
Trusted Execution Environments in
Protecting Machine Learning Models

Master of Science Thesis
University of Turku
Department of Computing
Computer Science
2023
Maks Turtiainen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Maks Turtiainen: Trusted Execution Environments in Protecting Machine Learn-
ing Models

Master of Science Thesis, 51 p.
Computer Science
June 2023

The adaptation and application of machine learning (ML) has grown extensively
in recent years, and has awakened concern about the safety of intellectual property
(IP) related to the machine learning models. The training of machine learning
models is a time-consuming and expensive task, that has increased the demand of
better solutions to protect the intellectual property of the machine learning models.
This thesis explores the promising potential of Trusted Execution Environments
(TEE) like Intel’s Software Guard Extensions (Intel SGX), in protecting intellectual
property related to machine learning models. The concern of ML model safety arises
especially when the software solution needs to be distributed to clients or machine
learning operations needs to be done in an untrusted environment. The main focus
of this thesis is on Intel’s SGX, which is one of the most used TEE implementations.
This thesis tries to answer to the questions on how TEEs can be used to protect IP
of the ML models, what aspects need to be considered and what limitations may
arise.

Keywords: Trusted Execution Environment, TEE, Software Guard Extension, Intel
SGX, Machine Learning, Gramine

Contents

1 Introduction 1

2 The Problem 4

2.1 Problem When Distributing Software 4

2.2 Problem When Using Cloud Environments 5

2.3 Limitations of Existing Approaches 5

3 Previous Research 7

4 Machine Learning 13

4.1 Introduction to Artificial Intelligence 13

4.2 Types of Machine Learning . 17

4.2.1 Supervised Machine learning 17

4.2.2 Unsupervised Machine Learning 18

4.2.3 Reinforcement Learning . 19

4.2.4 Deep Learning . 19

4.3 Machine Learning Algorithms . 19

5 Trusted Execution Environments 22

5.1 Use Cases . 23

5.1.1 Protecting Intellectual Property 23

5.1.2 Protecting Sensitive Personal Information 23

i

5.1.3 Financial Services . 23

5.1.4 Biometric Authentication . 24

5.2 Intel Software Guard Extensions (Intel SGX) 24

5.2.1 Remote Attestation . 25

5.2.2 Using Intel SGX on Linux . 26

5.2.3 Limitations . 27

5.2.4 Gramine LibOS . 28

5.3 AMD Secure Encrypted Virtualization (SEV) 30

5.4 ARM TrustZone . 30

5.5 Cloud Provider’s Solutions . 30

6 Solution 32

6.1 Implementation . 32

6.1.1 Description of the Data . 35

6.1.2 Overview of the Application Stack 35

6.1.3 Setting Up . 38

6.1.4 Usage . 42

6.2 Performance and Limitations . 43

6.2.1 Testing Setup . 44

6.2.2 Performance . 45

6.2.3 Limitations and Drawbacks 47

7 Conclusion 49

References 52

ii

List of Figures

3.1 System overview of SecureTF from SecureTF: A Secure TensorFlow

Framework . 8

3.2 Query and load sequence diagram of proposed method from Securely

Exposing Machine Learning Models to Web Clients using Intel SGX . 10

3.3 The threat model of SGX, presented in Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. Intel SGX protects

applications from three types of attacks: in-process attacks from out-

side the enclave, attacks from the OS or hypervisor, and attacks from

off-chip hardware. 11

4.1 Example of an image generated by DALL-E, when it is asked to gen-

erate a painting where Socrates admires Mazda Miata in Ancient

Greece. 15

5.1 Performance overhead of Graphene-SGX, presented in Graphene-SGX:

A Practical Library OS for Unmodified Applications on SGX 29

6.1 Application flow diagram . 34

6.2 Build flow . 41

iii

List of Tables

6.1 Example data points of the dataset. 35

6.2 Run times of 150 data point inference with both methods. 46

6.3 Run times of million data point inference with both methods. 47

iv

1 Introduction

In recent years, machine learning (ML) has witnessed an unprecedented increase

in its adoption across various domains, ranging from finance and healthcare to au-

tonomous vehicles and natural language processing. As the ML models can have

remarkable ability to learn and make predictions from vast amounts of data and the

training of these ML models can be expensive and time-consuming, the ML models

have become valuable assets for companies. However, with the increasing adoption

of machine learning models comes the concern of protecting the intellectual property

(IP) associated with these ML models.

Trusted Execution Environments (TEEs) have emerged as a promising solution

to address the challenges associated with IP protection of machine learning models.

TEEs provide a secure and isolated environment where sensitive computations, such

as those involved in using and training machine learning models, can be executed

securely, protecting the confidentiality and integrity of the underlying algorithms

and data.

The most significant concern that arises is the risk of model theft or unauthorized

replication of the machine learning models. The concern arises mainly when ML ap-

plication needs to be run in an untrusted environment. The untrusted environment

can be, for example, an infrastructure of a customer to whom the machine learning

application is distributed. Untrusted environment can also be third-party cloud in-

frastructure. Unauthorized access to the ML models can lead to their replication,

CHAPTER 1. INTRODUCTION 2

reverse engineering, or even the extraction of sensitive information embedded within

them.[1]

Trusted Execution Environments offer a solution to address these concerns. By

using hardware-based security technologies, such as Intel SGX (Software Guard

Extensions), AMD SEV (Secure Encrypted Virtualization) and ARM TrustZone,

TEEs create a secure and isolated enclave where sensitive computations can be

isolated from the rest of the system. Isolation ensures that even privileged software

cannot access or tamper with the sensitive data and algorithms processed inside the

enclave.[2]

This thesis explores the potential of TEEs in protecting Intellectual Property

associated with machine learning models when the machine learning application

needs to be distributed to the client with the ML model bundled within it. Trusted

Execution Environment implementation chosen for closer examination is Intel SGX.

This thesis tries to answer to the questions on how Intel SGX can be used to pro-

tect the IP of the ML models, what aspects need to be considered and what are

the limitations, from the perspective of ML model Intellectual Property protection.

Application of Intel SGX is explored and existing techniques and frameworks are

discussed. This thesis also provides an example implementation of a machine learn-

ing application that uses Intel SGX to protect the IP of the ML model. The research

questions of this thesis can therefore be formulated as follows:

RQ1. What is currently known about different TEE implementations and their

potential in protecting IP associated with ML models?

RQ2. How TEEs, especially Intel SGX, can be used to protect the IP associated

with ML models when ML application is distributed to end-users?

RQ3. What issues and limitations should be considered when applying TEEs,

especially Intel SGX, for IP protection associated with ML models?

CHAPTER 1. INTRODUCTION 3

Chapter 2 discusses the concerns raised in more detail. Even though this thesis

focuses on the problem when ML application is distributed with ML model, the

scenario when ML application runs inside untrusted cloud infrastructure is briefly

discussed. Although this specific topic has not been previously researched, Chapter

3 explores the previous research around this topic. Chapter 4 gives a brief intro-

duction to the machine learning and explores different types of machine learning

and current popular techniques to implement them. Chapter 5 presents Trusted

Execution Environments and the most common use cases of them. Different TEE

implementations are introduced, with the focus on Intel SGX, which is discussed

in more detail. Chapter 6 offers a practical solution to the concerns of ML model

IP protection. The example implementation that is made as a part of this thesis is

presented in this chapter. To practically demonstrate the limitations of Intel SGX,

the example implementation is used to conduct performance testing. The results of

the performance testing are also presented in this chapter. Chapter 7 concludes this

thesis by pulling together the main findings.

2 The Problem

As the training of the machine learning model is time-consuming and requires plenty

of export effort, it is usually expensive. Due to the expensive nature of ML model

training, it is often desired to protect the Intellectual Property of the ML model.

Whether the intellectual property of the ML model is safe arises in multiple different

scenarios, the most obvious being that when a software solution containing the ML

model is distributed to the end-user.

Next, the two most typical scenarios where the IP of the ML model can become

compromised are discussed.

2.1 Problem When Distributing Software

In some cases, software solutions that contain machine learning computations are

separated into the client part and the server part. By separating software solutions

into client and server, only the client part needs to be distributed to the end-user

and the software distributor can provide access to the server part of the software

which contains the machine learning models. The server part is then run inside the

software distributor’s own trusted infrastructure, and the intellectual property of

the ML model can be considered safe. However, Canadian research from last year

suggests that the ML model can still be stolen through API extraction[3].

But in other cases, the machine learning application needs to be distributed in

its entirety to the end-users, including machine learning models. This is the case,

2.3 LIMITATIONS OF EXISTING APPROACHES 5

especially when the machine learning application cannot rely on a stable internet

connection to query the machine learning application server, for example in self-

driving solutions in cars and marine vessels. Protecting intellectual property of the

ML model in this scenario is in the main focus of this thesis.

Without any protection, this practice exposes ML models to potential threats

that can compromise the intellectual property of these models.

ML models embedded within applications can be reverse engineered by attackers,

allowing them to extract the underlying algorithms, model architecture, or even

training data. This process enables potential competitors or malicious actors to

replicate or modify the model without permission, posing a significant threat to the

original model’s intellectual property.

