
Smart Task Distribution in Combined

Fog-Cloud Scenarios

Dissertation

zur

Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik

der Universität Rostock

vorgelegt von
Mohammadreza Pourkiani, geboren am 15.09.1991 in Mashhad, Iran

Rostock, 01.05.2022

https://doi.org/10.18453/rosdok_id00004357

Gutachter:

Prof. Dr. Clemens Cap, Universität Rostock
Prof. Dr. Gero Mühl, Universität Rostock

Mehdi Assefi, PCN Bank Technology Center

Jahr der Einreichung: 2022
Jahr der Verteidigung: 2023

Abstract

In order to collect data, most of the IoT-based applications utilize sensors, which are
limited in terms of computational and storage capabilities. Therefore, the collected
raw data by the IoT sensors must be transmitted to capable servers for process-
ing, storage, and data mining purposes. Fog and Cloud computing are two leading
technologies which can provide computation and storage services for IoT-based ap-
plications. Cloud provides powerful servers, which are located far from the users and
have high latency, while Fog provides servers with limited computational power in
the proximity of the users with low latency. As there are different delay-sensitive
and delay-tolerable applications in the world of the IoT, utilization of only Fog or
Cloud can not be a perfect approach for all of the scenarios.

Moreover, task distribution between the fog and cloud servers is challenging as
in combined fog-cloud scenarios, there are various types of servers, which are het-
erogeneous in terms of hardware, delay, workload, and computational power. This
heterogeneity makes the selection process of the most suitable server at each time
slice very difficult. In this thesis, our main goal is to find a solution for resource allo-
cation in combined fog-cloud scenarios with regard to the application requirements.
For this purpose, we proposed an intelligent task assignment algorithm (MLTD) that
runs in the task distributor unit. This algorithm takes the diversity of servers into
account, considers the application requirements, and uses machine learning methods
for estimating the response times of the fog and cloud servers, in addition to the size
of the data that must be communicated over the Internet. By utilizing this method,
after receiving the raw data from the sensors, the task distributor unit selects the
most suitable server at that time-slice and assigns the received tasks to that server
to be processed.

In order to investigate the performance of MLTD, we used that for distributing
the tasks of a delay-tolerable application (that solves mathematical questions) and
a delay-sensitive application (that provides online healthcare services and utilizes
the wireless body sensor networks for data collection to monitor the health status
of people who work in environments with high levels of heat stress, such as the steel
and iron industries). For distributing the tasks of the discussed applications between
the fog and cloud servers, we utilized the Artificial Neural Networks (as the function
approximation method) in the task distributor unit. To train the neural networks,
we generated different numbers of tasks and ran them on all of the fog and cloud
servers. For the training process, we set the response times of servers as the output,
and the parameters of the tasks as the input of the neural networks. In the next
step, we set the trained neural networks in the broker and therefore made the broker
able to select the fastest server for processing a received task from the IoT sensors.
We also added more parameters in the training process of the neural networks in

i

different situations to make our proposed method scalable and usable in different
network architectures.

The performance of MLTD has been investigated in different experiments. The
achieved results show that this technique can reduce the Internet bandwidth utiliza-
tion, response time, and resource utilization compared to other proposed methods
in the state of the art. The reason is that our proposed technique (unlike the other
discussed methods in the state of the art) can predict the response times of avail-
able servers, in addition to the future Internet bandwidth utilization at the time of
task arrival (before the distribution process). Therefore, MLTD can distribute the
tasks with regard to the requirements of applications in terms of response time or
bandwidth utilization.

However, we observed that the performance of MLTD entirely depends on the
precision of the utilized function approximation methods, which can be affected by
using different types of tasks, training methods, and richness of training. Moreover,
we also witnessed that our smart task distribution technique performs excellently
when the fog and cloud servers provide response times with a difference of more than
the error of the utilized function approximation method for predicting the response
times.

ii

Abstrakt

Zur Datenerfassung verwenden die meisten IoT-basierten Anwendungen Sensoren,
deren Rechen- und Speicherkapazitäten begrenzt sind. Daher müssen die gesam-
melten Rohdaten von den IoT-Sensoren an fähige Server zur Verarbeitung,
Speicherung und zum Data Mining übertragen werden. Fog und Cloud
Computing sind zwei führende Technologien, die Berechnungs- und Speicherdienste
für IoT-basierte Anwendungen bereitstellen können. Die Cloud bietet leistungsstarke
Server, die weit von den Nutzern entfernt sind und eine hohe Latenz aufweisen,
während Fog Server begrenzter Rechenleistung in der Nähe der Nutzer mit geringer
Latenz bereitstellt. Da es in der Welt des IoT verschiedene verzögerungsempfind-
liche und verzögerungstolerante Anwendungen gibt, kann die Nutzung von Fog oder
Cloud nicht für alle Szenarien ein perfekter Ansatz sein.

Darüber hinaus ist die Aufgabenverteilung zwischen den Fog- und Cloud-Servern
eine Herausforderung, da es in kombinierten Fog-Cloud-Szenarien verschiedene Arten
von Servern gibt, die in Bezug auf Hardware, Verzögerung, Arbeitslast und Rechen-
leistung heterogen sind. Diese Heterogenität macht die Auswahl des am besten
geeigneten Servers in jeder Zeitscheibe sehr schwierig. Das Hauptziel in dieser
Arbeit ist es, eine Lösung für die Ressourcenzuweisung in kombinierten Fog-Cloud-
Szenarien unter Berücksichtigung der Anwendungsanforderungen zu finden. Zu
diesem Zweck haben wir einen intelligenten Aufgabenzuweisungsalgorithmus (MLTD)
vorgeschlagen, der in der Aufgabenverteilungseinheit läuft. Dieser Algorithmus
berücksichtigt die Vielfalt der Server, die Anforderungen der Anwendung und nutzt
Methoden des maschinellen Lernens, um die Antwortzeiten der Fog- und Cloud-
Server sowie die Größe der über das Internet zu übermittelnden Daten zu schätzen.
Mit dieser Methode wählt die Aufgabenverteilereinheit nach dem Empfang der
Rohdaten von den Sensoren den zu diesem Zeitpunkt am besten geeigneten Server
aus und weist die empfangenen Aufgaben diesem Server zur Bearbeitung zu.

Um die Leistung von MLTD zu untersuchen, haben wir es für die Verteilung der
Aufgaben einer verzögerungstoleranten Anwendung (die mathematische Fragen löst)
und einer verzögerungsempfindlichen Anwendung (die Online-Gesundheitsdienste
anbietet und die Wireless-Body-Sensornetzwerke für die Datenerfassung nutzt, um
den Gesundheitszustand von Menschen zu überwachen, die in Umgebungen mit
hohem Hitzestress arbeiten, z. B. in der Stahl- und Eisenindustrie) eingesetzt. Um
die Aufgaben der besprochenen Anwendungen zwischen den Fog und Cloud-Servern
zu verteilen, haben wir Artificial Neural Networks (als Methode zur
Funktionsannäherung) in der Aufgabenverteilungseinheit eingesetzt. Um die
Neural Networks zu trainieren, haben wir eine unterschiedliche Anzahl von
Aufgaben generiert und sie auf allen Fog- und Cloud-Servern ausgeführt. Für den
Trainingsprozess haben wir die Antwortzeiten der Server als Ausgabe und die

iii

Parameter der Aufgaben als Eingabe der neuronalen Netze festgelegt. Im nächsten
Schritt setzten wir die trainierten neuronalen Netze in den Broker ein, so dass dieser
in der Lage war, den schnellsten Server für die Verarbeitung einer empfangenen
Aufgabe von den IoT-Sensoren auszuwählen. Wir fügten auch weitere Parameter
in den Trainingsprozess der neuronalen Netze in verschiedenen Situationen ein, um
unsere vorgeschlagene Methode skalierbar und in verschiedenen Netzwerkarchitek-
turen verwendbar zu machen.

Die Leistung von MLTD wurde in verschiedenen Experimenten untersucht. Die
erzielten Ergebnisse zeigen, dass diese Technik die Internet-Bandbreitennutzung, die
Antwortzeit und die Ressourcennutzung im Vergleich zu anderen
vorgeschlagenen Methoden in früheren Arbeiten reduzieren kann. Der Grund dafür
ist, dass die von uns vorgeschlagene Technik (im Gegensatz zu den anderen
vorgeschlagenen Methoden) die Antwortzeiten der verfügbaren Server sowie die
künftige Auslastung der Internetbandbreite zum Zeitpunkt der Ankunft der Aufgabe
(vor dem Verteilungsprozess) vorhersagen kann. Daher kann MLTD die Aufgaben
im Hinblick auf die Anforderungen der Anwendungen in Bezug auf die Antwortzeit
oder die Bandbreitennutzung verteilen.

Wir haben jedoch festgestellt, dass die Leistung von MLTD vollständig von der
Genauigkeit der verwendeten Funktionsapproximationsmethoden abhängt, die durch
die Verwendung verschiedener Aufgabentypen, Trainingsmethoden und die
Reichhaltigkeit des Trainings beeinflusst werden kann. Darüber hinaus konnten
wir feststellen, dass unsere intelligente Aufgabenverteilungstechnik hervorragend
funktioniert, wenn die Antwortzeiten von Fog- und Cloud-Servern um mehr als den
Fehler der für die Vorhersage der Antwortzeiten verwendeten Funktionsapproxima-
tionsmethode abweichen.

iv

Acknowledgment

This work would not have been possible without the support of various people. First
of all, I thank my supervisor Prof. Dr. Clemens Cap, for his support, guidance, and
patience during my Ph.D. studies. I am also very grateful to Prof. Dr. Gero Mühl
for helping me by making comments on my works and for his support for the ex-
tension of my scholarship. I am also thankful to Mr. Masoud Abedi, my friend and
co-author in more than six papers. In addition, I would like to thank the University
of Rostock for funding my Ph.D. research through the Mecklenburg-Vorpommern
State Scholarship Program.

And most of all, I thank my parents, family members, and friends for their love
and support.

v

Contents

Contents

List of Acronyms iii

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Description . 2

1.3 Hypothesis . 5

1.4 Contributions . 6

1.5 Evaluation of Achievements . 8

1.6 Thesis Structure . 9

2 Basic Concepts 11

2.1 Internet of Things . 11

2.2 IoT Architecture . 12

2.3 IoT Applications . 13

2.4 IoT Challenges . 15

2.4.1 Limitation of IoT Objects . 15

2.4.2 Communication . 15

2.4.3 Mobility Management . 15

2.4.4 Security Issues . 15

2.4.5 Privacy . 16

2.4.6 Naming and Identity Management 16

2.4.7 Interoperability and Standardization 16

2.4.8 Data Management . 16

2.4.9 Data Mining . 16

2.4.10 Internet Traffic . 17

2.5 The Requirements of IoT Applications 17

2.6 Cloud Computing . 17

2.6.1 Cloud Computing Advantages 18

2.6.2 Cloud Computing Challenges 18

2.7 Fog Computing and its Characteristics 19

2.8 Fog vs. Cloud . 22

2.9 Combined Fog-Cloud Scenarios . 23

Contents

3 Previous Works 24
3.1 Benchmarks . 24

3.1.1 Utilization of Cloud Computing 24
3.1.2 Utilization of Fog Computing 24
3.1.3 Simple Methods for Utilizing both Fog and Cloud Servers . . . 25

3.2 Recent Complex Methods . 25
3.2.1 Optimization Based Methods 25
3.2.2 Other Complex Methods . 30

3.3 Investigating the Previous Works . 34

4 Case Study and Primary Experiments 36
4.1 Case Study . 36
4.2 Comparing the Performance of Fog and Remote Servers 37

4.2.1 Research Questions . 38
4.2.2 Assumptions . 38
4.2.3 The Experimental Results . 38

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios 44
5.1 Smart Task Distribution Between Fog and Cloud Servers with Similar

Workloads . 44
5.1.1 Network Architecture and Assumptions 44
5.1.2 Problem Description and Research Questions 46
5.1.3 AITDA: An Artificial Intelligence Based Task Distribution Al-

gorithm . 46
5.1.4 Evaluation of Results . 49

5.2 Fog-Cloud Smart Task Distribution by Considering the Application
Requirements . 50
5.2.1 Problem Description . 50
5.2.2 Proposed Approach . 50

5.2.2.1 FCSTD Time-Based 51
5.2.2.2 FCSTD Traffic-Based 53

5.2.3 Evaluation of Results . 53
5.3 Smart Task Distribution Between Fog and Cloud Servers with Differ-

ent Workloads . 62
5.3.1 Network Architecture and Assumptions 62
5.3.2 Problem Description . 64
5.3.3 Machine Learning Based Task Distribution (MLTD) 64
5.3.4 Evaluation of Results . 65

5.4 Investigating the Effective Parameters on the Performance of MLTD . 74
5.4.1 Research Questions and Hypothesis 74
5.4.2 Changing the Method and Richness of Training 75

i

Contents

5.4.3 Evaluation of Results . 75
5.4.3.1 DFDW and SFDW Conditions 76
5.4.3.2 DFSW and SFSW Conditions 79

6 Conclusion and Future Works 86
6.1 Conclusion . 86
6.2 Future Works . 89

6.2.1 Investigating the Performance of our Proposed Method in Sce-
narios with Mobile Servers . 89

6.2.2 Investigating the Impact of Number of Available Servers on
the Performance of Broker . 89

6.2.3 Considering the Variation of Delay 89
6.2.4 Increasing the Accuracy of Function Approximation Method . 90
6.2.5 Considering Different Numbers of Available Tasks in the Broker 90

A Publications 91

B Source Codes 94
B.1 Neural Networks . 94
B.2 Genetic Algorithm . 96
B.3 Virtual Fog Resolver . 99
B.4 Better Workload . 109
B.5 Random Fit . 118
B.6 MLTD . 128

Bibliography 138

ii

List of Acronyms

AHP Analytic Hierarchy Process
AI Artificial Intelligence
AITDA Artificial Intelligence Based Task Distribution Algorithm
ANN Artificial Neural Networks
DC Data Center
DFDW Different Fog Servers with Different Workloads
DFSW Different Fog Servers with Similar Workloads
DSSP Different Sizes Similar Processing Times
DSP Different Sizes and Processing Times
F2C Fog to Cloud Architecture
FAM Function Approximation Method
FCSTD Fog-Cloud Smart Task Distribution
GA Genetic Algorithm
GPRFCA Gaussian Process Regression for Fog-Cloud Allocation
IBU Internet Bandwidth Utilization
IoT Internet of Things
ITS Intelligent Transportation System
ITU International Telecommunication Union
LAN Local Area Network
LM Levenburg Marquardt
MANET Mobile Adhoc Network
MLTD Machine Learning Based Task Distribution
NIST National Institute of Standards and Technology
OFC Open Fog Consortium
OF2C Optimized Fog to Cloud Architecture
QoS Quality of Service
SFDW Similar Fog Servers with Different Workloads
SFSW Similar Fog Servers with Similar Workloads
SSDP Similar Sizes Different Processing Times
SSP Similar Sizes and Processing Times
TSWC Number of Time Slices in which the Workloads Change
VFR Virtual Fog Resolver
WBAN Wireless Body Area Network

iii

List of Acronyms

WBSN Wireless Body Sensor Network

iv

1 Introduction

1.1 Motivation

IoT (Internet of Things)-based applications utilize different types of sensors and
actuators for data collection and making changes in the environments. It must be
noticed that the sensors collect raw data, which needs to be processed by capable
servers to be available for users as meaningful information [1]. In IoT-based appli-
cations, one or several sensors can be used to collect data from an environment. For
example, healthcare applications use environmental sensors to collect information
about the parameters of an environment, such as temperature, pollution, and hu-
midity. Healthcare applications also use medical sensors, which are used to monitor
the patient’s vital signs such as heartbeat, respiration rate [2], body temperature,
blood pressure, and so on (more information about the different types of sensors is
presented in [3]).

The development of medical sensors has led to the emergence of Wireless Body
Area Network (WBAN), a key technology in e-health applications. WBANs are com-
posed of implanted or wearable sensors that collect biomedical data continuously [4].
This continuous monitoring provides many advantages, such as quick detection of
any abnormal sign in the human body. This is a significant advantage because fatal
diseases such as cardiovascular problems are usually diagnosed too late, and this late
diagnosis increases the death rate of patients [5]. Fortunately, with the advent of
WBANs and other medical applications, early detection of diseases is now possible.

WBAN-based healthcare applications are considered as an important application
of IoT. As we discussed earlier and as is mentioned in [6, 7, 8, 9, 10], provision-
ing the Quality of Service (QoS), especially reducing the response time (even a few
milliseconds), and Internet bandwidth utilization (because of its impact on cost
and quality of data communication) in these applications is of great importance.
Therefore, in this thesis, our motivation is to improve the response time (as a crit-
ical QoS parameter) and Internet Bandwidth Utilization (IBU) for WBAN-based
applications to improve their performance. The state of the Art shows the impor-
tance of task distribution between the Fog and Cloud resources, which has been
discussed in [11, 12, 13, 14], but the impact of predicting the processing times of
tasks on reducing the response time has not been considered. Therefore we aim to

1

1 Introduction

reduce the response time by proposing an Artificial Intelligence (AI) based resource
provisioning algorithm, which is able to predict the processing times of tasks and
their generated data, and runs in combined fog-cloud scenarios, and distributes the
generated tasks of WBANs. It must be mentioned that besides reducing the re-
sponse time (which is our main goal), our proposed resource provisioning algorithm
also aims to reduce the IBU and resource utilization. As another advantage, it can
be said that our proposed method is not restricted to healthcare applications and
can be used for the task distribution of any delay-sensitive applications (where the
AI-based method can predict the processing times of the tasks properly).

1.2 Problem Description

As we mentioned in the previous section, the collected raw data by the IoT devices
need to be processed in the first step to become available as meaningful information.
The general problem in IoT-based scenarios is that the utilized sensors do not have
enough computing and storage capabilities to store and process the collected raw
data [15]. Therefore, the raw data must be sent to capable servers to be processed
and stored.

As reported in my publication [16]; with regard to the previous works, one of the
best computing resources that can be utilized for the processing of collected raw data
by the IoT sensors is Cloud [17]. The integration of Cloud computing and IoT tech-
nologies provides the feasibility for transmission of the generated raw data by the
IoT devices to the cloud resources for further processing and continual storage [18].
However, there are some IoT-based applications that have stringent requirements
(such as real-time data communication), which can not tolerate the high response
time of Cloud [19, 20]. With regard to [21], one of the most notable challenges of the
Cloud is its high latency to the users. As the data providers need to transfer the raw
data over the Internet to send it to the cloud, the distance between the users and
Cloud increases the communication delay because the data packets must be passed
through several routers and firewalls to be received by the cloud servers. This high
latency badly affects the performance of delay-sensitive applications, like pervasive
smart healthcare [19]. This high latency has been quantitatively discussed in [22],
where Cloud was used for processing the healthcare-related data, and provided a
response time that was 50% higher than a competitor approach. In addition, au-
thors in [23] compared the response time of cloud with edge computing, where cloud
provided a response time that was three times more than the response time of edge
servers. It must also be mentioned that utilization of Cloud increases the IBU as
the massive amount of generated data by the IoT devices need to be communicated
over the Internet [24], which consequently leads to network congestion, increased
packet loss rate, jitter, and delay.

2

1.2 Problem Description

In order to deal with the mentioned challenges, Cisco presented the Fog Com-
puting technology in 2012 [20], which extends the cloud services to the edge of the
network (closer to the users) [16]. In fog computing, the produced raw data by
the IoT sensors are processed by those electronic devices that have computing and
storage capabilities (which are located at the edge of the network) [25, 16]. These
devices are considered as Fog servers. The extension of cloud computing services
to the edge of the network and distributing the computing tasks between the fog
servers has several advantages. For example, the latency reduces (up to 33%) [26],
as fog servers are located in the vicinity of users, and therefore data does not need
to be transferred through the Internet [16]. Using fog servers also reduces the IBU
significantly (up to 90%) [24, 27, 28, 29], and improves the security of network as the
data packets do not need to be processed by different routers and firewalls before
being received by the cloud servers. However, it must be mentioned that utilization
of only fog servers in the network is not a suitable approach, as they have consider-
ably less computing power in comparison to cloud servers, and therefore they might
provide higher response times in case of higher workloads [28, 16].

As we discussed, both fog and cloud-based approaches have disadvantages, which
might make them unsuitable for specific types of applications. Therefore the best
approach is efficient utilization of both Fog and Cloud resources and distributing
the tasks of IoT devices between the fog and cloud servers. In a combined Fog-
Cloud network, the data providers send the generated tasks to a broker, which is
responsible for assigning the processing tasks to the fog or Cloud servers. As is
presented in figure 1.1, in a combined fog-cloud network scenario, there are hetero-
geneous fog and cloud servers that might have completely different computational
powers, workloads, and latencies. The response time of servers can be affected by all
of these factors. For instance, cloud servers have more computational capabilities
than fog servers, which means they can provide a faster processing time for pro-
cessing the compute-intensive tasks (in comparison with fog servers). However, it is
worth mentioning that the remote servers in the cloud environments are accessible
via the Internet as they are located in specific locations in the data centers that are
far from the users; therefore, they have higher delay in comparison to fog servers
[16]. Moreover, the workload of fog and cloud servers is another important factor
that affects the response time directly. In a fog-cloud network, each of the servers
might have different workloads, which causes the response times of the servers to be
different. Considering these diverse servers with different workloads, latencies, and
computational powers in both cloud and fog environments, when a data provider
(for instance, an IoT device) forwards a processing task to the distributor unit (bro-
ker) to be transmitted to one of the fog or cloud servers for processing, the broker
can not distinguish the fastest server at that time section [16]. As a result, the
broker might forward the received task (from the user) to a server that has a higher

3

1 Introduction

workload or delay, which causes the IBU and response time to be increased (which
is not tolerable by delay-sensitive applications).

In addition, if the number of available tasks in the broker increases (the tasks
that must be sent to the servers for processing), the broker can not distribute the
tasks between the servers such that the applications experience the least possible
response time or IBU [16, 30]. Table 1.1 summarizes the problems for processing
the generated data by the IoT devices in different scenarios.

Figure 1.1: Architecture of Combined Fog-Cloud Networks

4

1.3 Hypothesis

Table 1.1: The Research Problems

Computing
Resource

Type of Task Assignment
to the Servers

Problem

Cloud One by one, or in batches
Increased Delay, IBU
and Security Risks

Fog One by one, or in batches
Increased Delay in Case
of High Workloads of Servers

Combined
Fog-Cloud

One by one
Inability of Broker to find the
Fastest Server

in Batches
Inability of Broker to Distribute
the Tasks Efficiently

In order to deal with the discussed problems, in this dissertation, we aim to find
the answer of the following research question:

• How is it possible to make the broker intelligent, to be able to predict the
response times of servers at the time of task arrival, in order to forward the
received processing task(s) to the fastest server?

• How to develop the broker to distribute the tasks with regard to the application
requirements?

• How to develop the broker to distribute the tasks with regard to the workloads
and computing capabilities of servers?

• How does the reduction in response time affect the IBU?

1.3 Hypothesis

There are classic [31, 32] and new [33, 11, 34] methods that are proposed for pro-
cessing the generated tasks of the IoT devices. The shortcoming of classic methods
is that they only utilize one of the fog or cloud resources, and as we discussed in the
previous section, these approaches fail in different situations. On the other hand,
recent methods are utilized for task distribution between the fog and cloud servers
by following specific policies. The problem is that these contemporary methods do
not consider the variation of different major parameters such as workload of server,
processing time, and latency when there are completely diverse servers in a com-
bined fog-cloud network [1]. It must be mentioned that ignoring these parameters
leads to task assignment to unsuitable servers, which causes the response time and

5

1 Introduction

IBU to be increased.

Considering the discussed issues, we propose using the Function Approximation
Methods (FAM) to create an intelligent broker (which considers the above-mentioned
variables and is aware of the most suitable server at each time slice) to solve the men-
tioned problems.”Function approximation is a technique for estimating an unknown
underlying function using historical or available observations from the domain” [35].
Therefore, by training the FAM, prediction of the response time and generated traffic
can be possible. So, our hypothesis is that:

• If we use FAM in the broker to make it able to predict the response times of
servers at the time of task arrival, the delay-sensitive tasks can be assigned to
the fastest servers, which reduces the response time.

• If the broker uses FAM for predicting the size of results, it can make a trade-off
between the response time and IBU and reduce both of them efficiently.

• If the broker becomes able to consider the different workloads of servers be-
fore task distribution, it can find the fastest server even in dynamic network
environments, in which the workloads of fog and cloud servers change over
time.

• The performance of the intelligent broker entirely depends on the error of FAM
for predicting the response times of servers.

• Utilization of intelligent broker is only useful for specific types of applications,
in which there is a relation between the input and output.

• The training method of FAM, and the richness of training, play important roles
in the precise prediction of response times (which can help us for validation of
results).

1.4 Contributions

In this thesis, we propose a solution for improving the QoS for the IoT-based delay-
sensitive applications. Our proposed method distributes the tasks of the IoT devices
between the fog and cloud servers by considering the user requirements, and reduces
the response time and IBU up to 53% and 50% in comparison to the cloud based ap-
proach (also up to 3% and 57% in comparison to a competitor method), respectively.
It is worth mentioning that the provided comparison is based on only one of the
experiments that we performed (more quantitative data are provided in chapter 5).
This method uses an AI-based solution to make the broker intelligent to be aware
of suitable servers at the time of task arrival. Moreover, we provided a scalable

6

1.4 Contributions

solution, which can be used in any network architecture. To be more precise, with
regard to the mentioned problems in previous sections, we provided the following
specific contributions:

• Creation of an Intelligent Broker

In a combined fog-cloud scenario, when delay-sensitive applications send a task to
the broker, the broker cannot find the fastest server at that time slice. The reason
is that in such networks, there are many different servers in both fog and cloud lay-
ers, which are heterogeneous in terms of computational power, delay, and workload.
However, the broker can use Artificial Intelligence and specifically function approx-
imation methods to predict the response times of servers, and select the fastest
server at each time slice. Therefore, by considering the previous works, in which
artificial intelligence helped for improving the response time in fog-cloud scenarios
(see chapter 3), we propose an AI-based solution for making an intelligent broker
that can predict the response times of available servers in the network at the time
of task arrival.

To this end, we generated a number of tasks and ran them on the fog and cloud
servers. Then for each server, we trained a function approximation method, in which
the task parameters were the inputs, and the response time of the server was set as
the output. Therefore, when a delay-sensitive task arrives, the broker sets the task
parameters as the input of the neural networks and then finds the fastest server at
the time of task arrival and assigns the task to that server for processing. It is worth
mentioning that this intelligent broker can distribute any number of received tasks
between the servers.

• Developing the Intelligent Broker to Distribute the Tasks with
Regard to the Application Requirements

As discussed earlier, in terms of delay sensitivity, IoT-based applications can be
delay-sensitive or delay-tolerable. The delay-sensitive applications require quick
response time as latency can badly impact their performance. On the other hand,
there are delay-tolerable applications that aim to communicate the least possible
amount of data over the Internet to reduce the IBU and costs. We developed the
broker and modified our proposed task distribution algorithm to check the delay
sensitivity of the tasks. Besides response time, we also added the ”size of result” as
the output of the neural networks. In the next step, with regard to the application
requirement, our proposed method distributes the tasks among the fog and cloud
servers by considering the predicted response times and sizes, aiming to reduce the
response time for delay-sensitive, and IBU for delay-tolerable applications [16].

7

1 Introduction

• Developing the Intelligent Broker to Distribute the Tasks by
Considering Workloads and Computing Capabilities of the Servers

As discussed earlier, in a combined fog-cloud network, there are different servers
in both fog and cloud layers, which are heterogeneous in terms of hardware specifica-
tion, workload, and latency to the user, and all of these factors impact the response
time directly [16]. Therefore, when a task arrives from a data provider, as the task
distributor unit is not aware of this heterogeneity, it might forward a task to a server
with a high workload (or to a weak server in terms of computation power), which
provides a high response time (that is not tolerable by delay-sensitive applications).

In order to deal with this problem, we did the training process of the neural net-
works by considering the different workloads that servers might experience. There-
fore we develop the broker to predict the response times by considering the different
workloads and computational power of servers.

• Investigating the effective Parameters on the Performance of our
Proposed Approach

To validate our proposed task distribution approach, we investigated its perfor-
mance under different conditions to observe where it works better than the other
proposed methods in the literature and where it fails. For this purpose, we used
different training algorithms and different numbers of tasks for the training process
of the neural networks. We also considered an ideal situation where our proposed
method was able to predict the response time without any error and compared the
achieved results with each other.

1.5 Evaluation of Achievements

In this thesis we propose an intelligent method that utilizes Artificial Neural Net-
works (ANNs) for task distribution in combined fog-cloud scenarios, and compare
the performance of our proposed method with five other classic and new methods
in different experimental conditions. The achieved results show that our intelligent
method performs better than the other techniques and can reduce the response
time, IBU, and resource utilization [16]. Just as an example, in a network architec-
ture, where there are different fog and cloud servers with different workloads and
latencies, our proposed method reduced the response time and IBU up to 3% and
57% in comparison to a competitor method, respectively. The reason is that our
method considers different variables, such as the computing capabilities of both fog
and cloud servers, in addition to their workloads and latencies (more comparisons,
results, figures and details can be found in chapter 5).

