
ON THE POST-QUANTUM FUTURE OF ELLIPTIC CURVE
CRYPTOGRAPHY

Rayen Lucaroni

MSc Thesis
May 2023

DEPARTMENT OF MATHEMATICS AND STATISTICS

The originality of this thesis has been checked in accordance with the University of
Turku quality assurance system using the Turnitin OriginalityCheck service

UNIVERSITY OF TURKU
Department of Mathematics and Statistics

LUCARONI, RAYEN:
On the post-quantum future of Elliptic Curve Cryptography
MSc Thesis, 40 pages, 16 appendix pages
Mathematics
May 2023

This thesis is a literature study on current published quantum-resistant isogeny-
based key exchange protocols.

Here we cover the topic from foundations. Chapters 1 and 2 discuss classical compu-
tation models, algorithm complexity, and how these concepts support the security
of modern elliptic curve cryptography methods, such as ECDH and ECDSA.

Next, in Chapters 3 to 5, we present quantum computation models, and how Shor’s
algorithm on quantum computers presents a threat to the future security of classical
asymmetric cryptography. We explore the foundations of isogeny-based cryptogra-
phy, and two key exchange protocols of this kind: SIDH and CSIDH.

Appendices A and B are provided for readers wanting more in-depth background
explanations on the algebraic geometry of elliptic curves, and quantum mechanics
respectively.

Keywords: cryptography, isogeny-based cryptography, elliptic curves, ECDH, ECDSA,
quantum computing, Shor’s algorithm, key exchange SIDH, CSIDH.

Contents

Introduction 1

1 Preliminaries 3
1.1 Problem Complexity . 3
1.2 One-way functions . 6
1.3 The cipher machine . 7
1.4 Digital signatures . 10
1.5 Two example cryptosystems . 11

1.5.1 Diffie-Hellman key exchange protocol 11
1.5.2 RSA . 12

2 Classical Elliptic Curve Cryptography 15
2.1 The group of points on an Elliptic Curve 15
2.2 ECDH key exchange protocol . 16
2.3 ECDSA . 17
2.4 Benefits of ECC . 18

3 Quantum machines 21
3.1 Quantum computation . 21

3.1.1 Quantum circuits . 23
3.2 Quantum algorithms . 24

3.2.1 Quantum parallelism . 24
3.2.2 The quantum Fourier transform 25
3.2.3 Shor’s factoring algorithm . 25

4 SIDH: a broken protocol 29
4.1 Supersingular elliptic curves . 29
4.2 Supersingular Isogeny Diffie Hellman 31

4.2.1 Set-up . 32
4.2.2 Key exchange protocol . 32

4.3 The Castryck-Decru attack . 32
4.3.1 Preliminaries . 33
4.3.2 The attack . 34

5 CSIDH 37
5.1 The class-group action . 37
5.2 CSIDH . 39

i

5.3 Discussion . 40

A Geometric principles of Elliptic Curves 41
A.1 The projective plane . 41
A.2 Elliptic curves . 43

A.2.1 The Weierstrass equation . 43
A.3 Tangent and secant lines . 46
A.4 Isogenies . 48

A.4.1 The group of isogenies . 50
A.4.2 The dual isogeny . 51

B A brief discussion of quantum physics 53
B.1 Foundational principles of quantum mechanics 53
B.2 Qubit systems . 55
B.3 Measuring a quantum system . 56

Bibliography 59

Introduction

There are few areas of mathematics that have impacted the course of human history
quite like cryptography. Since the dawn of societies war, intrigue and trade have
demanded a need for secret communication. It is the computer, however, that has
brought a new age of cryptography, where the evolution of the former spurs that of
the latter.

Counting by hand

Atbash is an example of one of the very first encryption protocols. It was known
and used by Hebrew scholars as far back as 600 BC, its legacy immortalised in the
Old Testament. Atbash is an instance of the affine cipher, and simply works by
mapping the 22-letter Hebrew alphabet to its reverse.

Atbash : E(x) = D(x) = −(x+ 1) mod 22

Before the 19th century, substitution and transposition ciphers were the only
methods used for encryption. In antiquity these protocols were exceedingly simple
by modern standards. While there are examples of them being used for the purpose
of secret communication, famously by Julius Caesar, most were designed to amuse,
add mystique or for superstitious purposes.

At this time, in terms of cryptanalysis, arguably the single most important ad-
vancement was made around the year 800, by the philosopher, scientist and math-
ematician Al-Kindi, who is credited with inventing frequency analysis [19]. After
him, there have been many skilled cryptanalysts, usually employed in the courts
of kings and queens, but it was not until 1850 that the link between these simple
ciphers and modular arithmetic was found. This discovery came from Charles Bab-
bage, interestingly the very same person credited with creating the first computer,
and inventing the definition of a programmable computer.

The invention of computers

”I was instructed to destroy all the records, which I did. I took all
the drawings and the plans and all the information about Colossus on
paper and put it in the boiler fire. And saw it burn.”
- Tommy Flowers

1

This was the fate of the very first iteration of a programmable computer, Colossus,
made at Bletchley Park for the purpose of breaking German teleprinter stream
ciphers, known collectively as Fish, during World War II.

Colossus could do 500×103 floating point operations per second (FLOPS), com-
pleting a set of runs for a message tape in as little as two minutes. The Hewlett
Packard Enterprise Frontier supercomputer, which began deployment in 2021,1 is
capable of up to 1.6× 1018 FLOPS [14].

It is clear to see that the maximum performance of computers has seen an ex-
plosion in the last 80 years; the first computers can no longer compete even against
the average personal computer or mobile phone. With most people in the world
having multiple orders of magnitude more than the power of Colossus at their fin-
gertips, in an environment of constant massive data sharing, it only seems natural
that cryptography would be irrevocably transformed as well.

This transformation began in 1945, with Claude E. Shannon’s work on mathe-
matically provable secrecy, but the real turning point came in 1976 and 1978, with
the invention of the Diffie-Hellman key exchange protocol, and the RSA cryptosys-
tem. This was the dawn of public key cryptography, which addressed the problem
of key distribution, but at the same time generated an arms race between compu-
tational power and complexity of cryptosystems.

The quantum future

In 1998 the world saw the first working quantum computer, the result of decades of
work. Today, there are still few quantum computers in the world, and none of them
can outperform classical computers yet, but with every passing year, the quantum
future seems less of a science fiction dream and more a reality.

In this thesis we explore the foundations of public key cryptography, the current
use of elliptic curves in public key protocols on classical computers, and how, the
potential advent of quantum computing will break such algorithms. We also present
the post-quantum elliptic curve cryptography key exchange protocols SIDH and
CSIDH, and the Castryck-Decru attack on SIDH.

1Considered the most powerful as of June 2022, according to the Top500 project.

2

Chapter 1

Preliminaries

1. Some problems are more difficult than others.

2. Some problems are more difficult than their inverse.

These two deceptively simple statements are the foundations of all public key cryp-
tography. In order to be able to rigorously reason about, firstly whether these
statements are indeed true, and secondly how they can help us to design secure
systems, we must first express them in a precise manner.

1.1 Problem Complexity

There are various different ways to answer the question of how complex it is to solve
a problem. One way is to analyse how many resources would be used by a machine
to find a solution to an instance of the problem. The issue with this, is that a
machine uses several different resources (e.g. time, memory, space), and even these
are variable depending on the particular machine and problem instance we choose.

Thankfully for us, there is a model for computation that is both mathemati-
cally relatively simple, and is able to simulate all our currently used computational
methods in an efficient manner1, that is the Turing machine.

Definition 1.1.1. (Deterministic Turing machine) A deterministic Turing machine
is a 7-tuple M = ⟨Q,Γ, b,Σ, δ, q0, F ⟩, defined in the following way

• Q is a finite, non-empty set of states

• Γ is a finite, non-empty set of symbols, called the alphabet

• b ∈ Γ is the blank symbol

• Σ ⊂ Γ\b is the set of input symbols

• q0 ∈ Q is the initial state

• F ⊂ Q is the set of final or accepting states

1See definition 1.1.4 for what is meant by ”efficient”.

3

• δ : (Q\F)× Γ ↛ Q× Γ× {L,R} is the transition function, a partial function
mapping a state, symbol tuple to another, and performing a left shift(L) or
right shift (R)

In more intuitive terms, we can represent a Turing machine as a cellular tape,
where each cell i contains some symbol γi from our alphabet Γ, and on this tape the
head of the machine travels left or right at each step, performing some transformation
of the current symbol and its internal state q ∈ Q.2

γ−4 γ−3 γ−2 γ−1 γ0 γ1 γ2 γ3 γ4· · · · · ·

q

Figure 1.1: A visual representation of a Turing machine.

Using our model, we can now formally describe algorithms to carry out simple
computations.

Example 1.1.1. Let us define the Turing machine +, with symbol alphabet Γ =
{0 = b, 1}, state set Q = {q0, q1, q2, q3, halt} and accepting set F = {halt}. We
can implement addition of two positive integers in unary notation by choosing the
following transition function rule:

0 1
q0 - 0, q1, R
q1 1, q2, L 0, q1, R
q2 0, q3, R 1, q2, L
q3 - 0, halt, R

Or as a transition diagram:

2I greatly recommend reading Turing’s original paper [22] for a more in-depth and historically
meaningful account of Turing machines.

4

q0start

q1

q2

q3 halt

1/0, R

1/0, R

0/1, L

1/1, L

0/0, R

1/0, R

If we let our machine run on a tape containing the symbols 11110111 (3 + 2), it
will return 111111 (5).

Just as we have defined a Turing machine to compute the addition of two positive
integers, it can be proven that it is possible to model in this way any algorithm that
can be written in some natural or programming language3. Furthermore, the Turing
machine provides a very natural way to count how long it takes for an algorithm to
be computed, as it takes a discrete number of steps for each computation.

Definition 1.1.2. (Running time) Let f : {0, 1}∗ → {0, 1}∗ be a function of binary
words, T : N→ N a function of natural numbers, and M a Turing machine. We say
M computes f if, when it is provided any x ∈ {0, 1}∗ as input, it halts with f(x) as
output. Further, we say it computes f in time T (n) if it takes at most T (|x|) steps
to compute f(x), where |x| is the number of bits x is comprised of.

At this point, we can use our definitions to determine the complexity class of
problems, by measuring the running time of algorithms that solve them.

Definition 1.1.3. (DTIME) Let T : N→ N be a function. A problem A is in the
set DTIME(T (n)) if and only if there exists a Turing machine that runs in time
c · T (n) for some c ∈ N>0 and computes solutions to A.

Definition 1.1.4. (Complexity class P)

P =
⋃︂
c≥1

DTIME(nc)

P is also called the polynomial-time class.

For our purposes, we say that problems that fall within P are those that can
be solved efficiently. Equivalently, this can be stated as, algorithms that run in

3For proofs and a more complete discussion of this see [1].

5

polynomial time are efficient. Thus, we can now devise a way to compare the
efficiency of differing algorithms, by comparing the behaviour of their running time
function as input size grows.

We say an algorithm A is more efficient than another algorithm B, if TA(n) <
TB(n) for large enough n, i.e. for large enough input A runs faster than B.

We have thus arrived at a more exact formulation of statement 1 at the beginning
of this chapter:

Some algorithms are more efficient than others, with increasing input
size.

Note that, although we only considered deterministic machines here, our defini-
tions are very easily altered to define non-deterministic machines. One such machine
is the probabilistic Turing machine.

Definition 1.1.5. (Probabilistic Turing machine) A probabilistic Turing machine
is an 7-tuple M = ⟨Q,Γ, b,Σ,∆, q0, F ⟩. Here all elements of the tuple are equivalent
to those of the determistic Turing machine, with the exeption of ∆ = (δ1, δ2) which
is a pair of transition functions. At each step M probabilistically applies either δ1
or δ2, independently of previous steps.

Such machines give us analogous complexity classes to the deterministic case.

Definition 1.1.6. (BPTIME) Let T : N → N be a function. A problem A is in
the set BPTIME(T (n)) if and only if there exists a probabilistic Turing machine
that runs in time c · T (n) for some c ∈ N>0 and computes solutions to A, regardless
of its random choices with probability greater or equal to 2

3
.

Definition 1.1.7. (Complexity class BPP)

BPP =
⋃︂
c≥1

BPTIME(nc)

1.2 One-way functions

Definition 1.2.1. (Negligible function) A function ν : N → [0, 1] is said to be
negligible if for all k ∈ N and sufficiently large n ∈ N, ν(n) < n−k.

Definition 1.2.2. (One-way function) A function f : {0, 1}∗ → {0, 1}∗ in P, is
a one-way function if for every polynomial-time algorithm A there is a negligible
function ν : N→ [0, 1] such that for all n ∈ N:

Prx∈{0,1}n [A(y) = x′ : f(x′) = f(x)] < ν(n)

(i.e. Any efficient algorithm that attempts to compute a pseudo-inverse for f suc-
ceeds with negligible probability)

The one-way function essentially describes a function that can be computed
efficiently, but for which there is no efficient way to invert it. It is not known
whether such functions exist, but there are a few candidates, that, as far as we have
been able to see, may fit the description.