2.2 Problem When Using Cloud Environments

As cloud computing services are very popular, they should be briefly discussed,

even though the focus of this thesis is on the case when ML application is dis-

tributed entirely to the end-users. Cloud computing services raise concern whether

the third-party cloud infrastructure providers can be completely trusted. This ques-

tion has been investigated in many contexts, as the most popular cloud infrastructure

provider companies are from the United States. Many European Union countries

have policies not to use third-party cloud infrastructure when public sector applica-

tion can process sensitive information.

2.3 Limitations of Existing Approaches

There are techniques designed to protect the IP any data like data obfuscation, but

none of them provides complete solution to the problem.

2.3 LIMITATIONS OF EXISTING APPROACHES 6

Data Obfuscation

Commonly employed techniques, such as obfuscation, aim to hinder reverse engi-

neering by transforming the ML model’s code or structure. However, these methods

often fall short, as skilled attackers can still reverse engineer the transformed models,

posing a significant risk to the intellectual property of the ML model.[4]

Legal Protection

While legal frameworks exist to protect intellectual property, enforcing them in

the context of ML models can be challenging. Copyright and patent laws may not

adequately address the unique challenges presented by the machine learning models.

Furthermore, legislations are different in different countries and there are parties that

do not care about legal sanctions.

3 Previous Research

The subject of using Trusted Execution Environments to protect IP of ML models

has been researched a little in the past. This chapter partly answers to the RQ1.

There are at least three papers published specifically on the subject; SecureTF:

A Secure TensorFlow Framework (2020)[5], Using Intel SGX to Improve Private

Neural Network Training and Inference (2020)[6] and Securely Exposing Machine

Learning Models to Web Clients using Intel SGX (2019)[7]. However, none of these

papers discusses specifically the problem when the ML application is distributed

entirely to the end-users.

This chapter also mentions two other studies which are related, but whose ob-

jectives did not include protection of machine learning models. Gramine Project[8],

which includes two papers and framework software, is mentioned first and then pa-

per SGXCrypter: IP protection for portable executables using Intel’s SGX technology

(2017)[9]. Although their goal is not specifically to protect machine learning models,

they still can be considered relevant.

SecureTF: A Secure TensorFlow Framework

SecureTF: A Secure TensorFlow Framework by Roland Kunkel, Franz Gregor and

Do Le Quoc from TU Dresden, Sergei Arnautov and Christof Fetzer from Scon-

tain UG and Pramod Bhatotia from University of Edinburgh provides a complete,

ready-to-use framework to use a popular and open-source machine learning and arti-

CHAPTER 3. PREVIOUS RESEARCH 8

Figure 3.1: System overview of SecureTF from SecureTF: A Secure TensorFlow

Framework

ficial intelligence library TensorFlow securely with Trusted Execution Environments.

Because the machine learning operations require a lot of computation power, the

machine learning operations are often done on third-party cloud infrastructure.

The main concern of the writers of this paper was how to do machine learning

operations securely in the untrusted cloud environment. The paper investigates the

training phase as well as the classification phase of the machine learning process.

In the training phase, the datasets used to train the model can be considered infor-

mation that must be protected. On the other hand, in the classification phase, the

model itself becomes valuable intellectual property and can be considered informa-

tion that must be protected.

As a solution to this concern, the writers of this paper propose SecureTF, a

framework which bundles the machine learning application with all needed libraries

into a software that is transferred to the TEE enclave in its entirety. Machine

learning models and training data provided to the enclave encrypted, which are

then decrypted inside the enclave after successful remote attestation. The high-

level system overview can be seen in Figure 3.1.

The same authors also earlier wrote TensorSCONE: A Secure TensorFlow Frame-

work using Intel SGX [10] that is focused on the same concerns, but the implemen-

tation was specifically done for Intel SGX.

CHAPTER 3. PREVIOUS RESEARCH 9

Using Intel SGX to Improve Private Neural Network Training and Infer-

ence

Using Intel SGX to Improve Private Neural Network Training and Inference by

Ryan Karl, Jonathan Takeshita and Taeho Jung from University of Notre Dame is

a bit shorter paper where the main focus is on the running the inference phase of

the Deep Neural Network (DNN) machine learning algorithm in an untrusted cloud

infrastructure.

The approach is more theoretical and proposes a mathematical method which

includes encrypting to run machine learning inference securely in an untrusted en-

vironment. There is no implementation discussed.

Securely Exposing Machine Learning Models to Web Clients using Intel

SGX

Securely Exposing Machine Learning Models to Web Clients using Intel SGX by

Dávid Ács and Adrian Coleşa from Technical University of Cluj-Napoca discusses

the possibility to serve the machine learning model as a part of a web application,

but still keeping it secure. Their main concern is that even though the server in-

frastructure could be considered secure, there might be latency and performance

loss when the machine learning application is used through the internet, in a web

application.

The method proposed in this paper is to serve the machine learning application

and related models to the client’s web browser. The web browser initializes an

Intel SGX enclave, where the confidential data can be processed securely, without

exposing them outside the enclave. The proposed method includes a web page,

browser extension, native client-side application, server and usage of Intel’s Remote

Attestation. The client must fully support Intel SGX. The architecture overview

can be seen in Figure 3.2.

CHAPTER 3. PREVIOUS RESEARCH 10

Figure 3.2: Query and load sequence diagram of proposed method from Securely

Exposing Machine Learning Models to Web Clients using Intel SGX

Gramine Project

Gramine Project, originally launched by OSCAR LAB at Stony Brook University,

has become an important part of this thesis. Gramine, which was originally called

Graphene, is a library operating system (LibOS) with Intel SGX support which is

perfectly suitable for protecting intellectual property of ML models. Gramine will

be discussed in detail in Section 5.2.4.

Gramine team has published two papers regarding their project; Cooperation

and Security Isolation of Library OSes for Multi-Process Applications (2014)[11]

and Graphene-SGX: A Practical Library OS for Unmodified Applications on SGX

(2017)[12].

CHAPTER 3. PREVIOUS RESEARCH 11

Figure 3.3: The threat model of SGX, presented in Graphene-SGX: A Practical

Library OS for Unmodified Applications on SGX. Intel SGX protects applications

from three types of attacks: in-process attacks from outside the enclave, attacks

from the OS or hypervisor, and attacks from off-chip hardware.

SGXCrypter: IP protection for portable executables using Intel’s SGX

technology

One research that can be considered relevant from the perspective of protecting ma-

chine learning models is SGXCrypter: IP protection for portable executables using

Intel’s SGX technology by Dimitrios Tychalas and Michail Maniatakos from New

York University Abu Dhabi and Nektarios Georgios Tsoutsos from NYU Tandon

School of Engineering. The main concern of this study was the compromised in-

tellectual property through reverse engineering. The existing techniques to make

reverse engineering impossible, such as data obfuscation, have been found unsuit-

able, especially because data obfuscation is a common technique used by malware

authors. Antivirus engines often consider executables with obfuscated data as a

malicious software.

The paper proposes a special encryption schema to encrypt Microsoft Windows

software executables. Windows software executables have an encrypted payload

CHAPTER 3. PREVIOUS RESEARCH 12

section that can be decrypted by the client’s Trusted Execution Environment – Intel

SGX enclave. By using this approach, anything inside the executables encrypted

payload, for example a machine learning model, is never exposed to the other parts

of the client’s system.

4 Machine Learning

Machine Learning (ML) is a subfield of Artificial Intelligence (AI). AI is not strictly

defined, as the Intelligence itself is not strictly defined. The strict definition of these

terms tends to drift more to the field of philosophy than to the field of computer

science.[13]

Simply put, machine learning is a method to learn to do certain tasks based

on data. Machine learning algorithms build models by recognizing and extracting

patterns from given training data. Machine learning can be divided into three

main types; Supervised Machine Learning, Unsupervised Machine Learning and

Reinforcement Learning. Deep learning can be seen as a fourth type of machine

learning, that can use techniques from other types of machine learning.[14]

A machine learning model is a mathematical function that is created through

the process of training a machine learning algorithm on a given dataset. It captures

patterns, relationships, or dependencies in the data and is used for making decisions,

predictions, classifications, or other ML operations. ML model can be seen as a

‘learned’ version of the ML algorithm that can generalize from the training data to

make predictions or decisions on new, similar data.

4.1 Introduction to Artificial Intelligence

One common and perhaps one of the simplest definitions of Artificial Intelligence

is that a machine possesses it when it has the ability to solve hard problems. A

4.1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 14

more specific, common definition is that AI is a multidisciplinary field, combining

computer sciences, mathematics and cognitive sciences, that focuses on develop-

ing intelligent machines capable of performing tasks that typically require human

intelligence.[15]

Artificial intelligence can perform a wide range of tasks, such as:

• Prediction and Classification: AI can analyze data to make predictions or

classify instances into different categories. Machine learning is usually used

for prediction and classification. Example prediction tasks can be predicting

stock prices or car fuel consumption and diagnosing diseases. Classification

can be used for tasks such as spam filtering and customer segmentation.

• Natural Language Processing (NLP): NLP is used to enable machines to

interpret and generate human language. NLP is used in speech recognition,

machine translations and chatbots.

• Robotics: AI can help robots to be capable of perceiving their environment,

plan actions based on that, and interacting with humans and other machines.

Tasks usually done by intelligent robots are, for example, autonomous naviga-

tion, human-robot interaction and industrial automation.