8

1.6 Thesis Structure

It must be noticed that the performance of our proposed method entirely depends
on the error of predictions that can be improved or deteriorated by utilization of
different training methods or altering the richness of the training process of the ANNs
[1]. It is also worth mentioning that our proposed method efficiently predicts the
response times of those tasks that variation of their parameters affects the response
time. The reason is that in these situations, the ANNs can find a relation between the
input (task parameters) and output (response time or data size), which consequently
leads to better predictions.

1.6 Thesis Structure

In the following, we present an overview of the contents of this dissertation. Each
paragraph provides a summary for each chapter. The main contributions of this
thesis are presented in chapters 4 and 5.

• Chapter 2 - Basic Concepts

Chapter 2 provides information that needs to be discussed for a better understanding
of our proposed intelligent task distribution method. This chapter defines basic con-
cepts such as IoT, Cloud and Fog computing, types of communications in IoT-based
scenarios, IoT architecture, applications, and their requirements and challenges. We
also compare fog and cloud computing technologies from different aspects and dis-
cuss the challenges in this field.

• Chapter 3 - Previous Works

The previous methods that have been proposed for task distribution in fog-cloud
scenarios are discussed in chapter 3. In this chapter, we categorize the previous
researches and provide comparisons between the proposed methods. Also, we discuss
about the advantages and disadvantages of different task distribution techniques.

• Chapter 4 - Case Study and Primary Experiments

In chapter 4, we describe the case study that we have used in our experiments. We
also present the primary experiments that we performed to compare the performance
of Fog and Cloud computing in terms of response time and IBU.

• Chapter 5 - Proposed Methods and Experimental Results

In this chapter, we propose solutions for the research problems that we discussed
earlier in section 1.2. In addition, we discuss about the experiments that have been
performed for evaluating the performance of our proposed intelligent approach, and
finally, we provide a brief discussion about the advantages and disadvantages of our
method.

9

1 Introduction

• Chapter 6 - Conclusion and Future Works

Chapter 6, concludes the thesis and provides some research questions which must
be considered for future works.

10

2 Basic Concepts

2.1 Internet of Things

Today, the Internet is almost accessible everywhere, and data communication over
the Internet has significantly changed the quality of life. However, the advancement
of technology is not over yet. We will soon experience living in the IoT era, where
a wide variety of things will be connected to the Internet, generating and commu-
nicating data with each other. There is no universally accepted definition for the
IoT, as it is based on the integration of various types of technologies [36]. Therefore,
each enterprise or community has defined the IoT based on their own visions and
needs. In the following, we review some of the most outstanding definitions.

Kranenburg [37] defines the IoT as ”a dynamic global network infrastructure with
self-configuring capabilities based on standard and interoperable communication pro-
tocols where physical and virtual’ Things’ have identities, physical attributes, and
virtual personalities and use intelligent interfaces, and are seamlessly integrated into
the information network”.

ITU [38] describes IoT as ”A global infrastructure for the information society en-
abling advanced services by interconnecting (physical and virtual) things based on,
existing and evolving, interoperable information and communication technologies”.

Vermesan et al. [39] also defined the IoT as a paradigm in which ”physical entities
have digital counterparts and virtual representation; things become context-aware,
and they can sense, communicate, interact, exchange data, information, and knowl-
edge”.

Regarding the discussed definitions, we consider the IoT as a computing paradigm
in which objects with computing and connectivity capabilities collaborate to solve
complex tasks to improve the living standards of people.

11

2 Basic Concepts

2.2 IoT Architecture

Different architectures are proposed in the literature for IoT-based systems. As is
shown in figure 2.1, the most common architecture discussed by [40, 41, 42] consists
of three layers, namely perception, network, and application.

The physical layer, or the so-called perception layer, is responsible for data col-
lection from an environment by using sensors or other smart devices (which will
be called data providers in this thesis). ”Sensor is a device, formed by sensitive
cells, that transforms physical or chemical magnitudes in useful signals to measure
or control systems” [43]. The utilization of sensors in the perception layer causes
the IoT to be known as a context-aware technology [2]. In order to collect data
from an environment, IoT-based applications need one or several sensors, which are
mostly small in size, low cost, and limited in terms of battery capacity and ease
of deployment. IoT-based applications utilize different types of sensors with regard
to their requirements. For example, healthcare applications use medical sensors to
monitor different parameters such as respiration rate, heart rate, body temperature,
etc. As another example, smart city based applications utilize environmental and
chemical sensors (which are used to sense different parameters such as humidity, air
pollution, and temperature) for monitoring purposes.

Figure 2.1: The IoT Architecture

12

2.3 IoT Applications

The sensors perform the data acquisition process and provide the raw data, which
must be processed to be available as meaningful information [1]. In this thesis, the
provided raw data by the sensors at each time slice, which must be sent to a server
for processing or storage, is considered as a task.

Moreover, the network (transport) layer is responsible for connecting the smart
things to the servers by communicating their generated raw data to the application
layer through different types of networks such as 4G, LAN, RFID, Internet, etc.
The application layer is responsible for receiving the produced raw data via the
network layer and assigning them to capable servers [16]. The application layer also
provides various services for the users by employing different technologies such as
cloud computing, databases, and big data processing modules [2].

2.3 IoT Applications

IoT provides various applications for different purposes, such as quality control,
monitoring, and digitalization. This section reviews some of the most important
IoT applications, such as Intelligent Transportation System (ITS), smart homes,
and Smart Health.

• Smart Home

Smart homes are considered as an important application of IoT, in which sensors
are utilized for different purposes such as automation of daily tasks, energy conser-
vation, and security issues. In smart homes, the collected data by the sensors must
be sent to an aggregator, which transmits the data to a context-aware service engine,
and then this engine provides services based on the context [2]. For example, when
the sensor data shows that the air humidity has increased, the engine turns the air
conditioners on, or when a gas leak is sensed, the application turns the lights off.

• Intelligent Transportation System

ITS is another application of IoT that is emerged by the combination of IoT and
transportation system [44], to evolve the traffic control and prediction systems. ITS
collects data by exploiting various sensors such as GPS (to detect the location of
vehicles), accelerometers (to measure the speed of cars), gyroscopes (to find the
direction of vehicles), RFID (to identify the cars), and cameras (to record and
monitor the movements of vehicles) [2], and then provides services for the users
by considering the collected information. The main aim of ITS is to increase the
efficiency of the transportation system (by minimizing traffic congestion), ensure
safety and security (by avoiding accidents), and reduce fuel consumption.

13

2 Basic Concepts

• Smart Health

Thanks to the emergence of IoT and its combination with some other technologies
such as fog and cloud computing, medical doctors can now provide faster and more
efficient healthcare services by using healthcare applications [45]. Healthcare ap-
plications are categorized as the most important and attractive applications of IoT
[46], that aim to reduce healthcare costs and improve the patient’s quality of life.

In IoT-based healthcare applications, different types of medical devices such as
sensors and diagnostic tools are utilized to provide healthcare services. One of the
recent technologies that is being used in IoT-based healthcare applications is the
Wireless Body Sensor Networks (WBSNs). As is shown in figure 2.2, WBSNs are
composed of different wearable or in-body sensors, which continuously monitor the
patient’s health condition and transmit warnings to healthcare specialists in case
of any abnormal situations. As the sensors do not have data processing capability,
they transmit the sensed data to a cluster head or broker, and then the broker sends
the data to capable servers for processing and storage. After the processing, the
servers send the response to the user and store the results in databases for future
data mining purposes. As any network failure or high latency impacts the patient’s
quality of life, these applications are considered to be real-time or delay-sensitive.
Therefore provisioning of QoS for these types of applications is of great importance.

Figure 2.2: Wireless Body Sensor Networks

14

2.4 IoT Challenges

2.4 IoT Challenges

In this section, the main challenges of IoT systems are discussed as follows:

2.4.1 Limitation of IoT Objects

The IoT devices generate (or collect) data continuously. As the storage, communi-
cation, and computation capabilities of IoT sensors are limited for the huge amount
of generated data (that is estimated to be 850 zettabytes by 2021 - overall by all
devices) [47]; therefore, the compute-intensive tasks cannot be executed on them
[48]. For this purpose, efficient resource provisioning algorithms must be designed
to assign the generated tasks of the IoT devices to capable servers for processing
and storage.

2.4.2 Communication

Communication between the IoT objects and servers is also another important chal-
lenge, which must be solved. The communication between the IoT devices is mainly
wireless as the sensors are usually located in geographically dispersed areas. The
challenge is that wireless channels are unreliable because of their high distortion
[2], and the sensors need dedicated spectrums to communicate data. Concerning
the limitation of spectrum availability, a dynamic spectrum allocation is required to
provide the feasibility of data communication for billions of sensors [49].

2.4.3 Mobility Management

The mobility of IoT devices causes different challenges in the IoT networks, such as
increasing the mobility signaling costs, latency, packet loss, and power consumption
[50]. It must be noticed that, because of the limitations of IoT sensors in terms
of processing capability, the current mobility protocols of mobile ad-hoc networks
(MANETs) and sensor networks can not fulfill the requirements of an IoT based
network with mobile objects. Therefore, mobility management is one of the most
critical issues in the IoT that must be considered in future researches [48].

2.4.4 Security Issues

The potential security threats have been escalated in the IoT networks with the in-
crease of IoT-connected devices. ”IoT devices are vulnerable due to lack of transport
encryption, insecure Web interfaces, inadequate software protection, and insufficient
authorization”[51], and consequently they provide potential attack surfaces for the
hackers. Therefore, to deal with security challenges, updated security measures must
be ensured for the IoT networks to prevent data monitoring or interference [49].

15

2 Basic Concepts

2.4.5 Privacy

IoT devices provide and communicate data about users’ location and movements,
health conditions, etc., which increases privacy concerns. Therefore, in order to make
IoT acceptable for the users, the protection of users’ privacy must be considered for
the development of IoT [49, 51].

2.4.6 Naming and Identity Management

In IoT, various devices are utilized to collect and communicate data over different
types of networks. Each of these IoT devices needs a unique identity to receive
and send data. Thus, IoT needs efficient dynamic naming and identity-management
protocols in order to manage the vast amount of smart objects that communicate
data in the IoT infrastructure [49].

2.4.7 Interoperability and Standardization

As we discussed, in IoT, billions of heterogeneous devices communicate data with
each other by utilizing various technologies. The challenge is that these devices
can not communicate with each other in some cases as they use different services,
software, and hardware. Therefore, standardization of IoT is a crucial task that
must be done for better interoperability of IoT devices [49].

2.4.8 Data Management

The IoT devices produce huge amounts of data that must be communicated over the
network to be processed and stored. The challenge is that the current data centers
cannot deal with the massive generated data. Therefore, enterprises prioritize data
and make backups based on the needs and value, which affects the future data
mining processes [51].

2.4.9 Data Mining

As IoT devices generate massive amounts of data, the utilization of data mining
methods for discovering patterns and relationships between the data becomes more
important. The data mining process helps enterprises to make better business de-
cisions for future purposes. The IoT data consists of discrete and streaming data
generated by different devices such as sensors, vehicles, industrial equipment, etc.
Traditional data mining methods can not deal with the massive amount of hetero-
geneous data that gets generated by the IoT devices. Therefore, robust approaches
are needed to be proposed and implemented to improve data mining in IoT [51].

16

2.5 The Requirements of IoT Applications

2.4.10 Internet Traffic

According to the Cisco report, [52], by the end of 2030, almost 50 billion things will
be connected to the Internet, and in the near future, the vast amounts of generated
data by the IoT sensors will occupy the Internet Bandwidth remarkably [19, 24, 28].
As is mentioned in [53] till the end of 2020, 1.6 Zettabytes have been generated by
the IoT devices, and transferring all these raw data from the sensors to the remote
servers in the cloud (for processing) increases the Internet bandwidth utilization,
which leads to increased latency, packet loss, and jitter [1].

2.5 The Requirements of IoT Applications

IoT applications have different requirements. For example, remote health monitoring
applications require a stable Internet connection and reduced packet loss rate. On
the other hand, some other applications that use costly technologies such as satellite
or cellular communications, need to communicate the least possible amounts of data
over the network to reduce the costs.

In terms of latency, IoT applications have different sensitivity levels, and there-
fore they are categorized into delay-sensitive and delay-tolerant groups [54]. Smart
health and autonomous vehicles are two important examples of delay-sensitive ap-
plications as their performance can be affected by even the least possible delay.
On the other hand, there are delay-tolerant applications such as smart parking,
waste management system, and energy conservation applications, in which data can
be communicated with large latency (higher than 100ms). These applications can
be supported by the current protocols and existing network infrastructures, as the
provisioning of reduced response time for these applications is not crucial. But
obviously, the existing network protocols can not meet the requirements of delay-
sensitive applications, and therefore, new networking algorithms must be designed
[55].

2.6 Cloud Computing

Ian Foster defines Cloud computing as ”a large-scale distributed computing paradigm,
in which a pool of abstracted, virtualized, dynamically scalable, managed computing
power, storage, platforms, and services are delivered on-demand to external cus-
tomers over the Internet” [56]. The National Institute of Standards and Technol-
ogy (NIST) also defines Cloud as ”a model for enabling ubiquitous, convenient, on
demand network access to a shared pool of configurable computing resources that
can be rapidly provisioned and released with minimal management effort or service
provider interaction” [57]. One of the latest definitions of Cloud has been presented

17

2 Basic Concepts

by Elazhary in [58], who defines Cloud as ”a computing paradigm for providing any-
thing as a service such that the services are virtualized, pooled, shared, and can be
provisioned and released rapidly with minimal management effort”.

2.6.1 Cloud Computing Advantages

Cloud computing provides flexible computational tools such as servers, databases,
storage, software, data mining, machine learning, and visualization tools through
the internet [59, 2]. Therefore, Cloud can be an excellent option for processing the
generated data by the IoT devices, as combination of Cloud and IoT allows the
limited data providers to use the processing and storage capabilities of Cloud, and
assign the complex tasks to the cloud servers for processing [60]. From a technical
point of view, Cloud provides the following advantages:

• Powerful Computing Capabilities: Cloud can use the power of thousands
of computers to solve a problem, which leads to faster processing time and,
consequently, reduced response time.

• Great Storage Capacity: the massive generated data by the IoT devices
can be stored in the Cloud as it has huge amounts of storage capacity.

• Suitable Accessibility: the cloud resources are accessible from anywhere at
any time, through the Internet.

• Supporting the Mobile Users: as cloud servers are accessible over the
Internet, any mobile user (with Internet access) can also benefit from the
advantages of Cloud.

• Reduced Maintenance Costs: as we discussed, Cloud provides a shared
pool of computing resources, and therefore the organizations do not need to
pay for hardware and software.

2.6.2 Cloud Computing Challenges

Cloud computing provides excellent services that can be used by the IoT devices,
but it is worth mentioning that the cloud resources are centralized in Data Centers
(DCs) that are far from the IoT devices in the perception layer [60]. The mentioned
topological distance causes several challenges, such as increased response times that
make the cloud unsuitable for delay-sensitive applications such as smart health [1].
In this subsection, we discuss the most important disadvantages of the cloud (men-
tioned in [60]), which cause different challenges for IoT-based applications.

• Bandwidth Utilization: In Cloud-based IoT systems, most of the compu-
tational processes occur in Cloud, which means that all the produced data

18

2.7 Fog Computing and its Characteristics

and requests must be transmitted to the cloud for processing and storage [16].
It must be mentioned that unlike the processing power of servers, which has
been risen, the Internet bandwidth has not increased considerably [61]. As is
discussed in [53], by the end of 2020, more than 1.6 zettabytes are generated
by the IoT devices [1]. The current Internet bandwidth can not deal with
this huge amount of data, and therefore it is almost impossible to transfer
the generated IoT data to the cloud [61]. This challenge leads to high la-
tency and badly affects the performance of those delay-sensitive and real-time
applications that need a quick response time.

• High Latency: There are different IoT applications that require predictable
and quick response times. For example, road safety services need a delay of
less than 50 ms, and Smart Factories can tolerate latencies varying from 0.25
to 10 ms. The topological distance between the IoT devices and Cloud servers
leads to high communication delay, which is unsuitable for delay-sensitive ap-
plications [60].

• Privacy and Security Issues: As in IoT-based scenarios, data can be col-
lected from anywhere; the user’s privacy can be jeopardized [62]. In many
cases, the IoT devices sense and transmit sensitive data (such as personal
health data) that need protection. As the users have limitations to control
the data path from an IoT device to the Cloud, and as the IoT devices do not
have adequate computational capabilities to encrypt the data, communication
of these sensitive data through the Internet (in order to be received by the
cloud servers for processing) increases privacy concerns [63].

• Hostile Environments:

Hostile environments are those places such as rural areas, in which Internet
infrastructure is weak and stable access to the Internet is not guaranteed.
Therefore, utilization of cloud services for delay-sensitive applications is not
possible in hostile environments, as any internet disconnection or increased
response time leads to the failure of these applications [64, 60].

2.7 Fog Computing and its Characteristics

Fog computing has emerged to complement the Cloud and tackle its challenges. Sim-
ilar to Cloud, there are different definitions for Fog computing. From the theoretical
point of view, authors in [20] defined Fog computing as a ”highly virtualized plat-
form that provides compute, storage, and networking services between IoT devices
and traditional cloud computing data centers, typically, but not exclusively located
at the edge of the network”.

19

2 Basic Concepts

Also, in [65] Fog computing is considered as ”a scenario where a large number
of heterogeneous (wireless and sometimes autonomous) ubiquitous and decentralized
devices communicate and cooperate to perform storage and processing tasks without
the intervention of third parties. These tasks can be for supporting basic network
functions or new services and applications that run in a sandboxed environment”.

Moreover, from the technical point of view, IBM [66] defines Fog as a technology
which provides ”resources at the edge of the cloud, instead of establishing channels
for cloud storage and utilization”, while Open Fog Consortium (OFC) describes Fog
”as a horizontal, system-level architecture that distributes computing, storage, con-
trol and networking functions closer to the users along a cloud-to-thing continuum”
[67].

Fog computing extends the cloud services to the edge of the network and provides
services such as data processing, temporary (or permanent) data storage, and data
communication. The most important characteristic of Fog computing is its proxim-
ity to the data providers (or users), which makes it completely different compared
to Cloud. The proximity of fog servers to the users reduces the data transmission
time and Internet traffic [68]. Therefore, fog computing can meet the requirements
of delay-sensitive applications. Generally, Fog has the following important charac-
teristics and advantages.

• Low Latency: Fog is specifically designed for those delay-sensitive applica-
tions that need rapid response time [69, 61, 70]. Despite Cloud, which com-
municates data over the Internet, in fog computing, the generated raw data
by the IoT devices are sent to the fog servers (that are located at the edge
of the network) to be processed, or stored [16]. This data processing at the
edge of the network eliminates data transmission over the Internet, reduces
the latency, and makes fog computing suitable for real-time applications [20].
There are several researches in which the performance of Fog and Cloud are
compared in terms of latency. For instance, in [71] authors utilized fog com-
puting for face identification purposes, and in [27] fog computing was utilized
for processing the healthcare-related data. Both researches indicate that the
response time of Fog is significantly less than the cloud.

• Saving Internet Bandwidth: In fog computing, servers are located at the
edge of the network, between the data providers and remote servers in the
cloud. These fog servers can locally provide different services such as pre-
processing, redundancy removing, data aggregation, data compression, and
cleaning [61]. Therefore, most of the generated data by the IoT devices do
not need to be communicated over the Internet to be received by the cloud
servers. In addition, in some other scenarios, the whole processing procedure is

20

2.7 Fog Computing and its Characteristics

done by the fog servers, and no data needs to be transmitted to the cloud [16,
30]. In these situations, fog computing effectively reduces the IBU, as all the
processing tasks are performed at the edge of the network. Different researches
such as [71, 27] compare fog and cloud, and the results show the positive
impact of fog computing on the reduction of IBU. It is worth mentioning that
this advantage of Fog becomes more important as the number of IoT devices
increases [61].

• Mobility Support:

There are fixed and mobile data providers in fog computing-based scenarios,
such as vehicles, smartphones, and traffic cameras. Similarly, fog servers can
also be fixed, or mobile computing resources, which can be deployed at home
and airport, or on the mobile vehicles and trains [72, 73, 74]. Fog comput-
ing utilizes routing, addressing, and communication protocols to provide the
feasibility of interaction between the mobile devices and fog servers [61]. It
must be mentioned that in fog computing, the administrators can control the
mobile users to see how they join the network and access the information [75].

• Decentralized Architecture:

Cloud servers are mostly centralized in data centers and provide services for
the user through the Internet. Compared to Cloud, which is more centralized,
Fog consists of a huge number of distributed and heterogeneous nodes that pro-
vide computational services in the proximity of the users. This decentralized
architecture of fog at the edge of the network provides better location-based
services, quick analysis of data, and real-time decision making [61].

• Heterogeneity: Generally, any device with computational and storage power
can play the role of a fog server. For example, a powerful computing device, a
router, or an access point can be used as a fog server. Obviously, these differ-
ent devices have different form factors, computation and storage capabilities,
operating systems, and workloads. It must also be mentioned that different
wired and wireless communication technologies can be utilized in fog-based
network scenarios. Therefore, fog computing environments are heterogeneous
in different terms.

• Interoperability: We discussed that fog servers are provided by different
companies, and the fog computing environment is heterogeneous. It must
be noticed that in fog computing based scenarios, a wide range of heteroge-
neous devices need to collaborate with each other to meet the requirements of
IoT-based applications [76]. In order to provide the possibility of interaction
between the heterogeneous IoT devices and fog servers, a policy-based resource
management method is proposed in [77, 78] that supports the requirements of

21

2 Basic Concepts

a fog-based network and provides a stable collaboration between the devices
in the heterogeneous, dynamic, and distributed environment of fog.

• Energy Saving: In Fog-based networks, servers are distributed, and there-
fore, no heat will be generated because of the concentration of servers, and
consequently, no cooling system is required [61]. Also, the short-range data
communication in Fog reduces the energy consumption for communications
[79]. The impact of fog computing on energy consumption has been deeply
investigated in [80, 81], and the achieved results show that compared to Cloud,
utilization of fog computing reduces the energy consumption significantly.

• Data Protection: As in Fog computing, data does not need to be com-
municated through the Internet; access to data is more restricted compared
to Cloud. Besides that, fog servers also support the data by encryption and
therefore increase the security of data.

• Failure in High Workloads: Generally, fog servers have less computing
power than cloud servers. Therefore when the workloads of fog servers increase,
they provide higher response times because of their limitations. Authors in
[28, 30] investigated the performance of fog and cloud in different workloads,
and the achieved results show that when the workloads of servers increases,
fog servers fail and Cloud provides a better response time.

• Volatility of Service Availability and Reliability issues: As the fog
servers are highly mobile, they are intermittently present in the network archi-
tecture. Therefore, the created infrastructure in fog-based network scenarios
is temporary, which leads to the volatility of service availability and reliability
issues [82].

• Security Issues: As discussed earlier, in fog computing, there is no cen-
tralized architecture, and therefore, there is no strict control from a service
provider to guarantee the security of data communication. Hence, fog com-
puting can be more vulnerable than Cloud in terms of data security [82].

2.8 Fog vs. Cloud

In this section, we compare fog and cloud computing technologies in different terms.
For this purpose, we summarized the previously discussed characteristics of Fog and
Cloud in Table 2.1 to show the differences between these two technologies.

22

2.9 Combined Fog-Cloud Scenarios

Table 2.1: Fog vs. Cloud

Fog Computing Cloud Computing
Operational Cost Low High

Energy Concumption Low High

Location of Servers Near to the user
Far from the users
(accessible through

the Interent)
Latency Low High

Geographical
Distribution

Less Centralized More Centralized

Possibility of
Real-Time Interaction

Possible Impossible

Failure Rate High Low
Processing Time

of Servers
High Low

Storage Capacity Low High
Server Mobility High Low
Cooling Cost Low High

Internet Bandwidth
Utilization

Low High

Computational Power Low High
Accessibility Limited (geographically) Global

2.9 Combined Fog-Cloud Scenarios

In the previous sections, we presented the characteristics of Fog and Cloud com-
puting technologies and discussed about their advantages and disadvantages. Fog
emerged to tackle the challenges of Cloud, but it is also limited from different as-
pects. Therefore, it can be generally said that Fog and Cloud are complementary
technologies, and none of them can singly be a good solution for processing the
generated data of the IoT devices. Therefore the combined fog-cloud computing
emerged and got discussed in [83, 84, 85, 86, 87].

The architecture of fog-cloud networks consists of heterogeneous devices with
completely different form factors; therefore, a set of standards is required to ensure
the interoperability between the devices [88]. In combined fog-cloud scenarios, a
task can be processed either by Fog or Cloud servers, and as these servers are
heterogeneous in terms of hardware and workload, new algorithms must be designed
to distribute the tasks between the fog and cloud servers.

23

3 Previous Works

3 Previous Works

In order to deal with the limitation of IoT sensors for processing and storage of their
generated data, different solutions have been proposed in the literature, which will
be reviewed in this section.

3.1 Benchmarks

3.1.1 Utilization of Cloud Computing

The first efforts for processing the generated raw data by the IoT sensors were
based on the utilization of remote servers in the cloud. For instance, authors in [31]
proposed utilization of cloud computing for processing the IoT data in agricultural
applications. This approach had advantages and disadvantages that got discussed
in section 2.6. It is clear that the remote servers in the cloud can provide powerful
computing resources (in terms of processing and storage capabilities) for the IoT
applications, which lets them store huge amounts of data and experience reduced
processing times. However, it must be considered that the cloud is based on a Pay-
as-you-go model, so it is costly. Also, if the IoT applications utilize the cloud servers
to process their generated raw data, the Internet bandwidth would be occupied by
the massive generated IoT data, leading to increased response times and lack of
enough bandwidth for the other applications. Furthermore, as the remote servers
are only accessible through the Internet, the latency of data communication over the
Internet leads to increased response time because of the high latency of the cloud
servers [1].

3.1.2 Utilization of Fog Computing

In order to overcome the high latency of data communication with the cloud servers,
in different papers such as [89, 27], authors proposed the utilization of fog comput-
ing for delay-sensitive applications. However, as we discussed in section 2.7, the
limitation of fog servers in terms of computational power leads to high response
times in high workloads. It has been illustrated in [30], where the fog server pro-
vides a response time that is 50% higher than the cloud for processing 10 batches
of healthcare data. It is worth mentioning that the more data gets assigned to both

24

3.2 Recent Complex Methods

cloud and fog servers, the more differences in response times can be seen. Therefore,
exploiting the fog servers is not always a proper solution.

3.1.3 Simple Methods for Utilizing both Fog and Cloud
Servers

In order to employ both Fog and Cloud computing resources for processing the gen-
erated tasks of the IoT devices, authors in [33] proposed the Random Fit method,
which selects one of the fog or cloud servers randomly for job allocation. Moreover,
in [90], Greedy Assignment (better workload) method is proposed, which assigns
the tasks to servers with the least workload to be processed. Furthermore, in [34],
another task distribution method is proposed, which can be used for task distribu-
tion between the fog and cloud layers. This method selects two random nodes from
the available servers and then assigns the generated task to the server with fewer
tasks in its queue. In [91] also another task placement method is proposed, which
sends the task to the home fog (nearest fog servers which has the least latency to
the user) and if the waiting time was greater than a threshold, it assigns the task
to the next fog server (a neighbor of the home fog). In addition, in [92] Latency-
Aware task placement is proposed, which considers the overall latency of servers at
the time of task distribution, and sends the tasks to the server with the least latency.

It must be mentioned that the performance of the discussed methods can be
affected by different parameters. For example, the random fit method might assign
a delay-sensitive task to a server with high latency, or the better workload method
might assign a task to an idle server with high latency [1]. In both situations, the
response time increases, and the requirements of delay-sensitive applications can not
be met. It is also worth mentioning that the discussed simple methods, in addition
to the cloud-based and fog-based methods, have been used as benchmarks in several
recent researches.

3.2 Recent Complex Methods

3.2.1 Optimization Based Methods

• Virtual Fog Resolver

In [11], finding the most suitable server at each time slice is investigated, and a
two-step resource management method called Virtual Fog Resolver (VFR) is pro-
posed for distributing the tasks of IoT applications between the fog and cloud servers.
This method provides a quick recovery approach in case of failure of fog servers and
aims to improve the QoS by reducing the response time. As mentioned earlier, the

25

3 Previous Works

VFR method functions in two steps. In the first step, the fog servers around the
user are categorized into two groups; home and backup fogs. For this purpose, at
first, the user sends a similar task to all the fog servers and then notes their response
times. The fastest fog server is considered as the home fog, and the second-best fog
server will be considered as the backup fog.

After selecting the home and backup fogs, the user sends the generated request
to both home and backup fogs (it is assumed that the home fog still performs
better than the backup fog and provides a faster response) and notes their re-
sponse times. Then, the delay is considered as the absolute difference of these
two response times. The next request will be sent to the home fog; if the response of
the home fog does not arrive before the delay, the request will be sent to the backup
fog; on the other hand, the delay is reduced. The reason for reducing the delay is
to ensure that when the home fog performs excellently, the request is not sent to
the backup fogs. Assuming that the home fog responds after the delay, two different
situations can happen:

• the home fog responds before the backup fog

• the backup fog responds before the home fog

In both situations, the results will be sent to the user, and the delay is updated.

While the request gets distributed between the fog servers, the probability of task
assignment to the cloud increases. If this probability reaches a maximum amount,
the requests will be sent to the cloud servers. In this case, if a fog server responds
before the cloud server, then the probability of task assignment to the cloud reduces.
Therefore, in this approach, the cloud servers only get used when the fog servers
perform poorly, and the probability of task assignment to the cloud depends on the
performance of the fog servers.