The one-way function is the formalisation of statement 2 in the introduction of
this chapter.

6

Example 1.2.1. Let us define the set I:

I = {(p, g) : p is prime and g is a generator of Z∗
p}

Consider now the function exp(p, g, a) = ga mod p, with (p, g) ∈ I. This is
the discrete exponentiation function, and as defined it is bijective. Thus there is an
inverse function dl(p, g, b) = (p, g, a) such that ga mod p = b.

We know that exp can be computed in polynomial time, however no efficient
algorithm is known for computing dl, known as the Discrete Logarithm Problem
(DLP). exp is thusly considered a possible one-way function.

Definition 1.2.3. (Trapdoor function) A one-way function f : {0, 1}∗ → {0, 1}∗
is a trapdoor function, if there exists some information t (known as the trapdoor),
such that if t and f(x) are given, then it is possible to efficiently compute x.

Example 1.2.2. Let us define the set I:

I = {(n, e) : n ∈ Z is the product of two primes and gdc(e, φ(n)) = 1}

Consider now the function RSA(n, e, a) = ae mod n, with (n, e) ∈ I. For every
(n, e) ∈ I and b ∈ Zn there is a unique a, such that ae mod n = b.

RSA is considered to be a potential one-way function, as it is computable effi-
ciently, but no efficient algorithm is known to compute its inverse. If it is a one-way
function, then it is also a trapdoor function.

Let d ∈ Zn be chosen such that e · d = 1 mod φ(n). Knowing such a d means
we can efficiently find an inverse as follows:

bd = (ae mod n)d = ae·d mod n = a mod n

Thus d is the trapdoor.4

Assuming one-way functions exist, it is not known if every one-way function can
be used to construct a trapdoor function.

1.3 The cipher machine

Having established our model of computation, we now look at how we can describe
public key cryptosystems using these concepts. We remind ourselves that the goal
of a cryptosystem is to preserve confidentiality, thus we also need a way to analyse
whether our system fulfils that goal.

Definition 1.3.1. (Public key cryptosystem) Let K, M and C be finite sets. A
public key cryptosystem is an algorithm triple (G,E,D), where

• G is the probabilistic key generation algorithm. Its only input is randomness.
It outputs (k, k′) ∈ K, the public and private keys.

4This is the basis of the RSA encryption protocol of Subsection 1.5.2

7

• E is the probabilistic encryption algorithm, which takes the public key k and
message m ∈M as input, and outputs the ciphertext c ∈ C.

• D is the deterministic decryption algorithm, which takes the private key k′

and a ciphertext as input and outputs a message in M , or an error symbol ⊥.

We say such a system is sound if for all (k, k′) ∈ K, and all m ∈M

Dk′ ◦ Ek(m) = m

Example 1.3.1. Let f : K1 ×M → C be a trapdoor function, such that for each
k ∈ K1, there is a distinct trapdoor k′ ∈ K2, then it can be seen how we can build
a sound public key cryptosystem with the blueprint of Figure 1.2, where Inv is an
algorithm computing pseudo-inverses of f using a trapdoor k′

G

f Invm m

k k′

Ek Dk′

Figure 1.2: An outline of an asymmetric cryptosystem using a trap-door function.

The trouble with public key cryptography is that it cannot be shown that any
attacker with arbitrarily large computational resources at their disposal will never
be able to break the system’s confidentiality in any way. This is because our key set
K is finite, thus given enough time, it is always possible to find the private key by
trying every single option (i.e. brute force).

This implies that in order to argue about the security of such cryptosystems, we
must restrict ourselves to consider only attackers with very particular limitations.

In this thesis we consider security as defined by the Indistinguishability (IND)
game.

Let our attacker be a pair of probabilistic algorithms A = (A1, A2). A1 takes a
public key as input and outputs two messages and some internal state s, A2 takes
as input the public key, a ciphertext and A1’s state s, then outputs a single bit.

8

IND

Challenger Attacker

Challenger uses the key generator G to get keys (k, k′)

A1(k) = (m0,m1, s)

(m0,m1)

Choose a random bit b

C = Ek(mb)

C

A2(k, s, C) = b′

.Attacker wins the game if b = b′

Clearly, if A2 simply randomly chooses the bit b′, then A will win the game with a
probability of 1

2
. We define the advantage the attacker has in playing the IND game

by

AdvA =

⃓⃓⃓⃓
Pr[b = b′]− 1

2

⃓⃓⃓⃓
Definition 1.3.2. (Decryption oracle) A decryption oracle is a black box machine
that decrypts ciphertext in a single step.

Definition 1.3.3. (IND-CPA, IND-CCA1 and IND-CCA2) Let A = (A1, A2) be an
attacker playing the IND game for the public key cryptosystem S = (G,E,D).

• If A has no access to a decryption oracle, then it is running a chosen plaintext
attack. If A’s advantage in winning the IND game is negligible, then we say
S is IND-CPA secure.

• If A1 has access to a decryption oracle, but A2 does not, then A is running
a chosen ciphertext attack. If A’s advantage in winning the IND game is
negligible, then we say S is IND-CCA1 secure.

• If A1 and A2 both have access to a decryption oracle, then A is running an
adaptive chosen ciphertext attack. If A’s advantage in winning the IND game
is negligible, then we say S is IND-CCA2 secure.

It is immediately clear, that if the encryption algorithm is deterministic, then A
will win the game every time. This is because, we assume that everything about the
cryptosystem, except the private key, is known to A, thus A2 can simply encrypt
m0 and m1, and compare the results to C.

9

1.4 Digital signatures

Signature protocols are used in cryptography, to ensure the authenticity of a given
message. This means that our goal is to be able to ensure who the sender of a
message was. Someone wishing to break such a protocol would have to be able to
generate a fake, valid signature for their message, thus impersonating another party.

Definition 1.4.1. (Signature scheme) Let K, M and C be finite sets. A determin-
istic signature scheme is an algorithm triple (G,S, V), where

• G is the probabilistic key generation algorithm. Its only input is randomness.
It outputs (k, k′) ∈ K, the public and private keys.

• S is the deterministic signature algorithm, which takes the private key k′ and
message m ∈M as input, and outputs the signature s ∈ C.

• V is the deterministic verification algorithm, which takes the public key k,
message m and signature s as input and outputs ”Accept” or ”Reject”.

We say such a system is sound if for all (k, k′) ∈ K, and all m ∈M

Vk(m,Sk′(m)) = Accept

Example 1.4.1. We see the signature scheme is very similar to the public key
cryptosystem, thus we can make a similar use of a trapdoor function f as in Example
1.3.1.

G

f Invm m Check Accept

or Reject

k k

Sk′ Vk

Figure 1.3: An outline of a signature scheme using a trap-door function.

Just as with cryptosystems, we can analogously define security of a signature
scheme with respect to a game played by an attacker, known as forger in this context.
A forger F is a probabilistic algorithm with a fixed initial state x0. It takes some
state xi and a public key or signature as input, and outputs a message m, state xi+1

and either a request for a signature or a signature.
The forgery game we define as follows

10

Forgery game

Signer Forger

The signer uses the key genenerator G to get a random key pair (k, k′)

F (k, x0) = (m0, x1, r0)

. For all rounds i ≥ 0 .

(mi, ri)

If ri is a request, then si = Sk′(mi)

If ri is a signature, the game stops.

si

F (si, xi) = (mi+1, xi+1, ri+1)

Round i+ 1 begins.

When the game stops, the signer checks if Sk′(mi) = ri, and if mi ̸= mj for all
j < i. If both are satisfied, the forger has won the game.

1.5 Two example cryptosystems

1.5.1 Diffie-Hellman key exchange protocol

The Diffie-Hellman key exchange protocol (DH), first published in 1976, marks the
invention of public key cryptography. It is a protocol for two parties to generate a
shared secret. Its security is based on the DLP of Example 1.2.1. An eavesdropper,
Eve, cannot compute Alice and Bob’s secret key K in an efficient manner, as they
only have access to the information (p, g, A,B), which implies that, to compute K,
Eve would need to find one of the discrete logarithms dl(p, g, A) or dl(p, g, B). Since
Eve cannot compute these efficiently, we are content that Alice and Bob’s secret is
safe within some useful time frame, if we choose a large enough prime number p.

11

Diffie-Hellman

Alice Bob

Alice and Bob publicly choose a prime p, and g a generator of Z∗
p

choose a private integer a choose a private integer b

A = ga mod p

B = gb mod p

A

B

K = Ba = ga·b mod p K = Ab = ga·b mod p

1.5.2 RSA

RSA is a public key encryption protocol. It is based on the RSA function of Example
1.2.2. The reason we use a trapdoor function for such a protocol is because now one
of the communicating parties can use the function as a public key, and the trapdoor
as a private key. The second party can input their message into the function, and
feel confident there is no efficient way to compute their message knowing only the
function output. Here G outputs keys in the space

RSA

Alice Bob

. Set-up .

choose primes p and q

N = p · q
choose e such that gcd(e, φN) = 1

compute d such that e · d = 1 mod φ(N)

. Alice publishes the public key A = (N, e), (N, d) is the private key

Bob encrypts the message m

M = me mod N

M

Alice decrypts the ciphertext M

Md = me·d = m mod N

12

K = {((N, e), (N, d)) | N = p · q where p, q are primes and e · d = 1 mod φ(N)}

And

E(N,e) : ZN → ZN E(N,e) : m ↦→ me mod N (1.1)

D(N,d) : ZN → ZN D(N,d) : m ↦→ cd mod N (1.2)

This system is sound, since for all messages m ∈ ZN

D(N,d) ◦ E(N,e)(m) = me·d = m1 = m mod N

For this protocol the encryption function is RSA(N, e,m). As we can see,
if an eavesdropper is not privy to the private key, they would need to compute
RSA−1(N, e,M). Thus Bob can be content that, if the primes p and q were chosen
to be large enough, then the eavesdropper will not be able to compute the plaintext
message within a useful time.

Note that, as defined here, RSA is a deterministic encryption protocol, thus it
cannot be IND secure.

13

14

Chapter 2

Classical Elliptic Curve
Cryptography

We now use the foundations presented in Chapter 1, to build protocols using the
mathematics of elliptic curves. Such methods are known collectively as Elliptic
Curve Cryptography (ECC).

2.1 The group of points on an Elliptic Curve

We define an elliptic curve over a field K as a smooth, algebraic plane projective
curve of genus 1, with a distinguished K-rational point. This definition is discussed
in detail in Appendix A, but for the purposes of our current discussion, it will suffice
to note that all points but one on an elliptic curve over a field with characteristic
not 2 or 3, satisfy the Weierstrass equation

Y 2 = X3 + AX +B (2.1)

where A,B ∈ K. The one point which cannot be derived as a solution to the
equation above is called the point at infinity, and denoted here O. In this chapter
we will speak exclusively of elliptic curves of this form for the sake of simplicity,
however equivalent results hold for any elliptic curve.

Definition 2.1.1. (Addition of points on an EC) Let P1 = (x1, y1), P2 = (x2, y2)
be finite1 K-rational points on the elliptic curve E over the field K, satisfying (2.1).
We define the addition of these as follows:

1. If x1 = x2 and either y1 ̸= y2 or y1 = y2 = 0, then

P1 + P2 = O

2. Otherwise P1 + P2 = P3 = (x3, y3) with

x3 = m2 − x1 − x2 y3 = m(x1 − x3)− y1

wherem = (y2−y1)(x2−x1)−1 if x1 ̸= x2, andm = (3x21+A)(2y1)
−1 otherwise.

1Not the point at infinity.

15

Further, for any point P on E, we define

P +O = P

Theorem 2.1.1. The set of points on an EC, along with addition as defined above,
form an abelian group.

Proof. By our definition, we see O is an identity element. Commutativity also
follows directly from the definition.

The set of points being closed under addition, and, in particular, associativity
are more involved proofs. The necessary background to read these can be found in
Appendix A.

For n ∈ N+, and P a point on an elliptic curve, nP denotes the point P added
to itself n times.

Definition 2.1.2. (ECDLP) Let us define the set I:

I = {(E(K), G) :E(K) is the set of K-rational points on an elliptic curve and

G is a generator of the group of points on the curve.}

Consider now the function mult(E(K), G, a) = aG ∈ E(K), with (E(K), G) ∈ I.
This is the elliptic curve point multiple function, and as defined it is bijective. Thus
there is an inverse function ecdl(E(K), G, P) = (E(K), G, a) such that aG = P .
This is the discrete logarithm function for elliptic curves.

It is believed that, not only is mult a tap-door function, but that further com-
puting ecdl is at least as difficult as computing the discrete logarithm for integers.

The challenge of computing ecdl is known as the Elliptic Curve Discrete Loga-
rithm Problem (ECDLP).

This problem, is the backbone of almost all elliptic curve based cryptosystems
for classical computers.

2.2 ECDH key exchange protocol

ECDH uses, in principle, the same logic as the Diffie-Hellman protocol of section
1.5.1.

The domain parameters for this protocol make up the quintuple (K,E, q, h,G),
chosen as follows

• K is a finite field.

