
Sam
i Vuori

A
I 691

A
N

N
A

LES U
N

IV
ERSITATIS TU

RK
U

EN
SIS

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS

SARJA – SER. AI OSA – TOM. 691 | ASTRONOMICA – CHEMICA – PHYSICA – MATHEMATICA | TURKU 2023

REVERSIBLE 
PHOTOCHROMISM OF 

SYNTHETIC HACKMANITES
in Radiation Detection and Quantification

Sami Vuori





 
 
 
 

Sami Vuori 

REVERSIBLE 
PHOTOCHROMISM OF 

SYNTHETIC HACKMANITES 
in Radiation Detection and Quantification 

TURUN YLIOPISTON JULKAISUJA – ANNALES UNIVERSITATIS TURKUENSIS 
SARJA – SER. AI OSA – TOM. 691 | ASTRONOMICA - CHEMICA - PHYSICA – MATHEMATICA | TURKU 2023 



University of Turku 

Faculty of Science 
Department of Chemistry 
Intelligent Materials Chemistry Research Group 
Doctoral Programme in Exact Sciences (EXACTUS) 

Supervised by 

Professor Mika Lastusaari 
Intelligent Materials Chemistry Research Group 
Department of Chemistry 
University of Turku 
Turku, Finland  

Reviewed by 

Professor Klára Hernádi 
Laboratory of Applied Nanomaterials 
University of Miskolc, Miskolc, Hungary 

 
 
 
Professor Andrew Beeby 
Department of Chemistry 
Durham University, Durham, UK 

Opponent 

Professor Adrian Finch 
School of Earth & Environmental Sciences 
University of St Andrews 
St Andrews, UK  
 

The originality of this publication has been checked in accordance with the University 
of Turku quality assurance system using the Turnitin OriginalityCheck service. 
 
Cover Image: Sami Vuori 
 
 
 
ISBN 978-951-29-9279-9 (PRINT) 
ISBN 978-951-29-9280-5 (PDF) 
ISSN 0082-7002 (Print) 
ISSN 2343-3175 (Online) 
Painosalama, Turku, Finland 2023 



 3 

UNIVERSITY OF TURKU 
Faculty of Science 
Department of Chemistry 
Intelligent Materials Chemistry Research Group 
SAMI VUORI: Reversible Photochromism of Synthetic Hackmanites in 
Radiation Detection and Quantification 
Doctoral Dissertation, 187 pp. 
Doctoral Programme in Exact Sciences (EXACTUS) 
June 2023 

ABSTRACT 

The subject of this thesis is centered on a mineral called hackmanite, also known as 
photochromic sodalite. It is found naturally in remote, mountainous places in 
Afghanistan, Pakistan, Greenland, Russia, Canada, and the United States. The 
natural mineral is costly to extract and – depending on the location – its optical 
properties and chemical impurities vary arbitrarily. Thus, it is not only more 
predictable, but also sustainable to synthesize the mineral in a laboratory from 
traceable reagents that contain known amounts of impurities. The synthesis route 
used in the experimental section in this work is a solid-state method where the 
reagents are mixed and heated in an oven at 850 °C and reduced with a hydrogen‒
nitrogen gas mixture. 

The product, hackmanite (Na8Al6Si6O24(Cl,S)2), shows properties including 
luminescence, persistent luminescence, and reversible photochromism upon 
exposure to UV, X, gamma, nuclear, or particle radiation. Hackmanite’s 
photochromism is of particular interest since the coloration from white to pink can 
be reversed with visible light or heat, and this cycle can be repeated indefinitely. 
Hackmanite is thus able to react to its surrounding radiation atmosphere, and what 
makes the property even more interesting is that upon high-energy gamma radiation 
exposure the material “remembers” the exposure with a change of its color centers. 
In UV-induced coloration, the mechanism involves an electron transfer from a 
disulfide anion to a nearby chloride vacancy, which is a defect in the lattice due to 
the requirement of charge neutrality in the crystal. However, in X-ray- or other high-
energy radiation-induced coloration the incident energies are so high that the 
coloration is caused by core-shell electrons and subsequent holes trapping after 
thermalization. 

Due to the nature of the coloration process, hackmanite’s application region 
spans from the high-energy gamma radiation to UV, however the material can also 
be used to detect visible light since the bleaching process (electrons returning to 
disulfide ions from the trap) occurs in the visible wavelength region. This property 
can be used for taking a photograph, as is shown in this thesis. 

KEYWORDS: hackmanite, photochromism, radiation detection, dosimetry, 
photography 
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TIIVISTELMÄ 

Tämän väitöskirjan aiheena on hackmaniitti-niminen mineraali, joka tunnetaan myös 
nimellä fotokrominen sodaliitti. Sitä esiintyy luonnossa syrjäisillä vuoristoseuduilla 
Afganistanissa, Pakistanissa, Grönlannissa, Venäjällä, Kanadassa ja Yhdysvalloissa. 
Luonnonmineraalin louhinta on kallista ja kestämätöntä, ja sen optiset ominaisuudet 
ja kemialliset epäpuhtaudet vaihtelevat satunnaisesti riippuen sijainnista. Näin ollen 
on ennakoitavampaa ja kestävämpää syntetisoida mineraalia laboratoriossa rea-
gensseista, jotka ovat jäljitettäviä ja sisältävät tunnetut määrät epäpuhtauksia. Tämän 
työn kokeellisessa osassa synteesit toteutettiin kiinteän olomuodon menetelmällä, 
jossa lähtöaineiden seos kuumennetaan uunissa 850 °C:ssa ja pelkistetään vety-
typpikaasuseoksella. 