Authors finally compared the performance of VFR with PO-2 [93] and MinDe-
lay [91] algorithms. The results show that VFR reduces the delay and resource
utilization compared to the mentioned methods.

• LBP-ACS: A Laxity and Ant Colony System Algorithm for Task
Scheduling in Cloud-Fog Networks

In order to save energy, provide green computing, and protect the environment,
authors in [12] proposed a task scheduling method for combined fog-cloud scenarios,
which reduces the energy consumption and consequently the production costs. In
this paper, the challenge of task scheduling in IoT-based applications is investigated.
To solve the challenge of scheduling complex tasks with priority constraints, a novel

26

3.2 Recent Complex Methods

task scheduling algorithm is proposed, which utilizes laxity-based and ant colony
algorithms, aiming to reduce the total energy consumption. This method considers
both the priority and the finishing deadlines of the tasks and handles the delay
sensitivity of the IoT tasks by using the laxity-based priority algorithm for making
a task scheduling sequence. Also, in this method, the ant colony algorithm is used to
provide optimal scheduling. Analyzing the performance of LBP-ACS shows that this
method reduces the energy consumption and failure ratio of the system compared
to similar methods.

• CAG: Cost Aware Genetic-Based Method for Task Scheduling in
Combined Fog-Cloud Scenarios

For efficient task placement in combined fog-cloud scenarios, a cost-aware genetic-
based algorithm is proposed in [13], which is suitable for real-time (hard deadline)
applications as it improves the QoS, reduces the costs, and increases the data secu-
rity. This method decides where to process a task to reduce the response time in
scenarios where fog servers collaborate with rented servers in the cloud for efficient
large-scale IoT task processing.

In order to provide a suitable trade-off between cost reduction and meeting the
deadline of IoT tasks, this method uses a genetic-based algorithm in a central
scheduling node. In the first step, the generated task is sent to the Master Fog
Node, which is responsible for running the scheduling algorithm. The scheduler
estimates the response time by considering the network capabilities, current compu-
tational resources, and task requirements. With regard to the estimated response
time, if it was possible to process the task in the fog layer, the scheduler would
forward it to one of the fog servers; on the other hand, the task would be sent to
the cloud.

The experimental results show that this method reduces the costs (in terms of
utilizing Internet bandwidth for communication of requests and responses) and re-
source utilization, and increases the success rate of task processing before the spe-
cified deadline.

• Utilization of Analytic Hierarchy Process (AHP) for Dynamic Re-
source Allocation in Fog-Cloud Networks

The delay sensitivity of some of the IoT tasks, the irregular changes in traffic
patterns, and the heterogeneous nature of combined fog-cloud scenarios increase
the need for efficient resource allocation policies. The resource allocation must be
precise, and also different important parameters must be considered at the time of
resource assignment. For this purpose in [14], Analytic Hierarchy Process based

27

3 Previous Works

policy for resource allocation in fog-cloud scenarios has been proposed.

In order to reduce the delay of task processing, this method considers the network
and computing load at the time of task assignment and then by evaluating the
overall data, dynamically assigns weight to each criterion of optimization and then
selects the most suitable server for processing the generated tasks. The achieved
results show that this method outperforms some of the previous resource allocation
approaches.

• A Contract-Based Task Scheduling Algorithm in Combined Fog-
Cloud Scenarios with Mobile Fog Servers

The mobility of fog servers in combined fog-cloud scenarios badly affects the re-
sponse time and consequently, user satisfaction. In [94], a task scheduling algorithm
is proposed, which considers the mobility of fog servers and aims to exploit the
computational power of fog servers efficiently, reduce the network load, meet the
requirements of delay-sensitive tasks, and process most of the tasks at the edge of
the network.

In order to reduce the negative impact of mobile fog servers on the network,
this method at first detects the critical fog servers and then by considering differ-
ent parameters such as communication delay, computational power, and between-
ness centrality, finds the most suitable fog servers in a cluster. The critical fog
servers will be responsible for creating the operational domain, and the other
fog servers will be used for processing the generated tasks by the IoT devices.

The experimental results indicate that this method reduces the average service
time and costs and increases the utilization of fog servers and the success rate of
tasks.

• Using Multi-Objective Genetic Algorithm for Workload Allocation
in Fog-Cloud Scenarios

In combined fog-cloud scenarios, there are different parameters that are related
to each other. For example, if we assign a task to the fog layer, delay decreases
but energy consumption increases. On the other hand, if a task goes to the cloud
layer for processing, delay increases, but energy consumption reduces [95]. There-
fore, workload allocation algorithms in these environments must consider available
bandwidth, delay, energy consumption, and the computational capabilities of each
layer to improve the QoS for the users.

For this purpose, authors in [95], proposed a method that utilizes the Multi-
Objective Genetic Algorithm [96] for workload allocation in Fog-Cloud Scenarios.

28

3.2 Recent Complex Methods

This method formulates a trade-off between energy consumption and delay and
then distributes the generated task of the IoT-based applications between the fog
and cloud resources. The achieved results show that this task distribution algorithm
can improve the delay and energy consumption by assignment of 25% of the tasks
to the fog layer.

• GPRFCA: Gaussian Process Regression for Fog-Cloud Allocation

Authors in [97] proposed the Gaussian Process Regression for Fog-Cloud Allo-
cation (GPRFCA) for resource allocation in combined fog-cloud scenarios. This
approach utilizes a Gaussian process regression to estimate future demands to im-
prove the resource utilization of the fog layer and prevent the requests from being
blocked (especially those delay-sensitive ones). This method considers the availabil-
ity of resources in the fog layer and decides where to process the generated tasks
of the IoT devices. In this paper, the system model is considered to be in three
layers. There are user devices in the first layer, and in the second and third layers,
there are fog and cloud servers. The servers receive the tasks from the IoT-based
applications, which collect data from the environment by utilizing the sensors. The
tasks are categorized into two groups, namely delay-sensitive and delay-tolerable
tasks. The final aim of GPRFCA is to process the delay-sensitive tasks in the fog
layer to improve the QoS for the user. For this purpose, the GPRFCA mechanism
considers and analyzes the history of sent requests to the servers for the prediction
of future demands, and therefore it can reserve the fog resources for future delay-
sensitive tasks. The delay-tolerable tasks can be processed in the cloud servers,
so the blocking ratio of requests decreases and resource utilization of fog servers
increases. In this approach, after assigning the first batch of the tasks to the fog
servers, the remaining RAM and CPU resources of the fog layer are calculated, and
then by utilizing Gaussian Process Regression, the arrival of future requests can be
predicted.

The performance of GPRFCA approach is compared with cloudwards and fog-
wards methods in terms of blocking ratio of requests, response time, and energy
consumption. The results indicate that the energy consumption rate of GPRFCA is
always between the rate of fogwards and cloudwards methods and near to the less
amount. In addition, this method reduces the blocking ratio of requests and reduces
the response time for delay-sensitive tasks.

• DAOWA: Delay Aware Online Workload Allocation in Combined
Fog-Cloud Scenarios

Dynamic traffic and heterogeneous environment of fog-cloud scenarios cause dif-
ferent challenges for workload allocation. In IoT-based systems, tasks are generated

29

3 Previous Works

stochastically, and different tasks require different amounts of computation to be
processed. Therefore, robust workload allocation methods need to be proposed to
be usable in IoT-fog-cloud scenarios with the mentioned characteristics.

For this purpose in [98], an online workload allocation method is proposed, which
aims to reduce the task service delay. This method investigates the stability of queu-
ing systems of fog and cloud servers by Lyapunov drift plus penalty theory and then
distributes the workload between the fog and cloud servers based on the performed
analyses.

The achieved results show that this method reduces the average task service delay
compared to similar workload allocation algorithms. The results also indicate that as
the task arrival rate and instruction length increase, the DAOWA method performs
much better than the competitor methods.

3.2.2 Other Complex Methods

• F2C: Fog to Cloud Architecture

In order to improve the response time for the IoT-based applications, authors in [82]
considered the challenges of Fog and proposed the F2C architecture as a solution.
In this approach, the edge devices utilize the capabilities of Cloud, and play the
role of fog servers for the users by providing different services. The F2C architec-
ture benefits from a layered management structure that combines the fog and cloud
layers and offers service parallelization. The advantage of this approach is that it
lets the user’s device to choose the suitable fog or cloud server on the fly. The final
goal of F2C is to provide parallel execution and improve execution time, resource
utilization, and data security.

In order to investigate the performance of F2C, the authors used that for pro-
cessing the tasks of a medical emergency application and compared its performance
with a cloud-based scenario, in which the data is communicated between the user
and cloud server through the Internet, and tasks are processed in Cloud. At first, in
F2C architecture, an initial discovery process is performed for finding the closest fog
server, and then the tasks are distributed between the fog servers to be processed.
The achieved results show that F2C improves the performance of the cloud-based
scenario in terms of execution time by 8.6 percent.

Furthermore, authors also discussed an optimized version of F2C (OF2C) in which
the number of fog servers must not be equal to the number of tasks, as the fog servers
have enough capabilities to process several tasks simultaneously. Moreover, in OF2C
architecture, the tasks can be processed in parallel. The achieved results indicate

30

3.2 Recent Complex Methods

that both F2C and OF2C perform better than the cloud-based approach, and OF2C
improves the performance of F2C and reduces the execution time by 21 percent.

• FBRC: Fog-Based Region and Cloud

In order to reduce the response time for delay-sensitive applications, in [26], a
task scheduling approach is presented. In this approach, fog-based regions and
Cloud are considered for processing the generated raw data of the IoT devices. It
is worth noticing that in this approach, the tasks can be processed not only by one
region but in several regions when more resources are required. The regions can
be composed of one or several fog servers, and their resources (and the location of
these resources) change dynamically over time. In each region, a fog node is selected
to handle the join/leave requests of fog nodes, send and receive the requests, and
perform task scheduling for sending a request to the most suitable server at each
time slice. Besides, the fog managers are also responsible for collecting information
about the other regions to be informed about their resources. In this approach, the
task scheduling algorithm works as follows:

1. the available tasks that must be processed are sorted with regard to their
latency requirements in ascending order.

2. the computational resources are allocated based on a policy, which considered
the delay sensitivity of the tasks.

3. the newly arrived and remained tasks are again sorted with regard to their
latency requirements in ascending order, and step 2 is repeated.

Comparing the results with the cloud-based and fog-based methods shows that
FBRC reduces the response time.

• A Policy for Minimizing Delay in Fog-Cloud Networks

In [91], Yousefpour et al. proposed a general framework for IoT-Fog-Cloud sce-
narios. Also, to reduce the delay of fog devices, they proposed a policy that aims to
reduce the service delay for IoT-based applications. This policy utilizes fog-to-fog
communications for sharing the workloads. In order to offload the computational
tasks, this policy considers the length of the queue and the different types of tasks
(that have different processing times). It must also be mentioned that this method
can be used in any network architecture.

Moreover, in this method, task allocation is made based on the response times of
fog servers, which depend on different factors such as the computational power of
servers and their workloads, queue status, and task type. If the estimated response

31

3 Previous Works

time of a task was less than a threshold (this amount depends on the incoming
traffic from the IoT devices to the servers [91]), the fog server accepts the task and
processes it. On the other hand, the fog server offloads the task to another fog server
or the cloud. The achieved results show that using this method for processing the
light tasks in the fog servers significantly reduces the average delay.

• Efficient Utilization of Fog and Cloud Resources by Using A Novel
Module Mapping Algorithm

In order to use the network resources efficiently, and for providing the QoS (by
reducing the latency) for delay-sensitive applications, in [85] a module mapping algo-
rithm is proposed for efficient task distribution between the fog and cloud resources,
which considers the task requirements and the available computational resources of
the network.

In this paper, the case study is a real-world delay-sensitive IoT application, which
processes the collected data by the sensors and then sends the results to the users.
In order to distribute the tasks of the mentioned application, the proposed task
assignment algorithm works as follows:

• In the first step, the tasks and the fog servers are sorted in ascending order with
regard to their delay requirements and computational capabilities, respectively.

• Then, the algorithm tries to find the most eligible server for processing a task
(an eligible server can meet the requirements of the task).

• If there were an eligible server, the task would be assigned to that server.

• If the eligible fog server got exhausted, or if there were no eligible fog server,
then the task would be assigned to the cloud servers.

As discussed, this method tries to distribute the tasks between the fog servers
and only uses the cloud in specific situations. The achieved results show that the
presented algorithm improves Internet bandwidth utilization, delay, and energy con-
sumption compared to a cloud-based approach. As an advantage, it can be said that
this method is generic and can be used in any network architecture.

• A QoS-Aware Service Distribution Approach in Fog-Cloud Networks

In order to reduce the delay and energy consumption, in [99] authors proposed
a QoS aware service distribution method, which efficiently utilizes the edge devices
and considers the available computational resources in the network as well as the
service requirements.

32

3.2 Recent Complex Methods

In this method, data communication between the user and fog/cloud servers is
based on the services that a server can offer to the user. For example, if a server can
provide service types A and B and process approximately two tasks simultaneously,
the user must send only two types A or B tasks, or one type A and one type B task
to the server. This policy prevents failures that are caused by fully occupied servers.
The experimental results show that this method optimizes the service allocation in
combined fog-cloud scenarios and prevents server under-utilization.

• ReRaP: Resource Ranking and Provisioning algorithm for IoT Ap-
plications in Combined Fog-Cloud Scenarios

The network users might change their behaviors for different reasons, such as
their budget, workload, etc. This dynamic user behavior has not been discussed
in the previous works. In order to handle the dynamic requirements of IoT-based
applications, authors in [100] proposed a method for resource provisioning in com-
bined fog-cloud scenarios, which aims to reduce the costs, delay, and processing time.

Firstly, this method ranks the current resources of fog and cloud layers with re-
gard to their limitations and then provides computational resources for the users to
meet their dynamic requirements. This method aims to use the fog devices in the
proximity of the users, and if the fog servers were not eligible to process a task, then
the task would be forwarded to the edge servers, and if they were not also eligible,
then the task would be sent to the cloud servers for processing. An eligible server
must have high computational power, be connected to the user with high bandwidth,
and provide a suitable response time for delay-sensitive tasks of the users.

In order to rank the computing resources, their processing time, available band-
width, and response time will be considered. This method ranks the servers with
regard to the required time unit for processing a task. For example, if the required
computational power by the user was less than the power of a resource, then the
rank of that resource is equal to 1, and if that was more than the power of that
resource, then the rank will be rounded up to the nearest value. After the ranking
process, this method checks the ranking of resources in each layer (fog, edge, and
cloud) and tries to find eligible resources in the fog, edge, and cloud layers, respec-
tively. The experimental results show that the ReRaP algorithm reduces the costs,
processing time, and delay compared to similar methods.

• A Fuzzy Logic Approach for Task Scheduling in Combined Fog-
Cloud Scenarios

The fog-cloud networks are scalable, and therefore huge numbers of users can
communicate data with the fog or cloud servers. These users have some preferences,

33

3 Previous Works

while the servers are limited in terms of computational power. In order to do a trade-
off between the user preferences and limitations of servers, in [101] authors presented
a fuzzy logic based method, which ranks the servers by using linguistic and fuzzy
quantified proposition and aims to assign the tasks of the IoT-based applications
to the most suitable servers. The achieved results show that in comparison to
other proposed algorithms, this method improves the user sanctification and energy
consumption but fails in terms of execution time.

3.3 Investigating the Previous Works

This section reviewed the proposed task distribution algorithms, which can be used
in combined fog-cloud scenarios. Table 3.1 summarizes the previous works. As can
be seen, in most of the earlier researches, the delay has been considered an impor-
tant parameter. Resource utilization, energy consumption, cost, and blocking rate
of the tasks were other measured parameters by the researchers.

In section 2.4.10, we discussed about the huge amount of data that are generated
by the IoT devices and the problem of Internet bandwidth utilization by the IoT
devices. Moreover, in section 2.5, we discussed about the response time as the most
important requirement of the delay-sensitive applications. As shown in Table 1.3,
none of the reviewed papers have considered these two parameters simultaneously,
and the impact of variation of response time on Internet Bandwidth Utilization has
not been investigated. In addition, the discussed methods are limited, and they can
only be used for specific purposes. For example, the proposed method in [11, 91]
only aim to reduce the response time, and therefore they are not suitable for a delay-
tolerable application, which aims to reduce the IBU, costs, or energy consumption.
As another example, the proposed method in [12] is only suitable for improving
energy consumption, so it is not useful for an application that needs to reduce the
bandwidth utilization. Moreover, most of the proposed methods do not consider the
dynamic behavior of servers and the fog-cloud network, which directly impacts the
performance of any task placement technique.

As the combined fog-cloud scenarios are heterogeneous, as there are various types
of applications in the world of IoT (which have different requirements), and as the
number of IoT-based applications is increasing, a robust technique for distributing
the IoT tasks with regard to the application requirements is needed. In this dis-
sertation, we aim to propose a scalable approach that can distribute the tasks with
regard to the application requirements, and be used in different network architecture
with different number of servers and users.

34

3.3 Investigating the Previous Works

Table 3.1: The reviewed methods in this section

Name of Method Solution
Discussed
Variables

F2C [82]
Service Parallelization in

Fog-Cloud Servers
Execution Time

GPRFCA [97]
Using Gaussian Process

Regression for predicting the
future demands of the network

Delay, Energy
Blocking Rate

FBRC [26]
Service Parallelization in Fog

Layer and giving more
priority to delay-sensitive tasks

Response Time,

VFR [11]
Utilization of Cloud, only when the best

fog server fails
Response Time,

Resource Utilization

LBP-ACS [12]
Utilization of Laxity based priority

algorithm and Ant Colony for
optimal scheduling

Failure Rate,
Energy

Delay Minimizing
Policy [91]

Sharing the workloads between the
fog-cloud servers by considering the

length of queue and the types of tasks
Delay,

Module Mapping
Algorithm [85]

Considering the available omputationl
resources and task requirements

for workload distribution

Delay,
Energy,

Network Usage

DAOWA [98]
Investigating the stability of the
queuing systems of servers by

Lyapunov drift and penalty theory
Delay

QoS Aware Service
Distribution [99]

Considering the available computing
resources and service requirements,

for task distribution

Delay,
Resource Utilization

CAG [13]
Using Genetic Algorithm for trade-off
between the cost and meeting the

deadlines of IoT tasks

Cost,
Success Rate

ReRap [100]
Resource Provisioning by considering
the dynamic behaviors of the users

Delay, Cost
Processing Time

Dynamic Resource
Allocation [14]

Considering the network and computing
load at the time of task distribution

Delay, Resource
Utilization

Contract-based
Task Scheduling [94]

Task distribution by considering
the mobility of fog servers

Cost, Delay,
Resource Utilization

Multi-Objective
Genetic Algorithm [95]

Using multi objective genetic algorithm
for optimizing the delay and

energy consumption

Delay,
Energy

Fuzzy Logic
Approach for

Task Scheduling [101]

Using fuzzy logic for trade-off between
the user preferences and limitations of servers

Delay,
Energy

35

4 Case Study and Primary Experiments

4 Case Study and Primary
Experiments

4.1 Case Study

As is reported in my publication [27]; analyzing the reaction of the human body to
different environmental factors like humidity, wind velocity, and temperature, in or-
der to identify the best condition in which the body is in the heat comfort condition
is not easy and many complicated calculations and models are needed.

There are various researches in the State of the Art, which proposed some mod-
els to simulate the heat transfer in the human body. One of the first models was
presented by Stolwijk [102] in which the impact of cloth on the body temperature
was not considered. This problem was resolved later by Haslam and Parsons in
[103, 104]. In 2006, Salloum [105] proposed a complex model, which considers the
effect of the respiratory system, sweating, blood perfusion in the tissue, heat trans-
fer in the artery and vein, and contraction of blood vessels in different conditions [27].

As presented in [27], the case study that we have used in our experiments is an
online delay-sensitive healthcare application (TANDIS) produced by Rayan Tahlil
Sepahan Company. This application combines Stolwijk [102] and Salloum [105]
approaches and is specially designed to analyze the effect of different working condi-
tions on the body of workers who work in environments with high amounts of heat
stress, such as iron and steel industries. Using the mentioned application, we can
estimate the change of water level and the temperature of skin, core, vein, and artery
in different segments of the body by using WBSNs and environmental sensors. As
a result, workers will be informed about their health status and specific working
schedules for any worker can be prepared, aiming to keep them safe and healthy in
their working environment. In the following, we explain how this application works.

In this application, the inputs can be set manually and automatically. The envi-
ronmental sensors and WBSNs are responsible for providing the inputs (information
about the human body and environmental parameters) such as skin temperature,
sweat rate, heart rate, air temperature, relative humidity, wind speed, and activity
of the user, and sending them to the application.

36

4.2 Comparing the Performance of Fog and Remote Servers

Other information such as type of clothes, type of textile, the thermal resistance
of cloth, body surface area, radiation temperature, metabolic rate, gender, weight
height, layers of cloth, solar flux, and exposure time must be set manually. In the
next step, the application processes the received data, and then as is shown in figure
4.1, it estimates the temperature of skin, core, vein, and artery in different segments
of the body, and also provides some information like the change of water level and
so on [27].

Figure 4.1: Illustration of the temperature of different parts of body in TANDIS appli-
cation

4.2 Comparing the Performance of Fog and

Remote Servers

In order to investigate the performance of Fog and Cloud servers in terms of response
time and IBU, we utilized both servers for processing the tasks of the discussed
healthcare application in section 4.1. The results are presented in [27], and discussed
in the following subsections.

37

4 Case Study and Primary Experiments

4.2.1 Research Questions

In [27], our main purpose was finding the answer to the following questions:

• How long does it take for the fog and Cloud servers to process a task?

• How much is the latency between the user and the remote server?

• How long does it take for the user to receive the response from the servers?

• How much bandwidth can be saved by utilization of Fog servers instead of
remote servers?

4.2.2 Assumptions

In this experiment, we assumed that:

• tasks are sent to the servers one by one and not in batches.

• there is no power restriction.

• data is transmitted reliably, and there is no radio frequency interference.

• the fog servers compress the data after sending the response to the users.

4.2.3 The Experimental Results

As reported in [27]; in our experiment, we considered a person who is equipped with
several wearable sensors that are responsible for activity recognition and measuring
the temperature, sweat rate, and heart rate in different parts of the body. We also
assumed that several environmental sensors are utilized to measure the tempera-
ture, humidity, wind velocity, and other parameters of the working environment.
Since in our experiments, utilization of real sensors was not necessary (because we
only needed the raw data to be assigned to the servers), we generated the sensors
data based on a random approach. Moreover, there was also a broker in the net-
work architecture, which was responsible for receiving, aggregating, and sending the
raw data (collected by wearable and environmental sensors) to the service providers
(Fog server or a remote server in Cloud). It must be mentioned that we used real-
world devices for this experiment. As the main differences between Fog and Cloud
servers are their computational power and latency to the user, we used different
computers in terms of hardware and used the more powerful one as the cloud, and
the weaker one as the fog server. In addition, we put the Fog server in the local
area network so that it was accessible through an ad-hoc communication, but the
cloud server had a public IP address, which was only accessible through the Internet.

38

4.2 Comparing the Performance of Fog and Remote Servers

Regarding [27], as the architecture and technical details of WBSN and environ-
mental sensors do not affect the response time and the Internet traffic, we only
considered the broker, Fog and the remote server (with equal hardware and com-
puting power) in the network architecture. In the first scenario, we installed both
the client and server sides of the application on the server to measure the run time,
delay, and response time on the localhost, which were equal to 0.50, 1.40 and 1.90
seconds respectively. The run time is the time that CPU spends for processing a
batch of data, and the response time is considered as the run time together with
I/O, connection, transmission, and propagation delays between the user and the
server. In the second scenario, as illustrated in figure 4.2, there is a broker which
is responsible for receiving the raw data from WBSNs and environmental sensors,
performing some preprocessing on the received data, and sending the preprocessed
data to a configured remote server in Cloud through the Internet by using TCP/IP
communication protocol. After this step, the remote server starts processing the
raw data, stores it, and sends the result to the user.

As is discussed in [27]; in the fog-based scenario as depicted in figure 4.3, the
broker sends the raw data to a Fog server, which is one of the idle computers around
the user in the local area network (LAN). Generally, Fog servers could be located
anywhere between the cloud and user, but in this experiment the fog server is ac-
cessible via one-hop ad-hoc communication in LAN and could be discovered as it
announces its computation power and address by voluntary advertisements in short
periods of time. In this scenario, the broker receives the raw data from the sensors,
does some pre-processing tasks, and sends the pre-processed data to a Fog server.

Figure 4.2: Cloud-Based Scenario

39

4 Case Study and Primary Experiments

Table 4.1: Specifications of the used devices in [27]

Specification
of Devices

Broker Fog Server
Remote
Server

Type of Device Windows tablet PC PC
OS Windows 8 Windows 8 Windows 8

CPU
Intel Core i5-

6300U
Intel Core i5

8250U
Intel Core i5

8250U

Table 4.2: Details of the real-world experiment in [27]

Implementation Details
Cloud

Computing
Fog

Computing
Communication Protocol TCP/IP TCP/IP

Location of Server Internet LAN
Available Bandwidth 4.2 Mbps 300 Mbps

Distance Between User and Server 13 hops 1 hop
Average Response Time 3.55 sec 1.9 sec

The fog server starts processing the received data, sends the result to the user and
also transfers the compressed result to the cloud for further processing and perma-
nent storage.

As reported in [27], Cloud provides much more powerful resources compared to
the fog, but as in our case study only a few amounts of raw data must be processed
in the server, and as we aim to investigate the effect of the distance between the
user and server on the response time, we have used servers with similar computa-
tional power in both scenarios. Additional specifications of the used devices in this
experiment are presented in Table 4.1, and implementation details can be found in
Table 4.2.

In all scenarios that are considered in [27], delay, response time, and run time
are measured, and results are presented in figures 4.4 and 4.5 as well as Table 4.2.
It must also be mentioned that in all scenarios the amount of the produced data
by the sensors, which are aggregated, pre-processed and available in the broker is
almost 2 KB and the amount of the processed data in the server is almost 90 KB.
Therefore, in the cloud-based scenario, 2 KB during the upload and 90 KB during
the download process is communicated between the user and remote server through
the Internet. In contrast, in the fog-based scenario, both produced and processed
data are communicated in the local area network and only the compressed results
are communicated between the fog and remote server over the Internet. The applied
compression method in Fog server is LZW [21], which is able to reduce the amount

40

4.2 Comparing the Performance of Fog and Remote Servers

of the processed data up to 77% in 0.03 seconds (from 90 KB to 21KB) in our case
study. Therefore, in the fog-based scenario, only the compressed result is sent to
the cloud, which consequently reduces Internet traffic.

Furthermore, the average results in [27] show that using Fog computing also im-
proves the response time by 46% in comparison to Cloud. As is illustrated in figure
4.5, in the fog-based scenario, no significant variation in response time is seen, and
results are actually the same in all the experiments, while in the cloud-based sce-
nario, tiny variations were observed. The reason is apparent, as in the cloud-based
scenario, both request and response are communicated through different routers over
the Internet, unlike the fog-based approach in which data is communicated in LAN.
The average response time in the fog-based scenario is 1.90 seconds, while Cloud
provided an average response time of 3.55 seconds. It is worth mentioning that the
discussed results are provided by real measurement. The bandwidth utilization is
the amount of communicated data between the users and servers, and the response
time is the sum of run time (on the server) and the delay between the user and server.

Figure 4.3: Fog Computing Based Scenario

41

4 Case Study and Primary Experiments

Figure 4.4: Comparing the performance of Cloud and Fog in terms of Internet traffic,
published in [27]

Figure 4.5: Comparing the performance of Cloud and Fog in terms of response time,
published in [27]

42

4.2 Comparing the Performance of Fog and Remote Servers

In addition, we also performed another experiment with different servers and ob-
served that the fog server processed the generated raw data by the IoT devices in
1 second, and the remote server provided a processing time of o.5 seconds. In this
experiment, the delay of Fog and Cloud servers was also 1.4 and 2.6 seconds, re-
spectively. Figure 4.6 compares the performance of Fog and Cloud servers in terms
of response time.

Figure 4.6: Comparing the performance of Cloud and Fog in terms of response time

Regarding [27], and as is depicted in figure 4.5-6, Fog computing provided a better
QoS compared to Cloud by providing an improved response time and reduced In-
ternet traffic. Reducing the network traffic improves data transmission and relieves
bandwidth; therefore, the bandwidth can be reserved for other important users and
applications. In addition, providing reduced response time is always required by
delay-sensitive applications, especially healthcare applications in which even sec-
onds are important.

But, it must be mentioned that when we use a more robust remote server (or a
very weak fog server), the response times of Cloud and Fog layers get closer to each
other. Generally, for one by one task processing, as is discussed in the state of the
art, Fog servers provide a better response time, and Cloud servers fail because of
their high latency to the users.

43

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

5 Intelligent Task Placement in
Combined Fog-Cloud Scenarios

In section 1.2, we discussed about the task distribution challenges in combined Fog-
Cloud scenarios. In this chapter, we raise several research questions about resource
allocation and task placement in Fog-Cloud networks and propose solutions for the
discussed research problems.

Firstly, we start with a network architecture in which Fog and Cloud servers have
similar workloads, different computational powers, and latencies. We also assume
that different numbers of tasks can be available in the broker at each time slice. In
the following subsections, we discuss about the task distribution problems in such
a network scenario and propose solutions for them. After each step, we make the
network architecture more complex and develop our primary method to be usable
in different network architectures.