• E an elliptic curve defined over K.

• G is a point of prime order q.

• h is such that #E(K) = h · q, known as the cofactor.

16

ECDH

Alice Bob

Alice and Bob publicly choose domain parameters (K,E, q, h,G)

choose a private positive integer a choose a private positive integer b

A = aG

B = bG

A

B

K = aB = a(bG) K = bA = b(aG)

Notice that this protocol suffers from a key vulnerability: Alice or Bob have no
way of knowing where the messages A and B came from, thus one could perform a
man-in-the-middle attack.

Alice Eve Bob

A = aG B = bG

A

X = xG

Ka = axG X

Y = yG

Y

B Kb = ayG

As we can see Eve has now agreed on keys Ka and Kb with Alice and Bob respec-
tively, and can read all correspondence between them from this point on. Meanwhile
Alice and Bob are none the wiser, as they are convinced their messages come directly
from the other party.

To resolve this issue, Alice and Bob can sign all their messages, for example using
the next protocol.

2.3 ECDSA

In this protocol, we assume Alice wants to sign their messages, so Bob can be certain
these are indeed from Alice.

17

Alice must first choose some public domain parameters (K,E, q, h,G), defined
in the same way as in ECDH, and a hash function H. Then a message m can be
signed, using the private key x ∈ Z+, as follows

ECDSA Signing

1 : Choose a random number k ∈ {1, ..., q − 1}
2 : P ← kG

3 : r ← the first coordinate of P mod q

4 : if r = 0 go to 1

5 : e← H(m)

6 : s← (e+ xr)k−1 mod q

7 : if s = 0 go to 1

8 : return (r, s)

Bob can now check the signature of message m, using the public key T = xG.

ECDSA Verification

1 : if r, s ̸∈ {1, ..., q − 1} Reject

2 : e← H(m)

3 : u← e · s−1 mod q

4 : v ← r · s−1 mod q

5 : P ← uG+ vT

6 : if (r = the first coordinate of P mod q) Accept

7 : else Reject

Returning to the man-in-the-middle attack for ECDH, Alice now signs the message
A = aG, sending (A, (r, s)) to Bob. Eve can no longer pretend to be Alice as that
would require them to find a signature for the bogus message Y , or equivalently,
winning a Forgery game against ECDSA. It has been proven that ECDSA is secure
against an attacker playing the Forgery game[3], as long as it is using an arithmeti-
cally unbiased random number generator, and a hash function that is

• rarely zero

• zero resistant

• first and second preimage resistant and

• collision resistant

2.4 Benefits of ECC

ECC systems have a very clear advantage over other popular public key cryptosys-
tems such as RSA: key size. Due to the difficulty of solving the ECDLP, ECC
systems are equally secure as RSA instances using considerably shorter keys.

18

Strength Key size in bits

Low 512

Medium 1024

High 2048

Very high 4096

Table 2.1: Key length to relative security.

RSA key size in bits ECC key size in bits

1024 192

2048 224

3072 256

7680 384

15360 521

Table 2.2: Comparison of key security for RSA and ECC protocols such as ECIES.

At the time of writing, the recommended key sizes for RSA[10] are seen in Table
2.1. The equivalent necessary key length for ECC protocols are in Table 2.2.

As we can see, with an ECC key the size of a low-security RSA key, we can
guarantee security equivalent to RSA with key almost 30 times larger. This feature
makes ECC both less memory-intensive and faster. However, this does not take away
from the complexity of implementing ECC protocols, brought by the comparatively
more complex mathematics underlying ECC.

19

20

Chapter 3

Quantum machines

As mentioned in the introduction of this thesis, to this day there is no certainty in
the future of quantum machines. Some say it is but a bubble, fated to burst any
day now, others speculate there is real potential in quantum computers. What is
clear is that there is no consensus. Regardless, the very philosophy of cryptography
and cybersecurity at large is to be prepared for what is and for what might be.
Thus here we take a tentative look at the future and ask, what might be if quantum
computers become a viable addition to our computation methods?

We begin by presenting the core concepts underlying quantum computation, to
see how it is different from the classical version we are used to, and how it is, in
some instances, more powerful. To do this we return to our models of computation
from Chapter 1, and expand on them. Later we present Shor’s factoring algorithm,
a quantum algorithm with the potential to break many modern public key cryp-
tosystems.

3.1 Quantum computation

In Chapter 1, we considered models of computation and computers in a purely
theoretical manner, however, in order to understand the quantum computer, we
must move away from the purely mathematical, and instead envision the computer
as a physical system.

First let us review the classical model under this new lens. Every physical system
has states it can take, observables and a time evolution. There are three places where
we can observe a “state” in the Turing machine. There is the current internal state
q ∈ Q, the current symbols in the tape, and the current position of the the head on
the tape, as seen in Figure 3.1.

We can thus say that the state of the system of the Turing machine is given by
all these elements together. We can further say that, at every time interval a time
evolution occurs, given by the transition function.

Using this informal idea as inspiration, we can now begin to describe the quantum
Turing machine, using the model presented by Deutsch and Penrose in [8]. It is
recommended the reader unfamiliar with quantum mechanics now read Appendix B
before continuing.

21

γ−4 γ−3 γ−2 γ−1 γ0 γ1 γ2 γ3 γ4· · · · · ·

q The internal stateThe head’s position on the tape

The tape’s cell symbols

Figure 3.1: The states of the Turing machine.

Definition 3.1.1. (Quantum Turing machine) A quantum Turing machine Q, run-
ning in discrete steps of duration T , consists of

• N 2-state observables {q̂i}i∈Z+ , the processor

• An infinite sequence of 2-state observables {γ̂i}i∈Z, forming the memory

• An observable x̂, whose spectrum is Z, which indicates the position of the head

All possible states of Q are given by the space H, spanned by the simultaneous
eigenvectors of all the above observables, |x;q;γγγ⟩.

The time evolution of Q is given by a constant unitary operator U on H, wich
gives us the state after n steps |ψnT ⟩ by

|ψnT ⟩ = Un |ψ0⟩

where |ψ0⟩ is the state of Q at time 0, when computation begins, and satisfies

|ψ0⟩ =
∑︂
m

λm |0; 0;γγγ⟩ (3.1)∑︂
m

|λm|2 = 1 (3.2)

where only a finite number of λm are non-zero.

We reserve the first observable in the processor q̂0 to act as a flag for termination.
This observable begins in state |0⟩, and is set to state |1⟩ upon completion of the
computation. This way we may observe this value throughout the computation,
without affecting the rest, and observe the entire system only when q̂0 is in state
|1⟩.

Having this model, we can quite naturally derive complexity classes analogous
to the classical case. The quantum counterpart of P we denote EQP, and that of
BPP we denote BQP.

Note that, while the quantum Turing machine is very useful for defining com-
plexity classes, it is not the generally used model for describing quantum algorithms,
this one is most often the quantum circuit, which we will introduce next.

22

3.1.1 Quantum circuits

The quantum circuit is, at least in theoretical terms, like any classical circuit. It
is composed of edges, upon wich a single unit of information flows, the qubit in
our case, and nodes, or gates, that perform transformations on a small number of
qubits. However, where in the classical case the edges and nodes of this graph
have a clear physical counterpart (wires and physical logic gates), they do not in
the quantum case. In fact, in the case of the quantum circuit, it could be that its
physical implementation has no flow of qubits at all, as they may be implemented
via static particles. However, the idea of seeing quantum algorithms as a sequence
of simple operations remains useful for a more natural description of the processes,
and easier analysis.

The usual basic gates used in a quantum circuit are given in Table 3.1. Note
that, while most of these act on one or two qubits at a time, they may be used in
a system with multiple qubits. In these cases when we say gate G is applied to the
ith qubit, we mean the operator I ⊗ ...⊗ I ⊗G⊗ I ⊗ ...⊗ I is applied to the entire
system, where I is the identity operator on a single qubit.

Name Symbol Operator definition

Pauli-X X X =

[︃
0 1
1 0

]︃
Pauli-Y Y Y =

[︃
0 −i
i 0

]︃
Pauli-Z Z Z =

[︃
1 0
0 −1

]︃
Hadamard H H = 1√

2

[︃
1 1
1 −1

]︃

Controlled not (CNOT) • CNOT =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦

Swap ×
×

SWAP =

⎡⎢⎢⎣
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤⎥⎥⎦
Measurement A measurement of a single qubit,

after this the qubit will be in one
of the basis states.

Table 3.1: Commonly used quantum gates and their definition.

Theorem 3.1.1. All quantum circuits can be constructed using only unary and
CNOT gates [9].

23

Example 3.1.1. The following circuit generates perfectly random bits.

|0⟩ H

The internal state transitions are as follows

|0⟩ ↦→ 1√
2
(|0⟩+ |1⟩) ↦→ |0⟩ or |1⟩ each with probability

1

2

This circuit has no classical analogue, and would allow for a perfect implemen-
tation of the symmetric encryption protocol One Time Pad.

Example 3.1.2. Consider applying the Hadamard gate to all qubits of an 2-qubit
system

|0⟩ H

|0⟩ H

This is the Hadamard-Walsh gate, denoted W2, for two qubits, and can be defined
simply asW2 = H⊗H. This construction can be generalised to any number of qubits,
and will become very useful for quantum parallelism.

3.2 Quantum algorithms

In order to understand many quantum algorithms, and in particular the algorithms
we will present in this text, we must first familiarize ourselves with two important
sub-procedures: quantum parallelism and the quantum Fourier transform (QTF).

3.2.1 Quantum parallelism

Despite the name, quantum parallelism does not in fact give us many different results
to work with as classical parallelism would. Rather it aims to create a superposition
of all input, output pairs for a function f . While this can be used as a single state
within quantum computations, the moment we observe it it will collapse into a single
input, output pair. Thus we have in practice computed only one observable output.

Let f : ZN → ZM be a function, that acts on the N = 2n numbers encoded by
an n-qubit state, the input register, and returns numbers between 0 and M = 2m,
encoded by an m-qubit state, the output register. The transformation

Uf : |x, y⟩ ↦→ |x, y ⊕ f(x)⟩

is then a linear, unitary operator, and for y = 0...0 = 0m it maps the superposition∑︁
x ax |x, 0⟩ to the state

∑︁
x ax |x, f(x)⟩.

Consider now the following circuit

|0n⟩ Wn
Uf

|0m⟩

24

It describes applying the transformation Uf to the superposition of values ob-
tained by applying the Hadamard-Walsh operator to the first n qubits, all initialised
to |0⟩. It gives us the final state

1√
N

∑︂
x

|x⟩ ⊗ |f(x)⟩

This superposition of input, output pairs is the result of quantum parallelism for
the function f .

3.2.2 The quantum Fourier transform

The quantum Fourier transform (QFT) is a variant of the discrete Fourier transform
(DFT). We review the latter, more familiar transform first. Let f : ZN → C be a
function, the DFT, denoted F , is a transformation of such functions that produces
the function F : ZN → C defined as

F (x) =
1√
N

N−1∑︂
k=0

f(k) exp

(︃
2πi

kx

N

)︃

The QFT works on the amplitudes of a state
∑︁

x ax |x⟩, by modelling them as a
function of the basis states a• : ZN → C. Thus it transforms the states by

∑︂
x

ax |x⟩ ↦→
∑︂
x

Ax |x⟩

Where A• = F(a•)1.

3.2.3 Shor’s factoring algorithm

We have now all the necessary pieces to present Shor’s factoring algorithm. Given
an integer N to factorise, this algorithm does so in two parts. First it finds the order
r of a random number a modulo N , using a quantum subroutine. Then, assuming
the order is not odd or a

r
2 ≡ −1 mod N , we use the fact that

(a
r
2 + 1)(a

r
2 − 1) ≡ 0 mod N

to derive a non-trivial factor of N : either gcd(a
r
2 + 1, N) or gcd(a

r
2 − 1, N).

1For an efficient implementation of this as a quantum algorithm see [15]

25

Shor’s factoring algorithm for N ∈ Z

1 : Pick a random number 1 < a < N

2 : Compute n = gcd(a,N) using the Euclidean algorithm.

3 : if n ̸= 1 then

4 : return n

5 : |y⟩ ← Quantum core

1 : Choose Q = 2q such that 2N2 ≤ Q ≤ 4N2

2 : Set q input registers to |0⟩
// These store qubit representations of the values in ZQ

3 : Set q output registers to |0⟩

. End of setup .

4 : Pass the input register through a Hadamard-Walsh gate

5 : Use quantum parallelism, for the function f(x) = ax mod N

// The machine is now in state
1

√
Q

Q−1∑︂
x=0

|x, f(x)⟩

6 : Pass the input register through the QFT

7 : Measure the machine’s state to get the pure state |y, z⟩
8 : return |y⟩

6 : Using extended fractions find approximations
d

r
of

y

Q
such that

s < N and

⃓⃓⃓⃓
y

Q
− d

s

⃓⃓⃓⃓
<

1

2Q

7 : if ar ̸≡ 1 mod N

8 : Try multiples of r. If one of these kr works, then r ← kr

9 : If no multiple of r works, go back to step 5

10 : if r is odd or a
r
2 ≡ −1 mod N

11 : Go back to step 1

12 : Either gcd(a
r
2 + 1, N) or gcd(a

r
2 − 1, N) is a non-trivial factor m of N

13 : return m

The circuit for the quantum core is as follows

|0q⟩ Wq

Uf

QFT

|0q⟩

This algorithm computes non-trivial factors of integers in polynomial time with
high probability, thus placing integer factorisation in the complexity class BQP.