Tuotteella eli hackmaniitilla (Na8Al6Si6O24(Cl,S)2), on ominaisuuksinaan lumi-
nesenssi, jälkiloiste ja palautuva fotokromismi altistuessaan UV-, röntgen-, gamma‑, 
ydin- ja hiukkassäteilylle. Hackmaniitin fotokromismi on erityisen kiinnostava omi-
naisuus, sillä vaaleanpunaiseksi värjätty hackmaniitti voidaan palauttaa takaisin val-
koiseksi näkyvällä valolla tai lämmöllä, ja tätä sykliä voidaan toistaa loputtomasti. 
Tämän ominaisuuden tekee vielä mielenkiintoisemmaksi se, että gammasäteily-
altistuksen yhteydessä materiaali ”muistaa” korkeaenergisen altistuksensa värikes-
kuksensa ‒ joka on olennainen rakenne värjäytymismekanismissa ‒ muutoksella. 
UV-värjäytymisessä mekanismi sisältää elektronin virittymisen disulfidianionista 
läheiseen kloridivakanssiin, mikä on kiteen varaustasapainovaatimuksen mukaisesti 
muodostunut hilavirhe. Röntgen- tai muun korkeaenergisen säteilyn aiheuttamassa 
värjäytymisessä energiat ovat kuitenkin niin suuria, että värjäytymisen aiheuttaa 
sisäkuorten elektronien ja aukkojen loukkuuntuminen termalisaation jälkeen. 

Värjääntymisprosessin ansiosta hackmaniitin käyttöalue ulottuu korkeaenergi-
sestä gammasäteilystä UV-säteilyyn, mutta materiaalia voidaan käyttää myös 
näkyvän valon havaitsemiseen, sillä haalenemisprosessi (elektronien palaaminen 
loukuista takaisin disulfidi-ioneihin) tapahtuu näkyvällä aallonpituusalueella. Tätä 
ominaisuutta voidaan käyttää valokuvaamisessa. 

ASIASANAT: hackmaniitti, fotokromismi, säteilyn havainnointi, dosimetria, valo-
kuvaus  
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Abbreviations and symbols 

◻ a vacancy in a structure 
a.u. arbitrary unit 
B3LYP Becke, 3-parameter, Lee–Yang–Parr (a hybrid functional) 
DOS density of states 
E energy 
EPR electron paramagnetic resonance 
I intensity 
PBE0 Perdew–Burke-Ernzerhof 0 functional (a hybrid functional) 
PCB periodic boundary conditions 
PeL persistent luminescence i.e. afterglow 
PES potential energy surface 
(P)XRD (powder) X-ray diffraction 
RIJCOSX resolution for identity approximation for Coulomb integrals and COSX 

numerical integration for Hartree‒Fock exchange 
RMS root mean square 
SCF self consistent field 
SVP split valence polarization (a basis set) 
UV ultraviolet 
VCl a chloride vacancy (Kröger−Vink notation) 
VO an oxygen vacancy in a structure (Kröger−Vink notation) 
VUV vacuum ultraviolet 
XANES X-ray absorption near-edge structure 
XAS X-ray absorption spectroscopy 
XEOL X-ray-excited optical luminescence 
XPS X-ray photoelectron spectroscopy 
XRF X-ray fluorescence 
ZORA zeroth order regular approximation 
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1 Introduction 

Hackmanite is a naturally occurring mineral found in remote, mountainous places in 
countries such as Afghanistan, Greenland, Russia, Canada, and the United States. It is 
named after the Finnish geologist Victor Axel Hackman (1866–1941) [1,2], but 
currently the recommended form is photochromic sodalite according to the 
International Mineralogical Association [3]. Photochromism means that the mineral’s 
color can be altered with light. Hackmanite is a variety of a tectosilicate mineral group 
called sodalites, and sodalite itself is also a name of a mineral with a chemical formula 
of Na8Al6Si6O24Cl2. Hackmanite’s general chemical formula is very close to sodalite 
by only the addition of small amount of sulfur, i.e. Na8Al6Si6O24Cl2‒δSδ/2, where δ 
varies between 0 and 0.25 depending on the literature source. [1,2,4–6] The disulfide 
ion is the key in the coloration process, as it has a valence electron bound in a way that 
ultraviolet light can excite it into a defect in the lattice, and this coloration property is 
the main topic of this work. Other sodalite minerals are e.g. haüyne 
(Na3Ca(Si3Al3)O12(SO4)), nosean (Na8Al6Si6O24(SO4)∙H2O), and lazurite 
((Na,Ca)8[(S,Cl,SO4,OH)2|(Al6Si6O24)]), and while the chemical composition seems 
very different between the group members, they all share a mutual crystallographic 
tectosilicate group unit, which contains silicate tetrahedrons ((SiO4)4−). [7] 
Hackmanite’s unit cell is shown in Figure 1. 
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Figure 1.  The unit cell of hackmanite, showing the disulfide dopant in red, and a chloride vacancy 

in gray, which are responsible for the coloration. 