• Computer Vision: AI can be used to analyze visual data to extract in-

formation and interpret the content. Computer vision can be used in object

detection, image recognition and facial recognition. Computer vision is a vital

part of helping robots to perceive their environment.

• Recommendation Systems: AI-based recommendation systems can an-

alyze user behavior and preferences to provide personalized advertisements

and recommendations. Recommendation systems are used, for example, in

e-commerce sites and streaming platforms.

4.1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 15

Figure 4.1: Example of an image generated by DALL-E, when it is asked to generate

a painting where Socrates admires Mazda Miata in Ancient Greece.

• Data-driven decision-making: AI can be used to discover meaningful pat-

terns, such as trends and insights, from large datasets. This is usually called

pattern recognition.

• Optimization and Planning: AI can be used to plan strategies to solve

complex optimization problems such as route planning, scheduling, supply

chain management and resource allocation.

• Generation: Generative AI can be used to generate new content such as

images, art, music and written text. Generated text can be written in human

language or programming language. Tools made by OpenAI, such as DALL-E

and ChatGPT, have lately got a lot of media coverage, and have already been

transforming fields like software development and copywriting into fields where

usage of generative AI tools is a necessary part of the creation process.

Artificial Intelligence can be divided into different types or categories in many

ways. Dividing AI into weak or narrow AI and strong AI is a popular high-level way

4.1 INTRODUCTION TO ARTIFICIAL INTELLIGENCE 16

to categorize different Artificial Intelligence methods. In this model, weak AI is AI

that is designed to solve specific problems. If the weak AI is given a problem outside

the original scope, the weak AI cannot produce reliable results. On the other hand,

strong AI is a general-purpose AI that can learn like humans do. Currently, all AI

solutions are weak Artificial Intelligences.

Another common high-level way to categorize AI’s is to divide them into four

different categories; Basic AI, Limited AI, Advanced AI and Superintelligence.

• Basic AI: Being the simplest form of AI, the basic AI does not involve any

kind of learning. It uses static algorithms, like search algorithms, to produce

results.

• Limited AI: Limited AI produces results based on a substantial amount of

data. Limited AI can learn based on data and produce results by analyzing

that data. Machine learning falls into this category.

• Advanced AI: Advanced AI has the same intelligence as humans has. Ad-

vanced AI can be considered as a general-purpose AI.

• Superintelligence: Superintelligence far surpasses human intelligence.

In the context of this thesis, it is perhaps more beneficial to categorize AI based

on implementation details. Artificial intelligence solutions have been implemented

with different methods throughout the history of AI[16], such as:

• Search Algorithms: Algorithms that can solve many problems by intelli-

gently searching through many possible solutions. Common search algorithms

include breadth-first search, depth-first search, A* search, and heuristic-based

algorithms. Search algorithms are rarely sufficient for real-world problems, as

the number of places to search quickly grows too high.

4.2 TYPES OF MACHINE LEARNING 17

• Logic Programming: AI approach that uses mathematical logic to reason.

Rules are specified in the formal logic language.

• Probabilistic methods for uncertain reasoning: Probabilistic methods

are used to solve the problem when an agent has to act based on uncertain

data, using methods from probability theory and economics. Bayesian net-

works, Markov decision processes, and hidden Markov models are examples of

probabilistic methods.

• Machine Learning: a subfield of AI that is discussed extensively in this

chapter.

• Artificial Neural Networks (ANNs): ANNs are models that mimic the

functioning of the biological neural networks. ANNs used extensively in deep

learning. Examples of artificial neural networks are deep neural networks,

convolutional neural networks (CNNs), recurrent neural networks (RNNs),

and self-organizing maps (SOMs).

4.2 Types of Machine Learning

There are four main types of machine learning: supervised learning, unsupervised

learning, reinforcement learning and deep learning. Each type has its own charac-

teristics, techniques, and applications. The appropriate type depends on the specific

problem, available data, and the desired learning outcome.[17]

4.2.1 Supervised Machine learning

The basic idea of Supervised Machine Learning is to predict unknown variables based

on known variables. The unknown variable that ML model tries to predict can be

a categorical target variable or a numerical target variable. Based on the types

4.2 TYPES OF MACHINE LEARNING 18

of target variables, there are two types of problems in the domain of Supervised

Machine Learning; classification problems and regression problems. Training data

containing the target variables is called labeled data.

In a classification problem, a supervised ML model tries to predict an unknown

category (class label) based on known variables. Classification problems with only

two possible outcomes are solved with binary classifiers. This is the case when

trying to predict whether a given object is something or not (for example, is this

email message spam or not). If there are multiple possible outcomes, then multiclass

classifiers are used. In these cases, the model tries to predict the category of a given

object (for example, which fruit this fruit is).

In a regression problem, a supervised ML model tries to predict a numerical

value for a target variable based on known variables. For example, the model might

try to predict the value of real estate based on living area, age, region, etc. of the

real estate.

The training dataset consists of instances of data points. Each data point has

feature variables (for example, living area, age and region of a real estate) and the

target variable (for example, price of the real estate). Data having a target variable

called labeled data. When the model is trained, it can be used to predict target

variables based on feature variables.

The provided known target variables are what makes supervised machine learning

‘supervised’.[18]

4.2.2 Unsupervised Machine Learning

Unlike Supervised Machine Learning, the Unsupervised Machine Learning does not

require target variables, so it can operate on unlabeled data. The goal of unsuper-

vised ML is not to predict certain values based on known values, but to find hidden

patterns or categorizations in given data.

4.3 MACHINE LEARNING ALGORITHMS 19

There is also a type of machine learning that combines techniques from super-

vised and unsupervised machine learning, called Semi-Supervised Machine Learning.

4.2.3 Reinforcement Learning

Reinforcement Learning learns optimal behaviors through trial and error interactions

with an environment. The agent receives feedback in the form of rewards and

penalties, and then tries to perform actions that maximize the reward feedback.

Reinforcement learning is often used for tasks where an agent learns to take actions

to maximize cumulative rewards.

4.2.4 Deep Learning

Deep learning is a complex case of machine learning that uses neural network algo-

rithms to produce results. Neural networks try to mimic the human brain structure.

A neural network consists of single nodes or neurons that can communicate with

other neurons.

In Deep Learning, the neural networks are aggregated into multiple layers. Each

layer extracts more and more higher-level information from the data. Deep learning

can use both supervised and unsupervised machine learning.

4.3 Machine Learning Algorithms

Machine learning algorithms are mathematical models that are used to perform

predictions or decisions based on data. Some of the ML algorithms are specific to

the specific type of machine learning, while other ML algorithms can be used in

different types of machine learning. Each ML algorithm is suited for different tasks

and data characteristics[19]. Examples of ML algorithms:

• Linear Regression: A regression algorithm and one of the simplest ML

4.3 MACHINE LEARNING ALGORITHMS 20

algorithms. Linear regression is used for predicting continuous numerical val-

ues based on input variables. It fits a linear relationship between the input

variables and the target variable. The example implementation described in

Section 6.1 uses linear regression.

• Logistic Regression: A classification algorithm that predicts the probability

of an instance belonging to a particular class using a logistic function.

• Decision Trees: An algorithm that partitions the input into hierarchical

decision rules. Decision trees can be used in both regression and classification

problems. Algorithms which use multiple decision trees ares called Random

Forest algorithms.

• Support Vector Machines (SVM): SVM aims to find a hyperplane in an

N-dimensional space that classifies the data points. N represents the number

of features. SVM can be used in both regression and classification problems.

• K-Nearest Neighbors (KNN): KNN is used to make predictions based on

the similarity of input instances to their neighbors. KNN can be used in both

regression and classification problems.

• Naive Bayes: An algorithm based on Bayes’ theorem that can be used for

classification problems.

• Artificial Neural Networks algorithms: A class of algorithms that is used

with artificial neural networks. ANN algorithms try to mimic the structure of

biological neural networks.

• Clustering Algorithms: A class of similar algorithms that is used for unsu-

pervised learning. Popular clustering algorithms include K-Means, DBSCAN,

and Hierarchical Clustering.

4.3 MACHINE LEARNING ALGORITHMS 21

• Reinforcement Learning Algorithms: A class of algorithms that is used

with reinforcement learning.

5 Trusted Execution Environments

Trusted Execution Environment (TEE) is a secure environment of a computing de-

vice that is isolated from the rest of the system and has its own isolated memory

and processing capabilities, preserving confidentiality and integrity. Trusted Exe-

cution Environments are not precisely defined, but solutions called TEE’s usually

have in common that they try to protect the data-in-use, as the more conventional

encryption solutions try to protect data-at-rest and data-in-transit. This chapter

partly answers to the RQ1.

Trusted Execution Environments are usually implemented by secure architec-

ture that makes use of hardware features of CPU. TEE’s provide a confidential

and isolated processing environment, usually backed by hardware-assisted memory

encryption.

The idea of TEE’s is to provide an isolated environment that is secured from

investigation by the rest of the system, allowing development of applications that

require high security. For example, TEE’s can be used to build systems that allow

securing intellectual property, processing of sensitive personal information securely,

Digital Rights Management (DRM), secure financial services etc.[2]

As the solution proposed by this thesis is based on Intel’s Trusted Execution

Environment called Intel Software Guard Extensions (Intel SGX), we focus mainly

on that technology, but giving high-level introduction to other TEE platforms.