5.1 Smart Task Distribution Between Fog and

Cloud Servers with Similar Workloads

5.1.1 Network Architecture and Assumptions

As we discussed in the previous sections, Fog and Cloud servers are different in terms
of computational power and latency to the user. Cloud servers are more powerful
than Fog servers, but the fog layer is closer to the user, which means it has less
latency. Therefore, in order to do experiments, we considered the network archi-
tecture that is depicted in figure 5.1 as our test bed. As can be seen, this network
contains a user (equipped with WBSNs), broker, Fog server, and a remote server in
the cloud. We set the computing capability of the cloud server to be almost twice
that of the capability of the fog server [30]. Moreover, in our experiment, the fog
server is accessible in the local area network through wireless ad-hoc communica-
tions, and the cloud server has a public IP address, which can be accessed via the
Internet. We also assumed that:

• there is no power restriction, and nodes are homogeneous.

• data is transmitted reliably, and there is no radio frequency interference.

44

5.1 Smart Task Distribution Between Fog and Cloud Servers with Similar

Workloads

• servers in both Fog and Cloud have similar (light) workloads.

More details about this network are presented in table 5.1.

Figure 5.1: The Network Architecture

Table 5.1: The Implementation Details of our Experiment in [16]

Cloud Fog
Communication Protocol TCP/IP TCP/IP
Communication Between

User and Server
Through the Internet Ad-hoc

Location of Server Internet LAN
Available Bandwidth 4.2 Mbps 400 Mbps
Distance to User 13 hops 1 hop

45

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

5.1.2 Problem Description and Research Questions

In order to process the provided raw data by the IoT sensors, as discussed in [30],
on one side, there are Cloud servers which have powerful computing resources but
are located far from the users (with high latency to the users), and on the other
side there are Fog servers which have limited computing capabilities but are located
closer to the users (with low latency to the users).

Regarding [30], where both Fog and Cloud resources exist, the first challenge is
that the broker is not able to distinguish the best resource (between the fog and
cloud servers) for processing a batch of data. Also, when the number of available
tasks in the broker increases, using only one resource (cloud or fog) is not efficient,
as the best response time can only be achieved when both Fog and Cloud servers
have the least idle time. Therefore, the second problem is that the broker is not able
to distribute the available tasks in the most efficient way for reducing the response
time and the Internet bandwidth utilization. Thus, an appropriate task distribution
algorithm in combined fog-cloud scenarios is required to utilize the fog and cloud
resources in the most efficient way, and reduce the response time and IBU as much
as possible.

So as reported in [30], the research questions can be formed as follows:

• When is it efficient to use Fog servers?

• When do the cloud servers perform better than Fog servers?

• How is it possible to make the broker intelligent to predict the response times
of servers?

• How should the broker distribute the tasks between the fog and cloud servers?

• How much does the intelligent task distribution reduce the response time and
IBU?

5.1.3 AITDA: An Artificial Intelligence Based Task
Distribution Algorithm

As is presented in [30], in order to deal with the discussed challenge in section 5.1.2,
we propose an Artificial Intelligence based Task Distribution Algorithm (AITDA),
which makes the broker smart and able to predict the processing time and the size
of the result of a received task (from the user). This prediction process can be
performed by using one of the function approximation methods (FAMs) [30]. As
discussed in [1], the reason for using the FAM in such a scenario is that some appli-
cations (like the healthcare application in our case study) provide an infinite state

46

5.1 Smart Task Distribution Between Fog and Cloud Servers with Similar

Workloads

of inputs with those continuous variables that their variation affects the output. In
these scenarios, using other methods such as decision tables is not possible, and we
need to use the FAMs to predict the output. In this research, we chose the ANNs
[106] as the FAM because they have been used in the literature for resource alloca-
tion purposes [107, 108] and provided acceptable results. They are also ready to use
and only need to be trained [30]. However, other similar methods such as Support
Vector Machines [109] can also be used in these scenarios, but as comparing the
performance of different FAMs is out of the scope of this thesis, we discuss about
their performance in our future works. In the following steps (as discussed in [30]),
we explain how the ANNs can be set up in the broker:

1. User sends different tasks to the broker.

2. The broker randomly sends the received tasks to the fog and cloud servers.

3. Fog and cloud servers process the tasks. For each task, they log the received
data from the broker, as well as the processing time and the size of the result
of the task.

4. Each of the servers train an ANN in which the input is the received data from
the broker and the output is the processing time and the size of the result.

5. The ANNs will be sent to the broker (then, for each server, the broker has an
ANN, which makes the broker able to predict the processing time and the size
of the result when a task arrives).

6. The broker distributes the tasks based on the estimated response times and
sizes, with regard to the pre-defined policies.

With regard to my publication [30]; different policies can be considered for the
distribution of the available tasks in the broker. The policy that we define in this
section aims to reduce Internet bandwidth utilization and response time. For this
purpose, the available tasks in the broker must be sorted with regard to their pre-
dicted size of results in ascending order. The smaller tasks will then be assigned to
the cloud, and larger ones will be sent to the fog servers for processing. In order to
reduce the response time as much as possible, fog and cloud servers must process
the tasks in parallel so that each of them experiences the least idle time.

As reported in [30], to check the performance of AITDA, we randomly generated
1000 different tasks, of which 800 tasks were used for the training process of the
ANNs (in fog and cloud servers), and 200 tasks were used for the main experiment.

47

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Each task consists of almost 400 numbers that can be provided manually or auto-
matically by the sensors. It must be mentioned that we used multi-layer perceptron
ANNs in MATLAB, which were composed of three layers and using the Levenberg-
Marquardt training algorithm. In order to check the accuracy of the ANNs, we
compared the predicted amounts with the actual amounts. The results showed that
the ANNs could predict the response time and the size of the results with an error
of ±0.09 seconds (13%) and ±250 bytes (0.27%), respectively.

The processing time of Fog and Cloud servers for 200 different tasks have been
depicted in figure 5.2, which shows that the average processing time of cloud and
fog servers are almost 0.5 and 1 seconds, respectively [30]. It is worth mentioning
that the average size of results is almost 90 KB.

Figure 5.2: Comparing the Processing Time of Fog and Cloud Server

Regarding [30]; in the next step, we set up the trained ANNs in the broker and
made the broker able to estimate the response time of the fog and cloud servers as
well as the size of the results. Afterward, the broker distributed the tasks based
on the discussed policy. It is worth noticing that we assumed both Fog and Cloud
servers always work properly, and their workloads were considered to be equal (30%)
at the time of task assignment process. Furthermore, the delay is considered to be
constant (1.2 seconds for the fog and 2.4 seconds for the cloud servers).

48

5.1 Smart Task Distribution Between Fog and Cloud Servers with Similar

Workloads

5.1.4 Evaluation of Results

As is published in [30], and depicted in figures 5.3 and 5.4; we compared the per-
formance of AITDA with two competitors, namely cloud-based and fog-based ap-
proaches, in terms of response time and Internet traffic. Figure 5.3 shows the fact
that by increasing the number of the available tasks in the broker, Cloud performs
better than Fog in terms of response time. The reason is the computing capability
of the cloud servers, which is more than the power of the fog servers. Therefore,
when several tasks are sent to both fog and cloud servers, the processing time of the
cloud is less than the fog. This difference in processing time is too high and makes
the delay of cloud servers insignificant. As illustrated in figure 5.3, AITDA improves
the response time compared to fog-based and cloud-based approaches. The reason
is obvious as the AITDA distributes the tasks between the fog and cloud resources.
This improvement becomes more significant when the number of available tasks in
the broker increases. In addition, as is shown in figure 5.4, AITDA performs better
than the cloud-based method and worse than the fog-based approach in terms of In-
ternet Bandwidth Utilization. The reason is that AITDA assigns some of the tasks
to the Cloud, but the cloud-based method communicates all the data and responses
over the Internet, unlike the fog-based method, which does not communicate any
data through the Internet, as Fog servers are located in the local area network.

Figure 5.3: The performance of different approaches in terms of response time, published
in [30]

49

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.4: The performance of different approaches in terms of Internet traffic, published
in [30]

5.2 Fog-Cloud Smart Task Distribution by

Considering the Application Requirements

5.2.1 Problem Description

In the previous section, we discussed about AITDA, which its main aim was to com-
municate the least possible amount of data through the Internet. Therefore, AITDA
can be considered as a suitable task distribution approach for delay-tolerant appli-
cations. But, as we discussed in section 2.6.2, there are delay-sensitive applications
in which data must be communicated between the user and servers with the least
possible amount of delay. In order to provide suitable task distribution methods for
both delay-tolerant and delay-sensitive applications, we propose an updated version
of AITDA, which is called Fog-Cloud Smart Task Distribution (FCSTD) method
that considers the application requirements at the time of task distribution.

5.2.2 Proposed Approach

As discussed in [28]; the FCSTD method starts running in broker after the following
steps:

1. The data providers generate data and send the tasks to the distributor unit

50

5.2 Fog-Cloud Smart Task Distribution by Considering the Application

Requirements

(broker).

2. The broker randomly assigns the produced tasks to the fog and remote servers
for processing in a specific period of time (Pk).

3. The broker logs the tasks that have been assigned to the fog server, in addition
to the processing time and the size of the results (provided by the fog server).

4. After Pk, the broker sends the logged data to the remote server.

5. The remote server trains two ANNs: a) In the first ANN, the assigned tasks
to the fog server are set as input, and the response time and the amount of the
provided data by the fog server are set as output. b) In the second ANN, the
received tasks by the remote server (from the broker) are set as input, and the
response time, in addition to the amounts of the provided data by the remote
server, are set as output.

6. The remote server sends both of the ANNs to the broker after the training
process.

7. Then, the broker can utilize the ANNs, such that when a task arrives, the
broker sets the task as the input of the ANNs, and then the outputs of the
ANNs are the response time of fog and cloud servers, and also the size of
results.

8. The broker assigns the received tasks to suitable servers with regard to appli-
cation requirements.

9. The learning process (steps 3-6) will continue in Pk+1 for improving the training
process of ANNs.

Regarding [28]; when the broker receives the tasks, it must be able to distribute
them with specific policies. For instance, a policy can be assigning all the tasks to
the fog servers. This can be a good approach for non-delay-sensitive applications
as the high response time of the fog servers (because of their limited resources) can
be tolerated. Another policy can be based on reducing the response time, which
is suitable for delay-sensitive applications. This policy must consider an efficient
task distribution between the existing fog and cloud servers. Our proposed method
distributes the tasks with two different policies, namely FCSTD traffic-based and
FCSTD time-based, that aim to reduce the IBU and response time, respectively.

5.2.2.1 FCSTD Time-Based

As reported in [28]; the FCSTD time-based method is usable for delay-sensitive
applications. With regard to figure 5.5, when the broker receives a batch of tasks (N

51

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

tasks) from an application, the FCSTD time-based method considers the variables
in Table 5.2 and then sorts the tasks with regard to their predicted processing times
in ascending order.

Table 5.2: Notations (published in [28])

Variable Description
N The number of available tasks in the broker

F
The processing time of the fog server,

predicted by the ANN

C
The processing time of the cloud server,

predicted by the ANN

S
The size of the result provided by the fog or cloud

server (the size of results are the same in both fog and
cloud servers)

Dc Delay of communication with the cloud server
Df Delay of communication with the fog server

TRc

Total response time of the cloud server,
predicted by the ANN

TRf

Total response time of the fog server,
predicted by the ANN

RP The Maximum Response time

Regarding [28]; there is always a relation between the F and C (F is always greater
than C); the tasks can be sorted by considering either F or C. Then, the possible
distribution conditions will be checked. In the first possible distribution, the first
task in the queue (N1) is assigned to the cloud server, and N2, N3,... Nn to the fog
server. Then TRc , TRf , and RP are calculated as follows:

TRc = C1 +Dc ; TRf = F 2 + F 3 + . . . F n +Df

RP1 = max {TRc, TRf}

In [28], it is mentioned that C1 and F2 are the processing time of N1 and N2,
provided by cloud and fog servers, respectively. In the second possible distribution,
the first two tasks of the queue (N1 and N2) are assigned to the cloud server, and
N3, N4, ... Nn to the fog server. Therefore, TRc , TRf , and RP will be equal to:

TRc = C1 + C2 +Dc ; TRf = F 3 + F 4 + . . . F n +Df

RP2 = max {TRc, TRf}

This process continues until the last possible distribution in which all of the tasks will
be assigned to the cloud server [28]. Therefore, TRc , TRf , and RP are calculated

52

5.2 Fog-Cloud Smart Task Distribution by Considering the Application

Requirements

as follows:

TRc = C1 + C2 + + Cn +Dc ; TRf = 0

RPn = max {TRc, TRf}

Obviously, FCSTD time-based method selects the distribution possibility in which
RP has the minimum possible amount [28].

5.2.2.2 FCSTD Traffic-Based

As is discussed in [28], and also in section 5.1.3, after receiving a batch of tasks from
the user, the FCSTD traffic-based method sorts the tasks with regard to their sizes
in ascending order. In the next step, it checks the possible distributions and selects
the best one (similar to the FCSTD Time-Based method).

5.2.3 Evaluation of Results

In this experiment, the assumptions, network architecture, and implementation de-
tails are similar to the previous experiment discussed in section 5.1. The technical
details of the broker and servers are presented in table 5.3.

Table 5.3: The technical details of the used devices in our experiment

Broker Fog Server Cloud Server
Type of Device Laptop Laptop Server

CPU
Intel Core i5

6300 U
Intel Core i5

8250 U
Intel Core i7

8700
RAM 6 GB 8 GB 16 GB

In this research (as published in [28]), we investigated the performance of different
task placement policies for distributing the different types of tasks. The discussed
healthcare application in section 4.1 generates tasks with almost similar sizes (89-94
KB) and processing times (nearly 0.5 and 1 seconds by cloud and fog servers, re-
spectively). In the following, these types of tasks will be called SSP tasks (because
they have Similar Sizes and Processing times). In order to apply different distri-
bution policies to this case study, at first, we randomly generated 1000 SSP tasks
(800 tasks for the training of the neural networks and 200 tasks for the main exper-
iment). After training the multi-layer perceptron neural networks (composed of 3
layers) with the Levenberg-Marquardt training algorithm in MATLAB, we checked
their performance accuracy to predict the response time and the size of the pro-
cessed data (results). Neural networks were able to predict the response time and
size of the results with the error of 0.1 seconds and 250 bytes, respectively.

53

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.5: The Data Flow in FCSTD

As reported in [28], for a thorough investigation of the performance of different
distribution methods, we also generated tasks with:

• almost similar sizes but with different processing times (SSDP)

54

5.2 Fog-Cloud Smart Task Distribution by Considering the Application

Requirements

• different sizes but with almost similar processing times (DSSP)

• different sizes and processing times (DSP)

In this experiment [28], the broker is responsible for distributing the tasks between
the fog and cloud servers with five different policies, namely:

• Fog-based: that utilizes the fog resources for processing the produced data by
the IoT devices.

• Cloud-IoT: the proposed method in [31] which allocates all of the generated
data to the cloud for processing.

• Random Fit: that is proposed in [33] that randomly assigns the tasks to the
fog or cloud servers.

• FCSTD Traffic-based: that uses the ANNs to distribute the tasks and aims to
reduce the IBU.

• FCSTD Time-based: that exploits the ANNs for task distribution between the
fog and cloud resources, aiming to reduce the response time.

and after the distribution, it waits for the response of the servers to forward them to
the user. It must be noticed that in this experiment, response time is the sum of the
processing time, transmission, propagation, connection, and application delay [28].
The results are also based on an average of 20 different experiments with different
tasks. The performance of the mentioned distribution methods in terms of IBU and
response time are presented in [28] and also figures 5.6- 5.13.

For the SSP tasks, as is depicted in figure 5.6, both versions of the FCSTD method
provided the best response time compared to the other methods. The difference bet-
ween the FCSTD method and the other task placement techniques increases as the
number of available tasks in the broker increases. For example, when there are only
three tasks available in the broker, our proposed method responds in 3.6 seconds,
and the cloud-IoT, random fit, and fog-based methods provide the response in 4.25,
4.6, and 4,63 seconds receptively. But, when there are 10 tasks available in the
broker, the response time of FCSTD is almost 6 seconds, and the response times
of Random Fit, Cloud-IoT, and fog-based methods are 7, 8.11, and 12.19 seconds,
respectively.

It can be generally said that both versions of our proposed method provided simi-
lar response times that were much better than the other methods. The Random Fit
and Cloud-IoT also performed similarly, and after FCSTD, they were the second-
best approaches in terms of response time. Moreover, we also observed that the

55

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

fog-based method was the worst. The reason is that in the fog-based method, all
the tasks get processed in the fog servers (which are limited in terms of computa-
tional power), and by increasing the number of available tasks in the broker, fog
servers perform poorly.

However, the ranking of methods in terms of IBU is entirely different. As shown
in figure 5.7, in the fog-based method, the amount of communicated data over the
Internet is always equal to zero. Therefore, this method is the best task placement
approach in terms of IBU. The reason is that this method exploits the fog servers
accessible in the local area network (in our experiment). Moreover, figure 5.7 also
indicates that the Random Fit method communicates fewer amounts of data over
the Internet in almost all situations compared to FCSTD and Cloud-IoT methods.
It is also clear that the traffic-based version of FCSTD performs slightly better than
its time-based version, which is ranked as the second-worst approach in terms of IBU
for the distribution of SSP tasks. Moreover, we also witnessed that the Cloud-IoT
method is the worst policy in terms of IBU, as in this method, all the requests and
responses are communicated over the Internet between the users and the remote
servers in the cloud. All in all, it can be said that for the distribution of SSP tasks,
our method is always faster than the other task placement techniques, but in terms
of IBU, Random Fit performs better in exchange for a significantly higher response
time.
For the distribution of the SSDP tasks, as is visible in figure 5.8, both versions

of our proposed method provided the best response time compared to other meth-
ods in all situations. Moreover, Cloud-IoT and Random Fit methods are ranked as
the third and fourth-best approaches for distributing SSDP tasks. However, they
performed similarly in most of the situations. It is also clear from the data that
the limitation of fog servers in terms of computational power caused the fog-based
method to be ranked as the worst method in terms of response time. In terms of
IBU, the fog-based and Random Fit methods are ranked as the first and second-
best methods for distributing the SSDP tasks. In figure 5.7, we observed that both
versions of our proposed method performed similarly, but in figure 5.9, it is appar-
ently seen that the traffic-based version of FCSTD performs much better than its
time-based version in all the situations and gets ranked as the third-best approach
in terms of IBU. We can also see that the time-based version of FCSTD is ranked as
the fourth-best method, and the Cloud-IoT performs worse than all the discussed
task distribution techniques. Moreover, as shown in figure 5.10, it is explicitly ob-
served that FCSTD is the fastest method for distributing the DSSP tasks in terms
of response time. The diagram also reveals that the Random Fit and Cloud-IoT
methods perform similarly, and the fog-based method is the worst task placement
approach compared to the other discussed techniques. However, in terms of IBU, the
fog-based method is again the best, and the traffic-based version of our method per-
formed better than the Random Fit (which is ranked as the third-best distribution

56

5.2 Fog-Cloud Smart Task Distribution by Considering the Application

Requirements

approach). It is also clear that Cloud-IoT is the worst method, and the time-based
version of FCSTD performs better than Cloud-IoT and worse than Random Fit in
terms of IBU for distribution of DSSP tasks.

Figure 5.6: The performance of different distribution policies in terms of response time
for SSP tasks, published in [28]

Figure 5.7: The performance of different distribution policies in terms of IBU for SSP
tasks, published in [28]

57

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.8: The performance of different distribution policies in terms of response time
for SSDP tasks, published in [28]

Figure 5.9: The performance of different distribution policies in terms of IBU for SSDP
tasks, published in [28]

58

5.2 Fog-Cloud Smart Task Distribution by Considering the Application

Requirements

Figure 5.10: The performance of different distribution policies in terms of response time
for DSSP tasks, published in [28]

Figure 5.11: The performance of different distribution policies in terms of IBU for DSSP
tasks, published in [28]

59

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.12: The performance of different distribution policies in terms of response time
for DSP tasks, published in [28]

Figure 5.13: The performance of different distribution policies in terms of IBU for DSP
tasks, published in [28]

As is depicted in figure 5.12, both versions of our proposed method provide the
best response time for distributing the DSP tasks. It can also be seen that the
Cloud-IoT method is ranked as the third-best approach in comparison to the other
methods in terms of response time. We also observed that the Random Fit approach

60

5.2 Fog-Cloud Smart Task Distribution by Considering the Application

Requirements

failed in this situation (and got ranked as the second-worst approach) and only per-
formed better than the fog-based method. In terms of IBU, after the fog-based
method, which does not communicate any data over the Internet, Random fit is the
best method as it utilized less Internet bandwidth than both versions of FCSTD
and Cloud-IoT methods.

Generally, with regard to figures 5.6-13, it can be said that the fog-based method
is always the best approach for delay-tolerant applications, as it utilizes no Internet
bandwidth and provides high response times. We can also conclude that both ver-
sions of FCSTD always provide the fastest response time, which makes them suitable
for delay-sensitive applications. However, it must be noticed that the traffic-based
version of FCSTD always performed better than its time-based version in terms of
IBU, so it can be a better approach for reducing both response time and IBU. Fur-
thermore, we also observed that the Random Fit method, in some cases, performs
better than FCSTD in terms of IBU in exchange for a considerably higher response
time.

Regarding [28]; as a disadvantage, it must be discussed that our proposed method
is only usable for those case studies in which the variation of application inputs has
a direct effect on the output, where neural networks can perform excellently. For
instance, we used another application that solves a mathematical problem, checking
if a number (between 1 and 250) is prime or not. We trained the neural networks
similar to our previous case study, and as the neural networks were not able to
predict the response time by checking the inputs of the tasks, our proposed method
performed poorly, as is presented in figure 5.14. It must be mentioned that in the
following figure, communication delay of fog and cloud servers has not been consid-
ered as we only aim to show the wrong prediction of the neural networks when there
is no relation between their input and output.

Figure 5.14: Comparing the achieved response times by using, Cloud-IoT, FogBased and
FCSTD Traffic-Based methods, published in [28]

61

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

5.3 Smart Task Distribution Between Fog and

Cloud Servers with Different Workloads

In sections 5.1 and 5.2, we assumed that the available servers in Fog and Cloud lay-
ers are always idle and ready to process the generated raw data by the IoT devices.
We also assumed that different numbers of tasks could be available in the broker at
the time of task distribution. Now we consider the situations in which the available
Fog and Cloud servers have different workloads at the time of task arrival (and their
workloads change over time). This assumption causes a problem for the broker be-
cause the broker is not aware of the workloads of servers, and it might forward a
received task from the IoT devices to a server with a high workload, which increases
the response time.

In this section, we present the Machine Learning Based Task Distribution (MLTD)
algorithm (a new version of FCSTD), which can distribute the received tasks between
the servers by considering their workloads.

5.3.1 Network Architecture and Assumptions

As reported in [16]; for evaluating the performance of MLTD, we consider the fol-
lowing network architecture, depicted in figure 5.15. As is presented, the network
consists of a user who is equipped with the Wireless Body Sensor Network, which
continuously generates healthcare-related data. Moreover, there is also a broker
which is responsible for receiving the raw data from the user and assigning them to
the fog or cloud servers for processing. Furthermore, the fog layer consists of two
different fog servers (accessible in local area network through ad-hoc communica-
tions), which are responsible for receiving the tasks from the broker, processing, and
sending them back to the user or cloud servers (for further processing and perma-
nent storage of the results). Furthermore, there is also a powerful remote server in
the cloud (accessible via a public IP address with a distance of 14 hops to the user),
which is accessible through the Internet and responsible for processing the received
tasks from the broker or storing the result of the processed tasks by the fog servers.
The technical specifications of the fog and cloud servers are presented in Table 5.4.

Table 5.4: The technical details of the used devices in our experiment in [16]

Fog Server 1 Fog Server 2 Remote Server
Type of Device Laptop Laptop PC

CPU
Intel Core i5

6200 U
Intel Core i7

7600 U
Intel Core i7

8700 U
RAM 8 GB 8 GB 16 GB

62

5.3 Smart Task Distribution Between Fog and Cloud Servers with Different

Workloads

Figure 5.15: Network Architecture

As is presented in [16]; similar to [97] we consider the workloads of servers to
be the occupation percentage of CPU and RAM, and we assume that the servers
can be averagely, 30%, 50%, and 75% occupied. It is also assumed that the servers
inform the broker about their workloads continuously. Table 5.5 shows the effect of
server workload on the processing time. It must be mentioned that the presented
processing times in table 5.5 are the average processing time of 200 different tasks
that we ran on the mentioned servers with different workloads. As is evident, there is
a direct relationship between the workload and the processing time, such that higher
workloads lead to higher processing times. Similar to the previous experiments, we
also assume that there is no power restriction, nodes are homogeneous, data is
transmitted reliably, and there is no radio frequency interference.

Table 5.5: The Effect of Workload on the Processing Time of Servers (published in [16])

Workload Fog Server 1 Fog Server 2 Remote Server
30% 1.51 sec 1.63 sec 0.57 sec
50% 1.64 sec 1.73 sec 0.7 sec
75% 1.77 sec 1.86 sec 0.88 sec

63

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

5.3.2 Problem Description

As reported in my publication [16]; in a combined fog-cloud scenario, there are fog
and cloud servers which are heterogeneous in terms of workload, computing capa-
bilities, and latency to the user, and all these three factors affect the response time
directly. For instance, the cloud servers are more powerful than the fog servers in
terms of computational capabilities, which causes the processing time of the cloud
servers to be less than the fog servers. However, as remote servers in the cloud are
far from the users and only accessible through the Internet, they have more latency
to the users in comparison to Fog servers. Moreover, the different servers in both Fog
and Cloud layers might have different workloads, which leads to different processing
times and consequently, different response times. Considering these heterogeneous
servers in both layers, when the data provider (an IoT device) sends a task to the
distributor unit (broker) to be sent to one of the servers for processing, the distrib-
utor unit can not detect the fastest server at that time slice. Consequently, it might
forward the received task to a server with a higher delay or workload, which leads
to increased response times (that is not tolerable by delay-sensitive applications) or
IBU.

In order to deal with the problem of task distribution in heterogeneous fog-cloud
environments, we upgraded the FCSTD algorithm to be able to distribute the tasks
by considering the different workloads of servers. The upgraded FCSTD has been
called Machine Learning Based Task Distribution (MLTD) method in [16].

5.3.3 Machine Learning Based Task Distribution (MLTD)

As is presented in [16]; in order to train the neural networks, we generated 1000 dif-
ferent tasks and ran 800 tasks on all three servers with the three different workloads
(so we ran the tasks for nine times) and noted the provided response times. Conse-
quently, we know the inputs (the 800 tasks) and the results (the processing times)
in all of the nine situations. In the next step, we trained one neural network for each
case (so the total number of neural networks is equal to 9), in which the input is the
received task from the user, and the output is the response time of the server (as
is shown in figure 5.16). We also checked the accuracy of the neural networks with
the other 200 tasks, and the results show that the neural networks can predict the
response time with the error of ± 0.1 seconds. In MLTD technique, all the servers
must continuously inform the broker about their workloads so the broker is aware
of the workloads of servers at the time of task distribution. Therefore, whenever
a user sends a task to the broker, the broker checks the workloads of servers and
chooses three neural networks. It sets the received task as the input, and the neural
networks predict the response time. In the next step, with regard to the expected
response times, the broker assigns the task to the server, which can provide the least

64

5.3 Smart Task Distribution Between Fog and Cloud Servers with Different

Workloads

possible response time at that time slice.

Figure 5.16: The training process of Neural Networks

5.3.4 Evaluation of Results

Regarding [16]; we used the MLTD technique for distributing the generated tasks
(200 tasks) of the discussed healthcare application. We compared the achieved re-
sults with four competitors in terms of response time, IBU, and resource utilization.
The implementation details of the experiment are presented in Table III, and the
competitor methods (chosen from the state of the art) are described as follows:

• Random Fog: which is one of the discussed methods in [32]. In this method,
the broker selects one of the fog servers randomly and assigns the received task
to this server for processing.

• Virtual Fog Resolver: the proposed method in [11] which we discussed about
it in chapter 3. This is the most similar method to MLTD as it has been
designed for task distribution between different fog and cloud servers with
different workloads.

• Random Fit: which is one of the proposed approaches in [33] that randomly
selects one of the fog or cloud servers for task assignment purposes.

• Cloud-IoT: which is the proposed approach in [31] that exploits the cloud
resources for processing the produced raw data by the IoT devices.

As reported in [16]; in order to evaluate the performance of MLTD and compare
its results with the other four competitors, we used the shown network architecture
in figure 5.15. In the following, we investigate the performance of all of the dis-
cussed methods in terms of response time, IBU, and resource utilization in different
experimental conditions, in which there are:

• Different Fog servers with Different Workloads (DFDW)

65

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

• Different Fog servers with Similar Workloads (DFSW)

• Similar Fog servers with Different Workloads (SFDW)

• Similar Fog servers with Similar Workloads (SFSW)

Figures 5.17-28 show the performance of the discussed task placement methods
in different conditions in terms of response time, IBU, and resource utilization.
It is worth noticing that we will not discuss about the performance of Cloud-IoT
and Random Fog methods in terms of IBU because Cloud-IoT is always the worst
method in terms of IBU as it communicates all the requests and responses over the
Internet. It is also clear that the Random Fog method is always the best in terms of
IBU as it distributes the tasks between the fog servers, which are accessible in the
local area network (in our experiments).