Hackmanite gained scientific interest in the 1950–1970s when Medved, Kirk, 
Doorn, Takeda, and Williams et al. reported about its optical properties. [8–13] After 
that, a UK-based research group led by Professor Mark Weller published 
compositional articles about the mineral in the early 2000s [6,14], but complete 
scientific resurgence occurred in the 2010s when Zahoransky et al. published their 
report about natural sodalites [15], followed by several papers about synthetic 
hackmanites from the research group led by Professor Mika Lastusaari in Turku, 
Finland. [3,16–22] During the past decade, significant progress has also been made 
in the development and refinement of computational methods regarding hackmanite. 
As a result of these advancements, they have particularly leveraged the 
understanding of hackmanite's structural and electronic properties to a new level. 
The simulations have proven to be a valuable complement to experimental 
techniques, providing insights and predictions that can be tested and verified through 
laboratory experimentation. While earlier studies on hackmanite have been on the 
structural and optical property side, the new openings in this field of study have been 
accompanied with scientific applications where hackmanite plays a key role. 
[21,23,24] 

While the synthesis of hackmanite can be anything incorporating high 
temperatures, such as solid-state, microwave, or hydrothermal reaction routes 



Introduction 

 11 

[3,6,8,12,14,16–20,22,25], the solid-state method is undoubtedly the most 
commonly used, which is the case in this work as well, since all synthetic samples 
were prepared using it. The method comprises mixing the starting materials (in 
pristine hackmanite’s case only zeolite, sodium chloride, and sodium sulfate) gently, 
then heating them at 850 °C in air, and another time in a moderately reducing 
atmosphere at the same temperature. This particular reaction route is favoured 
because of its reliability, yielding consistent products and reproducible properties, 
especially reversible photochromism. 

The main properties that make hackmanite interesting in terms of practical 
applications are photoluminescence, afterglow, and reversible photochromism. 
These are all phenomena where the result is clearly visible by a naked eye but are 
also quantifiable with instrumentation such as spectrometers or even a digital 
camera. Photoluminescence is a term for a phenomenon where the material emits 
light spontaneously as a result of absorbing high-energy radiation, typically 
ultraviolet. In hackmanite, photoluminescence emission occurs with excitation 
wavelengths throughout the whole UV range. [18,26] Particularly in natural 
hackmanite, UVA excites the orange emission from sulfur (Figure 2a), whereas 
shorter wavelengths give rise to activation of the titanium–oxygen vacancy system 
which is responsible for the more blue luminescence and afterglow (Figure 2b). 



Sami Vuori 

 12 

 
Figure 2.  a) A natural hackmanite specimen from Mt. St. Hilaire, Canada exposed to 365 nm UVA, 

showing hackmanite’s characteristic, strong orange photoluminescence. b) Synthetic 
hackmanite’s luminescence under 302 nm UVB exposure. 

Upon UV excitation, another important optical property is activated, namely 
photochromism. [3,7–9,11–13,15,16,18,19,23–25,27–31] In hackmanites, 
photochromism is a phenomenon where the material changes its color to pink after 
absorbing UV photons. The color can be reverted to original off-white by exposing 
the material to visible light or heat  [19], after which it is once again ready to change 
to pink upon UV excitation. For the practical applications, this reversible coloration 
is of high importance since it renders easily-synthesizable artificial hackmanite a 
sustainable material – together with the fact that it contains only abundant elements; 
if the material gets damaged or is not needed any more, hackmanite can be disposed 
of as general household waste. 
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2 Literature review 

The literature review consists of the scientific foundation of the work, including the 
following chapters and sections: 

1. Theory of the solid-state synthesis method, which was the method used in 
synthesizing the samples in the experimental section of this work. Other 
synthesis methods are outside the scope of this thesis and are thus excluded. 

2. An introduction to reversible photochromism and its industrial and consumer 
applications. 

3. Information about several materials that exhibit reversible photochromism, 
including natural and synthetic. 

4. The mechanism of tenebrescence in hackmanites explaining the quantum 
physical and chemical processes that lead to the coloration and subsequent 
bleaching of the material. 

5. Information about coloration depth and its relation to the traps in the crystal 
lattice, with a special focus on hackmanite. 

6. Introduction to high-energy radiation including X-, gamma, alpha, and beta 
radiation, their absorption and scattering, scintillation and XEOL 
phenomena, high-energy radiation detection methods, minerals with 
photochromism upon high-energy radiation, and lastly an overview of 
current passive detection materials for high-energy radiation. In this sense, 
passive means that the material does not need electricity to generate a 
response, and thus the signal is an integral of the whole radiation dose. 

2.1 The solid-state reaction method 
Many inorganic photochromic materials, including hackmanite, are easily 
synthesized via the solid-state reaction route, which involves chemical reactions that 
occur within the boundaries of the reactants and products being in a solid phase 
throughout the whole synthesis. These reactions are of particular interest to materials 
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scientists because they can be used to synthesize a wide variety of materials with 
unique optical properties, to which photochromism belongs. 