5.1 USE CASES 23

5.1 Use Cases

5.1.1 Protecting Intellectual Property

With TEE’s the decryption and processing of the data can happen completely in

a secure environment without the possibility to investigate the data in clear form.

This usually requires that the TEE establishes a secure connection for authentication

and encryption key exchange outside the environment.

For example, machine learning models can be bundled with application en-

crypted. The application then decrypts the models only when needed, inside the

Trusted Execution Environment.

Digital Rights Management (DRM)

TEE’s provide means for advanced Digital Rights Management. For example,

streaming services can protect its content by encrypting the stream data. Encrypted

stream data can then be decrypted by the isolated TEE, thus disallowing the cus-

tomer to copy the content.

5.1.2 Protecting Sensitive Personal Information

Sensitive information can be stored encrypted and only decrypted for processing in-

side the Trusted Execution Environment. This is the case, especially when sensitive

information needs to be stored and processed in an untrusted cloud environment.

5.1.3 Financial Services

Financial services often have a high security standards. TEE’s can help financial

services to fulfill these standards by allowing storing and using keys or tokens needed

for transactions in an encrypted and isolated environment.

5.2 INTEL SOFTWARE GUARD EXTENSIONS (INTEL SGX) 24

Especially, commerce platforms on mobile devices including Near-Field Commu-

nication (NFC) to authorization can benefit from Trusted Execution Environments.

5.1.4 Biometric Authentication

The problem with biometric authentication is that the sample of a correct biometric

authentication method has to be stored somewhere that then can be compared

to input. For example, in a case of fingerprint authentication, the sample of an

authorized person’s fingerprint needs to be stored in some form. When the sample

is stored unprotected, it is possible to retrieve it and use it for authentication.

With TEE’s the sample can be stored encrypted and the comparing process can

then happen completely in the isolated environment, where the sample is decrypted,

thus disallowing any investigation of the sample by the outside world.

5.2 Intel Software Guard Extensions (Intel SGX)

Intel introduced new security-related instruction codes called Security Guard Exten-

sions (SGX) in 2015 part of the sixth generation Intel Core processor family release.

At the time of writing this thesis (2023), Intel has dropped support for SGX in

consumer CPU model Intel Core, but continues development on the enterprise Intel

Xeon series of processors.

Software Guard Extensions allow user- or operating system -level code to create

hardware-backed secure and isolated processing environments, called Enclaves. En-

claves are in a specific isolated and encrypted part of the memory and content is

decrypted on the fly inside the CPU when processing.

Code inside the enclave cannot be examined by the rest of the system by any code

that is running with higher privileges, not even by computer firmware or hypervisors

in a virtual environment.

5.2 INTEL SOFTWARE GUARD EXTENSIONS (INTEL SGX) 25

In the Intel SGX application, the application code is divided into trusted and

untrusted parts. The untrusted part handles the creation of the enclave and com-

munication with the rest of the system. The trusted part runs inside the enclave.

Usually, most of the application code is in the untrusted part, as it is recommended

to operate inside the enclave only when it is really necessary, due to the limited

memory of the enclave.[20]

Intel SGX has some vulnerabilities, most of them based on the side-channel

attack.[21]

5.2.1 Remote Attestation

Remote attestation is an Intel SGX feature that enables trust between a remote

server and the application running in the Intel SGX enclave. The remote server can

verify that the application is, in fact, running in the fully working SGX enclave and

all the latest security patches are applied.

The main use case of remote attestation is to verify that it is safe to open up

the secure channel between the remote server and the application running in the

enclave. After the remote attestation is complete, information can be exchanged

safely through the secure channel.

Intel provides two different methods for remote attestation. Enhanced Privacy

ID (Intel EPID) based attestation method can be used on older Intel SGX capable

processors that do not support Flexible Launch Control. This attestation method

requires usage of Intel’s attestation service.

Elliptic Curve Digital Signature Algorithm (ECDSA) Attestation is the second

of the attestation methods. This method requires newer processor models that

support Flexible Launch Control. On the other hand, the attestation service can be

self-hosted.

5.2 INTEL SOFTWARE GUARD EXTENSIONS (INTEL SGX) 26

Listing 1 Example cpuid output for discovering Intel SGX support.
Software Guard Extensions (SGX) capability (0x12/0):

SGX1 supported = true

SGX2 supported = false

5.2.2 Using Intel SGX on Linux

Running Intel SGX applications on Linux requires two software parts to be installed:

Intel SGX driver and Intel SGX Platform Software (PSW). To be able to build Intel

SGX applications, also the Intel SGX Software Development Kit (SDK) needs to be

installed. Of course, the Intel SGX support needs to be enabled on the hardware

level (BIOS/UEFI) too. Intel provides repositories for software required for the

supported Linux distributions.

Currently, Intel supports the next Linux distributions: Red Hat Enterprise

Linux, CentOS Server, Ubuntu Server, SUSE Linux Enterprise Server, Anolis OS,

Debian.

The Linux kernel supports Intel SGX natively from kernel version 5.11, but only

processor models with Flexible Launch Control support. If the processor does not

support Flexible Launch Control, the Out-of-Tree (OOT) driver and kernel version

lower than 5.11 must be used.

To check that the Intel SGX support is enabled, cpuid utility could be used.

Example lines from cpuid output showing Intel SGX support in Listing 1.

Intel has provided very detailed installation instructions for all the software parts

needed for different platforms and processor models.[22] The Intel SGX SDK has a

directory SampleCode which contains multiple C++ application and build configu-

ration examples.

5.2 INTEL SOFTWARE GUARD EXTENSIONS (INTEL SGX) 27

5.2.3 Limitations

The additional security provided by Intel SGX does not come free of limitations. The

most obvious limitation is that the hardware must be chosen from Intel processors

that have Intel SGX support. Running applications inside an Intel SGX enclave has

limited performance. From the perspective of a processor-heavy machine learning

calculations, the limited performance might be an issue. The performance degrada-

tion is discussed in detail in the Section 6.2.2.

Another limitation is that the enclave size is limited by the maximum amount

of memory that an enclave can allocate. The maximum memory amount that can

be allocated is determined mainly by the Enclave Page Cache (EPC) size that is

usually between 64 MB and 256 MB and depends on the processor model and

firmware. On Linux, the EPC size limit can be bypassed by EPC swapping, but

that adds additional performance overhead. [23]

On the modern Intel Xeon server processors, starting with Ice Lake models, the

EPC size can be up to 1 TB. With the 1 TB limit, the size of an enclave does not

be an issue in most cases.

The EPC size can be discovered by Gramine[8] utility is-sgx-available. Example

output can be seen in Listing 2. The example output reports the EPC size to be

5d80000 bytes in hexadecimal, which is 98041856 bytes (98 MB) in decimal.

The limitations of the development process of an Intel SGX application must also

be considered. Intel SGX applications must be written in C or C++ and they must

follow specific structure. Intel SGX does not allow dynamic linking, so libraries must

be statically linked to the application. Many popular machine learning libraries for

C++ do not offer a statically linked version of the library.[24]

The development process restrictions can be eased with frameworks like Gramine[8]

which can wrap, for example, applications written in Python in Intel SGX compat-

ible application. Gramine is discussed in more detail in the next section.

5.2 INTEL SOFTWARE GUARD EXTENSIONS (INTEL SGX) 28

Listing 2 Example is-sgx-available output for discovering EPC size.
...

Max enclave size (32-bit): 0x80000000

Max enclave size (64-bit): 0x1000000000

EPC size: 0x5d80000

SGX driver loaded: true

...

5.2.4 Gramine LibOS

Gramine is a lightweight Library Operating System (LibOS) which allows single

applications to be run isolated with a minimal operating system. Gramine was

first developed in OSCAR LAB at Stony Brook University, but many contributors

joined the development process, including Intel Research Lab, which contributed to

the Intel SGX support.

Library operating system can be compared to running a full operating system

inside a virtual machine, but much more lightweight and minimalistic approach.

Gramine allows applications to be run inside the Intel SGX enclave without the

need to port them to Intel SGX C or C++ applications. Even applications written

in interpreted languages, like Python, can be run inside enclave. Gramine enables

this by wrapping the application code with interpreter and needed libraries inside a

Gramine application, which can be then run inside the Intel SGX enclave.[23]

The Gramine LibOS itself adds a memory cost just of 5 to 15 MB, but when run-

ning Gramine application inside Intel SGX enclave, other performance implications

appear. In the paper[12] by the Gramine team from 2017, the performance effects

of running simple operations inside the Intel SGX enclave were discussed. Based

on the measurements that Gramine team has conducted, running simple operations

inside an enclave were approximately 100% slower than locally, as can be seen in

Figure 5.1. The more memory intensive the operation was, the more overhead it

5.2 INTEL SOFTWARE GUARD EXTENSIONS (INTEL SGX) 29

Figure 5.1: Performance overhead of Graphene-SGX, presented in Graphene-SGX:

A Practical Library OS for Unmodified Applications on SGX

Listing 3 Part of Gramine application manifest file defining trusted files
sgx.trusted_files = [

...

"file:trusted.py",

"file:ca.crt",

"file:model_encrypted",

"file:cars.csv",

]

adds.

Gramine applications are configured in a special manifest file which uses TOML

syntax. Configurable values include application entry point, enclave settings, remote

attestation settings and trusted files. A part of a manifest file from the implemen-

tation that is provided as a part of this thesis can be seen in Listing 3.