As is discussed in [16]; in figures 5.17, 5.18, 5.20, 5.21, 5.23, 5.24, 5.26, and 5.27,
the Y-axis represents the time (in seconds), while the X-axis shows the number of
Time Slices that the Workload Changes (TSWC). In this experiment, the broker
receives one task at each time slice, so when TSWC is equal to 1, it shows that
the workloads of servers are being changed at each time slice (randomly between
30%, 50%, and 75%). Therefore, during the distribution process of 200 tasks, the
workloads of the servers change 200 times. Similarly, when the TSWC is equal to 2,
it means that the workloads of servers change after each two time slices (100 times
during the distribution process of 200 tasks) and so on.

DFDW is the most similar condition to reality. There are different fog servers in
this condition, which their workloads change over time (in our experiment, it changes
randomly between 30%, 50%, and 75%). As shown in figure 5.17, in DFDW condi-
tion, the MLTD method always provides the best response time. The reason is that
this method is intelligent and can detect the fastest server at the time of task ar-
rival. The diagram also reveals that the Random Fog method always performs worse
than MLTD and better than all other task distribution techniques. Moreover, it is
apparently seen that the Random Fit method performs better than VFR in terms
of response time in DFDW condition because, in more than 90% of situations, it
provided a reduced response time compared to the VFR method. It is also clear
from the data that the Cloud-IoT method is always the worst approach for process-
ing the generated tasks of the IoT-based applications as it performs worse than all
the other techniques in DFDW condition. The reason is that this method assigns
all the tasks to the remote servers, which are far from the users and have high latency.

In terms of IBU, as is illustrated in figure 5.18, we see that the MLTD method
is the best method for reducing the IBU. We mentioned that MLTD performs in-
telligently and always selects the fastest server. As in DFDW condition, the fastest

66

5.3 Smart Task Distribution Between Fog and Cloud Servers with Different

Workloads

server in most of the situation is in the fog layer, so the MLTD assigns most of the
tasks to the fog layer and reduces the IBU. As is shown in figure 5.19, the MLTD
method has assigned almost 185 tasks to the fog layer and only 15 tasks to the
remote server.

Figure 5.17: Evaluation of different methods in terms of response time in DFDW condi-
tion, published in [16]

Figure 5.18: Evaluation of different methods in terms of IBU in DFDW condition, pub-
lished in [16]

67

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.19: Evaluation of different methods in terms of resource utilization in DFDW
condition, published in [16]

In SFDW condition, we assumed that there are similar fog servers (in terms of
computational power) with different workloads. As is depicted in figure 5.20, in
terms of response time, the MLTD method in almost 90% of the situations is the
fastest task distribution method, and Random Fog is the second-best method, which
performs very similar to the MLTD. Moreover, it could be noticed that in SFDW
condition, the VFR and Random Fit methods perform similarly such that in 60%
of situations, Random Fit performs better than VFR, and in 40% of the situa-
tions, VFR provides a better response time in comparison with Random Fit [16]. It
is also clear that the Cloud-IoT method is again the worst approach in terms of IBU.

In terms of IBU, the performance of MLTD, VFR, and Random Fit are similar
to their performance in DFDW condition. Figure 5.21 shows that MLTD commu-
nicates less data over the Internet than the VFR and Random Fit methods. As is
depicted in figure 5.22, MLTD sends 16 tasks to the remote server, and VFR assigns
more than 40 tasks to the cloud layer. However, VFR always performs better than
Random Fit in terms of IBU.

So it can be generally said that in SFDW condition, MLTD performs better than
all of the competitors in terms of response time and better than VFR and Random
Fit in terms of IBU. It can also be said that VFR and Random Fit perform similar

68

5.3 Smart Task Distribution Between Fog and Cloud Servers with Different

Workloads

to each other in terms of response time, but VFR utilizes less Internet bandwidth
in comparison to Random Fit, so generally, in this condition, VFR can be ranked
as the second-best task placement technique.

Figure 5.20: Evaluation of different methods in terms of response time in SFDW condi-
tion, published in [16]

Figure 5.21: Evaluation of different methods in terms of IBU in SFDW condition, pub-
lished in [16]

69

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.22: Evaluation of different methods in terms of resource utilization in SFDW
condition, published in [16]

In DFSW condition, it is assumed that there are different fog servers in the fog
layer, which are 75% occupied. As is illustrated in figure 5.23, in this condition,
MLTD fails in terms of response time and gets rankled as the second-worst approach.
The reason is that when fog servers are 75% occupied, they provide a response time,
which is similar to the response time of the cloud server, and as the neural networks
have an error of 0.1 seconds, the broker distributes the tasks unsuitably, which leads
to increased response times [16]. Turning to the details, figure 5.23 also shows that
Random Fog is the best method in terms of response time in DFSW condition [16].

It is also clear that VFR performs better than Random Fit by providing a response
time of less than 3.1 seconds in all of the situations. In this situation, the third-best
approach is Random Fit, which performs better than MLTD and Cloud-IoT and
worse than VFR and Random Fog. It must also be mentioned that similar to pre-
vious conditions, the Cloud-IoT method is the worst approach for task distribution
in DFSW condition.

As is shown in figure 5.24, we see that only in 30% of the situations, MLTD per-
forms better than VFR in terms of IBU, and in 70% of the situations, VFR utilizes
less Internet bandwidth in comparison to MLTD. Moreover, we also observed that
Random Fit is the worst technique for task distribution in SFDW condition in terms

70

5.3 Smart Task Distribution Between Fog and Cloud Servers with Different

Workloads

of IBU. Figure 5.25 also shows that the MLTD has assigned more tasks to the re-
mote servers than the VFR method, which caused the IBU of MLTD to be higher
than VFR.

Figure 5.23: Evaluation of different methods in terms of response time in DFSW condi-
tion, published in [16]

Figure 5.24: Evaluation of different methods in terms of IBU in DFSW condition, pub-
lished in [16]

71

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.25: Evaluation of different methods in terms of resource utilization in DFSW
condition, published in [16]

In the SFSW condition, it is assumed that the fog servers are similar in terms
of computational power, and they are 75% occupied. Figure 5.26 shows that the
MLTD method (similar to DFSW condition) fails in terms of response time com-
pared to the other techniques and gets ranked as the second-worst approach after
Cloud-IoT, which is the worst method. Again, the error of neural networks is the
reason of wrong task distributions and high response times. It is also clear that in
this condition, the Random Fog, VFR, and Random fit are the best, second-best,
and third-best methods in terms of response time, respectively [16].

In terms of IBU, as is depicted in figure 5.27, we see that our proposed method
is the best and performs better than VFR and Random Fit. Random Fit and VFR
got ranked as the second and third methods in this condition. Figure 5.28 shows
that the VFR method has assigned more tasks to the remote server in comparison
with MLTD, which causes the IBU of VFR to be higher than MLTD. It must be
mentioned that sending more tasks to the remote server does not necessarily lead to
higher response times. As shown in Figures 5.28 and 5.26, we see that VFR assigns
more tasks to the remote server compared to MLTD, but it reduces the response
time. The reason is that in the VFR method, the task might be assigned to the
remote server, but the user can receive its response from the fog servers, which have
less latency.

72

5.3 Smart Task Distribution Between Fog and Cloud Servers with Different

Workloads

Figure 5.26: Evaluation of different methods in terms of response time in SFSW condi-
tion, published in [16]

Figure 5.27: Evaluation of different methods in terms of IBU in SFSW condition, pub-
lished in [16]

73

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.28: Evaluation of different methods in terms of resource utilization in SFSW
condition, published in [16]

5.4 Investigating the Effective Parameters on the

Performance of MLTD

In the previous section, we discussed about the final version of our proposed smart
task distribution method (MLTD) and observed its performance in different exper-
imental environments. We were witnessing that MLTD was better than other com-
petitors in terms of reducing the response time and IBU when the neural networks
were able to perform excellently for predicting the response times of servers.

5.4.1 Research Questions and Hypothesis

MLTD works based on predictions of the ANNs. The performance of ANNs depends
on several factors, such as the utilized training method and the richness of training.
In order to investigate the performance of MLTD intensely, in this section, we use
different training algorithms and exploit different numbers of tasks for the training
process of ANNs. In this step, our hypothesis is that utilization of different training
methods leads to different results, and the richness of training directly affects the
precision of predictions such that when more tasks are used for the training, better
results can be achieved. As is presented in [1], the research questions that will be
answered in this section are as following:

74

5.4 Investigating the Effective Parameters on the Performance of MLTD

Table 5.6: The Accuracy of the ANNs, published in [1]

Training Algorithm
Number of Used
Tasks for Training

Error

LM 200 ±0.31 sec
LM 800 ±0.1 sec
GA 200 ±0.07 sec
GA 800 ±0.05 sec

1- What can improve or deteriorate the performance of our proposed smart task
assignment algorithm?

2- Does the utilization of more tasks for the training process of ANNs necessarily
lead to better predictions? If yes, how much can it be improved?

3- Does the utilization of different training methods (for the ANNs) lead to dif-
ferent results?

5.4.2 Changing the Method and Richness of Training

In previous sections, we utilized the MLTD algorithm, which was trained by the
Levenberg-Marquardt algorithm. We also used 800 different tasks for the training
process of MLTD [1]. To see the impact of different training methods on the per-
formance of MLTD, in [1], besides the Levenburg-Marquart (LM), we used Genetic
Algorithm (GA) for the training process of ANNs, and we tried to train the ANNs
by using 800 and 200 different tasks [1]. The accuracy of the ANNs is presented in
Table 5.6.

5.4.3 Evaluation of Results

We used the network architecture that is shown in figure 5.15. The technical details
of the experiment and the used devices are also similar to the previous experiment
(section 5.3.1). Regarding [1]; in the next step, we set up the following task distri-
bution methods in the broker:

• MLTD LM 800: The MLTD method in which the ANNs are trained with the
Levenberg-Marquardt algorithm and the number of used tasks for the training
process is equal to 800.

• MLTD LM 200: The MLTD method in which the ANNs are trained with the
Levenberg-Marquardt algorithm and the number of used tasks for the training
process is equal to 200.

75

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

• MLTD GA 800: The MLTD method in which the ANNs are trained with the
Genetic algorithm and the number of used tasks for the training process is
equal to 800.

• MLTD GA 200: The MLTD method in which the ANNs are trained with the
Genetic algorithm and the number of used tasks for the training process is
equal to 200.

• VFR: The proposed method in [11], which uses the best fog servers for task
processing and also uses the cloud server in case of failure of the best fog
server.

• Random Fit: The proposed method in [33] that randomly assigns the tasks to
one of the fog or cloud servers.

• Better Workload: The proposed method in [90] which assigns the tasks to the
server with less workload.

• Ideal MLTD: In this method, it is assumed that the MLTD can predict the
response times of servers without any error. Although this method is unreal
and impossible to implement, but we use it to show the difference between the
prediction quality of our method and the ideal case.

As is presented in [1]; to compare the performance of the mentioned methods in
different situations, we provided the following four conditions in which there are:

• Different Fog servers with Different Workloads that are changing randomly
between 30%, 50%, and 75% (DFDW)

• Different Fog servers with Similar Workloads (75%) (DFSW)

• Similar Fog servers with Different Workloads that are changing randomly bet-
ween 30%, 50%, and 75% (SFDW)

• Similar Fog servers with Similar Workloads (75%) (SFSW)

It must be mentioned that the presented results in this section are based on the
average results of 20 experiments for processing of 200 different tasks [1].

5.4.3.1 DFDW and SFDW Conditions

As reported in [1]; figures 5.29-32 illustrate the performance of the mentioned meth-
ods in terms of response time and IBU. Moreover, figures 5.33-34 show the number
of tasks that are served by each server in DFDW and SFDW conditions. The results
show that MLTD methods (except MLTD LM 200) are the best methods in both

76

5.4 Investigating the Effective Parameters on the Performance of MLTD

conditions in terms of response time and IBU. As is shown, MLTD GA 800 is the
best one among all of the MLTD methods, and the reason is that in this method, the
ANN prediction accuracy is better than the other methods. It is also obviously seen
that MLTD LM 200 is the worst method in both conditions. The reason is that this
method predicts the response times badly (with an error of ±0.31 sec with regard
to Table 5.6), which leads to the failure of the ANNs and wrong distributions (as
can be seen in figures 5.33-34, the MLTD LM 200 has assigned 121 and 146 tasks
to the remote server in DFDW and SFDW conditions, respectively). Evaluation of
other methods also show that the Better Workload method performs better than
VFR and Random Fit approaches in both conditions in terms of response time. It
must be mentioned that in figures 5.33-34 and 5.39-40, the Random Fit method
is eliminated because of its random policy for distribution. In this experiment, as
there are two Fog servers and one Cloud server, the possibility of task assignment
to the fog and cloud servers in the Random Fit method is almost 66% and 33%,
respectively. Moreover, figures 5.33-34 show that the number of assigned tasks to
the fog server 1 is always equal to 200 when VFR is the distribution algorithm. The
reason is that the VFR algorithm always sends the tasks to the best fog server, and
in case of failure of the best fog server, it resends the tasks to the fog server 2 or the
remote server in Cloud.

Figure 5.29: Evaluation of different methods in terms of response time in DFDW condi-
tion, published in [1]

77

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.30: Evaluation of different methods in terms of IBU in DFDW condition, pub-
lished in [1]

Figure 5.31: Evaluation of different methods in terms of response time in SFDW condi-
tion, published in [1]

78

5.4 Investigating the Effective Parameters on the Performance of MLTD

Figure 5.32: Evaluation of different methods in terms of IBU in SFDW condition, pub-
lished in [1]

5.4.3.2 DFSW and SFSW Conditions

As presented in [1]; figures 5.35-5.38 show the performance of the discussed methods
in terms of response time and IBU and also figures 5.39-40 indicate the number of
tasks that are processed by the fog and cloud servers in each situation. It must be
mentioned that the Better Workload method is eliminated in these two conditions
because the workloads of servers are constant. As is depicted in the figures 5.35 and
5.37, the MLTD methods fail in DFSW and SFSW conditions in terms of response
time, as the response time of the fog and cloud servers are too close to each other
(because the fog servers are all 75% occupied). Among the intelligent methods,
MLTD GA 800 and MLTD LM 200 are the best and the worst methods, which
could have been expected because of their accuracy in the prediction of the response
times. It is also clearly observed that the best method in terms of response time
in these two conditions is the VFR method, which provides a response time of less
than 3.1 seconds. In terms of IBU, the VFR method is also the best in DFSW
condition by assignment of 31 tasks to the remote server and communicating almost
3 megabytes of data over the Internet. Moreover, as is indicated in figure 5.38, we
see that the intelligent methods are again the best approaches for task distribution
(for reducing the IBU) and the MLTD methods that are trained with 800 tasks
communicate the least possible amount of data through the Internet.

79

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.33: The number of processed tasks by each server in DFDW condition, published
in [1]

80

5.4 Investigating the Effective Parameters on the Performance of MLTD

Figure 5.34: The number of processed tasks by each server in SFDW condition, published
in [1]

81

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.35: Evaluation of different methods in terms of response time in DFSW condi-
tion, published in [1]

Figure 5.36: Evaluation of different methods in terms of IBU in DFSW condi-
tion,published in [1]

82

5.4 Investigating the Effective Parameters on the Performance of MLTD

Figure 5.37: Evaluation of different methods in terms of response time in SFSW condi-
tion, published in [1]

Figure 5.38: Evaluation of different methods in terms of IBU in SFSW condition, pub-
lished in [1]

83

5 Intelligent Task Placement in Combined Fog-Cloud Scenarios

Figure 5.39: The number of processed tasks by each server in DFSW condition, published
in [1]

84

5.4 Investigating the Effective Parameters on the Performance of MLTD

Figure 5.40: The number of processed tasks by each server in SFSW condition, published
in [1]

85

6 Conclusion and Future Works

6 Conclusion and Future Works

6.1 Conclusion

In the world of the IoT, various applications utilize sensors for data collection. These
sensors generate raw data that needs to be processed (to be available as meaningful
information for the users) and stored. However, the IoT sensors do not have enough
computational capabilities to process and store their generated data.

Dealing with the above-mentioned problem, different technologies are available
that can process the generated raw data by the IoT devices, such as Cloud and
Fog computing. However, each of these technologies has disadvantages that make
them unsuitable for specific types of applications. For example, cloud servers have
considerable computational power, but using them is costly and increases the IBU;
therefore, they are not suitable for delay-tolerable applications. Fog computing is
also restricted in terms of computational power, and in the case of higher workloads,
fog servers fail and provide high response times, which is not tolerable for delay-
sensitive applications. Therefore, utilization of only Fog or Cloud servers is not a
suitable approach.

In order to exploit both Fog and Cloud servers for processing the generated raw
data by the IoT devices, different methods have been proposed in the literature,
which we reviewed in chapter 3. We categorized the proposed methods into differ-
ent groups, such as benchmarks, complex methods, optimization-based approaches,
etc. Most of these methods aim to improve the QoS (by reducing the response
time) and energy consumption. However, the proposed methods are suitable for
specific types of network scenarios, and we discussed that their performance could
be affected by different parameters that have not been considered. Therefore, by
considering the shortcomings of the previous works, we proposed an artificial intel-
ligence based approach for task distribution in combined Fog-cloud scenarios, which
can be utilized in any network architecture. This method considers the application
requirements and aims to reduce the response time, IBU, and resource utilization.

Our proposed method utilizes the ANNs for predicting the response times of
servers and the size of the results. Then, by considering the predicted amounts, it
distributes the tasks between the available servers. To train the neural networks, we

86

6.1 Conclusion

ran different numbers of tasks on the servers and then used the parameters of the
tasks as the input and the processing times of the servers as the output. In order to
investigate the performance of the first version of our proposed method (AITDA),
we used it for distributing the SSP tasks of an online delay-sensitive healthcare
applications and assumed that the available fog and cloud servers are always idle
and ready to process the IoT data. We also assumed that any number of tasks could
be available in the broker. The achieved results showed us that AITDA performs
better than the Fog-Based and Cloud-Based methods in terms of response time.
However, in terms of IBU, the Fog-Based method performed better than AITDA.
So, with regard to the first experiment, we concluded that:

• the performance of cloud and fog servers (in terms of response time) depends
on the number of assigned tasks (workload) to them, so that when the workload
increases, Cloud performs better than Fog.

• Fog performs better than Cloud for one by one task processing. The reason is
that the delay of data communication with Cloud is higher than Fog, so when
Cloud was used for data processing, the total amount of processing time and
delay became more than the response time of Fog.

• smart task distribution helps and reduces the response time, which is an im-
portant requirement of delay-sensitive applications.

• AITDA performs better than the Cloud-based method in terms of IBU, and
the impact of smart task distribution on IBU becomes more visible when the
number of available tasks in the broker increases.

Although AITDA reduced the response time, but during the distribution process,
it considers the IBU by sending the smaller tasks (in terms of size) to the cloud
layer. So it can be said that AITDA is a suitable approach for delay-tolerable ap-
plications, as its main aim is to reduce the IBU. In the next step, we developed
the AITDA to be usable for both delay-sensitive and delay-tolerable applications.
The new versions of AITDA were called FCSTD time-based (which its main aim is
reducing the response time) and FCSTD traffic-based (which its main objective is to
reduce the IBU). We used these two methods for distributing the SSP, DSSP, DSP,
and SSDP task. We observed that our method always provides a reduced response
time in comparison to the other methods. However, we also observed that our ap-
proach failed in competition with the Random Fit method for reducing the IBU. In
our experiments, Random Fit provided a better IBU compared to our method when
we used it to distribute SSP, SSDP, and DSP tasks. But, it must be mentioned that
Random Fit reduces the IBU in exchange for a considerably higher response time.
So we can conclude that our method is suitable for delay-sensitive applications as
it always provides the best response time, but for delay-tolerable applications, the

87

6 Conclusion and Future Works

task distribution method must be selected with regard to the types of the tasks of
an application.

We used two different applications (in terms of delay sensitivity) for our experi-
ments. The first one was a delay-sensitive online healthcare application in which the
variation of inputs affects the output. In this situation, the neural networks can find
a relation between the input (parameters of the task) and output (the response time
or size of results), and therefore, they can perform excellently. In order to show the
impact of different types of applications on the performance of ANNs for predicting
the response time, we used the ANNs for distributing the tasks of a delay-tolerable
application in which the parameters of tasks did not have any relation with the
response times of servers, and we witnessed that ANNs failed. So we can conclude
that our proposed method is suitable for distributing the tasks of those applications
in which the variation of inputs of the tasks affects the processing times of servers.

In the third step, we assumed that the available servers in Fog and Cloud layers
have different workloads that change over time. We developed the FCSTD method
to distribute the tasks in such a network scenario by training the neural networks to
predict the processing times of servers with different workloads. We compared the
performance of our proposed method with four other task distribution techniques,
and the results indicated that our method provides the best response time and
IBU for task distribution between the servers with different workloads. However, it
is worth mentioning that we also investigated the performance of our method for
task distribution between the occupied fog servers and remote servers with different
workloads. As in this situation, the servers provide similar response times (with
a difference of less than the error of ANNs for prediction of response time); our
proposed method failed and got ranked as the second-worst approach. So we can
conclude that our method was suitable for task distribution in network scenarios
where the difference of response times of servers is more than the error of ANNs.

After witnessing the positive impact of our proposed method on reducing the re-
sponse time and IBU, we finally tried to investigate the impact of different training
methods and different richness of training on the performance of ANNs for the se-
lection of the fastest server at each time-slice. Our achieved results showed that the
Genetic algorithm trains the ANNs better than Levenberg-Marquardt, and utilizing
more tasks for the training of ANNs, increases the accuracy of ANNs for predicting
the response times of servers. In addition, in our final experiment, we assumed
that the ANNs could predict without error, and we observed that in this case, our
proposed method is the best method in comparison to any other task distribution
technique.

All in all, the utilization of ANNs in the broker for predicting the response times

88

6.2 Future Works

of fog and cloud servers reduces the response time and IBU only if the ANNs have
high prediction accuracy. If this accuracy gets negatively affected by the utilization
of unsuitable training algorithms or a few numbers of tasks for the training, our
proposed method predicts the response time with a high error, which leads to wrong
task distributions and increases the response times and IBU.

6.2 Future Works

6.2.1 Investigating the Performance of our Proposed
Method in Scenarios with Mobile Servers

In all of our discussed experiments in this thesis, we assumed that the servers are
fixed, and there are always specific numbers of servers available in Fog and Cloud
layers. But, in real-world scenarios, the number of servers in each layer (specifically
in the Fog layer) is variable. As we discussed in chapter 2, the fog servers can be
mobile devices that can enter or leave the Fog network, which increases the number
of ANNs in the broker and applies overload to the broker as it must train one neural
network for each server and workload. This is a challenge that negatively affects
the performance of the broker and leads to increased response times. Therefore,
for future works, mobile fog servers must be considered in the experiments, and
solutions need to be proposed to deal with this challenge.

6.2.2 Investigating the Impact of Number of Available
Servers on the Performance of Broker

In our experiments, the number of servers and their workloads were limited. There-
fore, we utilized only one broker to distribute the tasks. If the number of servers
increases, the broker needs to train too many neural networks, which causes delay
in the broker decision-making process. For future works, we suggest investigating
the performance of brokers in network scenarios with higher numbers of fog servers
to find out the number of required brokers for different sizes of networks.

6.2.3 Considering the Variation of Delay

We considered the communication delay of fog and cloud servers to be constant.
However, in real-world scenarios, the delay in communication changes continuously
because of different reasons such as congestion, collision, etc. The variation of delay
significantly impacts the response time, and if the broker does not consider the
variable delay, then it might assign the produced task to a server with high latency,
which leads to an increased response time that is not tolerable by the delay-sensitive
applications. Therefore, for future works, the variation of delay must be considered.

89

6 Conclusion and Future Works

6.2.4 Increasing the Accuracy of Function Approximation
Method

We used the ANNs as the function approximation method in our experiments. As
we discussed earlier, the performance of our proposed method depends on the ac-
curacy of the neural networks, which can be affected by the utilization of different
training methods. For future works, we suggest using different function approxima-
tion methods (such as support vector machine) and training methods to find the
most suitable ones for each type of application.

6.2.5 Considering Different Numbers of Available Tasks in
the Broker

In sections 5.3 and 5.4, we investigated the performance of our proposed method
for one by one task distribution between the fog and cloud servers. But, as we
discussed in section 5.2, the number of available tasks in the broker might increase.
Therefore, more than one task can be assigned to a server for processing. Therefore,
as the ANNs can only predict the response time of one task, our method needs to
be developed to become useful for the assignment of different numbers of tasks to a
server. This issue must also be considered for the future works.

90

A Publications

Chapters 4 and 5 of this dissertation are based on the publications that are listed in
the following. The rank of conferences has been written with regard to the CORE
[110] and Qualis [111] lists of valid conferences.

1. M. Pourkiani and M. Abedi, ”Using Machine Learning for Task Distribu-
tion in Fog-Cloud Scenarios: A Deep Performance Analysis,” 35th Interna-
tional Conference on Information Networking (ICOIN), 2021, pp. 445-450,
doi: 10.1109/ICOIN50884.2021.9333929.

Location: Jeju Island, South Korea
Indexing: IEEE, DBLP, Web of Science
Sponsor(s): IEEE Computer Society
Rank: B1

2. M. Pourkiani and M. Abedi, ”Machine Learning Based Task Distribution in
Heterogeneous Fog-Cloud Environments,” 28th International Conference on
Software, Telecommunications and Computer Networks (SoftCOM), 2020, pp.
1-6, doi: 10.23919/SoftCOM50211.2020.9238309.

Location: Hvar, Croatia
Indexing: IEEE, DBLP
Sponsor(s): IEEE Comunication Society
Rank: B1

3. M. Pourkiani and M. Abedi, ”FCSTD: Fog-Cloud Smart Task Distribution
by Exploiting the Artificial Neural Networks,” 2020 11th International Confer-
ence on Network of the Future (NoF), 2020, pp. 38-42, doi: 10.1109/NoF50125.
2020.9249167

Location: Bordeaux, France
Indexing: IEEE, DBLP
Sponsor(s): IEEE Comunication Society
Rank: B2

91

A Publications

4. M. Abedi and M. Pourkiani, ”Resource Allocation in Combined Fog-Cloud
Scenarios by Using Artificial Intelligence,” 2020 Fifth International Confer-
ence on Fog and Mobile Edge Computing (FMEC), 2020, pp. 218-222, doi:
10.1109/FMEC49853.2020.9144693.

Location: Paris, France
Indexing: IEEE, DBLP
Sponsor(s): IEEE France Section
Rank: —

5. M. Pourkiani, M. Abedi and M. A. Tahavori, ”Improving the Quality of
Service in WBSN Based Healthcare Applications by Using Fog Computing,”
2019 International Conference on Information and Communications Technol-
ogy (ICOIACT), 2019, pp. 266-270, doi: 10.1109/ICOIACT46704.2019.8938448.

Location: Yogyakarta, Indonesia
Indexing: IEEE
Sponsor(s): IEEE Indonesia Section
Rank: —

Moreover, we also published two other papers that we did not cite in this
thesis. These papers are listed in the following:

6. M. Abedi andM. Pourkiani, ”AIMCS: An Artificial Intelligence based Method
for Compression of Short Strings,” 2020 IEEE 18th World Symposium on Ap-
plied Machine Intelligence and Informatics (SAMI), 2020, pp. 311-318, doi:
10.1109/SAMI48414.2020.9108719.

Location: Herlany, Slovakia
Indexing: IEEE, Web of Science
Sponsor(s): IEEE SMC Society
Rank: National

7. M. Pourkiani and M. Abedi, ”An Introduction to a Dynamic Data Size
Reduction Approach in Fog Servers,” 2019 International Conference on Infor-
mation and Communications Technology (ICOIACT), 2019, pp. 261-265, doi:
10.1109/ICOIACT46704.2019.8938494.

Location: Yogyakarta, Indonesia
Indexing: IEEE
Sponsor(s): IEEE Indonesia Section
Rank: —

92

In addition, chapters 2 and 3 of this thesis are part of the following paper:

8. M. Pourkiani, ”Improving the Quality of Service in Combined Fog-Cloud
Networks: A Survey,” International Journal of Pervasive Computing and Com-
munications (to be submitted).

Indexing: DBLP, Web of Science

93

B Source Codes

B Source Codes

B.1 Neural Networks

%% Star t o f Program
c l c
c l e a r
c l o s e a l l
%t i c

%% Data Loading
% This s e c t i o n i s u t i l i z e d f o r l oad ing the data from the data s e t s
Data = x l s r e ad (’ data se t / f o g s e r v e r 2 /70Train . csv ’) ;
%Data=Data (1 : 2 0 0 , :) ;
X=Data (: , 1 : end−6);
Y=Data (: , end−1:end) ;

Data1 = x l s r e ad (’ data se t / f o g s e r v e r 2 /70Test . csv ’) ;

X1=Data1 (: , 1 : end−6);
Y1=Data1 (: , end−1:end) ;

DataNum = s i z e (X, 1) ;
InputNum = s i z e (X, 2) ;
OutputNum = s i z e (Y, 2) ;

%% Normal izat ion
% In t h i s s e c t i o n we normal ized the data between 0 and 1 .
MinX = min (X) ;
MaxX = max(X) ;

MinY = min (Y) ;
MaxY = max(Y) ;

94

B.1 Neural Networks

XN = X;
YN = Y;

XN1 = X1 ;
YN1 = Y1 ;

f o r i i = 1 : InputNum
XN(: , i i) = Normalize Fcn1 (X(: , i i) ,MinX(i i) ,MaxX(i i)) ;
XN1(: , i i) = Normalize Fcn1 (X1 (: , i i) ,MinX(i i) ,MaxX(i i)) ;
end

f o r i i = 1 :OutputNum
YN(: , i i) = Normalize Fcn1 (Y(: , i i) ,MinY(i i) ,MaxY(i i)) ;
YN1(: , i i) = Normalize Fcn1 (Y1 (: , i i) ,MinY(i i) ,MaxY(i i)) ;
end

%% Test and Train Data
% The data i s d iv ided in to two s e c t i o n s
f o r the t r a i n i n g and t e s t p r o c e s s e s
(which i s not nece s sa ry f o r t h i s case) .