Solid-state reactions can occur via several different routes, including diffusion 
[32], phase transformation (nucleation, growth, and impingement) [33–35], and 
solid-state metathesis [36,37]. In diffusion-controlled solid-state reactions, the 
reaction occurs through the diffusion of reactants into each other. This can occur 
either homogeneously or heterogeneously, and the rate of the reaction is determined 
by the diffusion coefficient of the reactants in the solid state. In this, several 
interfaces of different materials form a joint where the diffusion profile of each 
interface forms a Gaussian distribution related to each other. After a certain time, the 
diffusion has proceeded to a point where a finite amount of each substance has 
diffused into the other, and vice versa. At high temperatures the diffusion rate is 
increased, i.e., at room temperature while there is a non-zero rate, there is practically 
no reaction between substances that have a melting point of several hundreds of 
degrees in Celsius. However, the temperature must not reach the melting point of 
any of the materials, as the Tammann rule states that the most optimal temperature 
for heat-generated point defects in a solid is ¾ of the melting temperature. [32–
35,38,39] 

Figure 3 shows a simplistic overview of the solid-state reaction route, where the 
grinding lets the starting material powder particles distribute evenly in the mixture 
mass, and heating induces a reaction between the interfaces, the reaction rate 
depending on the size of the surface joints. When the sample is ground and heated 
again, a pure phase is obtained. 
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Figure 3.  A simplistic overview of the solid-state process, which involves mixing the starting 

materials to form an even distribution, then heating and repeating the process until the 
finished product is uniformly the desired phase. 

Phase-transforming solid-state reactions occur when the reactants undergo a 
phase change during the reaction. For example, a solid-state reaction between a metal 
oxide and a reducing agent may result in the reduction of the oxide to a metal. In this 
case, the reaction occurs via a phase transformation from an oxide to a metal. One 
example is a solid-state reduction reaction of magnetite (iron oxide) or 
titanomagnetite to elemental metals using hydrogen or methane. [40–42] 

Solid-state metathesis reactions occur when two solid-state compounds react to 
form two new solid-state compounds, which can be solid solutions with a high 
thermodynamic stability. This type of reaction is commonly used in the synthesis of 
complex materials, such as borides, silicides, pnictides and chalcogenides, or 
nitridoborates, carbodiimides, tetracyanoborates, tetracyanamidosilicates, and 
carbon-nitride materials. [36,37] 

There are a number of factors that can influence the rate and extent of solid-state 
reactions, including temperature, pressure, and the nature of the reactants, including 
the possible reducing atmosphere. For example, high temperatures can accelerate the 
diffusion of reactants and increase the rate of the reaction. Pressure can also have an 
effect on the reaction, particularly in cases where the reaction is accompanied by a 
change in volume, leading to a change in interatomic distances. [43,44] 
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Solid-state reactions have been extensively studied in a variety of materials 
systems, including oxides, nitrides, and intermetallics. One example is the solid-state 
reaction between aluminum and titanium oxides leading to a formation of their solid 
solution. [45–47] 

2.2 Reversible photochromism 
Reversible photochromism is a property of matter where it changes its color upon 
photon irradiation. Although the word “photon” renders the definition vague and 
implicitly includes photons of all energy, typically the phenomenon has been 
researched in materials with excitation in the UV range, although not limited to it. 
The reversibility of the property means that there is no irreversible damage inflicted 
on the atomic level, meaning that the material does not proceed to a state where 
reversing the phenomenon to original would require substantial energy barrier 
crossing. Hackmanite shows this type of reversible coloration from white to pink, as 
depicted in Figure 4. 

 
Figure 4.  A silicone film with 20% of hackmanite powder. When the film is exposed to UV or high-

energy radiation, it changes its color from white to pink due to hackmanite’s remarkable 
coloration ability. When the film is kept in light or given heat, it reverts to its original white 
color. 

Currently, photochromic materials are used in glasses, eyewear, building 
materials, information storage devices, and windows (including automotive), where 
their observed color darkens in response to the presence of e.g. UV radiation that is 
found in sunlight. In windows and glasses, darkening provides a number of benefits, 
including reducing glare, improving contrast, and especially protecting against UV 
radiation. In addition to their practical benefits, photochromic materials also have 
aesthetic value, as they allow for the creation of unique color-changing designs. [48–
52] 
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Photochromic glasses and windows have been developed using a number of 
different materials, including silver halides, organic dyes, and metal oxides. One of 
the most commonly used materials are silver halides (e.g. AgBr), which undergo a 
reversible photochemical reaction in response to UV radiation. When exposed to UV 
radiation, the silver halides form small clusters of metallic silver, which cause the 
glass to darken. This darkening is reversible, meaning that the glass will return to its 
clear state when the UV radiation is removed. The windows can also be made into 
flexible shapes, e.g. for use as motorcycle visors. [53–58] 