If this algorithm could be implemented in a quantum computer with a large
number of qubits at its disposal, then there would be an efficient way to compute the
inverse of the RSA function of Example 1.2.2, thus breaking the RSA cryptosystem.
There is also a version of this algorithm that efficiently computes discrete logarithms,

26

and thus breaks the Diffie-Hellman key exchange, the El Gamal cryptosystem, and
elliptic curve methods such as ECDSA.

To put it simply, if a large quantum computer were to be developed, it would
effectively spell the end of public key cryptography as we know it today.

27

28

Chapter 4

SIDH: a broken protocol

In Chapter 2, we saw how the hardness of the ECDLP is used in classical ECC
protocols. Here we return to the theory of elliptic curves, to explore the supersingular
isogeny problem, conjectured to be unlikely to be possible to solve efficiently on
either classical or quantum computers. We present here one of the simpler protocols
based on this problem, SIDH, and a recent attack on it.

4.1 Supersingular elliptic curves

Let K be a field, and F any field extension of K. An isogeny1 ϕ : E1(F) → E2(F)
of elliptic curves E1/K and E2/K is a rational map defined over F , satisfying
ϕ(O) = O. We will denote isogenies of degree d as d-isogenies.

As isogenies between curves E1, E2 are also homomorphism of abelian groups,
they once again form an abelian group. Further the endomorphisms defined over F
of an elliptic curve form a ring denoted

EndF (E) = {ϕ : E → E | ϕ is an isogeny}

For an elliptic curve E/Fp, we will denote the ring of isogenies E → E, with
coefficients also only in Fp by Endp(E).

Quite counter-intuitively, it can be shown that the size of the endomorphism
ring of an elliptic curve E/K, where K is finite, is quite closely connected to the
subgroup of torsion points E[p], where p is the characteristic of K. This relationship
naturally gives rise to two types of elliptic curve.

Definition 4.1.1. (Quaternion Algebra) A quaternion algebra over Q, is an algebra
of the form

Q = {a+ bα + cβ + dαβ| a, b, c, d ∈ Q}

where α2, β2 ∈ Q, α2 < 0, β2 < 0 and αβ = −βα.

Theorem 4.1.1. Let E be an elliptic curve over a finite field K of prime charac-
teristic p. Then either

1An exact definition of isogeny, as well as a more complete discussion of the properties of
isogenies can be found in Section A.4 of Appendix A

29

1. E[pr] ≃ Z/prZ for all r ≥ 1, and, if j(E) ∈ F̄p, then End(E) is an order in
an imaginary quadratic field;

2. or the following equivalent statements hold:

(a) E[pr] = {0} for some r ≥ 1

(b) End(E) (over the closure K̄) is an order in a quaternion algebra (and is
thus non-commutative).

(c) The trace of the Frobenius endomorphism ϕpr for some r ≥ 1 is congruent
to 0 mod p. For p ≥ 5 this statement is equivalent to the trace of
Frobenius being equal to 0.

Proof. Parts 1, 2(a), 2(b): [17, Theorem V.3.1]. Equivalence of 2(c): [18, Proposi-
tion III.8.6] and [18, Proposition V.2.3]

Definition 4.1.2. (Ordinary and supersingular ECs) We say an elliptic curve E
that satisfies statement 1 of Theorem 4.1.1 is ordinary. If it satisfies one of the
equivalent statements in 2 then we say it is supersingular2.

Supersingular curves have the largest possible endomorphism rings, and cannot
be isogenous to an ordinary curve [17]. It is important to note that in Theorem 4.1.1.
we consider specifically those isogenies defined over K̄, meaning that the coefficients
appearing in ϕ need not be elements of K. An example of such an isogeny is given
in Example A.4.2, where the constant

√
−1 need not be an element of K. For the

purposes of our application of supersingular elliptic curves we need to make this
distinction. It turns out that when the curve E is defined over a prime field, and
we also restrict ourselves to isogenies with coefficients in the prime field, then the
resulting ring of isogenies, Endp(E), is never an order in a quaternion algebra. In
this case, as seen in [4], we have that Endp(E) is an order in an imaginary quadratic
field given by:

Endp(E)⊗Z Q ∼= Q(
√︁
t2 − 4p) (4.1)

where t is the trace of the Frobenius endomorphism, and p is the prime order of the
field. A proof of this can be found in [20, Lecture 13 Theorem 13.18]3.

Supersingular curves are avoided for use in the ECC protocols of Chapter 2. This
is because the ECDLP for these curves is equivalent to the DLP for integers, thus
weakening security, if our assumption that the ECDLP is harder than the DLP is
indeed correct. However, a different, and potentially more complex problem arises
when considering these curves.

Conjecture 4.1.1. The supersingular isogeny problem, defined by:
“Let E1 and E2 be two isogenous supersingular elliptic curves. Compute an

isogeny between them.”
cannot be solved efficiently by either a classical or a quantum computer.

2Supersingular elliptic curves should not be confused with singular curves. All supersingular
elliptic curves are non-singular by the definition of an elliptic curve.

3Note that this source uses slightly different notation to what is seen here. An explanation of
the notation is found in the same source, Lecture 12 Definition 12.2.

30

This conjecture can be restated in terms of graph theory. We can define a graph
whose nodes are elliptic curves up to isomorphism over some field K4, and whose
edges are the isogenies between them. Such a graph is know as an isogeny graph.
Clearly this construction will form two disconnected subgraphs, one of ordinary
curves and the other of supersingular curves.

The conjecture can hence be equivalently thought as the problem of finding a
walk between E and E ′ in the isogeny graph.

We may further restrict the construction of the isogeny graph to consider only
isogenies of degree d between elliptic curves E/Fq. This is known as a d-isogeny
graph. It can be shown these graphs are (d+1)-regular Ramanujan graphs, meaning
in our context that these graphs have the following rapid mixing result.

Theorem 4.1.2. Let G be a d-isogeny graph with h vertices, S any subset of the
vertices in G, and e any vertex (elliptic curve) in G. Then a random walk starting

at e of length at least log 2h/|S1/2|
log(d+1)/2

√
d
will end in S with probability at least |S|

2h

Proof. [12, Lemma 2.1]

This property, in intuitive terms, implies that as we take a random walk in the
isogeny graph, evidence of where the walk began vanishes quickly. Or equivalently,
as we compute compositions of random isogenies, evidence of the starting elliptic
curve quickly vanishes.

Theorem 4.1.3. Let E be an elliptic curve and Φ ⊆ E a finite subgroup of E. Then
there is a unique elliptic curve E ′ and a separable isogeny ϕ : E → E ′ such that

kerϕ = Φ

The elliptic curve E ′ is usually also denoted E/Φ.

Proof. [17, Proposition III.4.12]

A sub-exponential time quantum algorithm for computing the isogeny of Theo-
rem 4.1.3 are given in [6].

4.2 Supersingular Isogeny Diffie Hellman

We now present the Supersingular Isogeny Diffie-Hellman (SIDH) protocol by De
Feo and Jao. This was believed to be a very promising key exchange protocol until
recently, and had advanced to the fourth round of NIST’s Post-Quantum Cryp-
tography standardisation process as the instantiation Supersingular Isogeny Key
Exchange (SIKE), before the attack we show in the next section was discovered.

4These are usually represented by their j-invariants.

31

4.2.1 Set-up

We begin by choosing the finite field Fq = Fp2 , where p is a prime number of the
form p = aeA · beB · f ± 1, where a and b are small primes.

We fix the following public parameters:

• A supersingular curve E0, defined over Fp2

• The pair {PA, QA}, generating E0[a
eA]

• The pair {PB, QB}, generating E0[b
eB]

Together, our domain parameters, to be agreed before the start of the protocol, form
the sextuple (Fq, E0, PA, QA, PB, QB).

4.2.2 Key exchange protocol

SIDH

Alice Bob

.Let (Fq, E0, PA, QA, PB, QB) be the domain parameters.

Choose random integers mA, nA Choose random integers mB, nB

Compute the isogeny ϕA Compute the isogeny ϕB

ϕA : E0 → EA ϕB : E0 → EB

kerϕA = ⟨mAPA + nAQA⟩ kerϕB = ⟨mBPB + nBQB⟩

(EA, ϕA(PB), ϕA(QB))

(EB, ϕB(PA) + ϕB(QA))

Compute the isogeny ϕ′
A Compute the isogeny ϕ′

B

ϕ′
A : EB → EAB ϕ′

B : EA → EBA

kerϕ′
A = ⟨mAϕB(PA) + nAϕB(QA)⟩ kerϕ′

B = ⟨mBϕA(PB) + nBϕA(QB)⟩

. . . . Shared key: j(EAB) = j(EBA) = j(E0/⟨mAPA + nAQA,mBPB + nBQB⟩)

Note, the above protocol relies on the commutativity of the following diagram.

4.3 The Castryck-Decru attack

In August 2022 Wouter Castryck and Thomas Decru published a devastating attack
to the SIDH protocol shown in Section 4.2, that showed SIDH is not only not

32

EA = E0/ kerϕA

E0 EABEBA

EB = E0/ kerϕB

ϕ′
A

ϕB

ϕA

ϕ′
B

Figure 4.1: SIDH commutative diagram.

quantum-resistant, but breakable by a single core classical computer in heuristically
polynomial time [5]. Here we present an overview of this attack. It is recommended
that the reader unfamiliar with the foundational properties of elliptic curve isogenies,
particularly the dual isogeny, read Section A.4 of Appendix A before continuing with
this section.

4.3.1 Preliminaries

The attack uses the torsion points sent over the insecure channel during the key
exchange to retrieve Bob’s secret isogeny ϕB. Intuitively speaking, the secret isogeny
is retrieved one piece at a time, checking at each stage that the correct piece has
been found.

Theorem 4.3.1. Let E/K be an elliptic curve and n a positive integer, not divisible
by char(K). Then there is a pairing, called the en-Weil pairing

en : E[n]× E[n]→ µn

where µn are the nth roots of unit, that satisfies the properties

1. en is bilinear.

2. en is non-degenerate in both variables.

3. en(P, P) = 1 for all P ∈ E[n].

4. en(P,Q) = en(Q,P)
−1 for all P,Q ∈ E[n].

Proof. [23, Section 11.2]

Definition 4.3.1. (Anti-isometry) An anti-isometry with respect to a bilinear pair-
ing of groups f : A× A→ G, is a mapping ψ : A→ A such that

f(ψ(P), ψ(Q)) = f(P,Q)−1

For our purposes, we will consider exclusively anti-isometries with respect to the
en-Weil pairings, thus will refer to these simply as “anti-isometries”.

Definition 4.3.2. (Isogeny factorisation configuration) Let E1 and E2 be two elliptic
curves defined over K and N ≥ 2 an integer. An isogeny factorisation configuration
of order N from E1 to E2 is a triplet (f,H1, H2) where

33

• f : E1 → E2 is an isogeny

• H1, H2 ≤ ker f are two subgroup schemes with #H1 + #H2 = N and #H1 ·
#H2 = deg f

If further H1∩H2 = {0} then we say (f,H1, H2) is an isogeny diamond configuration.

Theorem 4.3.2. (Kani’s reducibility criterion) Let f = (f,H1, H2) be an isogeny
diamond configuration of order N from E1 to E2. We set n = N/d and ki = #Hi/d
for i = 1, 2, where d = gcd(#H1,#H2). Then f factors uniquely over [d], that
is, for some isogeny f ′, f = f ′ ◦ [d] and there is a unique reducible anti-isometry
ψ : E1[N]→ E2[N] such that

ψ(k1P1 + k2P2) = f ′(P2 − P1) ∀Pi ∈ [n]−1(Hi)

Further, every reducible anti-isometry is of this form

Proof. [13, Theorem 2.6]

Example 4.3.1. Consider the elliptic curve E0/Fp2, where p is a prime of the form
aeA · beB · f ± 1, with a and b primes and aeA > beB . Assume the points PA, QA

generate E[aeA]. Let ϕ : E0 → EB be a beB -isogeny, and γ : E0 → C a c-isogeny,
where c = aeA − beB .

Now, consider the following isogeny

ψ = [−1] ◦ ϕ ◦ γ̂ : C → EB

Here kerψ is a cyclic group of order c · beB , thus having two unique cyclic sub-
groups H1 and H2 of respective orders c and beB , with H1 ∩H2 = {0}.

We see that

#H1 +#H2 = aeA and #H1 ·#H2 = degψ

Thus, clearly, (ψ,H1, H2) is an isogeny diamond configuration.