TrPercent = 100 ;
TrNum = round (DataNum ∗ TrPercent / 100) ;
TsNum = DataNum − TrNum;

R = randperm (DataNum) ;
t r Index = R(1 : TrNum) ;
t s Index = R(1+TrNum : end) ;

Xtr = XN(trIndex , :) ;
Ytr = YN(trIndex , :) ;

Xts = XN(tsIndex , :) ;
Yts = YN(tsIndex , :) ;

%% Network St ruc ture
% This s e c t i o n d e f i n e the s t r u c tu r e o f the neura l networks .
pr = [−1 1] ;
PR = repmat (pr , InputNum , 1) ;

Network = newff (PR, [4 OutputNum] ,

95

B Source Codes

{ ’ tans ig ’ ’ tans ig ’ ’ tans ig ’ ’ tans ig ’ ’ pure l in ’ }) ;
Network . div ideFcn=’ d i v i d e i n t ’ ;% d i v i d e i n t
Network . divideParam . t r a inRat i o =80/100;
Network . divideParam . t e s tRa t i o =10/100;
Network . divideParam . va lRat io =10/100;
%Network . trainParam . max fa i l =5;

%% Train ing
% In t h i s s e c t i o n the neura l networks are t r a in ed .
%Networknet . trainParam . showWindow = f a l s e ;

t i c
Network = t r a i n (Network , Xtr ’ , Ytr ’) ;

toc
%% Assesment
% In t h i s s e c t i o n the performance o f the neura l networks i s eva luated .
%YtrNet = sim (Network , Xtr ’) ’ ;
YN1Net = sim (Network ,XN1’) ’ ;
YN1NetUN=YN1Net ;
%YtrNetUN=YtrNet ;
%MSEtr = mse (YtrNet − Ytr)
MSEts = mse (YN1Net − YN1)

%YS1 1 = Unnormalize Fcn (YtrNet (: , 1) ,MinY(1) ,MaxY(1)) ;
%YS1 2 = Unnormalize Fcn (YtrNet (: , 2) ,MinY(2) ,MaxY(2)) ;

YSY1 1 = Unnormalize Fcn (YN1Net (: , 1) ,MinY(1) ,MaxY(1)) ;
YSY1 2 = Unnormalize Fcn (YN1Net (: , 2) ,MinY(2) ,MaxY(2)) ;

B.2 Genetic Algorithm

f unc t i on [Network2] = TrainUsing GA Fcn (Network , Xtr , Ytr)

%% Problem Statement
IW = Network .IW{1 ,1} ; IW Num = numel (IW) ;
LW = Network .LW{2 ,1} ; LWNum = numel (LW) ;
b1 = Network . b{1 ,1} ; b1 Num = numel (b1) ;
b2 = Network . b{2 ,1} ; b2 Num = numel (b2) ;

96

B.2 Genetic Algorithm

TotalNum = IW Num + LWNum + b1 Num + b2 Num ;

NPar = TotalNum ;

VarLow = −1;
VarHigh = 1 ;
FunName = ’Cost ANN EA ’ ;

%% Algorithm Parameters
Select ionMode = 2 ; % 1 f o r Random, 2 f o r Tournment
PopSize = 100 ;
MaxGenerations = 120 ;

RecomPercent = 15/100;
CrossPercent = 50/100;
MutatPercent = 1 − RecomPercent − CrossPercent ;

RecomNum = round (PopSize∗RecomPercent) ;
CrossNum = round (PopSize∗CrossPercent) ;
i f mod(CrossNum ,2)˜=0
CrossNum = CrossNum − 1 ;
end

MutatNum = PopSize − RecomNum − CrossNum ;

%% I n i t i a l Populat ion
Pop = rand (PopSize , NPar) ∗ (VarHigh − VarLow) + VarLow ;

Cost = f e v a l (FunName , Pop , Xtr , Ytr , Network) ;
[Cost Inx] = so r t (Cost) ;
Pop = Pop(Inx , :) ;

%% Main Loop
MinCostMat = [] ;
MeanCostMat = [] ;

f o r I t e r = 1 : MaxGenerations
%% Recombination
RecomPop = Pop (1 :RecomNum , :) ;

%% CrossOver

97

B Source Codes

%% Parent S e l e c t i o n
Se l ec tedParent s Index = MySelect ion Fcn (Cost , CrossNum , Select ionMode) ;

%% Cross Over
CrossPop = [] ;
f o r i i = 1 : 2 : CrossNum
Par1Inx = Se l ec tedParent s Index (i i) ;
Par2Inx = Se l ec tedParent s Index (i i +1);

Parent1 = Pop(Par1Inx , :) ;
Parent2 = Pop(Par2Inx , :) ;

[Off1 , Off2] = MyCrossOver Fcn (Parent1 , Parent2) ;

CrossPop = [CrossPop ; Off1 ; Off2] ;
end
%% Mutation
MutatPop = rand (MutatNum,NPar)∗ (VarHigh − VarLow) + VarLow ;

%% New Populat ion
Pop = [RecomPop ; CrossPop ; MutatPop] ;
Cost = f e v a l (FunName , Pop , Xtr , Ytr , Network) ;
[Cost Inx] = so r t (Cost) ;
Pop = Pop(Inx , :) ;

%% Display
MinCostMat = [MinCostMat ; min (Cost)] ;
% [I t e r MinCostMat (end)]
MeanCostMat = [MeanCostMat ; mean(Cost)] ;
subp lot (2 , 1 , 1)
p l o t (MinCostMat , ’ r ’ , ’ l inewidth ’ , 2 . 5) ;
xl im ([1 MaxGenerations])
% hold on
% p lo t (MeanCostMat , ’ : b ’ , ’ l inewidth ’ , 2)
% hold o f f

subp lot (2 , 1 , 2)
p l o t (Pop (: , 1) , Pop (: , 2) , ’ rp ’)
ax i s ([VarLow VarHigh VarLow VarHigh])
pause (0 . 0 5)

98

B.3 Virtual Fog Resolver

end
%% Fina l Result Demonstration
Bes tSo lut i on = Pop (1 , :) ;
BestCost = Cost (1) ;
Network2 = ConsNet Fcn (Network , Bes tSo lut ion) ;

B.3 Virtual Fog Resolver

us ing System ;
us ing System . Co l l e c t i o n s . Gener ic ;
us ing System . Linq ;
us ing System . Text ;
us ing System . IO ;
us ing System .Windows . Forms ;
namespace Fa i l u r e p r ev en t i on
{
c l a s s Program
{
pub l i c s t a t i c double FDelay = 1 . 4 ;
pub l i c s t a t i c double CDelay = 2 . 6 ;
s t a t i c void Main (s t r i n g [] a rgs)
{
s t r i n g [] F1 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70time = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50s i ze = new s t r i n g [2 0 0] ;

99

B Source Codes

s t r i n g [] C1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F1 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70timeR = new s t r i n g [2 0 0] ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 30sizeR , F1 30timeR , F1 30s i ze , F1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 50sizeR , F1 50timeR , F1 50s i ze , F1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 70sizeR , F1 70timeR , F1 70s i ze , F1 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 30sizeR , F2 30timeR , F2 30s i ze , F2 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 50sizeR , F2 50timeR , F2 50s i ze , F2 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 70sizeR , F2 70timeR , F2 70s i ze , F2 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\30 . txt ” ,
C1 30sizeR , C1 30timeR , C1 30s ize , C1 30time , 1 , 1) ;

100

B.3 Virtual Fog Resolver

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\50 . txt ” ,
C1 50sizeR , C1 50timeR , C1 50s ize , C1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\70 . txt ” ,
C1 70sizeR , C1 70timeR , C1 70s ize , C1 70time , 1 , 1) ;

//Rand part
s t r i n g [] randNumberF1 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberF2 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberC1 = new s t r i n g [2 0 0] ;
/∗ f o r (i n t i = 0 ; i < 200 ; i++)
{
randNumberF1 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
randNumberF2 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
randNumberC3 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
}
f o r (i n t i = 0 ; i < randNumberF1 . Length ; i++)
{
Save (randNumberF1 [i] , ”\\RandomUseCPU F1 . txt ” , 1) ;
Save (randNumberF2 [i] , ”\\RandomUseCPU F2 . txt ” , 1) ;
Save (randNumberC3 [i] , ”\\RandomUseCPU C1 . txt ” , 1) ;
}∗/
Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F1N13 . txt ” ,
randNumberF1 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F2N13 . txt ” ,
randNumberF2 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU C1N13 . txt ” ,
randNumberC1 , nu l l , nu l l , nu l l , 2 , 1) ;

double FR1 = 0 , FR2 = 0 , CR1 = 0 ;
double SizeC = 0 ;
double Delay = 0 ;
i n t PROBES = 0 ;
double ORDER = 4 ;
double DECIY=0.3;
double h re sp = 0 , p re sp = 0 , c r e s p = 0 ;
double probe prob = 0 . 5 ;
i n t homeCount=0;
double responseTime=0;
double [] ArrayResponseTime=new double [2 0 0] ;
i n t indexArrayResponseTime=0;
i n t poolCount=0;
i n t cloudCount = 0 ;

101

B Source Codes

double T min=0,T max=0;
double c a p l e v e l =0.8 ;
double inc =0.1 ;
bool probe c loud=f a l s e ;
Random RandNO = new Random () ;
double [] timeRun = new double [2 0 0] ;
i n t NOF2 = 0 ,NOC=0;
double LastDelay=0;
f o r (i n t i = 0 ; i < randNumberF1 . LongLength ; i++)
{
switch (randNumberF1 [i])
{
case ”1” :
FR1 = Convert . ToDouble (F1 30timeR [i]) ;
//F1 = Convert . ToDouble (F1 30time [i]) ;
break ;
case ”2” :
FR1 = Convert . ToDouble (F1 50timeR [i]) ;
// F1 = Convert . ToDouble (F1 50time [i]) ;

break ;
case ”3” :
FR1 = Convert . ToDouble (F1 70timeR [i]) ;
// F1 = Convert . ToDouble (F1 70time [i]) ;

break ;
}
switch (randNumberF2 [i])
{
case ”1” :
FR2 = Convert . ToDouble (F2 30timeR [i]) ;
//F2 = Convert . ToDouble (F2 30time [i]) ;

break ;
case ”2” :
FR2 = Convert . ToDouble (F2 50timeR [i]) ;
//F2 = Convert . ToDouble (F2 50time [i]) ;

break ;
case ”3” :
FR2 = Convert . ToDouble (F2 70timeR [i]) ;
//F2 = Convert . ToDouble (F2 70time [i]) ;

102

B.3 Virtual Fog Resolver

break ;
}
switch (randNumberC1 [i])
{
case ”1” :
CR1 = Convert . ToDouble (C1 30timeR [i]) ;
// C1 = Convert . ToDouble (C1 30time [i]) ;
break ;
case ”2” :
CR1 = Convert . ToDouble (C1 50timeR [i]) ;
// C1 = Convert . ToDouble (C1 50time [i]) ;
break ;
case ”3” :
CR1 = Convert . ToDouble (C1 70timeR [i]) ;
// C1 = Convert . ToDouble (C1 70time [i]) ;

break ;
}
// F1 += FDelay ;
// F2 += FDelay ;
// C1 += CDelay ;
FR1 += FDelay ;
FR2 += FDelay ;
CR1 += CDelay ;
///
i f (indexArrayResponseTime>0)
{
double Max = ArrayResponseTime [0] ;
double mean = 0 ;
f o r (i n t k = 0 ; k < indexArrayResponseTime ; k++)
{
i f (ArrayResponseTime [k] < Max)
Max = ArrayResponseTime [k] ;
mean += ArrayResponseTime [k] ;
}
T min = mean / indexArrayResponseTime ;
T max = Max;
}
h re sp = FR1 ;
i f (h re sp > Delay)

103

B Source Codes

{

p re sp = FR2 ;
NOF2++;
PROBES++;
LastDelay=Delay ;
Delay = Math . Abs (p re sp − h re sp) ∗ (Math .Pow(PROBES, ORDER)) ;

}
e l s e
{
Delay ∗= DECIY;
}
i f (probe c loud)
{
c r e s p = CR1;
SizeC += Convert . ToDouble (C1 30s i ze [i]) ;
NOC++;
i f (h re sp < c r e s p | | p re sp < c r e s p)
{
probe prob ∗= DECIY;
i f (RandNO. NextDouble () <= (1 − probe prob))
probe c loud = f a l s e ;
i f (h re sp < p re sp)
{
homeCount++;
responseTime = h resp ;
ArrayResponseTime [indexArrayResponseTime++] = responseTime ;
}
e l s e
{
poolCount++;
responseTime = p resp + LastDelay ;
ArrayResponseTime [indexArrayResponseTime++] = responseTime ;

}
}
e l s e
{
cloudCount++;
responseTime = c r e sp + LastDelay ;
// SizeC +=Convert . ToDouble (C1 30s i ze [i]) ;

104

B.3 Virtual Fog Resolver

ArrayResponseTime [indexArrayResponseTime++] = responseTime ;

}
}
e l s e
{
i f (h r e sp < T min | | p re sp < T min)
{
i f (probe prob < c a p l e v e l)
probe prob += inc ;
e l s e
probe prob = cap l e v e l ;
// i f (h re sp < p re sp)
// {
homeCount++;
responseTime = h resp ;
ArrayResponseTime [indexArrayResponseTime++] = responseTime ;
// }
// e l s e
// {
// responseTime = p resp ;
// ArrayResponseTime [indexArrayResponseTime++] = responseTime ;
// }

}
e l s e
i f (h re sp > T min && p resp > T min)
{
i f (RandNO. NextDouble () <= (probe prob))
probe c loud = true ;
c r e s p = CR1;
NOC++;
cloudCount++;
responseTime = c r e sp + LastDelay ;
SizeC += Convert . ToDouble (C1 30s i ze [i]) ;
ArrayResponseTime [indexArrayResponseTime++] = responseTime ;
}
e l s e
{
i f (h r e sp > T max && p resp > T max)
{
probe c loud = true ;

105

B Source Codes

cloudCount++;
responseTime = c r e sp + LastDelay ;
c r e s p = CR1;
SizeC += Convert . ToDouble (C1 30s i ze [i]) ;
ArrayResponseTime [indexArrayResponseTime++] = responseTime ;
}
}
}

//

}
}
pub l i c s t a t i c void Read DATA All (S t r i ng PathF , s t r i n g [] Par1 , s t r i n g [] P
{

s t r i n g path = PathF ;
i f (! F i l e . Ex i s t s (path))
{

us ing (Fi leStream f s = F i l e . Create (path))
{
Byte [] i n f o =
new UTF8Encoding (t rue) . GetBytes (” e r r o r in Write/Read NO: 5 3 1 ”) ;

f s . Write (in fo , 0 , i n f o . Length) ;
}
}
i n t index = 0 , indexLine=0;

s t r i n g temp = ”” ;

us ing (StreamReader s r = F i l e . OpenText (path))
{
s t r i n g s = ”” ;
whi l e ((s = s r . ReadLine ()) != nu l l)
{
i f (mode == 2)
{
Par1 [index++] = s . ToString () ;

106

B.3 Virtual Fog Resolver

cont inue ;
}

f o r (i n t k = 0 ; k < s . Length ; k++)
i f (s [k] != ’\ t ’)
temp += s [k] ;
e l s e
{

switch (indexLine)
{
case 0 :
Par1 [index] = temp ;
break ;
case 1 :
Par2 [index] = temp ;
break ;
case 2 :
Par3 [index] = temp ;
break ;
}
temp=””;
indexLine++;
}
Par4 [index] = temp ;
temp = ”” ;
index++;
indexLine = 0 ;

}
}

}
pub l i c s t a t i c void Save (s t r i n g Data , s t r i n g Path , i n t mood)
{

s t r i n g path = Appl i ca t i on . StartupPath + Path ;
/∗ i f (mood == 5)
{
path = Appl i ca t i on . StartupPath + ”\\Temp”+Convert . ToString (n)+”. bat ” ;
// F i l e . De lete (path) ;

107

B Source Codes

// F i l e . Create (path) ;
// re turn ;
}∗/
/∗ i f (mood == 6)
{
path = Appl i ca t i on . StartupPath + ”\\Temp” + Convert . ToString (n) + ” . bat ”
mood = 1 ;
}∗/

// s i a l o g 1 . ShowDialog () ;
// s t r i n g path = s i a l o g 1 . FileName ;

// This t ex t i s added only once to the f i l e .
/∗ i f (! F i l e . Ex i s t s (path))
{
// Create a f i l e to wr i t e to .
s t r i n g [] c reateText = { ”” } ;
F i l e . Wri teAl lL ines (path , createText) ;
}∗/

// This t ex t i s always added , making the f i l e l onge r over time
// i f i t i s not de l e t ed .
// s t r i n g appendText = textBox1 . Text + Environment . NewLine ;
// i f (mood == 0 | |mood==2)
// F i l e . AppendAllText (path , Data) ;
i f (mood == 2)
{

F i l e . De lete (path) ;
// F i l e . Create (path) ;
r e turn ;
}
i f (1 == mood)
Data += Environment . NewLine ;
F i l e . AppendAllText (path , Data) ;

s t r i n g [] readText = F i l e . ReadAllLines (path) ;
f o r each (s t r i n g s in readText)
{
Console . WriteLine (s) ;
}

108

B.4 Better Workload

// Refresh () ;

// Open the f i l e to read from .

/∗ s t r i n g [] readText = F i l e . ReadAllLines (path) ;

f o r each (s t r i n g s in readText)
{

Console . WriteLine (s) ;

}∗/

// MessageBox . Show(”Chenging Password . ” , ”Admin” , MessageBoxButtons .OK) ;
}
pub l i c s t a t i c Random RandNo = new Random () ;
pub l i c s t a t i c i n t RandomGen(i n t N1 , i n t N2 , i n t N3)
{

i n t N=RandNo . Next (1 , 1 2) ;
i f (N<N1)
re turn 1 ;
e l s e
i f (N<N2)
re turn 2 ;
e l s e
r e turn 3 ;

}
}
}

B.4 Better Workload

us ing System ;
us ing System . Co l l e c t i o n s . Gener ic ;
us ing System . Linq ;
us ing System . Text ;
us ing System . IO ;

109

B Source Codes

us ing System .Windows . Forms ;
namespace Fa i l u r e p r ev en t i on
{
c l a s s Program
{
pub l i c s t a t i c double FDelay = 1 . 4 ;
pub l i c s t a t i c double CDelay = 2 . 6 ;
s t a t i c void Main (s t r i n g [] a rgs)
{
s t r i n g [] Save1 = new s t r i n g [2 1 0] ;
f o r (i n t kk = 1 ; kk < 14 ; kk++)
{
s t r i n g [] F1 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70time = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F1 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s izeR = new s t r i n g [2 0 0] ;

110

B.4 Better Workload

s t r i n g [] F2 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70timeR = new s t r i n g [2 0 0] ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 30sizeR , F1 30timeR , F1 30s i ze , F1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\50 . txt ” ,
F1 50sizeR , F1 50timeR , F1 50s i ze , F1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\70 . txt ” ,
F1 70sizeR , F1 70timeR , F1 70s i ze , F1 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F2 30sizeR , F2 30timeR , F2 30s i ze , F2 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\50 . txt ” ,
F2 50sizeR , F2 50timeR , F2 50s i ze , F2 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\70 . txt ” ,
F2 70sizeR , F2 70timeR , F2 70s i ze , F2 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\30 . txt ” ,
C1 30sizeR , C1 30timeR , C1 30s ize , C1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\50 . txt ” ,
C1 50sizeR , C1 50timeR , C1 50s ize , C1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\70 . txt ” ,
C1 70sizeR , C1 70timeR , C1 70s ize , C1 70time , 1 , 1) ;

//Rand part s e l e c t
s t r i n g [] randNumberF1 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberF2 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberC1 = new s t r i n g [2 0 0] ;
/∗ f o r (i n t N = 3 ; N < 4 ; N++)
{
f o r (i n t i = 0 ; i < 200 ; i++)

111

B Source Codes

{
randNumberF1 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
randNumberF2 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
randNumberC1 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
}
f o r (i n t i = 0 ; i < 200 ; i = i + N)
{
f o r (i n t k = i ; k < 200 && k < i + N; k++)
{
randNumberF1 [k] = randNumberF1 [i] ;
randNumberF2 [k] = randNumberF2 [i] ;
randNumberC1 [k] = randNumberC1 [i] ;
}
}

f o r (i n t i = 0 ; i < randNumberF1 . Length ; i++)
{
Save (randNumberF1 [i] , ”\\RandomUseCPU F1N” + N. ToString () + ” . txt ” , 1) ;
Save (randNumberF2 [i] , ”\\RandomUseCPU F2N” + N. ToString () + ” . txt ” , 1) ;
Save (randNumberC1 [i] , ”\\RandomUseCPU C1N” + N. ToString () + ” . txt ” , 1) ;
}
}∗/
///
s t r i n g [] AllC1 = new s t r i n g [2 0 0] ;
// double SumC1 = 0 ;
s t r i n g [] RandomF1F2 = new s t r i n g [2 0 0] ;
Random RandVal = new Random () ;
s t r i n g [] RandomF1F2C1 = new s t r i n g [2 0 0] ;
// double SumC1 In F1F2C1 = 0 ;
//
Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F1N” +
kk . ToString () + ” . txt ” , randNumberF1 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F2N” +
kk . ToString () + ” . txt ” , randNumberF2 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU C1N” +
kk . ToString () + ” . txt ” , randNumberC1 , nu l l , nu l l , nu l l , 2 , 1) ;

double FR1 = 0 , FR2 = 0 , CR1 = 0 ;
i n t F1Count = 0 , F2Count = 0 , C1Count = 0 ;
double SizeC = 0 ;
double [] timeRun = new double [2 0 0] ;
f o r (i n t i = 0 ; i < randNumberF1 . LongLength ; i++)

112

B.4 Better Workload

{
switch (randNumberF1 [i])
{
case ”1” :
FR1 = Convert . ToDouble (F1 30timeR [i]) ;
// F1 = Convert . ToDouble (F1 30time [i]) ;
break ;
case ”2” :
FR1 = Convert . ToDouble (F1 50timeR [i]) ;
// F1 = Convert . ToDouble (F1 50time [i]) ;

break ;
case ”3” :
FR1 = Convert . ToDouble (F1 70timeR [i]) ;
// F1 = Convert . ToDouble (F1 70time [i]) ;

break ;
}
switch (randNumberF2 [i])
{
case ”1” :
FR2 = Convert . ToDouble (F2 30timeR [i]) ;
// F2 = Convert . ToDouble (F2 30time [i]) ;

break ;
case ”2” :
FR2 = Convert . ToDouble (F2 50timeR [i]) ;
// F2 = Convert . ToDouble (F2 50time [i]) ;

break ;
case ”3” :
FR2 = Convert . ToDouble (F2 70timeR [i]) ;
// F2 = Convert . ToDouble (F2 70time [i]) ;

break ;
}
switch (randNumberC1 [i])
{
case ”1” :
CR1 = Convert . ToDouble (C1 30timeR [i]) ;
// C1 = Convert . ToDouble (C1 30time [i]) ;
break ;

113

B Source Codes

case ”2” :
CR1 = Convert . ToDouble (C1 50timeR [i]) ;
// C1 = Convert . ToDouble (C1 50time [i]) ;
break ;
case ”3” :
CR1 = Convert . ToDouble (C1 70timeR [i]) ;
// C1 = Convert . ToDouble (C1 70time [i]) ;

break ;
}
// F1 += FDelay ;
// F2 += FDelay ;
// C1 += CDelay ;
FR1 += FDelay ;
FR2 += FDelay ;
CR1 += CDelay ;
///
i f ((Convert . ToInt32 (randNumberF1 [i]) <= Convert . ToInt32
(randNumberF2 [i])) &&
(Convert . ToInt32 (randNumberF1 [i]) <= Convert . ToInt32 (randNumberC1 [i])))
{
timeRun [i] = FR1 ;
F1Count++;
}
e l s e
i f (Convert . ToInt32 (randNumberF2 [i]) <= Convert . ToInt32 (randNumberC1 [i])
{
timeRun [i] = FR2 ;
F2Count++;
}
e l s e
{
timeRun [i] = CR1;
C1Count++;
SizeC += Convert . ToDouble (C1 30sizeR [i]) ;
}
}
i n t l l = 0 ;
Save1 [l l ++] += kk . ToString () + ” ” + ” ”;//+ ” ” + ”
” + ” ” ;
Save1 [l l ++] += ”SizeC” + ” ” + SizeC . ToString () + ” ”;//+

114

B.4 Better Workload

”SumC1 In F1F2C1 ” + SumC1 In F1F2C1 . ToString () + ” ” ;
Save1 [l l ++] += ”F1Count ” + F1Count . ToString () + ” ” ;// + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ”F2Count ” + F2Count . ToString () + ” ”;//+ ”
” + ” ” + ” ” ;
Save1 [l l ++] += ”C1Count ” + C1Count . ToString () + ” ” ;// + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ” ” + ” ”;//+ ”AllC1” + ” ” + ”RandomF1F2” + ”
” + ”RandomF1F2C1” + ” ” ;
f o r (i n t i = 0 ; i < randNumberC1 . Length ; i++)
Save1 [l l ++] += ” ” + timeRun [i] + ” ”;//+ AllC1 [i] + ”
” + RandomF1F2 [i] + ” ” + RandomF1F2C1 [i] + ” ” ;
}
f o r (i n t i = 0 ; i <= 205 ; i++)
Save (Save1 [i] , ”\\ out\\Al l . txt ” , 1) ;
}
pub l i c s t a t i c void Read DATA All (S t r i ng PathF , s t r i n g [] Par1 ,
s t r i n g [] Par2 , s t r i n g [] Par3 , s t r i n g [] Par4 , i n t mode , i n t i ndexF i l e)

{

s t r i n g path = PathF ;
i f (! F i l e . Ex i s t s (path))
{

us ing (Fi leStream f s = F i l e . Create (path))
{
Byte [] i n f o =
new UTF8Encoding (t rue) . GetBytes (” e r r o r in Write/Read NO: 5 3 1 ”) ;

f s . Write (in fo , 0 , i n f o . Length) ;
}
}
i n t index = 0 , indexLine = 0 ;

s t r i n g temp = ”” ;

us ing (StreamReader s r = F i l e . OpenText (path))
{
s t r i n g s = ”” ;
whi l e ((s = s r . ReadLine ()) != nu l l)
{

115

B Source Codes

i f (mode == 2)
{
Par1 [index++] = s . ToString () ;
cont inue ;
}

f o r (i n t k = 0 ; k < s . Length ; k++)
i f (s [k] != ’\ t ’)
temp += s [k] ;
e l s e
{

switch (indexLine)
{
case 0 :
Par1 [index] = temp ;
break ;
case 1 :
Par2 [index] = temp ;
break ;
case 2 :
Par3 [index] = temp ;
break ;
}
temp = ”” ;
indexLine++;
}
Par4 [index] = temp ;
temp = ”” ;
index++;
indexLine = 0 ;

}
}

}
pub l i c s t a t i c void Save (s t r i n g Data , s t r i n g Path , i n t mood)
{

s t r i n g path = Appl i ca t i on . StartupPath + Path ;
/∗ i f (mood == 5)

116

B.4 Better Workload

{
path = Appl i ca t i on . StartupPath + ”\\Temp”+Convert . ToString (n)+”. bat ” ;
// F i l e . De lete (path) ;
// F i l e . Create (path) ;
// re turn ;
}∗/
/∗ i f (mood == 6)
{
path = Appl i ca t i on . StartupPath + ”\\Temp” + Convert . ToString (n) + ” . bat ” ;
mood = 1 ;
}∗/

// s i a l o g 1 . ShowDialog () ;
// s t r i n g path = s i a l o g 1 . FileName ;

// This t ex t i s added only once to the f i l e .
/∗ i f (! F i l e . Ex i s t s (path))
{
// Create a f i l e to wr i t e to .
s t r i n g [] c reateText = { ”” } ;
F i l e . Wri teAl lL ines (path , createText) ;
}∗/

// This t ex t i s always added , making the f i l e l onge r over time
// i f i t i s not de l e t ed .
// s t r i n g appendText = textBox1 . Text + Environment . NewLine ;
// i f (mood == 0 | |mood==2)
// F i l e . AppendAllText (path , Data) ;
i f (mood == 2)
{

F i l e . De lete (path) ;
// F i l e . Create (path) ;
r e turn ;
}
i f (1 == mood)
Data += Environment . NewLine ;
F i l e . AppendAllText (path , Data) ;

s t r i n g [] readText = F i l e . ReadAllLines (path) ;
f o r each (s t r i n g s in readText)

117

B Source Codes

{
Console . WriteLine (s) ;
}
// Refresh () ;

// Open the f i l e to read from .