Installation and usage of Gramine is discussed in the Chapter 6. In the Section

6.2.2, it can be seen how measurements conducted in this thesis aligns with the

measurements conducted by Gramine team.

5.5 CLOUD PROVIDER’S SOLUTIONS 30

5.3 AMD Secure Encrypted Virtualization (SEV)

AMD’s Secure Encrypted Virtualization (SEV) is a hardware-backed Trusted Execu-

tion Environment platform that allows an encryption of a virtual machine memory.

AMD SEV is supported on AMD EPYC server processors. AMD SEV requires

usage of the Linux built-in hypervisor Kernel-based Virtual Machine (KVM).

AMD SEV has no need for code changes to the application, as the whole memory

used by the virtual machine is encrypted. There are also no memory limits other

than physical memory. On the other hand, security features are limited compared

to the Intel SGX.[25]

5.4 ARM TrustZone

ARM TrustZone is the oldest and the most used Trusted Execution Environment

platform mentioned in this thesis. AMD TrustZone is a hardware-backed TEE

supported on ARM Cortex-A and ARM Cortex-M microcontrollers, first introduced

in 2004. There are some differing infrastructure details between the implementation

of the Cortex-A and Cortex-M microcontroller families. The main usage platform

is mobile devices, and some of the mobile device manufactures use ARM TrustZone

comprehensively.[26]

5.5 Cloud Provider’s Solutions

Amazon Web Services (AWS), Google Cloud Platforms (GCP) and Microsoft Azure

all offer Trusted Execution Environment implementation on their cloud computing

platforms. They are rather novel technologies, and low-level implementation details

are not publicly available for all of them.

5.5 CLOUD PROVIDER’S SOLUTIONS 31

Amazon Web Services

Amazon Web Services offers AWS Nitro Enclaves that allows users to convert an

application to a special Enclave Image File (EIF) that can be used to launch an

enclave. AWS Nitro Enclaves are hardware-agonistic and the implementation is

published as open source.[27]

Google Cloud Platform

Google Cloud Platform offers multiple different TEE solutions, some of them based

on AMD’s Secure Encrypted Virtualization. Computing units, for example virtual

machines or GKE nodes, can be launched in a confidential environment backed by

AMD SEV.[28]

Microsoft Azure

Microsoft Azure offers confidential computing by supporting both Intel SGX and

AMD SEV on their platform. Microsoft Azure also offers surrounding TEE-related

infrastructure to make TEE operations more convenient, for example, Microsoft

Azure Attestation that allows attestation of multiple Trusted Execution Environ-

ments at once.[29]

6 Solution

The solution proposed in this thesis uses an approach where the distributed applica-

tion is bundled with an encrypted ML model. To be able to decrypt the encrypted

ML model, the distributed application opens a secure channel to the special, remote

attestation capable key server. After the key server has validated that the applica-

tion runs in a secure and isolated environment – an enclave, and the application has

not been tampered with, the key server transfers the decryption key to the applica-

tion. The encrypted ML model is then decrypted inside an enclave and only used

within the enclave, and never exposed outside the enclave.

Using this approach, the confidentiality and integrity of the ML application is not

compromised, and the intellectual property associated with the ML model is safe.

The solution proposed in this thesis is demonstrated by implementation described

in the next section.

By providing a practical solution to the concern regarding the safety of the IP

associated with ML models, this chapter answers to the RQ2. Later in this chapter,

in Section 6.2, the issues, limitations and effects on performance are discussed, thus

answering to the RQ3.

6.1 Implementation

The example implementation consists of three parts; the model trainer, the key

server and the distributed application itself, called predictor, which will be discussed

6.1 IMPLEMENTATION 33

in detail later. The model trainer trains the ML model and exports it to an encrypted

file with a decryption key. The key server acts as a remote attestation capable key

server from which the predictor can request a decryption key. The predictor part

is the application that can be distributed to the clients. In this implementation

example, the predictor is an application that predicts car fuel consumption based

on user inputted details.

The predictor is bundled with an encrypted machine learning model and Gramine

Python application, which runs inside Intel SGX enclave. The Gramine application

has a machine learning framework bundled and utilities to request remote attestation

and decryption key from the key server through a secure channel. The key server

uses Intel SGX Remote Attestation to validate the enclave before providing the de-

cryption key. Because of the key exchange and remote attestation, minimal internet

connection is required in the production environment. The high-level application

flow can be seen in Figure 6.1.

The predictor part is further divided into two parts, trusted (trusted.py) and

untrusted (predictor.py). The trusted part (Gramine application) runs inside the

Intel SGX enclave and has only the minimal needed functionality in addition to

the Intel SGX related functionality. Additional capabilities are the capability to

decrypt the ML model and the capability to run ML calculations on that model.

The untrusted part has all the other application logic and calls the trusted part only

when it is needed to do ML calculations.

Python was chosen as the main implementation language as Python has great

machine learning tool support. Intel SGX was chosen as Trusted Execution Environ-

ment implementation. Running Python inside the SGX enclave is possible using the

library operating system Gramine.[8] Running Python inside the enclave is already

demonstrated by Denghui Zhang, Guosai Wang, Wei Xu and Kevin Gao in their

paper SGXPy: Protecting Integrity of Python Applications with Intel SGX [30].

6.1 IMPLEMENTATION 34

Trusted Machine

Untrusted machine

Distributed Application

SGX Enclave

Key server

Intel® SGX Attestation Service
(external)

Verify remote
attestation

Gramine LibOS

trusted.py
Remote attestation

Decryption key

Encrypted model

Decrypt

predictor.py

Calculation
parameters

Calculation
result

Figure 6.1: Application flow diagram

The model trainer and the key server are intended to run on the trusted infras-

tructure and do not require hardware Intel SGX support. Both model trainer and

key server are needed to build artifacts for the distributed application. Artifacts in-

cludes key server certificate generated when the key server is built and the encrypted

ML model generated by the model trainer. Furthermore, the key server needs access

to the decryption key generated by the model trainer. The predictor which uses the

ML model for computation is run in an untrusted environment.

As the ML model is bundled encrypted with the predictor application and only

processed decrypted inside the Intel SGX enclave, the Intellectual Property of the

model owner is safe.

There is a repository containing all the software source code at GitHub[31].

6.1 IMPLEMENTATION 35

Table 6.1: Example data points of the dataset.

mpg cyl. displ. hp weight accel. year origin name

23.7 3 70.00 100.0 2420 12.5 80 3 Mazda RX-7

19.0 6 156.0 108.0 2930 15.5 76 3 Toyota Mark II

11.0 8 400.0 150.0 4997 14.0 73 1 Chevrolet Impala

6.1.1 Description of the Data

The dataset used to train the machine learning model contains 398 instances of cars

with 8 attributes. The attributes are miles per gallon (MPG), cylinders, engine

displacement in cubical inches, horsepower, weight in pounds, acceleration (ft/s2),

year of making, origin and name of the model. Origin is marked as an integer, where

1 means United States, 2 means Europe and 3 means Japan.

The dataset is from the Machine Learning Repository by University of California,

Irvine[32]. The data is in CSV format. Example data points can be seen in Table

6.1.

6.1.2 Overview of the Application Stack

Model Trainer

The model trainer is part of the implementation that is responsible for training the

machine learning model and exporting it as an encrypted file with a decryption key.

The model trainer is meant to run in a trusted environment as a part of the build

process.

The original dataset needed to be cleaned for empty values and inconsistent

formatting. The dataset was split into two datasets, cars1.csv which has 242 data

points (16 KB) and cars2.csv which has 150 data points (8 KB). The cars1.csv was

used to train the model and cars2.csv was used to test the model. Except for the

car model name, all other data attributes were used to train the model.

6.1 IMPLEMENTATION 36

As a machine learning library, the Python library Scikit-learn[33] was used. Lin-

ear Regression is used as an ML algorithm to train the model. Other Python libraries

used were Cryptography for cryptographic functions and Pandas for easy CSV han-

dling.

As the original dataset has only 398 data points, a synthetic data generator was

also implemented as a part of the model trainer. Synthetic data is used in later

sections to run performance testing on large datasets.

Model trainer is used in the application build process, where the model is trained,

encrypted and exported to the application bundle and the decryption key is exported

to the key server. The exported model is 4 KB in size.

Key Server

The key server is used to securely provide the decryption key for the predictor ap-

plication. The security of the decryption key transfer is confirmed by Intel’s Remote

Attestation. Remote attestation confirms that the application code is running in-

side an enclave and the application is not tampered with. Using remote attestation

makes sure that the decryption key (and decrypted ML model) is only handled in-

side an enclave, and it is impossible for the application user to obtain the key or the

decrypted model. The key server is meant to run in a trusted environment.

The key server is a C application based on Intel’s example code. The key server

acts as an HTTPS server from which the application can request the decryption key.

When the application requests for the key, the Remote Attestation is performed and

if it is successful, the key server returns the decryption key.

Predictor

The predictor application is the main application which is meant to be distributed to

the end user and run inside an untrusted environment. The application predicts fuel

6.1 IMPLEMENTATION 37

consumption of a car based on the car’s other attributes that are inputted by the end

user. There are also options for running the predictions for a predefined dataset or

running predictions locally, outside the Intel SGX enclave. These additional options

are mainly for performance testing purposes.