Organic dyes, e.g. diarylethene, fulgide, azobenzene, spiropyran, spirooxazine, 
benzopyran, and naphthopyran and organic-inorganic hybrid materials (organic 
molecule adhesion onto e.g. pores of a silica matrix) are another commonly used 
material in photochromic glasses and windows. These dyes absorb UV radiation and 
undergo a photochemical reaction (e.g. photocyclization, trans-cis isomerisation, or 
heterolytic cleavage or bond scission) that results in a change in color. The use of 
organic dyes allows for a wider range of colors to be produced, as well as a great 
control over the rate of color change. However, their disadvantage is the finite cycles 
the coloration can undergo. [59–62] 

The production of photochromic glasses and windows involves a number of 
steps, including the deposition of the photochromic material onto the glass or plastic 
substrate, the incorporation of a protective layer to prevent scratching, and the 
addition of a UV-blocking layer to provide protection against harmful UV radiation, 
although with many photochromic materials the absorption of UV is enough to act 
as the UV protection layer, depending on their optical density in the UV region. [57] 

2.3 Materials exhibiting reversible UV coloration 
In addition to hackmanite, some reversibly colorable, laboratory-synthesizable 
inorganic materials that have been reported are e.g. 

1. Sr3YNa(PO4)3F:Eu2+, synthesized by the solid-state reaction method using 
SrCO3, Na2CO3, (NH4)2HPO4, SrF2, and Ln2O3 (Ln = Y, La‒Nd, Sm‒Lu) as 
starting materials. After grinding the materials, they are preheated at 600 °C 
for 2 h in air atmosphere, after which the product is reground and reduced at 
1100 °C for 3 h in a 15%/85% H2/N2 atmosphere. After exposure to 254 nm 
UV, the reflectance spectrum reveals absorption bands at 422 and 606 nm, 
which renders the color of the irradiated material from white to cyan. [63]  

2. Na0.5Bi2.5Nb2O9:Sm, synthesized using Na2CO3, Bi2O3, Nb2O5, and Sm2O3 
as starting materials. The solid-state synthesis involves mixing the powders 
with alcohol and heating at 900 °C for 4 h in air. After the first heating, the 
product is mixed with alcohol and polyvinyl alcohol (PVA) binder, and 
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finally pressed into pellets sized 15 mm in diameter and 1 mm in thickness. 
The last heating is conducted at 1100 °C for 2 h. The color change was 
reported to occur under sunlight, where the original green coloration turned 
into dark gray. The reflectance spectrum shows a broad absorption band 
peaking at 458 nm. [64] 

3. Sr3GdNa(PO4)3F:Eu2+, where the starting materials SrCO3, Na2CO3, 
(NH4)2HPO4, SrF2, and Ln2O3 are given the same solid-state treatment as in 
2. The coloration properties are also the same. [65] 

4. Mg4Ga8Ge2O20:Cr3+ (MGG:Cr), synthesized from MgO, Ga2O3, GeO2, 
Cr2O3, and H3BO3 (flux) by milling in an agate mortar and heated at 1100 °C 
for 2 h in air. After heating, the product was ground again and heated at 
1400 °C for 6 h in air. Six compositions of MGG:xCr where the x varied 
from 0.0005 to 0.02 showed increasing photochromism when the dopant 
concentration decreased; of all samples, the 0.0005 specimen showed the 
deepest rosy brown photochromism upon 280 nm UV irradiation. The 
reflectance spectra showed absorption bands at 350 and 550 nm. [66] 

5. KSr2Nb5O15, synthesized using a molten salt synthesis method using SrCO3, 
Nb2O5, and KCl, along with Bi2O3 as a material for aiding the sintering 
process. After ball-milling the powders for 10 h in alcohol, the dried mixture 
was granulated using polyvinyl alcohol and pressed into pellets of 12 mm in 
diameter and 1.6 mm in thickness. The first heating was conducted for 3 h 
at 650 °C in air to remove the PVA binder, and subsequently heated at 1250 
°C for 2 h in air, and finally at 1350 °C for 2 h in a flowing oxygen 
atmosphere. The resulting products showed a coloration reaction under 
395 nm irradiation, from green to darker shade of green. The irradiated 
sample showed a reflectance minimum at 532 and 689 nm. [67–70] 

6. BaMgSiO4, a material with a stuffed tridymite structure that can be 
synthesized via solid-state reaction route using BaCO3, MgCO3, SiO2, metal 
oxides (dopants), and H2BO3 (flux). The powder mixture is ground in a 
mortar with ethanol and pressed into pellet (diameter 20 mm, thickness 
5 mm) after drying. The pellets are then heated in a 5%/95% (H2/Ar) 
reduction atmosphere at 1250 °C for 4 h. The product shows deep pink 
reversible coloration that changes from white under blue light (405 nm) or 
UV (365 nm) irradiation. The absorption band is centered at 523 nm. [71,72] 

7. Sr2SnO4:Eu3+, synthesized via the solid-state reaction route using SrCO3, 
Eu2O3, and SnO2 powders as the starting materials and mixed with the help 
of ethanol. The mixture is heated at 800 °C for 1 h in air, and then pressed 
into pellets and heated again in air at 1100‒1600 °C for 5 h. When the 
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products are subjected to 254 nm UV radiation, they show white-to-purple 
reversible coloration with an absorption band located at 578 nm. [73–75] 

