic nonlin-
earity is shown in Fig. 7. It is seen that while sufficiently close to the LLE limit, ϵ → 0, this dependence
looks rather smooth, it becomes fast oscillating with the increase of ϵ. Such oscillatory behavior can
be explained by the interaction of a TCS with its own tails leading either to constructive or destructive
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Figure 6: TCS profiles calculated using the model equations (1) (black line) with ϵ = 0.02 (a), ϵ = 0.34
(b), ϵ = 0.1 (c) and (d). Other parameters are given in the text. One can see from panel (d) that already
for ϵ = 0.1 the TCS tails exhibit a Cherenkov radiation, which is more pronounced at the trailing tail.
In panel (a) the TCS of Eq. (5) is shown by green line and the soliton of the LLE (18) - by red dashed
line. Parameters are: κ = e−2ϵ2 , α = ϵ2, a = ϵ, b = ϵ2, θ = −3.5ϵ2, η = 1.855ϵ2.
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Figure 8: Different types of localizes solutions of the NDDE model (1) calculated for ϵ = 0.722. The
TCS shown in panel (a) corresponds to the black curve shown in Fig.7. Other parameters are the
same as in Fig.7.

interference due to the presence of Cherenkov radiation. Furthermore, it is seen that the oscillation
frequency increases with the decrease of ϵ, which is in agreement with the fact that the frequency of
the Cherenkov radiation tends to infinity when the third and/or fourth order dispersion coefficients tend
to zero, see e. g. [35, 36]. Note that the more exact model (5) demonstrates weaker dependence of
the TCS peak power on the Cherenkov radiation than Eq. (1). Therefore, Eq. (5) may be more suitable
for the description of the system dynamics far away from the LLE limit.

At relatively high values of ϵ different types of TCS can appear, as it is shown in Fig. 8. Their stability
ranges in the parameter pace are relatively small, but with ϵ = 0.722 can coexist for the same set of
parameters.

It is known that the soliton of the LLE can undergo an oscillatory instability with the increase of the
injection rate. The NDDE model (1) also shows a similar behavior. Figure 9 illustrates the appearance
of undamped oscillations of the soliton peak power for fixed relatively small ϵ = 0.05. At higher values
of ϵ there are different types of oscillating TCSs.

8 Conclusion

To conclude, we have developed a second order NDDE model of a ring dispersive Kerr cavity with
a coherent optical injection. Similarly to the first order NDDE model discussed in [28] in the non-
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Figure 9: TCS peak power (red curve) and intensity of CW solution (black curve) as functions of
the injection rate η (a). The TCS starts to oscillate above the Andronov-Hopf bifurcation threshold at
η ≈ 6.25 × 10−3. Red lines show maximal and minimal peak power within the oscillation period.
Time-trace of the TCS peak power calculated for η = 6.7 × 10−3 (b). ϵ = 0.05. Other parameters
are the same as in Fig.7

dissipative limit this model is reversible and has a conserved quantity. In a certain parameter range
and under the mean field and large delay approximations the NDDE model can be reduced to the
famous LLE model. However, unlike the LLE and similarly to the Ikeda map [12] and generalized
LLE [20] Kerr cavity models, the NDDE model is able to describe the overlap of the resonances
associated with different cavity modes. We have shown that TCSs can exist in the NDDE model not
only close to the LLE limit, but also beyond this limit. In the latter case they are strongly affected by
the Cherenkov radiation, which is induced by high order dispersion and eventually destroys the TCS.
An important advantage of the NDDE model is that it can be analyzed numerically using standard
codes, such as RADAR5 [11] and DDE-biftool [8]. Furthermore, after appropriate modifications this
model can be applied to study the dynamics of soliton mode-locked lasers and other laser systems
where the chromatic dispersion of the intracavity material dominates over the spectral filtering in the
mechanism of the short pulse formation. The NDDE model might be also useful for the consideration of
the coupled-cavity systems, such as an optical microcavity pumped by a semiconductor mode-locked
laser modeled by the DDE mode-locking model [33, 34, 32]. This model can be easily extended by
including higher order disperision terms into it.
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