/∗ s t r i n g [] readText = F i l e . ReadAllLines (path) ;

f o r each (s t r i n g s in readText)
{

Console . WriteLine (s) ;

}∗/

// MessageBox . Show(”Chenging Password . ” ,
”Admin” , MessageBoxButtons .OK) ;

}
pub l i c s t a t i c Random RandNo = new Random () ;
pub l i c s t a t i c i n t RandomGen(i n t N1 , i n t N2 , i n t N3)
{

i n t N = RandNo . Next (1 , 1 2) ;
i f (N < N1)
re turn 1 ;
e l s e
i f (N < N2)
re turn 2 ;
e l s e
r e turn 3 ;

}
}
}

B.5 Random Fit

us ing System ;

118

B.5 Random Fit

us ing System . Co l l e c t i o n s . Gener ic ;
us ing System . Linq ;
us ing System . Text ;
us ing System . IO ;
us ing System .Windows . Forms ;
namespace Fa i l u r e p r ev en t i on
{
c l a s s Program
{
pub l i c s t a t i c double FDelay = 1 . 4 ;
pub l i c s t a t i c double CDelay = 2 . 6 ;
s t a t i c void Main (s t r i n g [] a rgs)
{
s t r i n g [] Save1 = new s t r i n g [2 1 0] ;
f o r (i n t kk = 1 ; kk < 14 ; kk++)
{
s t r i n g [] F1 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70time = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F1 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50timeR = new s t r i n g [2 0 0] ;

119

B Source Codes

s t r i n g [] F1 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70timeR = new s t r i n g [2 0 0] ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 30sizeR , F1 30timeR , F1 30s i ze , F1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 50sizeR , F1 50timeR , F1 50s i ze , F1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 70sizeR , F1 70timeR , F1 70s i ze , F1 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 30sizeR , F2 30timeR , F2 30s i ze , F2 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 50sizeR , F2 50timeR , F2 50s i ze , F2 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 70sizeR , F2 70timeR , F2 70s i ze , F2 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\30 . txt ” ,
C1 30sizeR , C1 30timeR , C1 30s ize , C1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\50 . txt ” ,
C1 50sizeR , C1 50timeR , C1 50s ize , C1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\70 . txt ” ,
C1 70sizeR , C1 70timeR , C1 70s ize , C1 70time , 1 , 1) ;

//Rand part s e l e c t
s t r i n g [] randNumberF1 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberF2 = new s t r i n g [2 0 0] ;

120

B.5 Random Fit

s t r i n g [] randNumberC1 = new s t r i n g [2 0 0] ;
/∗ f o r (i n t N = 3 ; N < 4 ; N++)
{
f o r (i n t i = 0 ; i < 200 ; i++)
{
randNumberF1 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
randNumberF2 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
randNumberC1 [i] = RandomGen(4 , 8 , 1 2) . ToString () ;
}
f o r (i n t i = 0 ; i < 200 ; i = i + N)
{
f o r (i n t k = i ; k < 200 && k < i + N; k++)
{
randNumberF1 [k] = randNumberF1 [i] ;
randNumberF2 [k] = randNumberF2 [i] ;
randNumberC1 [k] = randNumberC1 [i] ;
}
}

f o r (i n t i = 0 ; i < randNumberF1 . Length ; i++)
{
Save (randNumberF1 [i] , ”\\RandomUseCPU F1N” + N. ToString () + ” . txt ” , 1) ;
Save (randNumberF2 [i] , ”\\RandomUseCPU F2N” + N. ToString () + ” . txt ” , 1) ;
Save (randNumberC1 [i] , ”\\RandomUseCPU C1N” + N. ToString () + ” . txt ” , 1) ;
}
}∗/
///
s t r i n g [] AllC1 = new s t r i n g [2 0 0] ;
double SumC1 = 0 ;
s t r i n g [] RandomF1F2 = new s t r i n g [2 0 0] ;
Random RandVal = new Random () ;
s t r i n g [] RandomF1F2C1 = new s t r i n g [2 0 0] ;
double SumC1 In F1F2C1 = 0 ;
//
Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F1N” +
kk . ToString () + ” . txt ” , randNumberF1 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F2N” +
kk . ToString () + ” . txt ” , randNumberF2 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU C1N” +
kk . ToString () + ” . txt ” , randNumberC1 , nu l l , nu l l , nu l l , 2 , 1) ;

double F1 = 0 , F2 = 0 , C1 = 0 , FR1 = 0 , FR2 = 0 , CR1 = 0 ;

121

B Source Codes

i n t F1Count = 0 , F2Count = 0 , C1Count = 0 ;
double SizeC = 0 ;
double [] timeRun = new double [2 0 0] ;
f o r (i n t i = 0 ; i < randNumberF1 . LongLength ; i++)
{
switch (randNumberF1 [i])
{
case ”1” :
FR1 = Convert . ToDouble (F1 30timeR [i]) ;
F1 = Convert . ToDouble (F1 30time [i]) ;
break ;
case ”2” :
FR1 = Convert . ToDouble (F1 50timeR [i]) ;
F1 = Convert . ToDouble (F1 50time [i]) ;

break ;
case ”3” :
FR1 = Convert . ToDouble (F1 70timeR [i]) ;
F1 = Convert . ToDouble (F1 70time [i]) ;

break ;
}
switch (randNumberF2 [i])
{
case ”1” :
FR2 = Convert . ToDouble (F2 30timeR [i]) ;
F2 = Convert . ToDouble (F2 30time [i]) ;

break ;
case ”2” :
FR2 = Convert . ToDouble (F2 50timeR [i]) ;
F2 = Convert . ToDouble (F2 50time [i]) ;

break ;
case ”3” :
FR2 = Convert . ToDouble (F2 70timeR [i]) ;
F2 = Convert . ToDouble (F2 70time [i]) ;

break ;
}
switch (randNumberC1 [i])
{

122

B.5 Random Fit

case ”1” :
CR1 = Convert . ToDouble (C1 30timeR [i]) ;
C1 = Convert . ToDouble (C1 30time [i]) ;
break ;
case ”2” :
CR1 = Convert . ToDouble (C1 50timeR [i]) ;
C1 = Convert . ToDouble (C1 50time [i]) ;
break ;
case ”3” :
CR1 = Convert . ToDouble (C1 70timeR [i]) ;
C1 = Convert . ToDouble (C1 70time [i]) ;

break ;
}
F1 += FDelay ;
F2 += FDelay ;
C1 += CDelay ;
FR1 += FDelay ;
FR2 += FDelay ;
CR1 += CDelay ;
//
AllC1 [i] = CR1. ToString () ;
SumC1 += Convert . ToDouble (C1 30s i ze [i]) ;
///
{
i n t valRand = RandVal . Next (1 , 3) ;
i f (valRand == 1)
RandomF1F2 [i] = F1 . ToString () ;
e l s e
RandomF1F2 [i] = F2 . ToString () ;
}
///
{
i n t valRand = RandVal . Next (1 , 4) ;
switch (valRand)
{
case 1 :
RandomF1F2C1 [i] = F1 . ToString () ;
break ;
case 2 :
RandomF1F2C1 [i] = F2 . ToString () ;

123

B Source Codes

break ;
case 3 :
RandomF1F2C1 [i] = C1 . ToString () ;
SumC1 In F1F2C1 += Convert . ToDouble (F1 30s i z e [i]) ;
break ;
}

}
///
i f (F1 <= F2 && F1 <= C1)
{
timeRun [i] = FR1 ;
F1Count++;
}
e l s e
i f (F2 <= F1 && F2 <= C1)
{
timeRun [i] = FR2 ;
F2Count++;
}
e l s e
{
timeRun [i] = CR1;
C1Count++;
SizeC += Convert . ToDouble (C1 30sizeR [i]) ;
}
}
i n t l l = 0 ;
Save1 [l l ++] += kk . ToString () + ” ” + ” ” + ” ” + ” ” + ”
” ;
Save1 [l l ++] += ”SizeC” + ” ” + SizeC . ToString () +
” ” + ”SumC1 In F1F2C1 ” + SumC1 In F1F2C1 . ToString () + ” ” ;

Save1 [l l ++] += ”F1Count ” + F1Count . ToString () + ” ” + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ”F2Count ” + F2Count . ToString () + ” ” + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ”C1Count ” + C1Count . ToString () + ” ” + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ” ” + ” ” + ”AllC1” + ” ” + ”RandomF1F2” + ”
” + ”RandomF1F2C1” + ” ” ;
f o r (i n t i = 0 ; i < randNumberC1 . Length ; i++)
Save1 [l l ++] += ” ” + timeRun [i] + ” ” + AllC1 [i] + ” ” +

124

B.5 Random Fit

RandomF1F2 [i] + ” ” + RandomF1F2C1 [i] + ” ” ;
}
f o r (i n t i = 0 ; i <= 205 ; i++)
Save (Save1 [i] , ”\\ out\\Al l . txt ” , 1) ;
}
pub l i c s t a t i c void Read DATA All (S t r i ng PathF , s t r i n g []
Par1 , s t r i n g [] Par2 , s t r i n g [] Par3 , s t r i n g [] Par4 , i n t mode ,
i n t i ndexF i l e)

{

s t r i n g path = PathF ;
i f (! F i l e . Ex i s t s (path))
{

us ing (Fi leStream f s = F i l e . Create (path))
{
Byte [] i n f o =
new UTF8Encoding (t rue) . GetBytes (” e r r o r in Write/Read NO: 5 3 1 ”) ;

f s . Write (in fo , 0 , i n f o . Length) ;
}
}
i n t index = 0 , indexLine = 0 ;

s t r i n g temp = ”” ;

us ing (StreamReader s r = F i l e . OpenText (path))
{
s t r i n g s = ”” ;
whi l e ((s = s r . ReadLine ()) != nu l l)
{
i f (mode == 2)
{
Par1 [index++] = s . ToString () ;
cont inue ;
}

f o r (i n t k = 0 ; k < s . Length ; k++)
i f (s [k] != ’\ t ’)
temp += s [k] ;
e l s e

125

B Source Codes

{

switch (indexLine)
{
case 0 :
Par1 [index] = temp ;
break ;
case 1 :
Par2 [index] = temp ;
break ;
case 2 :
Par3 [index] = temp ;
break ;
}
temp = ”” ;
indexLine++;
}
Par4 [index] = temp ;
temp = ”” ;
index++;
indexLine = 0 ;

}
}

}
pub l i c s t a t i c void Save (s t r i n g Data , s t r i n g Path , i n t mood)
{

s t r i n g path = Appl i ca t i on . StartupPath + Path ;
/∗ i f (mood == 5)
{
path = Appl i ca t i on . StartupPath + ”\\Temp”+Convert . ToString (n)+”. bat ” ;
// F i l e . De lete (path) ;
// F i l e . Create (path) ;
// re turn ;
}∗/
/∗ i f (mood == 6)
{
path = Appl i ca t i on . StartupPath + ”\\Temp” +
Convert . ToString (n) + ” . bat ” ;

126

B.5 Random Fit

mood = 1 ;
}∗/

// s i a l o g 1 . ShowDialog () ;
// s t r i n g path = s i a l o g 1 . FileName ;

// This t ex t i s added only once to the f i l e .
/∗ i f (! F i l e . Ex i s t s (path))
{
// Create a f i l e to wr i t e to .
s t r i n g [] c reateText = { ”” } ;
F i l e . Wri teAl lL ines (path , createText) ;
}∗/

// This t ex t i s always added , making the f i l e l onge r over time
// i f i t i s not de l e t ed .
// s t r i n g appendText = textBox1 . Text + Environment . NewLine ;
// i f (mood == 0 | |mood==2)
// F i l e . AppendAllText (path , Data) ;
i f (mood == 2)
{

F i l e . De lete (path) ;
// F i l e . Create (path) ;
r e turn ;
}
i f (1 == mood)
Data += Environment . NewLine ;
F i l e . AppendAllText (path , Data) ;

s t r i n g [] readText = F i l e . ReadAllLines (path) ;
f o r each (s t r i n g s in readText)
{
Console . WriteLine (s) ;
}
// Refresh () ;

// Open the f i l e to read from .

/∗ s t r i n g [] readText = F i l e . ReadAllLines (path) ;

127

B Source Codes

f o r each (s t r i n g s in readText)
{

Console . WriteLine (s) ;

}∗/

// MessageBox . Show(”Chenging Password . ” , ”Admin” ,
MessageBoxButtons .OK) ;

}
pub l i c s t a t i c Random RandNo = new Random () ;
pub l i c s t a t i c i n t RandomGen(i n t N1 , i n t N2 , i n t N3)
{

i n t N = RandNo . Next (1 , 1 2) ;
i f (N < N1)
re turn 1 ;
e l s e
i f (N < N2)
re turn 2 ;
e l s e
r e turn 3 ;

}
}
}

B.6 MLTD

us ing System ;
us ing System . Co l l e c t i o n s . Gener ic ;
us ing System . Linq ;
us ing System . Text ;
us ing System . IO ;
us ing System .Windows . Forms ;
namespace Fa i l u r e p r ev en t i on
{
c l a s s Program
{

128

B.6 MLTD

\\ de lays are s e t
pub l i c s t a t i c double FDelay = 1 . 4 ;
pub l i c s t a t i c double CDelay = 2 . 6 ;
s t a t i c void Main (s t r i n g [] a rgs)
{
s t r i n g [] Save1 = new s t r i n g [2 1 0] ;
\\TSWC i s s e t
f o r (i n t kk = 1 ; kk < 11 ; kk++)
{
\\ the d e f i n i t i o n s o f f un c t i on s
s t r i n g [] F1 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50time = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s i z e = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70time = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50time = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70s i ze = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70time = new s t r i n g [2 0 0] ;

s t r i n g [] F1 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F1 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] F2 30s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 50s izeR = new s t r i n g [2 0 0] ;

129

B Source Codes

s t r i n g [] F2 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70s izeR = new s t r i n g [2 0 0] ;
s t r i n g [] F2 70timeR = new s t r i n g [2 0 0] ;

s t r i n g [] C1 30sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 30timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 50timeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70sizeR = new s t r i n g [2 0 0] ;
s t r i n g [] C1 70timeR = new s t r i n g [2 0 0] ;

\\ r e a l and est imated s i z e and response t imes are loaded
Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 30sizeR , F1 30timeR , F1 30s i ze , F1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 50sizeR , F1 50timeR , F1 50s i ze , F1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F1\\30 . txt ” ,
F1 70sizeR , F1 70timeR , F1 70s i ze , F1 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 30sizeR , F2 30timeR , F2 30s i ze , F2 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 50sizeR , F2 50timeR , F2 50s i ze , F2 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\F2\\30 . txt ” ,
F2 70sizeR , F2 70timeR , F2 70s i ze , F2 70time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\30 . txt ” ,
C1 30sizeR , C1 30timeR , C1 30s ize , C1 30time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\50 . txt ” ,
C1 50sizeR , C1 50timeR , C1 50s ize , C1 50time , 1 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\ In \\C\\70 . txt ” ,
C1 70sizeR , C1 70timeR , C1 70s ize , C1 70time , 1 , 1) ;

//The workloads are randomly s e t
s t r i n g [] randNumberF1 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberF2 = new s t r i n g [2 0 0] ;
s t r i n g [] randNumberC1 = new s t r i n g [2 0 0] ;

// d e f i n i t i o n s o f v a r i a b l e s that w i l l be used l a t e r
s t r i n g [] AllC1 = new s t r i n g [2 0 0] ;
double SumC1 = 0 ;

130

B.6 MLTD

s t r i n g [] RandomF1F2 = new s t r i n g [2 0 0] ;
Random RandVal = new Random () ;
s t r i n g [] RandomF1F2C1 = new s t r i n g [2 0 0] ;
double SumC1 In F1F2C1 = 0 ;
// the workloads are loaded
Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F1N” +
kk . ToString () + ” . txt ” , randNumberF1 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU F2N” +
kk . ToString () + ” . txt ” , randNumberF2 , nu l l , nu l l , nu l l , 2 , 1) ;

Read DATA All (App l i ca t i on . StartupPath + ”\\RandomUseCPU C1N” +
kk . ToString () + ” . txt ” , randNumberC1 , nu l l , nu l l , nu l l , 2 , 1) ;

\\ the p ro c e s s i ng t imes are s e t with regard to the
workloads o f s e r v e r s

double F1 = 0 , F2 = 0 , C1 = 0 , FR1 = 0 , FR2 = 0 , CR1 = 0 ;
i n t F1Count = 0 , F2Count = 0 , C1Count = 0 ;
double SizeC = 0 ;
double [] timeRun = new double [2 0 0] ;
f o r (i n t i = 0 ; i < randNumberF1 . LongLength ; i++)
{
switch (randNumberF1 [i])
{
case ”1” :
FR1 = Convert . ToDouble (F1 30timeR [i]) ;
F1 = Convert . ToDouble (F1 30time [i]) ;
break ;
case ”2” :
FR1 = Convert . ToDouble (F1 50timeR [i]) ;
F1 = Convert . ToDouble (F1 50time [i]) ;

break ;
case ”3” :
FR1 = Convert . ToDouble (F1 70timeR [i]) ;
F1 = Convert . ToDouble (F1 70time [i]) ;

break ;
}
switch (randNumberF2 [i])
{
case ”1” :
FR2 = Convert . ToDouble (F2 30timeR [i]) ;

131

B Source Codes

F2 = Convert . ToDouble (F2 30time [i]) ;

break ;
case ”2” :
FR2 = Convert . ToDouble (F2 50timeR [i]) ;
F2 = Convert . ToDouble (F2 50time [i]) ;

break ;
case ”3” :
FR2 = Convert . ToDouble (F2 70timeR [i]) ;
F2 = Convert . ToDouble (F2 70time [i]) ;

break ;
}
switch (randNumberC1 [i])
{
case ”1” :
CR1 = Convert . ToDouble (C1 30timeR [i]) ;
C1 = Convert . ToDouble (C1 30time [i]) ;
break ;
case ”2” :
CR1 = Convert . ToDouble (C1 50timeR [i]) ;
C1 = Convert . ToDouble (C1 50time [i]) ;
break ;
case ”3” :
CR1 = Convert . ToDouble (C1 70timeR [i]) ;
C1 = Convert . ToDouble (C1 70time [i]) ;

break ;
}
F1 += FDelay ;
F2 += FDelay ;
C1 += CDelay ;
FR1 += FDelay ;
FR2 += FDelay ;
CR1 += CDelay ;
//
AllC1 [i] = CR1. ToString () ;
SumC1 += Convert . ToDouble (C1 30s i ze [i]) ;
///
{

132

B.6 MLTD

i n t valRand = RandVal . Next (1 , 3) ;
i f (valRand == 1)
RandomF1F2 [i] = F1 . ToString () ;
e l s e
RandomF1F2 [i] = F2 . ToString () ;
}
///
{
i n t valRand = RandVal . Next (1 , 4) ;
switch (valRand)
{
case 1 :
RandomF1F2C1 [i] = F1 . ToString () ;
break ;
case 2 :
RandomF1F2C1 [i] = F2 . ToString () ;
break ;
case 3 :
RandomF1F2C1 [i] = C1 . ToString () ;
SumC1 In F1F2C1 += Convert . ToDouble (F1 30s i z e [i]) ;
break ;
}

}
///
\\ Task d i s t r i b u t i o n with regard to pr ed i c t ed response t imes
i f (F1 <= F2 && F1 <= C1)
{
timeRun [i] = FR1 ;
F1Count++;
}
e l s e
i f (F2 <= F1 && F2 <= C1)
{
timeRun [i] = FR2 ;
F2Count++;
}
e l s e
{
timeRun [i] = CR1;
C1Count++;
SizeC += Convert . ToDouble (C1 30sizeR [i]) ;

133

B Source Codes

}
}
i n t l l = 0 ;
Save1 [l l ++] += kk . ToString () + ” ” + ” ” + ” ” + ” ” + ”
” ;
Save1 [l l ++] += ”SizeC” + ” ” + SizeC . ToString () + ” ” +
”SumC1 In F1F2C1 ” + SumC1 In F1F2C1 . ToString () + ” ” ;

Save1 [l l ++] += ”F1Count ” + F1Count . ToString () + ” ” + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ”F2Count ” + F2Count . ToString () + ” ” + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ”C1Count ” + C1Count . ToString () + ” ” + ”
” + ” ” + ” ” ;
Save1 [l l ++] += ” ” + ” ” + ”AllC1” + ” ” + ”RandomF1F2” + ”
” + ”RandomF1F2C1” + ” ” ;
f o r (i n t i = 0 ; i < randNumberC1 . Length ; i++)
Save1 [l l ++] += ” ” + timeRun [i] + ” ” + AllC1 [i] + ” ” +
RandomF1F2 [i] + ” ” + RandomF1F2C1 [i] + ” ” ;

}
f o r (i n t i = 0 ; i <= 205 ; i++)
Save (Save1 [i] , ”\\ out\\Al l . txt ” , 1) ;
}
pub l i c s t a t i c void Read DATA All (S t r i ng PathF , s t r i n g [] Par1 ,
s t r i n g [] Par2 , s t r i n g [] Par3 , s t r i n g [] Par4 , i n t mode , i n t i ndexF i l e)

{

s t r i n g path = PathF ;
i f (! F i l e . Ex i s t s (path))
{

us ing (Fi leStream f s = F i l e . Create (path))
{
Byte [] i n f o =
new UTF8Encoding (t rue) . GetBytes (” e r r o r in Write/Read NO: 5 3 1 ”) ;

f s . Write (in fo , 0 , i n f o . Length) ;
}
}
i n t index = 0 , indexLine = 0 ;

s t r i n g temp = ”” ;

134

B.6 MLTD

us ing (StreamReader s r = F i l e . OpenText (path))
{
s t r i n g s = ”” ;
whi l e ((s = s r . ReadLine ()) != nu l l)
{
i f (mode == 2)
{
Par1 [index++] = s . ToString () ;
cont inue ;
}

f o r (i n t k = 0 ; k < s . Length ; k++)
i f (s [k] != ’\ t ’)
temp += s [k] ;
e l s e
{

switch (indexLine)
{
case 0 :
Par1 [index] = temp ;
break ;
case 1 :
Par2 [index] = temp ;
break ;
case 2 :
Par3 [index] = temp ;
break ;
}
temp = ”” ;
indexLine++;
}
Par4 [index] = temp ;
temp = ”” ;
index++;
indexLine = 0 ;

}
}

135

B Source Codes

}
pub l i c s t a t i c void Save (s t r i n g Data , s t r i n g Path , i n t mood)
{

s t r i n g path = Appl i ca t i on . StartupPath + Path ;
/∗ i f (mood == 5)
{
path = Appl i ca t i on . StartupPath + ”\\Temp”+Convert . ToString (n)+”. bat ” ;
// F i l e . De lete (path) ;
// F i l e . Create (path) ;
// re turn ;
}∗/
/∗ i f (mood == 6)
{
path = Appl i ca t i on . StartupPath + ”\\Temp” +
Convert . ToString (n) + ” . bat ” ;
mood = 1 ;
}∗/

// s i a l o g 1 . ShowDialog () ;
// s t r i n g path = s i a l o g 1 . FileName ;

// This t ex t i s added only once to the f i l e .
/∗ i f (! F i l e . Ex i s t s (path))
{
// Create a f i l e to wr i t e to .
s t r i n g [] c reateText = { ”” } ;
F i l e . Wri teAl lL ines (path , createText) ;
}∗/

// This t ex t i s always added , making the f i l e l onge r over time
// i f i t i s not de l e t ed .
// s t r i n g appendText = textBox1 . Text + Environment . NewLine ;
// i f (mood == 0 | |mood==2)
// F i l e . AppendAllText (path , Data) ;
i f (mood == 2)
{

F i l e . De lete (path) ;
// F i l e . Create (path) ;
r e turn ;

136

B.6 MLTD

}
i f (1 == mood)
Data += Environment . NewLine ;
F i l e . AppendAllText (path , Data) ;

s t r i n g [] readText = F i l e . ReadAllLines (path) ;
f o r each (s t r i n g s in readText)
{
Console . WriteLine (s) ;
}
// Refresh () ;

// Open the f i l e to read from .

/∗ s t r i n g [] readText = F i l e . ReadAllLines (path) ;
f o r each (s t r i n g s in readText)
{

Console . WriteLine (s) ;

}∗/

// MessageBox . Show(”Chenging Password . ” , ”Admin” ,
MessageBoxButtons .OK) ;

}
pub l i c s t a t i c Random RandNo = new Random () ;
pub l i c s t a t i c i n t RandomGen(i n t N1 , i n t N2 , i n t N3)
{

i n t N = RandNo . Next (1 , 1 2) ;
i f (N < N1)
return 1 ;
e l s e
i f (N < N2)
return 2 ;
e l s e
r e turn 3 ;

}
}
}

137

Bibliography

Bibliography

[1] Mohammadreza Pourkiani and Masoud Abedi. Using machine learning for
task distribution in fog-cloud scenarios: A deep performance analysis. In 35th
International Conference on Information Networking (ICOIN). IEEE, 2021.
URL https://doi.org/10.1109/ICOIN50884.2021.9333929.

[2] Pallavi Sethi and Smruti R Sarangi. Internet of things: architectures, proto-
cols, and applications. Journal of Electrical and Computer Engineering, 2017,
2017. URL https://doi.org/10.1155/2017/9324035.

[3] Kristof Van Laerhoven and Albrecht Schmidt. How to build smart appliances.
IEEE Personal Communications, 8(4):66–71, 2001. URL https://doi.org/

10.1109/98.944006.

[4] Bhavneesh Malik and V. R. Singh. A survey of research in wban for biomedical
and scientific applications. Health and Technology, 3(3):227–235, 2013. doi:
https://doi.org/10.1007/s12553-013-0056-5.

[5] Marwa Salayma, Ahmed Al-Dubai, Imed Romdhani, and Youssef Nasser.
Wireless body area network (wban) a survey on reliability, fault tolerance,
and technologies coexistence. ACM Computing Surveys (CSUR), 50(1):1–38,
2017. URL https://doi.org/10.1145/3041956.

[6] Samaneh Movassaghi, Mehran Abolhasan, Justin Lipman, David Smith, and
Abbas Jamalipour. Wireless body area networks: A survey. IEEE Communi-
cations surveys & tutorials, 16(3):1658–1686, 2014. URL https://doi.org/

10.1109/SURV.2013.121313.00064.

[7] Ali Hassan Sodhro, Faisal K Shaikh, Sandeep Pirbhulal, Mir Muhammad
Lodro, and Madad Ali Shah. Medical-qos based telemedicine service se-
lection using analytic hierarchy process. In Handbook of large-scale dis-
tributed computing in smart healthcare, pages 589–609. Springer, 2017. URL
https://doi.org/10.1007/978-3-319-58280-1_21.

[8] Ali Hassan Sodhro, Zongwei Luo, Arun Kumar Sangaiah, and Sung Wook
Baik. Mobile edge computing based qos optimization in medical healthcare
applications. International Journal of Information Management, 45:308–318,
2019. URL https://doi.org/10.1016/j.ijinfomgt.2018.08.004.

138

Bibliography

[9] Ali Hassan Sodhro, Abdul Sattar Malokani, Gul Hassan Sodhro, Muham-
mad Muzammal, and Luo Zongwei. An adaptive qos computation for med-
ical data processing in intelligent healthcare applications. Neural comput-
ing and applications, 32(3):723–734, 2020. URL https://doi.org/10.1007/

s00521-018-3931-1.

[10] Healthcare – reliability, security, and longevity. URL https://kruse.de/

healthcare-reliability-security-and-longevity-industrial-flash-memory/.
Accessed: 09.12.2021.

[11] Olamilekan Fadahunsi and Muthucumaru Maheswaran. Locality sensitive re-
quest distribution for fog and cloud servers. Service Oriented Computing
and Applications, 13(2):127–140, 2019. URL https://doi.org/10.1007/

s11761-019-00260-2.

[12] Jiuyun Xu, Zhuangyuan Hao, Ruru Zhang, and Xiaoting Sun. A method
based on the combination of laxity and ant colony system for cloud-fog task
scheduling. IEEE Access, 7:116218–116226, 2019. URL https://doi.org/

10.1109/ACCESS.2019.2936116.

[13] Tina Samizadeh Nikoui, Ali Balador, Amir Masoud Rahmani, and Zeinab
Bakhshi. Cost-aware task scheduling in fog-cloud environment. In 2020
CSI/CPSSI International Symposium on Real-Time and Embedded Systems
and Technologies (RTEST), pages 1–8. IEEE, 2020. URL https://doi.org/

10.1109/RTEST49666.2020.9140118.

[14] Suchintan Mishra, Manmath Narayan Sahoo, Sambit Bakshi, and Joel JPC
Rodrigues. Dynamic resource allocation in fog-cloud hybrid systems using
multicriteria ahp techniques. IEEE Internet of Things Journal, 7(9):8993–
9000, 2020. URL https://doi.org/10.1109/JIOT.2020.3001603.

[15] Flávia C Delicato, Paulo F Pires, Thais Batista, et al. Resource management
for Internet of Things. Springer, 2017. ISBN 978-3-319-54247-8.

[16] Mohammadreza Pourkiani and Masoud Abedi. Machine learning based task
distribution in heterogeneous fog-cloud environments. In 28 th International
Conference on Software, Telecommunications and Computer Networks (Soft-
COM 2020). IEEE, 2020. URL https://doi.org/10.23919/SoftCOM50211.