8. Ba10(PO4)6ClF:Eu2+,Gd3+, synthesized by mixing BaCO3, (NH4)2HPO4, 
BaCl2 ∙ 2H2O, BaF2, Eu2O3, and Gd2O3 and using solid-state reaction as the 
synthesis method. The mixture of these powder is ground in an agate mortar 
and then heated at 1100 °C in a 15%/85% (H2/N2) atmosphere for 3 h. The 
products showed a color transition from white to pink after irradiation with 
254 nm, and reverted to white with 532 nm laser, heat, sunlight, or ambient 
light. The absorption band in this material is located at 530 nm. [76] Also 
another haloapatite form, Ba5(PO4)3Cl:Eu2+,R3+ (R = Y, La–Nd and Sm–Lu), 
shows this reversible photochromism. [77] 

9. WO3 and MoO3, which are synthesized as thin films by sublimating pure 
WO3 or MoO3 in high vacuum. The optimal coloration excitation 
wavelength is in the UVA range, and the resulting broad absorption band 
peaks at in the near-infrared region (800‒1050 nm depending on the film’s 
properties). [78–82] 

10. V2O5, which is synthesized by pressing pure V2O5 into a pellet and heating 
it at 500‒580 °C for 4‒15 h in air or flowing O2 atmosphere, or by preparing 
it as thin films via wet chemistry methods. The photochromism can be 
induced with UV or visible light laser, which turns the material’s color to 
pale blue, which is a result of a broad absorption band peaking at ~700 nm. 
[83–85] 

11. Other metal oxide and hybrid materials, including Ag/TiO2 [86], W-TiO2 
[87], TiO2 / Ni(OH)2 [88], Nb2O5 [89], and WO3–TiO2–ZnO [90,91]. 

As can be seen from the synthesis procedures from the materials listed above, solid-
state reaction route is mostly used when producing inorganic photochromic 
materials. Although there may currently still be an abundance of the elements found 
in the aforementioned materials, most of them pose challenges when considering 
them to be used in practical applications. As for natural materials, tugtupite 
(Na8Al2Be2Si8O24Cl2) (photochromism shown in Figure 5a and c) contains 
beryllium, which is a toxic element, and the reversal of its coloration is very slow 
compared to hackmanite, and its synthesis is also very difficult. Although scapolite 
([Na,Ca]4Al3Si9O24[Cl,CO3]2) consists of non-endangered elements, its reversal to 
the original color proceeds spontaneously quickly in room temperature after 
irradiation. Figure 5b and d shows polished scapolite samples where the 
characteristic blue photochromism is clearly visible. [21,92,93] 
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Figure 5.  a) Tugtupite and b) scapolite rocks before and c), d) after exposure to 254 nm UV, 

exhibiting reversible photochromism. 

Most of the listed photochromic materials contain toxic and/or rare or expensive 
elements, such as strontium, tin, europium, bismuth, niobium, samarium, gallium, 
germanium, barium and/or gadolinium etc. [94] In addition to these, some other 
notable inorganic reversibly photochromic materials are also Zn2GeO4:Eu [95], 
CaAl2O4:Eu,Nd [96], ZnGa2O4:Bi [97], sapphire [98] and diamond [99,100]. 

2.4 Mechanism of tenebrescence in hackmanite 
In hackmanite’s photochromism, often referred to as tenebrescence (from Latin 
tenebrae, “darkness”) [101], the coloration is induced with UV radiation and 
reverting it to its original state is achieved with visible light – or heat. 

The mechanism of tenebrescence involves a system with a dopant amount of 
sulfide anions S2

2− and chloride vacancies (VCl). Compared to sodalite, introducing 
a sulfide ion with a valence state of −II in hackmanite creates a charge imbalance, 
which must be neutralized by having one chloride ion (valence −I) left out of the 
structure due to the aliovalent nature of the two species. The resulting sulfide ion 
then acts as an electron donor for the chloride vacancy upon exposure to UV 
radiation. [3,8,9,12,16–19,21,23,24] Both the S2

2− and VCl are located in the centers 
of their respective Na4 tetrahedra in the sodalite lattice. [6,14,21,23,24,102] When 
an electron lands on the VCl, the tetrahedron reorganizes to form a metastable 
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geometry by contracting itself slightly due to the trapped electron attracting the Na+ 
ions, whereas the tetrahedron around the S2

− expands slightly compared to its initial 
state due to the loss of one Na+-attracting electron. [21] The VCl

− now acts as a color 
center by absorbing photons at ~540 nm and is thus the origin of the observed purple 
or pink coloration of the material. Mechanistically, the electronic transitions of the 
system proceed as depicted in Figure 6, and in [19,21,23,24]: 

 
Figure 6.  The mechanism of tenebrescence in hackmanites, explained in detail below. 

1. A UV photon (energy ~4−5 eV) excites a valence electron in the S2
2− ion, 

and the electron then lands on the VCl. This means an electronic transition 
from 1[S2

2−,VCl] to 1[S2
−,VCl

−(a1)]. 

2. The Na+ tetrahedron containing the VCl in its center reorganizes to form a 
metastable triplet state, 3[S2

−,VCl
−(a1)], which now becomes the color 

center’s ground state. The reorganization is due to the trapped electron 
attracting the Na+ ions, leading to a minute contraction of the tetrahedron. 