The predictor application follows Intel SGX application structure and has two

parts; untrusted and trusted. The untrusted part (implementation/predictor/predictor.py

in the GitHub repository) has all the application logic and calls the trusted part

only for the ML calculations. Executing the untrusted part starts the predictor

application and is meant to be called directly by the end user. Trusted part (imple-

mentation/predictor/trusted/trusted.py in the GitHub repository) is the part of the

application that is responsible for handling all the sensitive tasks. Sensitive tasks

are the handling of the decryption key and decrypted ML model.

An encrypted machine learning model is bundled with the predictor application.

Model is handled in plain only inside the trusted part, and it is impossible to decrypt

it outside the trusted part.

When the application is started by invoking the untrusted part, it asks the user

for the car details. After the details are filled in, the trusted part is invoked by the

untrusted part and the car details are sent to the trusted part.

When the trusted part is invoked, the Intel SGX enclave is created and initialized,

remote attestation is requested from the key server, and after successful remote

attestation, the decryption key is received from the key server. Now the encrypted

ML model that is bundled with the application is decrypted, and the ML calculations

are performed, all inside the trusted part.

After the ML calculations are ready, the results returned to the untrusted part,

which formats them and presents to the user. Results include the predicted fuel

consumption, running time, data point count and, in a case of running predictions

on a dataset, the R2 score, which is a calculated metric describing the accuracy of

6.1 IMPLEMENTATION 38

Listing 4 An example of inter-application communication.
To trusted part

{'cylinders': [4], 'displacement': [97.5], 'horsepower': [114.0],

'weight': [2094], 'acceleration': [10.5], 'year': [90], 'origin': [3]}

From trusted part

{'predictions': [39.557013442440216], 'time': 0.004551887512207031,

'count': 1, 'r2': null}

the ML model.

The application has a simple command line interface for interacting with the user.

Trusted and untrusted part communicate with each other with a simple interface,

which was implemented. The interface for inter-application communication used

command line parameters to send data to the trusted part and standard output to

receive results from the trusted part. The data format is JSON. An example of the

communication between the untrusted and the trusted part can be seen in Listing

4.

In a production-ready application, the inter-application communication interface

should be more sophisticated. For example, running an HTTP server inside an

enclave is possible.

6.1.3 Setting Up

Next, the requirements and prerequisites which are needed to build the application

and the build of the application are discussed in detail.

6.1 IMPLEMENTATION 39

Requirements

The model trainer can be run anywhere where there is Python available and enough

resources to train a simple machine learning model.

The key server needs working Gramine installation with remote attestation sup-

port. Hardware Intel SGX support is not needed.

The predictor application needs an environment that supports Intel SGX. Sec-

tion 5.2.2 and Intel® SGX Software Installation Guide For Linux* OS [22] can be

referred for detailed instructions. Gramine documentation[23] can be referred for

Gramine installation instructions.

The next Python libraries need to be installed system-wide. The easiest way is

to install them is to install them from the distribution package repositories.

• scikit-learn as a machine learning framework.

• cryptography for cryptographic functions.

• pandas for handling CSV’s.

• joblib for exporting and importing ML models.

Remote Attestation

The implementation uses the Intel SGX Attestation Service Utilizing Enhanced Pri-

vacy ID (EPID) method for remote attestation. Developer access for Intel EPID

can be requested from the Intel Trusted Services Portal.[34] This implementation

requires unlinkable EPID subscription, which is free for non-commercial use.

The SPID identifier and EPID API key can be acquired from Intel Trusted

Services Portal after subscription.

6.1 IMPLEMENTATION 40

Build

After the Intel SGX support, Gramine and other dependencies are installed, the

application itself can be built. The application code can be downloaded from

https://github.com/mjturt/thesis. In the application’s implementation folder,

the example settings file settings.sh-example needs to be copied to settings.sh. At

least two configuration parameters need to be configured in the settings file. Con-

figuration parameters RA_CLIENT_SPID and RA_TLS_EPID_API_KEY represents SPID

identifier and EPID API key, which were obtained from Intel Trusted Services Portal

in the last section.

In the implementation folder, there is a build.sh script to automate the build

process. The build script initiates the model trainer, which trains the ML model

with data from file implementation/model-trainer/data/cars1.csv. When the model

is trained, the model trainer encrypts it and exports the encrypted model and the

decryption key to files. The build script then makes the encrypted model available

to the predictor and the decryption key available to the key server. After that, the

key server is compiled and built. The key server exports the needed SSL certificate

as a part of the build process, and the build script makes it available to the predictor.

Next, the build script instructs the user how the predictor can be built and how

to launch the application. When the predictor is built based on these instructions,

the application stack can be launched, which will be covered in the next section.

An example installation process can be seen in Listing 5 and a diagram of the build

flow can be seen in Figure 6.2.

In a real-life scenario, the predictor could now be packed and distributed to the

end-users, but for simplicity, the whole application stack is run on the same machine.

https://github.com/mjturt/thesis

6.1 IMPLEMENTATION 41

Key server Distributed
 Application

Model Trainer

Train model Generate key Encrypt model

Export encrypted model

Encrypted
model

Export key

Key

Training
dataset

Figure 6.2: Build flow

Listing 5 Installation procedure of the application.
git clone https://github.com/mjturt/thesis.git

cd thesis/implementation

cp settings.sh-example settings.sh # and configure

source settings.sh

./build.sh

cd predictor/trusted

make SGX=1

6.1 IMPLEMENTATION 42

Listing 6 Output of the predictor application without any parameters.
...

For a car:

Model: Mazda MX-5

Cylinders: 4

Displacement: 97.5 in³ (1597.7 cm³)

Power: 114.0 hp (85.0 kW)

Weight: 2094.0 lb (950.0 kg)

Acceleration: 10.5 ft/s² (3.2 m/s²)

Year: 1990

Origin: Japan

Predicted consumption: 39.6 mpg (5.9 l/100km)

The predicted consumption is 5.9 l/100km

The prediction calculation took 0.004552 seconds

6.1.4 Usage

After installation is complete, the key server can be started in the implementation/key-

server folder by running ./server_epid. The key server is left running. Now

the setting up is complete, another shell session needs to be opened, and then

the predictor can be executed in the implementation/predictor folder by running

python predictor.py. The settings file settings.sh must always be sourced in the

shell session from where the key server or predictor is invoked.

Without any parameters, the predictor application predictor.py asks the user for

the car details and then runs ML calculations inside an enclave. The predictor can

be invoked with a command line argument --help to get all available command

line argument options. Available command line arguments include an argument to

6.2 PERFORMANCE AND LIMITATIONS 43

Listing 7 Output of the predictor application using a dataset.
Sending dataset cars.csv to the Gramine Intel SGX enclave for

calculation...

--- START OF GRAMINE OUTPUT ---

...

--- END OF GRAMINE OUTPUT ---

Consumption prediction calculation for 150 car instances took

0.002998 seconds

R2 score: 0.81

run predictions on a predefined dataset and an argument to disable Intel SGX. An

example output of the predictor without any parameters and after it has asked the

car details can be seen in Listing 6. Non-relevant output has been omitted.

An example output of the predictor using a predefined dataset can be seen in

Listing 7. In this listing, only the Gramine output is omitted.

6.2 Performance and Limitations

In this section, the testing setup used to conduct performance testing is described,

including the hardware and software used. The performance testing research setting

is described, and the performance testing results are then presented, and perceived

limitations and downsides are discussed. The general limitations of Intel SGX can

be read from Section 5.2.3.

6.2 PERFORMANCE AND LIMITATIONS 44

6.2.1 Testing Setup

For the simplicity sake, in the testing setup, the model trainer, the key server and

the distributed app are built and run on the same machine.

As a testing hardware, Dell Latitude 5490 laptop provided by the University is

used. The laptop has an 8th generation Intel Core i5 processor that has Intel SGX

support. The specifications of the testing hardware and software below:

• OS: Ubuntu Server 22.10

• Kernel: Linux 5.10.15

• CPU: Intel Core i5-8350U 8-core 3.6 GHz (code name Kaby Lake R)

• Memory: 16 GB

The processor did not have Flexible Launch Control (Intel SGX Launch Control)

support, so the Linux in-kernel SGX driver could not be used, as the in-kernel driver

requires it. Out-of-tree (OOT) driver was used instead.

As an operating system, Ubuntu Linux 22.10 was used. As of the time of writing,

Ubuntu 22.10 used kernel version 5.19 that has the in-kernel SGX driver that is

incompatible with the out-of-tree SGX driver. The Linux kernel version had to be

downgraded to version 5.10.

After downgrading the kernel, the Intel’s official documentation[22] to install

out-of-tree SGX driver was followed.

Next, the Gramine library OS can be installed. Because of the OOT driver,

Gramine needed to be built from source. Gramine documentation[23] was followed

to build Gramine from source with custom options.

All needed Python libraries were installed system-wide from the default Ubuntu

APT repositories.

6.2 PERFORMANCE AND LIMITATIONS 45

Listing 8 Python code to run inference and measure time elapsed.
test_X, test_y = build_data(data)

start = time()

result = model.predict(test_X)

end = time()

elapsed_time = end - start

As the processor model is older than the Ice Lake series, the EPC size is limited

to 98 MB. With enclaves that require more than that, there would be substantial

performance degradation. As the Intel SGX OOT driver does not support EPC

swapping, testing with enclaves larger than 98 MB could not be performed.