In this attack, to check we have found correct pieces of our secret isogeny ϕB

we must compute a chain of (a, a)-isogenies5. By using auxiliary c-isogenies, as in
Example 4.3.1, Kani’s theorem above ensures that the last step in the chain splits
in the case of a correct guess.

4.3.2 The attack

Now we are ready to put all the pieces together, and show how a single core computer
can break SIDH.

Our attacker, Eve, has access to the following information:
• The public domain parameters (Fp2 , E0, PA, QA, PB, QB), as defined above.

• The triplet (EA, ϕA(PB), ϕA(QB)).

5These are isogenies on products of two elliptic curves α × β : E1 × E2 → E3 × E4, where
degα = deg β = a.

34

• The triplet (EB, ϕB(PA), ϕB(QA)).
We further assume Eve has a bβ-isogeny τ : E0 → Estart for some β ≥ 0. Here Estart

is chosen to be either y2 = x3+x or y2 = x3+6x2+x, which are the two commonly
chosen base curves in SIDH.

Now Eve begins the attack by fist performing set-up steps, which compute the
isogeny γstart that will be used in every iterative step later. This computation relies
on the fact that both Estart curves have an endomorphism 2i satisfying (2i)2 = [−4].
For the curve Estart : y

2 = x3 + x this endomorphism is the composition of [2] with
i : (x, y) ↦→ (−x,

√
−1y). For Estart : y

2 = x3 + 6x2 + x the isogeny 2i is formed by
composing the 2-isogeny φ to x3 + x with the i isogeny above and with the dual φ̂.

In Castryck and Decru’s prepublication, this attack is presented for the specific
case that the small primes a and b are set to a = 2 and b = 3. First we present this
case.

Setup

1 : Factorise c = 2eA − 3eB

2 : if all factors of c are congruent to 1 mod 4 then

3 : Find integers u, v such that c = u2 + 4v2 = (u+ 2iv)(u− 2iv)

4 : γstart ← [u] + [v] ◦ 2i

Once set-up is complete, Eve runs the following iterative algorithm

Iteration

// Here we assume E0 = Estart, but all steps are easily altered by appropriately composing with τ

1 : Choose β1 ≥ 1 minimal such that there is an α1 ≥ 0 for which

c1 = 2eA−α1 − 3eB−β1 > 0

And c1 has only prime factors congruent to 1 mod 4.

2 : Write ϕB = ϕ1 ◦ κ1, with κ1 a β1-isogeny.

3 : E1 ← κ1(E0), P1 ← κ1(a
α1PA), Q1 ← κ1(a

α1QA)

4 : Let ˜︁κ̂1 : Estart → C1 be the isogeny with kernel γstart(kerκ1).

5 : γ1 ←
˜︁κ̂1 ◦ γstart ◦ κ̂1

3β1

6 : P1 ← γ1(PA), Q1 ← γ1(QA)

7 : Check if C1 × EB/⟨(Pc1 , a
α1PA), (Qc1 , a

α1QA)⟩ is a product of elliptic curves.

8 : if no then try another κ1

9 : else

10 : Choose β2 > β1 minimal such that there is an α2 ≥ 0 for which

c2 = 2eA−α2 − 3eB−β2 > 0

And c2 has only prime factors congruent to 1 mod 4.

11 : Write ϕ1 = ϕ2 ◦ κ2, with κ2 a β2-isogeny.

12 : Continue analogously to steps 3 to 12.

13 : return ϕB = κr ◦ . . . ◦ κ3 ◦ κ2 ◦ κ1

35

Some considerations on the generalisation of the Castryck-Decru attack

When we attempt to generalise the above attack, for any two small primes a and b,
we now have to consider the following question:

Question 4.3.1. When can the integer c = aeA − beB be written in the form

u2 + 4v2 (4.2)

where u and v are integers?

This question is answered in [7] for the case where a = 2 and b is odd. In this
case alone c is odd, and Corollary 2.6 in [7] gives us that it can be written in the
form 4.2 if and only if all prime factors of c are congruent to 1 mod 4.

In cases where a = b = 2 then we have that

c = 2eA − 2eB

= 2eB(2eA−eB − 1)

The term 2eB is either a square or can be written in the form 2(2eB−1) = 2eB−1 +
2eB−1, where 2eB−1 is a square and also a multiple of 4. Thus, using Lemma 2.1
from [7], we have that c can be written in the form 4.2 if (2eA−eB−1) has only prime
factors congruent to 1 mod 4.

Other cases seem to be not as well studied. However, we note that in the case
where Estart : y

2 = x3 + x, then we can compute a representation of c of the form
u2+v2 = (u+vi)(u−vi), which is possible as long as c has no prime factor congruent
to 3 mod 4 with odd exponent. Then we may set γstart = [u] + [v] ◦ i.

This latter form has the benefit of being more general, and thus more values of
c can be written in this form, and thus we have more of these simple γstart at our
disposal.

It is to be noted that this still leaves many values of c, where this trick is not
possible. In these cases, finding a γstart isogeny with the required properties of some
other form becomes decidedly non-trivial.

36

Chapter 5

CSIDH

We have now seen an example of a simple isogeny-based protocol, and how these can
be liable to attack, when too much information is given about the isogenies used.
In this chapter we present an, as of yet, unbroken key exchange protocol, using
the same foundations as SIDH, and only slightly more complex mechanics. This is
CSIDH1, first proposed by Castryck et al. in [4].

5.1 The class-group action

We know from Section 4.1, that supersingular elliptic curves E/Fp, where p is a

prime number, are orders in an imaginary quadratic field of the form Q(
√︁
t2 − 4p).

We consider here ideals of such orders, and their action on elliptic curves.

Definition 5.1.1. (Norm) Let K be a quadratic number field and O ⊆ K an order.
The order of an O-ideal a is given by

N(a) = |O/a|

We may define two operations on two-sided ideals (which are the type we are
considering here). These are addition

a+ b = {a+ b| a ∈ a, b ∈ b}

and multiplication

ab = {a1b1 + a2b2 + ...+ anbn| ai ∈ a, bi ∈ b for i = 1, ..., n, and n ∈ N+}

Definition 5.1.2. (Fractional ideal) We say an O-submodule of K is a fractional
ideal of O, if it is of the form αa, where α ∈ K∗ and a is an O-ideal. Further we say
a fractional ideal a is invertible if there exists another fractional ideal b such that
ab = O.

Invertible fractional ideals form, by their construction, an abelian group under
ideal multiplication, which we will denote I(O).

1Pronounced as “sea side” would be pronounced in English.

37

Definition 5.1.3. (Ideal-class group) The group of invertible fractional ideals quite
clearly contains the group of principal fractional ideals P (O). Thus we may define
the ideal-class group by

cl(O) = I(O)/P (O)

Every ideal class [a] ∈ cl(O) has an integral ideal representative.

Definition 5.1.4. (Free and transitive action) The action of a finite commutative
group G on a set X is said to be

• free, if the statement g · x = x for some x ∈ X implies that g is the identity
element in G.

• transitive, if for all x, x′ ∈ X there is a g ∈ G such that x = g · x′.

Theorem 5.1.1. Let O be an order in an imaginary quadratic field and ϕ ∈ O. Let
Ellp(O, ϕ) be the set of elliptic curves E/Fp with Endp(E) being the order O, and
with Frobenius endomorphism ϕ. If Ellp(O, ϕ) is non-empty, then the ideal-class
group cl(O) acts freely and transitively on this set, via the map

cl(O)× Ellp(O, ϕ)→ Ellp(O, ϕ)
([a], E) ↦→ E/a

where a is the integral representative of the class.
We will denote the curve E/a more simply as aE.

Proof. [16, Theorem 4.5]

Note that in the above theorem, the curve aE is the same curve given by Theorem
4.1.3.

We now return to the d-isogeny graphs we introduced in Section 4.1. The follow-
ing result by Kohel, Delfs and Galbraith, gives us a case where the endomorphism
ring of elliptic curves in a connected d-isogeny subgraph are the same order in the
same imaginary quadratic field.

Theorem 5.1.2. Let p ≥ 5 be a prime number and let V be a connected component
of the d-isogeny graph of elliptic curves over the field Fp. We assume p ≡ 11 mod 12
or that V contains no curve with j = 0 or 1728. Let t be the shared trace of the
Frobenius endomorphism of all curves in V , and let K = Q(

√︁
t2 − 4p). Assume

that d ∤ t2 − 4p.
Then all elliptic curves in V have the same Fp-rational endomorphism ring O ⊆

K, which is locally maximal at d. Moreover, if t2−4p is a (non-zero) square modulo
d, then V has a cycle whose length equals the order of [l] in cl(O), where l is a prime
ideal dividing dO. If not, them V consists of a single vertex and no edges.

Proof. [4, Theorem 4]

For the purposes of the CSIDH protocol, we will consider only curves in the
Montgomery form

y2 = x3 + Ax2 + x

We represent these curves by their Montgomery coefficient A. This representative
is unique up to isomorphism, as is shown below.

38

Theorem 5.1.3. Let p ≥ 5 be a prime congruent to 3 mod 8, and let E/Fp be a
supersingular elliptic curve, further let ϕp be the Frobenius endomorphism. Then
Endp(E) = Z[ϕp] if and only if there exists an A ∈ Fp such that E is isomorphic to
EA : y2 = x3 + Ax2 + x over Fp. If such an A exists, then it is unique.

Proof. [4, Proposition 8]

We may describe the following problem, given by the ideal class group action
defined above

“Given two supersingular elliptic curves E,E ′ defined over the same field Fp, and
with the same endomorphism ring O, compute an ideal a of O, such that aE = E ′.
We further require the ideal be represented in such a way that its action can be
efficiently evaluated.”

We call this problem the ”CSIDH key recovery problem”. It is clear to see it is
analogous to the ECDLP of Chapter 2, and the DLP of Chapter 1.

Conjecture 5.1.1. There are no efficient classical or quantum algorithms solving
the CSIDH key recovery problem.

5.2 CSIDH

We now use the theorems of the previous section to form the key exchange protocol
CSIDH. We begin by defining our domain parameters as follows

• Fix a large prime p = 4 · l1...ln − 1, where li are small distinct odd primes.

• Fix the base curve E0 : y
2 = x3 + x, over Fp with endomorphism ring O.

Note that E0 is supersingular and p > 5, thus the trace of the Frobenius endo-
morphism of E0 is 0. This implies, by Theorem 5.1.2, that Endp(E0) is an order
in the imaginary quadratic field Q(

√
−p). By Theorem 5.1.3, we further see that

Endp(E0) = Z[ϕp].

Theorem 5.1.2 further ensures that the ideals liO split as

liO = lilī

where li = (li, ϕp − 1) and lī = (li, ϕp + 1).

39

CSIDH

Alice Bob

. Let (p,E0) be the domain parameters. .

Choose random integers (a1, ..., an) Choose random integers (b1, ..., bn)

Define the ideal class [a] = [la11 ...lann] Define the ideal class [b] = [lb11 ...lbnn]

Compute the Mont. coefficient A ∈ Fp Compute the Mont. coefficient B ∈ Fp

of the curve EA = aE0 of the curve EB = bE0

A

B

Compute the curve EAB Compute the curve EBA

EAB = aEB EBA = aEB

The shared key at the end of the protocol is the Montgomery coefficient S of the
curve EAB

∼= EBA
∼= [a][b]E0 in the form EAB : y2 = x3 + Sx2 + x.

Theorem 5.1.3 ensures that our protocol is sound, as ideal multiplication is com-
mutative, and [a][b]E0 must be Fp-isomorphic to a unique curve in Montgomery
form.

5.3 Discussion

Without the use of torsion point images, CSIDH is impervious to the Castryck-
Decru attack shown in the previous chapter. At time of writing, no significantly
devastating attack has been found on CSIDH, thus making it a tentative addition
to our library of key exchange protocols.

This protocol is computationally heavier than Diffie-Hellman, however, where
Diffie-Hellman becomes insecure in the face of Shor’s algorithm of Section 3.2.3,
the current state-of-the art classical and quantum algorithms cannot yet feasibly
break CSIDH, as Castryck et al. discuss in [4]. This makes CSIDH into a potential
replacement for Diffie-Hellman, if and when quantum computation becomes powerful
enough to pose a danger to our current classical methods.

As of now, post-quantum cryptography is still very young, and more investigation
is certainly needed into these protocols, to ascertain whether they are in fact useful
and secure alternatives.

40

Appendix A

Geometric principles of Elliptic
Curves

This Appendix reviews the algebraic geometrical principles underlying the theory of
elliptic curves discussed in this text. The discussion here is quite brief, and is only
designed to provide a reminder or introduction to these concepts. For the reader
that wishes to learn further details, we recommend they read [17] or [11] for a higher
level overview of algebraic geometry.

A.1 The projective plane

Definition A.1.1. (Projective plane overK) LetK be a field, and ∼ an equivalence
relation between elements of K3\{(0, 0, 0)} defined as

(x0, y0, z0) ∼ (x1, y1, z1) iff ∃λ ∈ K\{0} : (x0, y0, z0) = λ(x1, y1, z1)

The projective plane over K, denoted KP2, has the set of all equivalence classes
given by ∼ as a point set.