3. The color center absorbs a photon of energy ~2.4 eV (~540 nm), which 
excites the electron to the VCl’s excited state 3[S2

−,VCl
−(t2)]. This leads to 

the observation of the material’s coloration, which is strong due to the 
allowed A1→T2 transition. 
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4. When the electron deexcites to the ground state 3[S2
−,VCl

−(a1)], this route 
also crosses the probability density of the original electronic state 
1[S2

2−,VCl] although by a small degree due to weak coupling of the two 
systems. Still, there is some probability for this to occur, and when it 
happens, the geometry reorganizes again to conform to the global PES 
minimum of the system, leading to the original, non-colored white form. 

5. The bleaching can also be induced by heating the sample, which increases 
the probability of the electronic states to overlap as a function of 
temperature. As a result, the required energy for bleaching the material 
with heating is lower than with visible light; only ~0.5 eV since there is 
no need for the discrete amount of energy for the electron excitation first 
into the excited triplet state and then to the original electronic state. [19] 

2.5 Coloration depth and traps 
Coloration depth of opaque materials can be measured with radiant reflectance 
spectroscopy, which gives information about the absorption features in the material. 
Preferably, the measurement is carried out in an integrating sphere where only the 
sample is illuminated with a calibrated light source. An integrating sphere enables 
the collection of all reflected light, losing all directional information of the reflection. 
The inner lining of the integrating sphere is a Lambertian [103] surface, which 
reflects the light coming from the sample uniformly inside the hollow cavity. The 
detector coupled to an integrating sphere then collects this light. In hackmanite, the 
coloration is measured in the visible range since the absorption band is centered 
around ~540 nm. The coloration depends on the total UV photon fluence, but in 
addition to this, the observed color depth of hackmanite is dependent on the color 
center concentration, which can be estimated by using Smakula’s formula. [30,104] 
This equation, however, is originally developed for color center absorption bands (F 
bands) with a Lorentzian shape [105], thus a more accurate, Lorentz field-corrected 
equation introduced by van den Brom et al. (Eq. 1) is preferred [3,106]: 

 𝑓𝑓𝑁𝑁𝑐𝑐 = 5.0 ∗ 1015 ∗ 𝛼𝛼m(cm−3) (Eq. 1) 

where f = oscillator strength (0.3 atomic units for hackmanite [23]), Nc = color 
center concentration, αm = maximum value of the absorption coefficient α, which is 
calculated using Beer‒Lambert law from a fully colored sample. [106] The color 
center concentration can be converted between volume and mass with hackmanite’s 
density, which is essentially sodalite’s density 2.3 g cm‒3 [7]. 

An additional way to estimate the color center concentration is to use mass 
magnetization measurements σ (unit A∙m2 kg‒1) of the white and colored forms by 
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subtracting the former with the latter and dividing it with the magnetic moment of 
the triplet state 3[S2

−,VCl
−(a1)], i.e. 2.1 Bohr magnetons µB [19]: 

 𝑁𝑁c = 𝜎𝜎
µB

= �A∗m2kg−1�

� JT�
= [A∗m2kg−1]

�kg∗m
2s−2 

kg∗s−2A−1�
= [kg−1] (Eq. 2) 

Eq. 2 possibly produces less variation in different samples with the same amount 
of color centers since it excludes the optical characteristics of the sample: mainly the 
size of reflecting crystal surfaces and their orientation. Some reported color center 
concentrations using Eq. 1 and 2 are in the order of 1016 g‒1 (synthetic 
Na8Al6Si6O24(Cl,S)2) [19], 1017 g‒1 (natural hackmanite) [3], 1018 cm‒3 (synthetic Cl, 
Br, and I sodalites) [30]. 

2.6 X-rays, nuclear and particle radiation 

2.6.1 X-rays and gamma rays 
There is no distinctive division between X-ray and gamma ray photons, however a 
typical classification of X-rays is that they originate from electrons, whereas gamma 
rays originate from nuclei. The two types’ energy ranges overlap in the 
electromagnetic spectrum, and as the photons’ qualities are described using the 
Planck‒Einstein relation E=hυ, they are energetically indistinguishable from each 
other: if the origin of the photon is not known, a photon of e.g. 80 keV cannot in any 
way be determined to be a gamma or X-ray photon. However, as a convention, X-
rays have been described to occupy the electromagnetic spectrum’s range of 0.01‒
100 Å, or 106‒100 eV in quantum energy, but the limits vary between sources from 
different times. X-rays can be emitted from the deceleration of electrons, resulting 
in broad, continuous spectrum or characteristic emission. The former, 
bremsstrahlung (German for “braking radiation”) is a phenomenon in which a 
charged particle is accelerated or decelerated as it interacts with the electric field of 
another charged particle, such as an atomic nucleus. This acceleration or deceleration 
causes the charged particle to emit electromagnetic radiation in the form of photons, 
which can be detected and measured. The working principle of synchrotrons’ and 
cyclotrons’ adjustable X-ray energies are based on bremsstrahlung: the desired 
energy can be achieved by simply monochromatizing the beam. [107,108] 