2020.9238309.

[17] Alessio Botta, Walter De Donato, Valerio Persico, and Antonio Pescapé. In-
tegration of cloud computing and internet of things: a survey. Future genera-
tion computer systems, 56:684–700, 2016. URL https://doi.org/10.1016/

j.future.2015.09.021.

139

Bibliography

[18] Shaik Masthan Babu, A Jaya Lakshmi, and B Thirumala Rao. A study
on cloud based internet of things: Cloudiot. In 2015 global conference
on communication technologies (GCCT), pages 60–65. IEEE, 2015. URL
https://doi.org/10.1109/GCCT.2015.7342624.

[19] Paolo Bellavista, Javier Berrocal, Antonio Corradi, Sajal K Das, Luca Fos-
chini, and Alessandro Zanni. A survey on fog computing for the internet
of things. Pervasive and mobile computing, 52:71–99, 2019. URL https:

//doi.org/10.1016/j.pmcj.2018.12.007.

[20] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog com-
puting and its role in the internet of things. In Proceedings of the first edition
of the MCC workshop on Mobile cloud computing, pages 13–16, 2012. URL
https://doi.org/10.1145/2342509.2342513.

[21] Foteini Andriopoulou, Tasos Dagiuklas, and Theofanis Orphanoudakis. In-
tegrating iot and fog computing for healthcare service delivery. In Compo-
nents and services for IoT platforms, pages 213–232. Springer, 2017. URL
https://doi.org/10.1007/978-3-319-42304-3_11.

[22] Tariq Ahamed Ahanger, Usman Tariq, Muneer Nusir, Abdulaziz Aldaej, Im-
dad Ullah, and Abdullah Sulman. A novel iot–fog–cloud-based healthcare
system for monitoring and predicting covid-19 outspread. The Journal of Su-
percomputing, pages 1–24, 2021.

[23] Redowan Mahmud, Fernando Luiz Koch, and Rajkumar Buyya. Cloud-fog
interoperability in iot-enabled healthcare solutions. In Proceedings of the 19th
international conference on distributed computing and networking, pages 1–10,
2018.

[24] Mohammadreza Pourkiani and Masoud Abedi. An introduction to a dynamic
data size reduction approach in fog servers. In 2019 International Confer-
ence on Information and Communications Technology (ICOIACT), pages 261–
265. IEEE, 2019. URL https://doi.org/10.1109/ICOIACT46704.2019.

8938494.

[25] Ranesh Kumar Naha, Saurabh Garg, Dimitrios Georgakopoulos,
Prem Prakash Jayaraman, Longxiang Gao, Yong Xiang, and Rajiv
Ranjan. Fog computing: Survey of trends, architectures, requirements,
and research directions. IEEE access, 6:47980–48009, 2018. URL
https://doi.org/10.1109/ACCESS.2018.2866491.

[26] Doan Hoang and Thanh Dat Dang. Fbrc: Optimization of task scheduling
in fog-based region and cloud. In 2017 IEEE Trustcom/BigDataSE/ICESS,

140

Bibliography

pages 1109–1114. IEEE, 2017. URL https://doi.org/10.1109/Trustcom/

BigDataSE/ICESS.2017.360.

[27] Mohammadreza Pourkiani, Masoud Abedi, and Mohammad Amin Tahavori.
Improving the quality of service in wbsn based healthcare applications by
using fog computing. In 2019 International Conference on Information and
Communications Technology (ICOIACT), pages 266–270. IEEE, 2019. URL
https://doi.org/10.1109/ICOIACT46704.2019.8938448.

[28] Mohammadreza Pourkiani and Masoud Abedi. Fcstd: Fog-cloud smart task
distribution by exploiting the artificial neural networks. In 11th IEEE Inter-
national Conference on Networks of the Future (NoF 2020). IEEE, Accepted,
2020. URL https://doi.org/10.1109/NoF50125.2020.9249167.

[29] Blesson Varghese, NanWang, Dimitrios S Nikolopoulos, and Rajkumar Buyya.
Feasibility of fog computing. In Handbook of Integration of Cloud Computing,
Cyber Physical Systems and Internet of Things, pages 127–146. Springer, 2020.

[30] Masoud Abedi and Mohammadreza Pourkiani. Resource allocation in com-
bined fog-cloud scenarios by using artificial intelligence. In 2020 Fifth In-
ternational Conference on Fog and Mobile Edge Computing (FMEC), pages
218–222. IEEE, 2020. URL https://doi.org/10.1109/FMEC49853.2020.

9144693.

[31] Karim Foughali, Karim Fathallah, and Ali Frihida. Using cloud iot for disease
prevention in precision agriculture. Procedia computer science, 130:575–582,
2018. URL https://doi.org/10.1016/j.procs.2018.04.106.

[32] Krittin Intharawijitr, Katsuyoshi Iida, and Hiroyuki Koga. Analysis of fog
model considering computing and communication latency in 5g cellular net-
works. In 2016 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops), pages 1–4. IEEE, 2016.
URL https://doi.org/10.1109/PERCOMW.2016.7457059.

[33] Vitor Barbosa Carlos de Souza. Mechanisms for service-oriented resource
allocation in iot. Universitat Politècnica de Catalunya, 2018. URL http:

//hdl.handle.net/2117/113988.

[34] Michael Mitzenmacher. On the analysis of randomized load balancing schemes.
Theory of Computing Systems, 32(3):361–386, 1999. URL https://doi.org/

10.1007/s002240000122.

[35] Jason Brownlee. Neural networks are function approximation al-
gorithms, 2020. URL https://machinelearningmastery.com/

neural-networks-are-function-approximators/. Accessed: 09.12.2021.

141

Bibliography

[36] Alem Čolaković and Mesud Hadžialić. Internet of things (iot): A review of en-
abling technologies, challenges, and open research issues. Computer Networks,
144:17–39, 2018. URL https://doi.org/10.1016/j.comnet.2018.07.017.

[37] Rob Van Kranenburg. The Internet of Things: A critique of ambient technol-
ogy and the all-seeing network of RFID. Institute of Network Cultures, 2008.
ISBN 978-90-78146-06-3.

[38] Cosmas Zavazava. Itu work on internet of things. In Presentation at
ICTP Workshop, 2015. URL http://wireless.ictp.it/school_2015/

presentations/secondweek/ITU-WORK-ON-IOT.pdf.

[39] Ovidiu Vermesan, Peter Friess, Patrick Guillemin, Sergio Gusmeroli, Har-
ald Sundmaeker, Alessandro Bassi, Ignacio Soler Jubert, Margaretha Mazura,
Mark Harrison, Markus Eisenhauer, et al. Internet of things strategic research
roadmap. Internet of things-global technological and societal trends, 1(2011):
9–52, 2011. URL http://hdl.handle.net/11250/2430372.

[40] Ibrahim Mashal, Osama Alsaryrah, Tein-Yaw Chung, Cheng-Zen Yang, Wen-
Hsing Kuo, and Dharma P Agrawal. Choices for interaction with things on
internet and underlying issues. Ad Hoc Networks, 28:68–90, 2015. URL https:

//doi.org/10.1016/j.adhoc.2014.12.006.

[41] Omar Said and Mehedi Masud. Towards internet of things: Survey
and future vision. International Journal of Computer Networks, 5(1):1–
17, 2013. URL https://www.cscjournals.org/library/manuscriptinfo.

php?mc=IJCN-265.

[42] Miao Wu, Ting-Jie Lu, Fei-Yang Ling, Jing Sun, and Hui-Ying Du. Research
on the architecture of internet of things. In 2010 3rd International Confer-
ence on Advanced Computer Theory and Engineering (ICACTE), volume 5,
pages V5–484. IEEE, 2010. URL https://doi.org/10.1109/ICACTE.2010.

5579493.

[43] Sandra Sendra Compte. Deployment of efficient wireless sensor nodes for
monitoring in rural, indoor and underwater environments. PhD Thesis. 2013.
URL https://doi.org/10.4995/Thesis/10251/32279.

[44] Sourav Banerjee, Chinmay Chakraborty, and Sumit Chatterjee. A survey on
iot based traffic control and prediction mechanism. In Internet of Things and
Big Data Analytics for Smart Generation, pages 53–75. Springer, 2019. URL
https://doi.org/10.1007/978-3-030-04203-5_4.

142

Bibliography

[45] L Minh Dang, Md Piran, Dongil Han, Kyungbok Min, Hyeonjoon Moon, et al.
A survey on internet of things and cloud computing for healthcare. Electronics,
8(7):768, 2019. URL https://doi.org/10.3390/electronics8070768.

[46] Zhibo Pang. Technologies and architectures of the internet-of-things (iot) for
health and well-being. PhD Thesis. 2013. ISBN 978-91-7501-736-5.

[47] Redefine connectivity by building a network to support the internet of things.
URL https://www.cisco.com/c/en/us/solutions/service-provider/

a-network-to-support-iot.html. Accessed: 09.12.2021.

[48] Ibrar Yaqoob, Ejaz Ahmed, Ibrahim Abaker Targio Hashem, Abdelmuttlib
Ibrahim Abdalla Ahmed, Abdullah Gani, Muhammad Imran, and Mohsen
Guizani. Internet of things architecture: Recent advances, taxonomy, re-
quirements, and open challenges. IEEE wireless communications, 24(3):10–16,
2017. URL https://doi.org/10.1109/MWC.2017.1600421.

[49] Rafiullah Khan, Sarmad Ullah Khan, Rifaqat Zaheer, and Shahid Khan. Fu-
ture internet: the internet of things architecture, possible applications and key
challenges. In 2012 10th international conference on frontiers of information
technology, pages 257–260. IEEE, 2012. URL https://doi.org/10.1109/

FIT.2012.53.

[50] Muneer Bani Yassein, Shadi Aljawarneh, and Walaa Al-Sarayrah. Mobility
management of internet of things: Protocols, challenges and open issues. In
2017 International Conference on Engineering & MIS (ICEMIS), pages 1–8.
IEEE, 2017. URL https://doi.org/10.1109/ICEMIS.2017.8273021.

[51] In Lee and Kyoochun Lee. The internet of things (iot): Applications, invest-
ments, and challenges for enterprises. Business Horizons, 58(4):431–440, 2015.
URL https://doi.org/10.1016/j.bushor.2015.03.008.

[52] Internet of things at a glance, 2020. URL https://emarsonindia.com/

wp-content/uploads/2020/02/Internet-of-Things.pdf.

[53] Oyster Bay. Data captured by iot connections to top 1.6
zettabytes in 2020, as analytics evolve from cloud to edge,
April 2015. URL https://www.abiresearch.com/press/

data-captured-by-iot-connections-to-top-16-zettaby/.

[54] Changyan Yi, Jun Cai, and Zhou Su. A multi-user mobile computation of-
floading and transmission scheduling mechanism for delay-sensitive applica-
tions. IEEE Transactions on Mobile Computing, 19(1):29–43, 2019. URL
https://doi.org/10.1109/TMC.2019.2891736.

143

Bibliography

[55] Jie Ding, Mahyar Nemati, Chathurika Ranaweera, and Jinho Choi. Iot
connectivity technologies and applications: A survey. arXiv preprint
arXiv:2002.12646, pages 67646–67673, 2020. URL https://doi.org/10.

1109/ACCESS.2020.2985932.

[56] Ian Foster, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and
grid computing 360-degree compared. In 2008 grid computing environments
workshop, pages 1–10. IEEE, 2008. URL https://doi.org/10.1109/GCE.

2008.4738445.

[57] Peter Mell, Tim Grance, et al. The nist definition of cloud computing. 2011.
URL https://csrc.nist.gov/publications/detail/sp/800-145/final.

[58] Hanan Elazhary. Internet of things (iot), mobile cloud, cloudlet, mobile iot,
iot cloud, fog, mobile edge, and edge emerging computing paradigms: Disam-
biguation and research directions. Journal of Network and Computer Appli-
cations, 128:105–140, 2019. URL https://doi.org/10.1016/j.jnca.2018.

10.021.

[59] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang, and Wei Zhao. A
survey on internet of things: Architecture, enabling technologies, security and
privacy, and applications. IEEE Internet of Things Journal, 4(5):1125–1142,
2017. URL https://doi.org/10.1109/JIOT.2017.2683200.

[60] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and Omer
Rana. Fog computing for the internet of things: A survey. ACM Transactions
on Internet Technology (TOIT), 19(2):1–41, 2019. URL https://doi.org/

10.1145/3301443.

[61] Pengfei Hu, Sahraoui Dhelim, Huansheng Ning, and Tie Qiu. Survey on
fog computing: architecture, key technologies, applications and open is-
sues. Journal of network and computer applications, 98:27–42, 2017. URL
https://doi.org/10.1016/j.jnca.2017.09.002.

[62] Matthew NO Sadiku, Sarhan M Musa, and Omonowo D Momoh. Cloud com-
puting: opportunities and challenges. IEEE potentials, 33(1):34–36, 2014.
URL https://doi.org/10.1109/MPOT.2013.2279684.

[63] Jun Zhou, Zhenfu Cao, Xiaolei Dong, and Athanasios V Vasilakos. Security
and privacy for cloud-based iot: Challenges. IEEE Communications Magazine,
55(1):26–33, 2017. URL https://doi.org/10.1109/MCOM.2017.1600363CM.

[64] Mahadev Satyanarayanan, Grace Lewis, Edwin Morris, Soumya Simanta, Jeff
Boleng, and Kiryong Ha. The role of cloudlets in hostile environments. IEEE

144

Bibliography

Pervasive Computing, 12(4):40–49, 2013. URL https://doi.org/10.1109/

MPRV.2013.77.

[65] Luis M Vaquero and Luis Rodero-Merino. Finding your way in the fog: To-
wards a comprehensive definition of fog computing. ACM SIGCOMM Com-
puter Communication Review, 44(5):27–32, 2014. URL https://doi.org/

10.1145/2677046.2677052.

[66] What is fog computing?, 2014. URL https://www.ibm.com/blogs/

cloud-computing/2014/08/25/fog-computing/.

[67] The openfog consortium reference architecture: Executive
summary, 2017. URL https://www.iiconsortium.org/pdf/

OpenFog-Reference-Architecture-Executive-Summary.pdf.

[68] Soumya Kanti Datta, Christian Bonnet, and Jerome Haerri. Fog computing
architecture to enable consumer centric internet of things services. In 2015
International Symposium on Consumer Electronics (ISCE), pages 1–2. IEEE,
2015. URL https://doi.org/10.1109/ISCE.2015.7177778.

[69] Shanhe Yi, Zhengrui Qin, and Qun Li. Security and privacy issues of fog
computing: A survey. In International conference on wireless algorithms,
systems, and applications, pages 685–695, 2015. URL https://doi.org/10.

1007/978-3-319-21837-3_67.

[70] Mung Chiang and Tao Zhang. Fog and iot: An overview of research op-
portunities. IEEE Internet of Things Journal, 3(6):854–864, 2016. URL
https://doi.org/10.1109/JIOT.2016.2584538.

[71] Pengfei Hu, Huansheng Ning, Tie Qiu, Yanfei Zhang, and Xiong Luo. Fog
computing based face identification and resolution scheme in internet of things.
IEEE transactions on industrial informatics, 13(4):1910–1920, 2016. URL
https://doi.org/10.1109/TII.2016.2607178.

[72] Prateeksha Varshney and Yogesh Simmhan. Demystifying fog computing:
Characterizing architectures, applications and abstractions. In 2017 IEEE 1st
International Conference on Fog and Edge Computing (ICFEC), pages 115–
124. IEEE, 2017. URL https://doi.org/10.1109/ICFEC.2017.20.

[73] Tom H Luan, Longxiang Gao, Zhi Li, Yang Xiang, Guiyi Wei, and Limin
Sun. Fog computing: Focusing on mobile users at the edge. arXiv preprint
arXiv:1502.01815, 2015. URL https://arxiv.org/abs/1502.01815.

[74] M Shohrab Hossain and Mohammed Atiquzzaman. Cost analysis of mobility
protocols. Telecommunication Systems, 52(4):2271–2285, 2013. URL https:

//doi.org/10.1007/s11235-011-9532-2.

145

Bibliography

[75] Mohammed A Hassan, Mengbai Xiao, Qi Wei, and Songqing Chen. Help your
mobile applications with fog computing. In 2015 12th Annual IEEE Inter-
national Conference on Sensing, Communication, and Networking-Workshops
(SECON Workshops), pages 1–6. IEEE, 2015. URL https://doi.org/10.

1109/SECONW.2015.7328146.

[76] Kang Kai, Wang Cong, and Luo Tao. Fog computing for vehicular ad-hoc
networks: paradigms, scenarios, and issues. the journal of China Universities
of Posts and Telecommunications, 23(2):56–96, 2016. URL https://doi.org/

10.1016/S1005-8885(16)60021-3.

[77] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. Fog com-
puting: A platform for internet of things and analytics. In Big data and in-
ternet of things: A roadmap for smart environments, pages 169–186. Springer,
2014. URL https://doi.org/10.1007/978-3-319-05029-4_7.

[78] Clinton Dsouza, Gail-Joon Ahn, and Marthony Taguinod. Policy-driven secu-
rity management for fog computing: Preliminary framework and a case study.
In Proceedings of the 2014 IEEE 15th international conference on informa-
tion reuse and integration (IEEE IRI 2014), pages 16–23. IEEE, 2014. URL
https://doi.org/10.1109/IRI.2014.7051866.

[79] Yang Zhang, Dusit Niyato, Ping Wang, and Dong In Kim. Optimal energy
management policy of mobile energy gateway. IEEE Transactions on Vehicular
Technology, 65(5):3685–3699, 2015. URL https://doi.org/10.1109/TVT.

2015.2445833.

[80] Subhadeep Sarkar and Sudip Misra. Theoretical modelling of fog computing:
a green computing paradigm to support iot applications. Iet Networks, 5(2):
23–29, 2016. URL https://doi.org/10.1049/iet-net.2015.0034.

[81] Fatemeh Jalali, Kerry Hinton, Robert Ayre, Tansu Alpcan, and Rodney S
Tucker. Fog computing may help to save energy in cloud computing. IEEE
Journal on Selected Areas in Communications, 34(5):1728–1739, 2016. URL
https://doi.org/10.1109/JSAC.2016.2545559.

[82] Xavi Masip-Bruin, Eva Maŕın-Tordera, Ghazal Tashakor, Admela Jukan, and
Guang-Jie Ren. Foggy clouds and cloudy fogs: a real need for coordinated
management of fog-to-cloud computing systems. IEEE Wireless Communi-
cations, 23(5):120–128, 2016. URL https://doi.org/10.1109/MWC.2016.

7721750.

[83] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H Luan, and Hao Liang.
Optimal workload allocation in fog-cloud computing toward balanced delay

146

Bibliography

and power consumption. IEEE internet of things journal, 3(6):1171–1181,
2016. URL https://doi.org/10.1109/JIOT.2016.2565516.

[84] Jianbo Du, Liqiang Zhao, Jie Feng, and Xiaoli Chu. Computation offloading
and resource allocation in mixed fog/cloud computing systems with min-max
fairness guarantee. IEEE Transactions on Communications, 66(4):1594–1608,
2018. URL https://doi.org/10.1109/TCOMM.2017.2787700.

[85] Mohit Taneja and Alan Davy. Resource aware placement of iot application
modules in fog-cloud computing paradigm. In 2017 IFIP/IEEE Symposium
on Integrated Network and Service Management (IM), pages 1222–1228. IEEE,
2017. URL https://doi.org/10.23919/INM.2017.7987464.

[86] Hamed Shah-Mansouri and Vincent WSWong. Hierarchical fog-cloud comput-
ing for iot systems: A computation offloading game. IEEE Internet of Things
Journal, 5(4):3246–3257, 2018. URL https://doi.org/10.1109/JIOT.2018.

2838022.

[87] Vitor Barbosa C Souza, Wilson Ramı́rez, Xavier Masip-Bruin, Eva Maŕın-
Tordera, G Ren, and Ghazal Tashakor. Handling service allocation in com-
bined fog-cloud scenarios. In 2016 IEEE international conference on commu-
nications (ICC), pages 1–5. IEEE, 2016. URL https://doi.org/10.1109/

ICC.2016.7511465.

[88] Adam A Alli and Muhammad Mahbub Alam. The fog cloud of things: A
survey on concepts, architecture, standards, tools, and applications. Internet
of Things, 9:100177, 2020. URL https://doi.org/10.1016/j.iot.2020.

100177.

[89] Elarbi Badidi and Karima Moumane. Enhancing the processing of healthcare
data streams using fog computing. In 2019 IEEE Symposium on Computers
and Communications (ISCC), pages 1113–1118. IEEE, 2019. URL https:

//doi.org/10.1109/ISCC47284.2019.8969736.

[90] Xin Li and Cui Tang. Makespan minimization for batch tasks in data centers.
In International Conference on Security, Privacy and Anonymity in Com-
putation, Communication and Storage, pages 115–123. Springer, 2016. URL
https://doi.org/10.1007/978-3-319-49145-5_12.

[91] Ashkan Yousefpour, Genya Ishigaki, and Jason P Jue. Fog computing: To-
wards minimizing delay in the internet of things. In 2017 IEEE interna-
tional conference on edge computing (EDGE), pages 17–24. IEEE, 2017. URL
https://doi.org/10.1109/IEEE.EDGE.2017.12.

147

Bibliography

[92] Amira Rayane Benamer, Hana Teyeb, and Nejib Ben Hadj-Alouane. Latency-
aware placement heuristic in fog computing environment. In OTM Confed-
erated International Conferences” On the Move to Meaningful Internet Sys-
tems”, pages 241–257. Springer, 2018. URL https://doi.org/10.1007/

978-3-030-02671-4_14.

[93] Michael Mitzenmacher. The power of two choices in randomized load bal-
ancing. IEEE Transactions on Parallel and Distributed Systems, 12(10):1094–
1104, 2001. URL https://doi.org/10.1109/71.963420.

[94] Huaiying Sun, Huiqun Yu, and Guisheng Fan. Contract-based resource sharing
for time effective task scheduling in fog-cloud environment. IEEE Transac-
tions on Network and Service Management, 2020. URL https://doi.org/

10.1109/TNSM.2020.2977843.

[95] Mahdi Abbasi, Ehsan Mohammadi Pasand, and Mohammad R Khosravi.
Workload allocation in iot-fog-cloud architecture using a multi-objective ge-
netic algorithm. Journal of Grid Computing, pages 1–14, 2020. URL
https://doi.org/10.1007/s10723-020-09507-1.

[96] Stamatios-Aggelos N Alexandropoulos, Christos K Aridas, Sotiris B Kot-
siantis, and Michael N Vrahatis. Multi-objective evolutionary optimization
algorithms for machine learning: A recent survey. In Approximation and Op-
timization, pages 35–55. Springer, 2019. URL https://doi.org/10.1007/

978-3-030-12767-1_4.

[97] Rodrigo AC da Silva and Nelson LS da Fonseca. Resource allocation mech-
anism for a fog-cloud infrastructure. In 2018 IEEE International Con-
ference on Communications (ICC), pages 1–6. IEEE, 2018. URL https:

//doi.org/10.1109/ICC.2018.8422237.

[98] Lei Li, Mian Guo, Lihong Ma, Huiyun Mao, and Quansheng Guan. Online
workload allocation via fog-fog-cloud cooperation to reduce iot task service de-
lay. Sensors, 19(18):3830, 2019. URL https://doi.org/10.3390/s19183830.

[99] Vitor Barbosa Souza, Xavi Masip-Bruin, Eva Maŕın-Tordera, Wilson Ramı́rez,
and Sergio Sanchez. Towards distributed service allocation in fog-to-cloud
(f2c) scenarios. In 2016 IEEE global communications conference (GLOBE-
COM), pages 1–6. IEEE, 2016. URL https://doi.org/10.1109/GLOCOM.

2016.7842341.

[100] Ranesh Kumar Naha, Saurabh Garg, Andrew Chan, and Sudheer Kumar Bat-
tula. Deadline-based dynamic resource allocation and provisioning algorithms
in fog-cloud environment. Future Generation Computer Systems, 104:131–141,
2020. URL https://doi.org/10.1016/j.future.2019.10.018.

148

Bibliography

[101] Mohammed Anis Benblidia, Bouziane Brik, Leila Merghem-Boulahia, and
Moez Esseghir. Ranking fog nodes for tasks scheduling in fog-cloud envi-
ronments: A fuzzy logic approach. In 2019 15th International Wireless Com-
munications & Mobile Computing Conference (IWCMC), pages 1451–1457.
IEEE, 2019. URL https://doi.org/10.1109/IWCMC.2019.8766437.

[102] AP Gagge, JAJ Stolwijk, and B Saltin. Comfort and thermal sensations
and associated physiological responses during exercise at various ambient
temperatures. Environmental Research, 2(3):209–229, 1969. URL https:

//doi.org/10.1016/0013-9351(69)90037-1.

[103] Roger Haslam. An evaluation of models of human response to hot and cold
environments. PhD thesis, Loughborough University, 1989. URL https:

//hdl.handle.net/2134/7027.

[104] RA Haslam and KC Parsons. Computer-based models of human responses to
the thermal environment: Are their predictions accurate enough for practical
use? Thermal Physiology, JB Mercer, Ed, pages 763–768, 1989.

[105] M Salloum, N Ghaddar, and K Ghali. A new transient bioheat model of the
human body and its integration to clothing models. International journal of
thermal sciences, 46(4):371–384, 2007. URL https://doi.org/10.1016/j.

ijthermalsci.2006.06.017.

[106] Jinming Zou, Yi Han, and Sung-Sau So. Overview of artificial neural networks.
In Artificial Neural Networks, pages 14–22. Springer, 2008. URL https://

doi.org/10.1007/978-1-60327-101-1_2.

[107] Steven Walczak. Neural network models for a resource allocation problem.
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
28(2):276–284, 1998. URL https://doi.org/10.1109/3477.662769.

[108] Rashid Mijumbi, Juan-Luis Gorricho, Joan Serrat, Maxim Claeys, Jeroen
Famaey, and Filip De Turck. Neural network-based autonomous alloca-
tion of resources in virtual networks. In 2014 European Conference on
Networks and Communications (EuCNC), pages 1–6. IEEE, 2014. URL
https://doi.org/10.1109/EuCNC.2014.6882668.

[109] Ingo Steinwart and Andreas Christmann. Support vector machines. Springer
Science & Business Media, 2008. ISBN 978-0-387-77242-4.

[110] The core conference ranking portal. URL https://www.core.edu.au/

conference-portal. Accessed: 09.12.2021.

[111] Qualis conference ranking portal. URL https://qualis.ic.ufmt.br. Ac-
cessed: 09.12.2021.

149

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Dissertation mit dem Titel “Smart Task
Distribution in Combined Fog-Cloud Scenarios” selbstständig und ohne fremde Hilfe
verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt
und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als
solche kenntlich gemacht habe.

Rostock, 1. April 2022

Mohammadreza Pourkiani

	List of Acronyms
	Introduction
	Motivation
	Problem Description
	Hypothesis
	Contributions
	Evaluation of Achievements
	Thesis Structure

	Basic Concepts
	Internet of Things
	IoT Architecture
	IoT Applications
	IoT Challenges
	Limitation of IoT Objects
	Communication
	Mobility Management
	Security Issues
	Privacy
	Naming and Identity Management
	Interoperability and Standardization
	Data Management
	Data Mining
	Internet Traffic

	The Requirements of IoT Applications
	Cloud Computing
	Cloud Computing Advantages
	Cloud Computing Challenges

	Fog Computing and its Characteristics
	Fog vs. Cloud
	Combined Fog-Cloud Scenarios

	Previous Works
	Benchmarks
	Utilization of Cloud Computing
	Utilization of Fog Computing
	Simple Methods for Utilizing both Fog and Cloud Servers

	Recent Complex Methods
	Optimization Based Methods
	Other Complex Methods

	Investigating the Previous Works

	Case Study and Primary Experiments
	Case Study
	Comparing the Performance of Fog and Remote Servers
	Research Questions
	Assumptions
	The Experimental Results

	Intelligent Task Placement in Combined Fog-Cloud Scenarios
	Smart Task Distribution Between Fog and Cloud Servers with Similar Workloads
	Network Architecture and Assumptions
	Problem Description and Research Questions
	AITDA: An Artificial Intelligence Based Task Distribution Algorithm
	Evaluation of Results

	Fog-Cloud Smart Task Distribution by Considering the Application Requirements
	Problem Description
	Proposed Approach
	FCSTD Time-Based
	FCSTD Traffic-Based

	Evaluation of Results

	Smart Task Distribution Between Fog and Cloud Servers with Different Workloads
	Network Architecture and Assumptions
	Problem Description
	Machine Learning Based Task Distribution (MLTD)
	Evaluation of Results

	Investigating the Effective Parameters on the Performance of MLTD
	Research Questions and Hypothesis
	Changing the Method and Richness of Training
	Evaluation of Results
	DFDW and SFDW Conditions
	DFSW and SFSW Conditions

	Conclusion and Future Works
	Conclusion
	Future Works
	Investigating the Performance of our Proposed Method in Scenarios with Mobile Servers
	Investigating the Impact of Number of Available Servers on the Performance of Broker
	Considering the Variation of Delay
	Increasing the Accuracy of Function Approximation Method
	Considering Different Numbers of Available Tasks in the Broker

	Publications
	Source Codes
	Neural Networks
	Genetic Algorithm
	Virtual Fog Resolver
	Better Workload
	Random Fit
	MLTD

	Bibliography