We call points on the projective plane KP2 of the form (x : y : 1) finite points,
and those of the form (x : y : 0) points at infinity. The finite projective points form
the affine plane KA2, embedded in the projective plane.

Definition A.1.2. (Algebraic plane projective curve) LetK be a field. An algebraic
plane projective curve C/K is a homogeneous polynomial C(x, y, z) with coefficients
in K. For any field extension F of K, the set

C(F) = {(x : y : z) ∈ FP2 | C(x, y, z) = 0}

are the F -rational points of C.

If all the partial derivatives with respect to x, y and z vanish at a point P ∈ C(F),
we say P is a singular point and that C(F) is singular. If there is no such point
then we say C(F) is non-singular or smooth.

41

Example A.1.1. Consider the polynomial C(x, y, z) = x2 + y2 − 22z2 with real
coefficients. This is an algebraic projective curve over R. The R-rational points of
this curve are

C(R) = {(x : y : z) ∈ RP2 | C(x, y, z) = 0}

We can intuitively visualize this set in three dimensional real space, as the plot
in Figure A.1. In this plot every line on the surface (all of which pass through the
origin) corresponds to a point in the projective plane. The finite R-rational points

Figure A.1: Intuitive plot of C(R).

of this curve form a circle of radius 2 in the affine plane. There are no points at
infinity in C(R).

Example A.1.2. Consider the polynomial E(x, y, z) = y2z − x3 − Axz2 − Bz3

with coefficients in the field F7. This is an algebraic projective curve over F7. The
F7-rational points of this curve are

E(F7) = {(x : y : z) ∈ F7P
2 | y2z = x3 + Axz2 +Bz3}

This curve has a singular point at infinity, regardless of the choice of coefficients.
This point is (0 : 1 : 0).

An important algebraic property of a curve, which we will require for the defini-
tion of an elliptic curve, is its genus. This is a numerical value that is derived from
the Riemann-Roch theorem. Explaining this concept in its entirety is beyond the
scope of this text, we direct the reader to [18, Section II.5] for an in-depth discussion.

Example A.1.3. Curve C/R from example A.1.1 is of genus 0. Curve E/F7 from
example A.1.2 is of genus 1.

42

A.2 Elliptic curves

With the definitions of the space we are working in laid out, we are now ready to
introduce the elliptic curve in the projective plane KP2, and the polynomials that
define them.

A.2.1 The Weierstrass equation

Definition A.2.1. Let K be a field. An elliptic curve over K is a smooth, algebraic
plane projective curve of genus 1, with a distinguished K-rational point.

It can be shown that the K-rational points of any elliptic curve satisfy the
equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3 (A.1)

where a1, a2, a3, a4, a6 ∈ K [17]. From this equation, we immediately see that any
elliptic curve has a single point at infinity: (0 : 1 : 0). This point we shall denote
O. If we restrict ourselves to only the finite points, on the affine plane, we find they
satisfy the generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (A.2)

Definition A.2.2. (Discriminant) For an elliptic curve E with generalised Weier-
strass equation A.2, we define the discriminant

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

Where b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6 and b8 = a21a6 + 4a2a6 −
a1a3a4 + a2a

2
3 − a24.

Theorem A.2.1. Let E be an elliptic curve with generalised Weierstrass equation
A.2. E is non-singular if and only if the discriminant ∆ ̸= 0.

Proof. First we show that O is a non-singular point. We know that the homogeneous
polynomial defining the curve on the projective plane E is of the form

P (x, y, z) = y2z + a1xyz + a3yz
2 − x3 − a2x2z − a4xz2 − a6z3

We see that

∂P

∂z
(x, y, z) = y2 + a1xy + 2a3yz − a2x2 − 2a4xz − 3a6z

2

Thus at the point O = (0 : 1 : 0) we have that ∂P
∂z
(O) = 1 ̸= 0.

Now we consider the finite points.
The only change of variables fixing the point at infinity and preserving the Weier-

strass equation is

x = α2x′ + β

y = α3y′ + α2γx′ + δ

43

with α, β, γ, δ ∈ K̄, and α ̸= 0. Through this substitution we find that

α2b′2 = b2 + 12β

α4b′4 = b4 + βb2 + 6β2

α6b′6 = b6 + 2βb4 + β2b2 + 4β3

α8b′8 = b8 + 3βb6 + 3β2b4 + β3b2 + 3β4

Thus we find that

α12∆′ = ∆

Suppose now that E had a finite singular point P = (x0, y0). The above logic
implies that the change in variables given by

x = x′ + x0

y = y′ + y0

leaves the value of the discriminant unchanged. Thus we can assume, without loss
of generality, that the singular point is (0, 0).

Using the generalised Weierstrass equation of E, given by:

E : p(x, y) = y2 + a1xy + a3y − x3 − a2x2 − a4x− a6 = 0

we find that

a6 = p(0, 0) = 0 a4 =
∂p

∂x
(0, 0) = 0 a3 =

∂p

∂y
(0, 0) = 0

Thus we find that we may simplify the polynomial p to

p(x, y) = y2 + a1xy − x3 − a2x2

This equation has discriminant ∆ = 0.
To show that ∆ ̸= 0 when E is non-singular, we assume for simplicity that

char(K) ̸= 2. Then we can apply the change of variables y = 2y′ + a1x+ a3, which
gives us the new equation

E : p′(x, y) = y2 − 4x3 − b2x2 − 2b4x− b6 = 0

If E had a finite singular point P = (x0, y0), then it would have to satisfy

∂p′

∂x
(x0, y0) = 12x20 + 2b2x0 + 2b4 = 0 = 2y0 =

∂p′

∂y
(x0, y0)

This implies that any singular point is of the form (x0, 0), where x0 is a double
root of the polynomial 4x3 + b2x

2 + 2b4x + b6. This polynomial has discriminant
16∆, where ∆ is the discriminant of E. Thus we have that if ∆ = 0, then there
exists a double root of the polynomial 4x3 + b2x

2 + 2b4x+ b6, and hence a singular
point of E.

44

Definition A.2.3. (j-Invariant) For an elliptic curve E with generalised Weierstrass
equation A.2, we define its j-invariant as

j =
(b22 − 24b4)

3

∆

Where b2 = a21 + 4a2, b4 = 2a4 + a1a3, and ∆ is the discriminant.

We can simplify equation A.2, in fields whose characteristic is not 2 or 3. First
if ch(K) ̸= 2, then 2 has a multiplicative inverse. It can be easily seen that we can
re-arrange A.2 as

(y + 2−1(a1x+ a3))
2 = x3 + (a2 + 4−1a21)x

2 + (a4 + 2−1a1a3)x+ (4−1a23 + a6)

which can be expressed as

Y 2 = x3 + a′2x
2 + a′4x+ a′6

Now, if ch(K) ̸= 3, we can perform a further transformation by lettingX = x+3−1a′2
and we arrive at the Weierstrass equation for E

Y 2 = X3 + AX +B (A.3)

In this case the discriminant can also be simplified to ∆ = 4A3 + 27B2, and the

j-invariant to j = 1728 (4A)3

∆
.

Note that this is not the only useful “simpler“ form for the equation of an elliptic
curve. If ch(K) ̸= 2, we may also use Montgomery form

BY 2 = X3 + AX2 +X (A.4)

Elliptic curves in Montgomery form may be represented by their Montgomery coef-
ficients (A,B), or simply by the coefficient A when B = 1.

Theorem A.2.2. Let E1 and E2 be two elliptic curves, defined over the field K̄.
Then E1 and E2 are isomorphic if and only if they have the same j-invariant.

Proof. We use the same change of variables introduced in the proof of Theorem
A.2.1

x = α2x′ + β

y = α3y′ + α2γx′ + δ

with α, β, γ, δ ∈ K̄, and α ̸= 0. This substitution gives us

j′ =
(b′22 − 24b′4)

3

∆′ = α12 (b
2
2 − 24b4)

3

∆′ = j

Thus we see that isomorphic elliptic curves have the same j-invariant.
We now show that elliptic curves with the same j-invariant must be isomorphic.

We show this for the case where char(K) ̸= 2, 3 for simplicity, but the result can be
extended to any field. If

E1 : y
2 = x3 + Ax+B

E2 : y
′2 = x′3 + A′x′ +B′

45

Then

j = 1728
(4A)3

4A3 + 27B2
= 1728

(4A′)3

4A′3 + 27B′2 = j′

and thus we find that A3B′2 = A′3B2.
If A = 0, then j = 0 and we have an isomorphism given by the change of variables

(x, y) = (α2x′, α3y′), where α = (B/B′)1/6.
If B = 0, then j = 1728 and we have an isomorphism given by the change of

variables (x, y) = (α2x′, α3y′), where α = (A/A′)1/4.
If AB = 0, then j ̸= 0, 1728 and we have an isomorphism given by the change

of variables (x, y) = (α2x′, α3y′), where α = (B/B′)1/6 = (A/A′)1/4.

Example A.2.1. Consider the algebraic plane projective curve E/R, whose finite
R-rational points are defined by the equation

y2 = x3 + 2x+ 1

The plot of this curve on the affine real plane can be seen in Figure A.2. The

Figure A.2: Plot of y2 = x3 + 2x+ 1 in RA2.

discriminant of this curve is ∆ = 4 · 23 + 27 · 12 = 59 ̸= 0. Thus this is a non-
singular curve (i.e. it is smooth). Equation A.3 is in the form of a Weierstrass
equation, thus we conclude E is an elliptic curve.

A.3 Tangent and secant lines

In Chapter 2 we saw that the K-rational points of an elliptic curve form an abelian
group with respect to point addition. Here we define the addition of points in a
more general manner and provide necessary knowledge for the omitted parts of the
proof of Theorem 2.1.1.

46

Definition A.3.1. (Tangent) Let all points of the projective curve C be given
implicitly by f(x, y, z) = 0. Let P = (x0 : y0 : z0) be one such point, then the
tangent to C at P is given by

∂f

∂x
(P)(x− x0) +

∂f

∂y
(P)((y − y0)

∂f

∂z
(P)(z − z0) = 0

If all partial derivatives are 0 at P , we say C has no tangent at P .1

Definition A.3.2. (Secant) Let all points of the projective curve C be given im-
plicitly by f(x, y, z) = 0. Let P = (x0 : y0 : z0) and Q = (x1 : y1 : z1) be two such
points. The line PQ is the secant line to C, through P and Q.

While in Chapter 2, we saw an algebraic definition of point addition, specifically
for elliptic curves in fields of characteristic not 2, or 3. we can use the intersection
of lines with the curve to geometrically define the same process.

Definition A.3.3. (Addition of points on an EC) Let P , Q be K-rational points
on the elliptic curve E over the field K. We define the addition of these as follows:

Let L be the line through a point P and O. If P = O this is a tangent line,
otherwise it is a secant line. This line will intersect E at a third point Q, counting
multiplicities. We define −P = Q.

For any three points of intersection of a line L with E, P,Q,R, we define P+Q =
−R.

This definition has allowed us to generalise this operation to all elliptic curves,
irrespective of the field we are working with. This definition also allows us to have
a more visual intuition of the operation, as exemplified in Figure A.3.

Figure A.3: Point addition example on the real affine plane.

1This should never be the case in a non-singular curve.

47

While our definition appears to be sound, it remains unclear whether it is true
that every line intersecting an elliptic curve will indeed intersect it at three points,
counting multiplicities, as is implied. This fact directly follows from Bézout’s The-
orem.

Theorem A.3.1. (Bézout’s Theorem) Let f(x, y, z) = 0 and g(x, y, z) = 0 give two
polynomial curves F and G in KP2. Let E be an algebraically closed field containing
K. If F and G are not multiples of a common non-constant polynomial, then they
intersect in E at deg(f) · deg(g) points, counting multiplicities.

Proof. [2]

Corollary A.3.1.1. Let K be algebraically closed, L a line and E an elliptic curve
in KP2. L intersects E at 3 points, counting multiplicities.

Thus we find that the set of K-rational points of an elliptic curve will always be
closed under addition.

From these same geometric definitions it becomes slightly less tedious to prove
the associativity of this operation. One proof utilising these concepts can be found
in [23].

A.4 Isogenies

Definition A.4.1. (Isogeny) Let E1 and E2 be elliptic curves over a field K, and
F any field extension of K. An isogeny ϕ : E1(F)→ E2(F) is a rational map of the
form

ϕ(x, y) = (f(x, y), g(x, y))

where f and g are rational functions, and ϕ(O) = O.
Such maps are always group homomorphisms between the groups of F -rational

points E1(F) and E2(F) [17, Theorem III.4.8].
If there exists an isogeny between the curves E1, E2, such that ϕ(E1) ̸= {O}, we

say they are isogenous.
We will denote isogenies from E1(F) to E1(F) more simply as ϕ : E1 → E2.

Example A.4.1. Let E/K be an arbitrary elliptic curve, and m ∈ Z. Then we may
define the isogeny

[m] : E → E [m](P) = mP ∀P ∈ E(K̄)

In particular if m = 0, we define [0](P) = O ∀P ∈ E(K̄).
As multiplication by any m ∈ Z is well-defined for any elliptic curve, it follows

that the set of isogenies {[m] : E → E|m ∈ Z} exists for all elliptic curves E.