6.2.2 Performance

As Machine Learning calculations can be expensive, the overhead produced by run-

ning the calculations inside the Intel SGX enclave must be carefully considered. The

usability of this solution depends on how much Intel SGX adds overhead.

In the testing setup, a dataset with 150 data points and a dataset with one

million data points representing cars were used. The dataset with 150 data points

was from the original dataset (file implementation/model-trainer/data/cars2.csv in

the repository), and the dataset with one million data points was generated with

the model trainer’s data generation utility. Running inference for data points ran

as a batch and total time was recorded. The predictor application has an option to

run inference inside Intel SGX enclave or locally. The two methods to run inference

are then compared.

Only the run time of the actual inference is recorded, as can be seen in Listing

8. Other performance implications to the process are reviewed separately.

For both methods and both datasets, 5 runs conducted and then an average of

6.2 PERFORMANCE AND LIMITATIONS 46

Table 6.2: Run times of 150 data point inference with both methods.

Run Intel SGX Local

1 2.75 ms 0.97 ms

2 3.01 ms 0.99 ms

3 2.73 ms 0.96 ms

4 3.05 ms 0.99 ms

5 3.20 ms 0.97 ms

Average 2.95 ms 0.98 ms

running time is calculated. Running times for 150 data point inference can be seen

in Table 6.2 and running times for one million data point inference can be seen in

Table 6.3.

The dataset with 150 data points was 4 KB in size and the dataset with one

million data points was 44 MB in size, so the EPC size limit did not affect the

measurements.

Based on performance testing, running inference inside the Intel SGX enclave is

considerably slower than without the Intel SGX enclave, based on the dataset size.

With the smaller dataset, the inference inside SGX enclave is only approximately

two times slower, but when a dataset grows to one million data points, the inference

inside SGX enclave is approximately thirty-three times slower. It seems that the

bigger the dataset is, the more the Intel SGX is lowering the performance.

Besides the actual running time, the initialization of the Intel SGX application

needs to be considered. Initialization of the Gramine, the enclave and performing

Remote Attestation takes up to one minute on the testing machine. In the testing

setup, the application and the key server run on the same machine, so network

latency can increase the initialization in production environment. In any case, the

Intel SGX application is usually kept running and initialization does not happen

every time when interacting with the application.

6.2 PERFORMANCE AND LIMITATIONS 47

Table 6.3: Run times of million data point inference with both methods.

Run Intel SGX Local

1 782.19 ms 23.15 ms

2 784.03 ms 23.35 ms

3 787.77 ms 24.04 ms

4 791.85 ms 23.19 ms

5 792.61 ms 23.88 ms

Average 787.69 ms 23.52 ms

6.2.3 Limitations and Drawbacks

One of the most obvious limitations is the EPC size limit of 98 MB in the testing

setup. On the testing machine, it is impossible to run enclaves bigger than the

EPC size. When tried to run inference for a dataset with 3 million data points (130

MB), the application simply fails because not enough memory could be allocated.

However, the EPC size limit is an issue only with older Intel hardware.

In a scenario where the ML application is distributed to the end-users, the hard-

ware and software requirements that end-users must meet, might become a major

limitation. End-users infrastructure must fully support Intel SGX, which may make

this solution unappealing to some potential customers. One possible solution to this

problem is that the ML application is provided as an end-to-end solution, where

infrastructure and support is included in the product. This obviously increases the

cost of the solution.

The major downside of the approach of using Intel SGX to protect ML models is

the engineering overhead it adds. Hardware and software must be carefully chosen,

so that the full potential of Intel SGX can be reached. Configuring the system to

fully support Intel SGX is a complex operation which requires understanding of

the hardware and operating system used. Building Intel SGX applications is more

6.2 PERFORMANCE AND LIMITATIONS 48

complex than building just regular applications, though frameworks like Gramine

can help the process.

7 Conclusion

This thesis has explored the potential of trusted execution environments, especially

Intel SGX, in protecting intellectual property of machine learning models. The rapid

growth of the AI industry has raised concerns about the safety of the ML model

intellectual property. The risen concerns have led to an increased demand for more

efficient methods to protect the ML models from tampering and theft. The existing

methods used to protect intellectual property of a software, such as data obfuscation

and legal protection, have proven to be insufficient in a case of a machine learning

application.

Trusted execution environments have emerged as a promising solution to the

concern regarding intellectual property of the ML models. Intel’s Software Guard

Extension is one of the most popular TEE implementations. This thesis has explored

the suitability, benefits, limitations and drawbacks of using Intel SGX to provide a

secure environment where the data of the ML model would be safe, especially in a

case where machine learning application is distributed to the end-users with the ML

model bundled with it.

At the beginning of this thesis, different scenarios where security of the ML model

is questioned, were described, following with an introduction to artificial intelligence

and machine learning. Next, trusted execution environments were discussed in more

detail, which answers to the RQ1. Possible use cases of TEEs and different TEE

implementations were explored. The main focus was on Intel SGX, and its general

CHAPTER 7. CONCLUSION 50

limitations were described.

This thesis shows that Intel SGX can effectively be used to protect intellectual

property of the ML models, with certain limitations. This thesis proposes a solution

where ML model is bundled with the application encrypted. After Intel’s remote

attestation feature is used to confirm that the application is run inside a secure

and isolated enclave and the application has not been tampered with, a decryption

key is provided for the application through a secure channel. The decryption of

the ML model happens inside an enclave, and it is used unencrypted only inside an

enclave, thus ensuring confidentiality and integrity of the ML model. The intellectual

property of the ML model is secure as it is not exposed outside an enclave in any

way. The proposed solution answers to the RQ2.

However, it is important to acknowledge that the solution proposed does not

come without limitations. This thesis shows that the implications on the perfor-

mance are considerable. Based on measurements that were conducted in this thesis,

running machine learning calculations inside Intel SGX enclave are two to thirty-

three times slower than running the same calculations locally. Based on measure-

ments, the more data is provided for the ML model, the higher the performance

implications were. Machine learning calculations can be expensive, and the perfor-

mance implications needs to be considered when considering the solution’s suitabil-

ity.

There were also other limitations or drawbacks to the solution. On older Intel

hardware, the enclave size is limited. All the data that is processed, the application

and the ML model needs to fit inside the enclave, so this can be a considerable

limitation. Also, the additional engineering work that is needed to design and build

a machine learning application that is run inside an enclave is considerable, compared

to just designing and building a regular machine learning application. The cost of

engineering overhead might make this solution unappealing in some cases. The

CHAPTER 7. CONCLUSION 51

description of the discovered limitations and drawbacks answers to the RQ3.

This thesis provides an example implementation which further demonstrates the

suitability and limitations of the solution proposed. The example implementation

is used to conduct performance measurements.

References

[1] M. Xue, Y. Zhang, J. Wang, and W. Liu, “Intellectual property protection for

deep learning models: Taxonomy, methods, attacks, and evaluations”, IEEE

Transactions on Artificial Intelligence, vol. 3, no. 6, pp. 908–923, 2022. doi:

10.1109/TAI.2021.3133824.

[2] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted Execution Environments:

Properties, Applications, and Challenges”, IEEE Security & Privacy, vol. 18,

no. 2, pp. 56–60, Mar. 2020, issn: 1558-4046. doi: 10.1109/MSEC.2019.

2947124.

[3] A. Dziedzic, N. Dhawan, M. A. Kaleem, J. Guan, and N. Papernot, On the

difficulty of defending self-supervised learning against model extraction, 2022.

arXiv: 2205.07890 [cs.LG].

[4] S. Drape, “Intellectual property protection using obfuscation”, Tech. Rep.,

2010.

[5] D. L. Quoc, F. Gregor, S. Arnautov, R. Kunkel, P. Bhatotia, and C. Fetzer,

“SecureTF: A Secure TensorFlow Framework”, in Proceedings of the 21st In-

ternational Middleware Conference, ser. Middleware ’20, Delft, Netherlands:

Association for Computing Machinery, 2020, pp. 44–59, isbn: 9781450381536.

doi: 10.1145/3423211.3425687. [Online]. Available: https://doi.org/10.

1145/3423211.3425687.

https://doi.org/10.1109/TAI.2021.3133824
https://doi.org/10.1109/MSEC.2019.2947124
https://doi.org/10.1109/MSEC.2019.2947124
https://arxiv.org/abs/2205.07890
https://doi.org/10.1145/3423211.3425687
https://doi.org/10.1145/3423211.3425687
https://doi.org/10.1145/3423211.3425687

REFERENCES 53

[6] R. Karl, J. Takeshita, and T. Jung, “Using Intel SGX to Improve Private

Neural Network Training and Inference”, in Proceedings of the 7th Symposium

on Hot Topics in the Science of Security, ser. HotSoS ’20, Lawrence, Kansas:

Association for Computing Machinery, 2020, isbn: 9781450375610. doi: 10.

1145/3384217.3386399. [Online]. Available: https://doi.org/10.1145/

3384217.3386399.