Example A.4.2. Consider the elliptic curve E : y2 = x3 + x defined over a finite
field K. Assuming there is an i ∈ K, such that i2 = −1, then E has an isogeny we
will call i : E → E, defined by (x, y) ↦→ (−x, iy).

Lemma A.4.1. The isogeny [0] : E1 → E2 defined by [0](P) = O ∀P ∈ E1(K̄) is
the only constant isogeny from E1 to E2 for any two such elliptic curves.

48

Proof. Suppose ϕ : E1 → E2, with ϕ ̸= [0], is constant. Then there is a Q ∈ E2(K̄)
such that ϕ(P) = Q for all P ∈ E1(K̄). Now, since ϕ is a group homomorphism it
follows that

Q = ϕ(mP) = mϕ(P) = mQ

for all m ∈ Z. This is only possible if Q = O, thus we must have that ϕ = [0].

If an isogeny ϕ is non-constant we say it is finite.

Definition A.4.2. (Ideal) Let E/K be an elliptic curve (or any other projective
curve), then the ideal of E is given by

I(E) = {f ∈ K̄[X] : f(P) = 0 ∀P ∈ E(K̄)}

Definition A.4.3. (Function Field) Let E/K be an elliptic curve (or any other
projective curve), and E(F) the F -rational points of E for some field extension F
of K. The projective coordinate ring of E/K is defined by

K[E] =
K[X]

I(E) ∩K[X]

This is an integral domain, and its quotient field, denoted K(E), is the function
field of E.

Lemma A.4.2. Let E1/K and E2/K be elliptic curves and ϕ : E1 → E2 a finite
isogeny. Composition by ϕ induces an injection of function fields fixing K

ϕ∗ : K(E2)→ K(E1)

Here we have that K(E1) is a field extension of ϕ∗K(E2).

Proof. [17, Theorem II.2.4(a)]

Definition A.4.4. (Degree) We define the degree of a finite isogeny of elliptic curves
over the field K, ϕ : E1 → E2, as

deg ϕ = [K(E1) : ϕ
∗K(E2)]

By convention we set deg[0] = 0. We also denote an isogeny of degree d as a
d-isogeny.

Further we say that the isogeny ϕ is separable (inseparable, purely inseparable)
if the field extension K(E1)/ϕ

∗K(E2) has the respective property.

Example A.4.3. The isogeny [m] : E → E is an m2-isogeny for all elliptic curves
E and all m ∈ Z. This is simple to prove by induction.

Lemma A.4.3. If ϕ is a separable isogeny, then we have that

#kerϕ = deg ϕ

Proof. [17, Theorem III.4.10(c)]

49

A.4.1 The group of isogenies

Given that isogenies of elliptic curves are group homomorphisms, it follows that
they themselves form groups. Let K be a field, and F any field extension of K. We
denote the group of isogenies defined over F 2, between curves E1/K and E2/K, by
HomF (E1, E2). If F = K̄, we use the simpler notation Hom(E1, E2). The addition
rule of this group is defined by

(ϕ+ ψ)(P) = ϕ(P) + ψ(P) ∀ϕ, ψ ∈ HomF (E1, E2), P ∈ E1(K)

We denote HomF (E,E), the isogenies defined over F from a curve to itself, by
EndF (E). Equivalently to above, the set of isogenies defined over K̄ from a curve
to itself are simply denoted End(E).

Theorem A.4.4. Let E be an elliptic curve over the field K. Then the set of
endomorphisms of E, End(E) is a ring of characteristic 0, under the addition rule

(ϕ+ ψ)(P) = ϕ(P) + ψ(P) ∀ϕ, ψ ∈ End(E), P ∈ E(K)

and multiplication rule

(ϕ · ψ)(P) = ϕ(ψ(P)) ∀ϕ, ψ ∈ End(E), P ∈ E(K)

Proof. (End(E),+) being an abelian group follows directly from the fact that (E(K),+)
is an abelian group.

Associativity of · follows directly from the associativity of endomorphism com-
position.

Clearly [1] : E → E is the multiplicative identity.
Let α, β, γ ∈ End(E), then we have for all P ∈ E(K)

(α · (β + γ))(P) = α((β + γ)(P)) multiplication rule

= α(β(P) + γ(P)) addition rule

= α(β(P)) + α(γ(P)) group homomorphism property

Thus, we see that · is right-distributive over +. Equivalently we can show it is
left-distributive.

The characteristic of End(E) follows from the fact that [0], the additive identity,
is the only constant endomorphism over E. Hence, if ∃m ∈ Z such that

[m][1] = [1] + ...+ [1] = [0]

Then we must have that [m] = [0].

Notice that the set of isogenies shown in Example A.4.1 is a subring of End(E)
for all elliptic curves E. In fact, if E is defined over a field K, with char(K) = 0,
then usually this is the entirety of End(E), in other words End(E) ≃ Z. Those
curves whose endomorphism ring is strictly larger than Z are said to have complex
multiplication.

2That is isogenies whose coefficients are in F .

50

Example A.4.4. Let E be an elliptic curve over the finite field K, of prime char-
acteristic p.

The Frobenius endomorphism is often, in curves with complex multiplication, an
endomorphism that lies outside of Z. It is defined for q = pr, r ∈ Z+

ϕq : E → E ϕq(x, y) = (xq, yq)

The Frobenius endomorphism of the example above is one of the most crucial
endomorphisms in the theory of elliptic curves. It can be shown, for example, that
the Frobenius endomorphism of an elliptic curve E/Fq, where q is a prime power,
satisfies the characteristic equation

ϕ2
q − tϕq + q = 0 (A.5)

for the unique t = q + 1 − #E(Fq). This value t is the trace of the Frobenius
endomorphism.

Theorem A.4.5. Two elliptic curves E1/Fq and E2/Fq are isogenous if and only if
the traces of their respective Frobenius endomorphisms are equal.

Proof. [21, Theorem 3.1]

Definition A.4.5. (m-torsion points) Let E be an elliptic curve, andm ∈ Z,m ̸= 0.
The set of m-torsion points of E is defined by

E[m] = {P ∈ E | [m](P) = mP = O}

Theorem A.4.6. Let E be an elliptic curve and Φ ⊆ E a finite subgroup of E.
Then there is a unique elliptic curve E ′ and a separable isogeny ϕ : E → E ′ such
that

kerϕ = Φ

Proof. [17, Theorem III.4.12]

Corollary A.4.6.1. Let ϕ : E1 → E2 be an isogeny. Then the ideal kerϕ uniquely
determines ϕ, up to isomorphism.

A.4.2 The dual isogeny

Theorem A.4.7. Let ϕ : E1 → E2 be a finite d-isogeny. Then there exists a unique
isogeny

ϕ̂ : E2 → E1

such that ϕ ◦ ϕ̂ = [d].

Proof. [17, Theorem III.6.1(a)]

The isogeny ϕ̂ is called the dual isogeny to ϕ.

Example A.4.5. Let E/Fq, where q is a prime power, be an elliptic curve. The
dual of the Frobenius endomorphism ϕq : E → E

51

Theorem A.4.8. Let ϕ : E1 → E2 be an isogeny. Then

1. If deg ϕ = d, then
ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [d]

2. Let α : E2 → E3 be another isogeny, then

ˆ︁α ◦ ϕ = ϕ̂ ◦ α̂

3. deg ϕ̂ = deg ϕ

Proof. If ϕ is constant then clearly all statements are correct. Thus we prove them
only in the case where all isogenies are finite, and in particular deg ϕ = d ̸= 0.

1. By definition we have that

ϕ ◦ ϕ̂ ◦ ϕ = ϕ ◦ [d]

Further we have that ϕ ◦ [d] = [d] ◦ ϕ. Thus, since ϕ is finite, we must have
that ϕ ◦ ϕ̂ = [d]

2. Let degα = a, then

(ϕ̂ ◦ α̂) ◦ (α ◦ ϕ) = ϕ̂ ◦ [a] ◦ ϕ = [a] ◦ ϕ̂ ◦ ϕ = [ad]

Now, since the dual isogeny is unique, it follows that ˆ︁α ◦ ϕ = ϕ̂ ◦ α̂.

3. We know that deg ϕ = d, and that deg[d] = d2, thus

[d2] = [deg(ϕ̂ ◦ ϕ)] = [(deg ϕ̂)(deg ϕ)] = [d deg ϕ̂]

Thus, we must have that deg ϕ̂ = d.

52

Appendix B

A brief discussion of quantum
physics

The field of quantum mechanics aims to find a model to describe the behaviour of
physical systems in time, and in particular that of those of atomic and subatomic
scale.

Here we introduce the mathematical formulation of the model for quantum me-
chanical systems, in particular aimed at how we can use it to describe the system
of a quantum computer, and the information within it. For the reader that wishes
to expand on this introduction, we recommend [15] or [9].

B.1 Foundational principles of quantum mechan-

ics

In physics, all systems are modelled in terms of three concepts: states, observables
and time evolution. The same is done in quantum theory. Here we represent all
possible states a system may take as vectors1 in the projective space HPn, where H
is a complex Hilbert space.

Definition B.1.1. (Complex Hilbert space) A finite-dimensional complex Hilbert
space H, is a complete2 vector space with an inner product ⟨·|·⟩ : H × H → C,
satisfying

1. ⟨x|y⟩ = ⟨y|x⟩∗

2. ⟨x|x⟩ ≥ 0 and ⟨x|x⟩ = 0 if and only if x = 0

3. ⟨x|αy + βz⟩ = α ⟨x|y⟩+ β ⟨x|z⟩

For any vectors x, y, z ∈ H, and scalars α, β ∈ C.
1Note that in physics the term “vector” refers to certain specific quantities, and does not have the

same general connotation it has in mathematics. Here “vector” always refers to the mathematical
object. In physics literature the elements of these Hilbert spaces are usually called “kets”.

2In the sense that every Cauchy sequence has a limit.

53

Here we will denote vectors in Hilbert spaces using Dirac’s bra-ket notation: |ψ⟩.
All vectors |ψ⟩, |ϕ⟩ ∈ H, such that |ψ⟩ = eiθ |ϕ⟩, belong to the same equivalence
class, and thus represent the same state in the projective space. We can, hence,
assume all states to be represented by unit vectors.

We model physical quantities known as observables, as self-adjoint linear opera-
tors acting on the Hilbert space.

Definition B.1.2. (Self-adjoint operator) A linear operator Â on a finite-dimensional
complex Hilbert space H, is self-adjoint, if it satisfies the following

⟨Âx|y⟩ = ⟨x|Ây⟩

for all x, y ∈ H.

Example B.1.1. Spin is an observable. For a single spin-1
2
particle, we have three

spin operators (Sx, Sy, Sz), given by

Sx =
ℏ
2

[︃
0 1
1 0

]︃
Sy =

ℏ
2

[︃
0 −i
i 0

]︃
Sz =

ℏ
2

[︃
1 0
0 −1

]︃
Where ℏ is the reduced Planck constant. The matrices multiplying ℏ

2
are known

as the Pauli matrices. The total spin Ŝ is given by the operator

Ŝ =
ℏ
2
σσσ

Where σσσ is a vector whose components are the Pauli matrices. The eigenvectors
of the spin operator Sz, from example B.1.1, are the unit vectors

|0⟩ =
[︃
1
0

]︃
|1⟩ =

[︃
0
1

]︃
With eigenvalues ℏ

2
and −ℏ

2
respectively. These eigenvectors span the Hilbert

space C2.

Lemma B.1.1. A self-adjoint operator Â on a complex Hilbert space has real eigen-
values.

Proof. Let λ be an eigenvalue of Â, then we have Â |x⟩ = λ |x⟩ for a non-zero vector
|x⟩, and

λ∗ ⟨x|x⟩ = ⟨λx|x⟩ = ⟨Âx|x⟩ = ⟨x|Âx⟩ = ⟨x|λx⟩ = λ ⟨x|x⟩
|x⟩ is not 0, thus a∗ = a, and we have that λ must be real.

Lemma B.1.2. A self-adjoint operator Â on a complex Hilbert space has mutually
orthogonal eigenvectors.

Proof. Let |x⟩, |y⟩ be two eigenvectors of Â corresponding to distinct eigenvalues λ
and µ, respectively. Then

µ ⟨y|x⟩ = ⟨Ây|x⟩ = ⟨y|Âx⟩ = λ ⟨y|x⟩

Since λ and µ are real, we must have that ⟨y|x⟩ = 0.

54

The eigenvalues of an observable correspond to the possible values that observ-
able may take. As the eigenvectors span the space, they also define a basis of
the Hilbert space. Thus we can represent all states as linear combinations of the
eigenvectors of an observable. Suppose we have an observable Â, with eigenvalues
{λ1, ..., λn} and corresponding eigenvectors {|x1⟩ , ..., |xn⟩} spanning the space, then
when the system is in state

|ψ⟩ = a1 |x1⟩+ ...+ an |xn⟩ a1, ..., an ∈ C

upon measuring Â, we will observe value λi with probability | ⟨xi|ψ⟩ |2 = |ai|2. This
is known as the Born rule.

States of a dynamic quantum mechanical system will change over time, and we
will denote the state of the system at time t by |ψt⟩. The time evolution of a
quantum state is described by Schrödinger’s equation

iℏ
d |ψt⟩
dt

= H(t) |ψt⟩ (B.1)

Where H(t) is an observable, known as the Hamiltonian, and describes the total
energy of the system. This differential equation allows us to derive the evolution
operator that transforms the initial state of a system, |ψ0⟩, into the state at time t.

|ψt⟩ = e
−iH(t)·t

ℏ |ψ0⟩ ≡ U(t) |ψ0⟩ (B.2)

What is important to note about the operator U(t), is that it is unitary, and thus it
preserves inner products and norms, and is invertible. This means that, given the
state at any point in time, and the time evolution operator, we can compute the
state of the system at all previous and future points in time.

B.2 Qubit systems

A qubit is the quantum analogue of the classical bit, and it is how information is
encoded in quantum computing.

Qubits are states in the projective space HP1, where H is a complex Hilbert
space spanned by two, arbitrary, basis vectors, which we will denote |0⟩ and |1⟩.
These two vectors are the basis states, and any linear combination of the two

α0 |0⟩+ α1 |1⟩

where neither α0 or α1 are 0, is known as a superposition of the basis states. The
scalars α0, α1 are known as the amplitudes of the basis states.

Definition B.2.1. (Tensor product) Let V and W be two finite-dimensional com-
plex Hilbert spaces, with bases A = {|a0⟩ , ..., |an⟩} and B = {|b0⟩ , ..., |bm⟩} respec-
tively. The tensor product V ⊗W of these two spaces is the space spanned by the
the n ·m elements of the form |ai⟩⊗ |bj⟩. Where ⊗ : V ×W → V ⊗W is the tensor
product operator, and satisfies

1. (|v⟩+ |v′⟩)⊗ |w⟩ = |v⟩ ⊗ |w⟩+ |v′⟩ ⊗ |w⟩

55

2. |v⟩ ⊗ (|w⟩+ |w′⟩) = |v⟩ ⊗ |w⟩+ |v⟩ ⊗ |w′⟩

3. (a |v⟩)⊗ |w⟩ = |v⟩ ⊗ (a |w⟩) = a(|v⟩ ⊗ |w⟩)

For all vectors |v⟩ , |v′⟩ ∈ V , |w⟩ , |w′⟩ ∈ W , and all scalars a ∈ C.
We will also denote the tensor product of two vectors |x⟩ ⊗ |y⟩ more simply by

|xy⟩ or |x, y⟩.

By taking the tensor product of two single qubit spaces, we have generate a
new space with 22 elements, this being the space whose points are pairs of qubits,
spanned by {|00⟩ , |01⟩ , |10⟩ , |11⟩}. We can continue iteratively in this manner to
create spaces with states given by an arbitrary number of qubits.

Most of the elements of a tensor product space V1 ⊗ ... ⊗ Vn cannot be written
in the form

|ψ⟩ = |v1⟩ ⊗ ...⊗ |vn⟩

where |vi⟩ ∈ Vi. In quantum mechanical systems, those states that can be written
as a tensor product of elements of the underlying spaces are known as separable, the
rest are entangled.

Example B.2.1. Consider the state |ψ⟩ = 1
2
(|000⟩ + |001⟩ + |110⟩ + |111⟩). This

state may seem entangled with respect to the tensor product of three single qubit
spaces, as there is no way to write this state in the form

(a0 |0⟩+ b0 |1⟩)⊗ (a1 |0⟩+ b1 |1⟩)⊗ (a2 |0⟩+ b2 |1⟩)

However, if we consider it in terms of the tensor product of one two-qubit space and
a single qubit space we have

|ψ⟩ = 1√
2
(|00⟩+ |11⟩)⊗ 1√

2
(|0⟩+ |1⟩)

And is thus we see it is separable.

B.3 Measuring a quantum system

Definition B.3.1. (Projector) Let H be a finite-dimensional Hilbert space. Let
H = H1 ⊕H2 be a direct sum decomposition of the space. This means all |v⟩ ∈ H
can be written in the form

|v⟩ = |v1⟩+ |v2⟩ |v1⟩ ∈ H1, |v2⟩ ∈ H2

An operator Pi : H → Hi that maps |v⟩ to |vi⟩ is a projector operator onto the
subspace Hi.

Consider the state space of a two qubit system, it is spanned by the set
{|00⟩ , |01⟩ , |10⟩ , |11⟩}, and can be decomposed into the direct sum of a variety of
smaller subspaces. For example the four spaces spanned by |00⟩, |01⟩, |10⟩ and |11⟩
respectively, or the two spaces spanned by {|00⟩ , |01⟩} and {|10⟩ , |11⟩} respectively.

56

Depending on the chosen decomposition, and on the chosen basis for each space, we
will have different projection operators.

When a quantum state is measured, we measure with respect to a given basis
and space decomposition. A state |ψ⟩ in the space H = H1⊕ ...⊕Hk can be written
in the form

|ψ⟩ =
k∑︂

i=1

αi |vi⟩ |vi⟩ ∈ Hi

and, after being measured, with respect to this particular decomposition, it will
collapse into the pure state

Pi |ψ⟩
|Pi |ψ⟩ |

=
|vi⟩
| |vi⟩ |

with probability |Pi |ψ⟩ |2 = | |vi⟩ |2 = |αi|2.
In general in this thesis, when we refer to measuring a qubit system, it will be

with respect to the standard basis, and a direct sum decomposition into single qubit
spaces, unless explicitly stated otherwise.

Notice that since after measurement the state of the system is changed, thus the
act of measuring itself is a transformation of the system, and thus it becomes critical
to keep track of when and how the system is being measured.

57

58

Bibliography

[1] Sanjeev Arora and Boaz Barak. Computational complexity : a modern ap-
proach. eng. Cambridge ; Cambridge University Press, 2009. isbn: 978-0-521-
42426-4.

[2] Robert. Bix. Conics and cubics : a concrete introduction to algebraic curves.
eng. 2nd ed. Undergraduate texts in mathematics. New York: Springer, 2006.
Chap. 11. isbn: 9780387392738.

[3] D. Brown. “On the Provable Security of ECDSA”. In: Advances in Elliptic
Curve Cryptography. Ed. by Ian F. Blake, Gadiel Seroussi, and Nigel P. Smart.
Vol. 317. London Mathematical Society Lecture Note Series. Cambridge Uni-
versity Press, 2005. Chap. 2, pp. 21–40. isbn: 978-0-521-60415-4.

[4] W Castryck et al. “CSIDH: An Efficient Post-Quantum Commutative Group
Action”. eng. In: Advances in Cryptology – ASIACRYPT 2018. Lecture Notes
in Computer Science 11274 (2018), pp. 395–427. issn: 0302-9743.

[5] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH
(preliminary version). Cryptology ePrint Archive, Paper 2022/975. https:
//eprint.iacr.org/2022/975. 2022. url: https://eprint.iacr.org/
2022/975.

[6] Andrew Childs, David Jao, and Vladimir Soukharev. “Constructing elliptic
curve isogenies in quantum subexponential time”. eng. In: Journal of mathe-
matical cryptology 8.1 (2014), pp. 1–29. issn: 1862-2976.

[7] Bumkyu Cho. “Integers of the form x2+ny2”. eng. In: Monatshefte für Math-
ematik 174.2 (2014), pp. 195–204. issn: 0026-9255.

[8] David Deutsch and Roger Penrose. “Quantum theory, the Church–Turing
principle and the universal quantum computer”. In: Proceedings of the Royal
Society of London. A. Mathematical and Physical Sciences 400.1818 (1985),
pp. 97–117. doi: 10.1098/rspa.1985.0070. url: https://royalsocietypublishing.
org/doi/abs/10.1098/rspa.1985.0070.

[9] Mika Hirvensalo. Quantum computing. eng. 2nd. ed. Natural computing series.
Berlin: Springer, 2004. isbn: 3-540-40704-9.

[10] IBM. Size considerations for public and private keys. Accessed: 18.05.2023.
Sept. 28, 2022. url: https://www.ibm.com/docs/en/zos/2.5.0?topic=
certificates-size-considerations-public-private-keys.

59

https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://eprint.iacr.org/2022/975
https://doi.org/10.1098/rspa.1985.0070
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1985.0070
https://www.ibm.com/docs/en/zos/2.5.0?topic=certificates-size-considerations-public-private-keys
https://www.ibm.com/docs/en/zos/2.5.0?topic=certificates-size-considerations-public-private-keys

[11] Shigeru. Iitaka. Algebraic geometry : an introduction to birational geometry of
algebraic varieties. eng. Graduate texts in mathematics ; 76. Berlin: Springer,
1982. isbn: 0-387-90546-4.

[12] David Jao, Stephen D. Miller, and Ramarathnam Venkatesan. “Expander
graphs based on GRH with an application to elliptic curve cryptography”.
eng. In: Journal of number theory 129.6 (2009), pp. 1491–1504. issn: 0022-
314X.

[13] Ernst Kani. “The number of curves of genus two with elliptic differentials”.
eng. In: Journal für die reine und angewandte Mathematik 1997.485 (1997),
pp. 93–122. issn: 0075-4102.

[14] Oak Ridge National Laboratory and U.S. Department of Energy. Frontier -
direction of discovery. Accessed: 18.05.2023. url: https://www.olcf.ornl.
gov/frontier.

[15] Eleanor Rieffel and Wolfgang Polak. Quantum Computing - A Gentle Intro-
duction. The MIT Press, 2014. isbn: 978-0-262-01506-6.

[16] René Schoof. “Nonsingular plane cubic curves over finite fields”. In: Journal
of Combinatorial Theory, Series A 46.2 (1987), pp. 183–211. issn: 0097-3165.
doi: 10.1016/0097-3165(87)90003-3. url: https://www.sciencedirect.
com/science/article/pii/0097316587900033.

[17] Joseph H. Silverman. The arithmetic of elliptic curves. eng. Graduate texts in
mathematics ; 106. New York: Springer, 1986. isbn: 0-387-96203-4.

[18] Joseph H. Silverman. The arithmetic of elliptic curves. eng. 2nd ed. Graduate
texts in mathematics ; 106. New York: Springer, 2009. isbn: 978-0-387-09493-
9.

[19] Simon Singh. The code book : the secret history of codes and code-breaking
cryptography. eng. London: Fourth Estate, 1999. isbn: 1-85702-889-9.

[20] Andrew Sutherland. 18.783 - Elliptic Curves - Lectures. Accessed: 20.05.2023.
2022. url: https://math.mit.edu/classes/18.783/2022/lectures.html.

[21] John Tate. “Endomorphisms of abelian varieties over finite fields”. eng. In:
Inventiones mathematicae 2.2 (1966), pp. 134–144. issn: 0020-9910.

[22] Allan Turing. “On computable numbers, with an application to the Entschei-
dungsproblem (Proc. Lond. Math. Soc., series 2 vol. 42 (1937), pp. 230–265) —
A correction (ibid. vol. 43 (1937), p. 544–546)”. eng. In: Mathematical Logic.
Elsevier B.V, 2001, pp. 9–56. isbn: 9780444504234.

[23] Lawrence C. Washington. Elliptic curves : number theory and cryptography.
eng. Discrete mathematics and its applications. Boca Raton: Chapman &
Hall/CRC, 2003. isbn: 1-58488-365-0.

60

https://www.olcf.ornl.gov/frontier
https://www.olcf.ornl.gov/frontier
https://doi.org/10.1016/0097-3165(87)90003-3
https://www.sciencedirect.com/science/article/pii/0097316587900033
https://www.sciencedirect.com/science/article/pii/0097316587900033
https://math.mit.edu/classes/18.783/2022/lectures.html

	Introduction
	Preliminaries
	Problem Complexity
	One-way functions
	The cipher machine
	Digital signatures
	Two example cryptosystems
	Diffie-Hellman key exchange protocol
	RSA

	Classical Elliptic Curve Cryptography
	The group of points on an Elliptic Curve
	ECDH key exchange protocol
	ECDSA
	Benefits of ECC

	Quantum machines
	Quantum computation
	Quantum circuits

	Quantum algorithms
	Quantum parallelism
	The quantum Fourier transform
	Shor's factoring algorithm

	SIDH: a broken protocol
	Supersingular elliptic curves
	Supersingular Isogeny Diffie Hellman
	Set-up
	Key exchange protocol

	The Castryck-Decru attack
	Preliminaries
	The attack

	CSIDH
	The class-group action
	CSIDH
	Discussion

	Geometric principles of Elliptic Curves
	The projective plane
	Elliptic curves
	The Weierstrass equation

	Tangent and secant lines
	Isogenies
	The group of isogenies
	The dual isogeny

	A brief discussion of quantum physics
	Foundational principles of quantum mechanics
	Qubit systems
	Measuring a quantum system

	Bibliography