[7] D. Ács and A. Coleşa, “Securely Exposing Machine Learning Models to Web

Clients using Intel SGX”, in 2019 IEEE 15th International Conference on

Intelligent Computer Communication and Processing (ICCP), 2019, pp. 161–

168. doi: 10.1109/ICCP48234.2019.8959635.

[8] Gramine, Gramine, version 1.4, Mar. 20, 2023. [Online]. Available: https:

//gramineproject.io/.

[9] D. Tychalas, N. G. Tsoutsos, and M. Maniatakos, “SGXCrypter: IP protection

for portable executables using Intel’s SGX technology”, in 2017 22nd Asia and

South Pacific Design Automation Conference (ASP-DAC), 2017, pp. 354–359.

doi: 10.1109/ASPDAC.2017.7858348.

[10] R. Kunkel, D. L. Quoc, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,

TensorSCONE: A Secure TensorFlow Framework using Intel SGX, 2019. doi:

10.48550/ARXIV.1902.04413. [Online]. Available: https://arxiv.org/abs/

1902.04413.

[11] C.-C. Tsai, K. S. Arora, N. Bandi, et al., “Cooperation and security iso-

lation of library oses for multi-process applications”, in Proceedings of the

Ninth European Conference on Computer Systems, ser. EuroSys ’14, Ams-

terdam, The Netherlands: Association for Computing Machinery, 2014, isbn:

9781450327046. doi: 10.1145/2592798.2592812. [Online]. Available: https:

//doi.org/10.1145/2592798.2592812.

https://doi.org/10.1145/3384217.3386399
https://doi.org/10.1145/3384217.3386399
https://doi.org/10.1145/3384217.3386399
https://doi.org/10.1145/3384217.3386399
https://doi.org/10.1109/ICCP48234.2019.8959635
https://gramineproject.io/
https://gramineproject.io/
https://doi.org/10.1109/ASPDAC.2017.7858348
https://doi.org/10.48550/ARXIV.1902.04413
https://arxiv.org/abs/1902.04413
https://arxiv.org/abs/1902.04413
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812
https://doi.org/10.1145/2592798.2592812

REFERENCES 54

[12] C.-c. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical library

OS for unmodified applications on SGX”, in 2017 USENIX Annual Technical

Conference (USENIX ATC 17), Santa Clara, CA: USENIX Association, Jul.

2017, pp. 645–658, isbn: 978-1-931971-38-6. [Online]. Available: https://

www.usenix.org/conference/atc17/technical-sessions/presentation/

tsai.

[13] P. Wang, “On defining artificial intelligence”, Journal of Artificial General

Intelligence, vol. 10, no. 2, pp. 1–37, 2019.

[14] E. Alpaydin, Introduction to machine learning. MIT press, 2020.

[15] N. J. Nilsson, The quest for artificial intelligence. Cambridge University Press,

2009.

[16] S. J. Russell, Artificial intelligence a modern approach. Pearson Education,

Inc., 2010.

[17] A. Burkov, The Hundred-Page Machine Learning Book. Andriy Burkov, 2019,

isbn: 9781999579517. [Online]. Available: https://books.google.fi/books?

id=0jbxwQEACAAJ.

[18] A. Wolf, Machine Learning Simplified: A Gentle Introduction to Supervised

Learning. 2022.

[19] Z.-H. Zhou, Machine learning. Springer Nature, 2021.

[20] V. Costan and S. Devadas, Intel SGX Explained, Cryptology ePrint Archive,

Paper 2016/086, https://eprint.iacr.org/2016/086, 2016. [Online].

Available: https://eprint.iacr.org/2016/086.

[21] Stephan van Schaik, Adam Batori, Alex Seto, Bader AlBassam, Christina

Garman Thomas Yurek, Andrew Miller, Daniel Genkin, Eyal Ronen, Yuval

Yarom. “How Stuff Gets eXposed”. (2023), [Online]. Available: https://sgx.

fail/ (visited on 04/16/2023).

https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://books.google.fi/books?id=0jbxwQEACAAJ
https://books.google.fi/books?id=0jbxwQEACAAJ
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://sgx.fail/
https://sgx.fail/

REFERENCES 55

[22] Intel Corporation. “Intel® SGX Software Installation Guide For Linux* OS”.

(2022), [Online]. Available: https://download.01.org/intel-sgx/latest/

linux-latest/docs/Intel_SGX_SW_Installation_Guide_for_Linux.pdf

(visited on 03/20/2023).

[23] Gramine. “Building Gramine”. (2023), [Online]. Available: https://gramine.

readthedocs.io/en/latest/index.html (visited on 05/19/2023).

[24] Intel Corporation. “Intel® Software Guard Extensions (Intel® SGX) SDK for

Linux* OS”. (2022), [Online]. Available: https://download.01.org/intel-

sgx / latest / linux - latest / docs / Intel _ SGX _ Developer _ Reference _

Linux_2.18_Open_Source.pdf (visited on 03/09/2023).

[25] SUSE. “AMD Secure Encrypted Virtualization (AMD-SEV) Guide”. (2023),

[Online]. Available: https://documentation.suse.com/sles/15-SP1/html/

SLES-amd-sev/index.html (visited on 03/09/2023).

[26] S. Pinto and N. Santos, “Demystifying Arm TrustZone: A Comprehensive

Survey”, ACM Comput. Surv., vol. 51, no. 6, Jan. 2019, issn: 0360-0300. doi:

10.1145/3291047. [Online]. Available: https://doi.org/10.1145/3291047.

[27] Amazon.com, Inc. “AWS Nitro Enclaves”. (2023), [Online]. Available: https:

//aws.amazon.com/ec2/nitro/nitro-enclaves/ (visited on 03/09/2023).

[28] Google LLC. “Confidential Computing”. (2023), [Online]. Available: https:

//cloud.google.com/confidential-computing (visited on 03/09/2023).

[29] Microsoft Corporation. “Confidential Computing on Azure”. (2023), [Online].

Available: https://learn.microsoft.com/en-us/azure/confidential-

computing/overview-azure-products (visited on 03/09/2023).

[30] D. Zhang, G. Wang, W. Xu, and K. Gao, “Sgxpy: Protecting integrity of

python applications with intel sgx”, in 2019 26th Asia-Pacific Software Engi-

https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_SW_Installation_Guide_for_Linux.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_SW_Installation_Guide_for_Linux.pdf
https://gramine.readthedocs.io/en/latest/index.html
https://gramine.readthedocs.io/en/latest/index.html
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.18_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.18_Open_Source.pdf
https://download.01.org/intel-sgx/latest/linux-latest/docs/Intel_SGX_Developer_Reference_Linux_2.18_Open_Source.pdf
https://documentation.suse.com/sles/15-SP1/html/SLES-amd-sev/index.html
https://documentation.suse.com/sles/15-SP1/html/SLES-amd-sev/index.html
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://aws.amazon.com/ec2/nitro/nitro-enclaves/
https://cloud.google.com/confidential-computing
https://cloud.google.com/confidential-computing
https://learn.microsoft.com/en-us/azure/confidential-computing/overview-azure-products
https://learn.microsoft.com/en-us/azure/confidential-computing/overview-azure-products

REFERENCES 56

neering Conference (APSEC), 2019, pp. 418–425. doi: 10.1109/APSEC48747.

2019.00063.

[31] M. Turtiainen, Trusted Execution Environments in protecting ML models, ver-

sion 1.0.0, Jun. 2023. [Online]. Available: https://github.com/mjturt/

thesis.

[32] Dheeru Dua, Casey Graff, Ross Quinlan, UCI Machine Learning Repository -

Auto MPG Data Set, 1993. [Online]. Available: https://archive.ics.uci.

edu/ml/datasets/auto+mpg.

[33] Scikit-learn Team, Scikit-learn, version 1.1.3, May 19, 2023. [Online]. Available:

https://scikit-learn.org/stable/.

[34] Intel Corporation. “Intel® Trusted Services Portal”. (2023), [Online]. Avail-

able: https : / / api . portal . trustedservices . intel . com/ (visited on

03/28/2023).

https://doi.org/10.1109/APSEC48747.2019.00063
https://doi.org/10.1109/APSEC48747.2019.00063
https://github.com/mjturt/thesis
https://github.com/mjturt/thesis
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://archive.ics.uci.edu/ml/datasets/auto+mpg
https://scikit-learn.org/stable/
https://api.portal.trustedservices.intel.com/

	Introduction
	The Problem
	Problem When Distributing Software
	Problem When Using Cloud Environments
	Limitations of Existing Approaches

	Previous Research
	Machine Learning
	Introduction to Artificial Intelligence
	Types of Machine Learning
	Supervised Machine learning
	Unsupervised Machine Learning
	Reinforcement Learning
	Deep Learning

	Machine Learning Algorithms

	Trusted Execution Environments
	Use Cases
	Protecting Intellectual Property
	Protecting Sensitive Personal Information
	Financial Services
	Biometric Authentication

	Intel Software Guard Extensions (Intel SGX)
	Remote Attestation
	Using Intel SGX on Linux
	Limitations
	Gramine LibOS

	AMD Secure Encrypted Virtualization (SEV)
	ARM TrustZone
	Cloud Provider's Solutions

	Solution
	Implementation
	Description of the Data
	Overview of the Application Stack
	Setting Up
	Usage

	Performance and Limitations
	Testing Setup
	Performance
	Limitations and Drawbacks

	Conclusion
	References