In detail, bremsstrahlung radiation is produced when a charged particle, such as 
an electron, passes near a charged nucleus or other charged particle and experiences 
a change in direction due to the electromagnetic force. As the charged particle 
changes its direction, it emits radiation in the form of photons, which have energy 
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proportional to the energy lost by the charged particle as it interacts with the electric 
field of the nucleus. [107,108] 

Bremsstrahlung radiation is important in a variety of contexts, including in 
medical imaging, where it is used in X-ray machines to produce images of the human 
body. It is also an important process in astrophysics, where it can be responsible for 
the emission of high-energy photons from sources such as supernova remnants and 
black holes. [109,110] 

Another X-ray emission route is the abrupt absorption of X-rays photons, leading 
to the excitation or ionization of core electrons. When an electron is excited, an X-
ray photon is emitted when the resulting hole is filled with an electron from a higher 
orbital energy level, i.e. the energy of the emitted X-rays is equal to the energy 
difference between the initial and final energy levels of the electron. This leads to 
characteristic radiation, which manifests itself as sharp peaks in the X-ray region of 
the electromagnetic spectrum. [108,111] 

The characteristic X-ray emission spectrum of an element is unique and can be 
used to identify the element present in a sample. This is because the energy levels of 
the electrons in each element are specific to that element, meaning that the energy of 
the emitted X-ray is also specific to that element. By measuring the energies of the 
X-rays emitted from a sample, the elements present in a sample can be determined; 
this method is called X-ray fluorescence spectroscopy. [108] 

Under the aforementioned classification, a gamma ray is a quantum of 
electromagnetic radiation emitted from an event where the atomic nucleus undergoes 
a transition from a higher energy level to a lower one. It can occur by nuclear fission, 
α or β particle decay, or by orbital electron capture, if the daughter nuclide is left to 
an excited state. [108,111] 

2.6.2 Alpha and beta radiation 
Alpha radiation is a type of ionizing radiation that is made up of positively charged 
particles called alpha particles, which are made up of two protons and two neutrons, 
also called doubly ionized helium nuclei (He2+). Alpha particles are emitted by decay 
of certain types of radioactive materials, most notable probably being 241Am, which 
is used in ionization smoke detectors. Alpha particles have a relatively low 
penetration power and are not able to pass through e.g. paper or clothing. However, 
they can be harmful if ingested or inhaled, as they can damage cells and tissues in 
the body. Alpha radiation is mostly emitted by heavy elements, such as uranium and 
plutonium via radioactive decay. It is also emitted by some types of particle 
accelerators and nuclear weapons. [108,112–114] 

Beta radiation is a type of ionizing radiation that is made up of high-energy 
electrons or positrons, which are emitted by certain types of radioactive materials as 



Introduction 

 25 

they undergo radioactive decay, e.g. 18F, 137Cs and 32P. Beta particles are smaller and 
more penetrating than alpha particles, and can pass through paper, clothing, and 
some types of shielding materials. Like alpha particles, beta particles can be harmful 
if ingested or inhaled, as they can damage cells and tissues in the body. However, 
the penetration power of beta particles makes them more harmful than alpha particles 
when they are externally exposed to the body. Usually, beta radiation occurs in 
lighter radioactive elements, such as carbon and tritium. [108,115] 

2.6.3 Absorption and scattering 
X- and gamma rays are classified as radiation qualities capable of completely 
detaching an electron from its nucleus. The energy needed to produce an ion pair has 
been experimentally tested to be 34 eV, i.e. energies equivalent or higher than this 
give rise to the production of ion pairs. [111,116,117] Sometimes, the liberated 
electron may have enough energy to induce other ionizations in the material, leading 
to a cluster of ions and subsequent reactions until all energy has been lost in the 
resulting processes. A rule of thumb in the absorption of X-rays and gamma rays is 
that the higher the energy, the less the absorption when the elemental composition 
of the material is constant. However, a spectrum with photon energy as the x axis 
and the absorption in the y axis shows an abrupt discontinuity in the data points due 
to the discrete nature of electron energy levels leading to an absorption edge. In solid-
state materials, the amount of absorption can be expressed using a physical quantity, 
mass attenuation coefficient, µ with units in cm2 g‒1 [118]. Figure 7 clarifies the 
matter with a plot of mass attenuation coefficient as a function of energy: at ~2.8 
keV there is a sudden change in the attenuation due to the presence of Cl, which has 
a K edge (from the X-ray notation where K signifies the innermost electron shell) at 
that energy [119]. This means that at ~2.8 keV the X-ray energy is higher than the 
binding energy of Cl’s K-shell electrons, which gives rise to their excitation. Sulfur 
has a K edge at ~2.5 keV [119], but it does not show in the image due to its low 
relative amount compared to the overall molar mass of hackmanite. Hackmanite’s 
other elements’ absorption edges (Na K edge at 1.1 keV, Al ~1.6 keV, Si ~1.8 keV, 
and O ~0.5 keV [119]) also do not show since their absorption edges lie outside the 
plotted region in the graph. 
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Figure 7.  Mass attenuation coefficient of hackmanite as a function of energy. Inset: the absorption 

edge region zoomed in. [118] 

A general rule is that the higher the element’s Z is, the better it absorbs radiation 
with the inverse cube relation Z3/E3 where E = photon energy. [120] This is due to 
more dense packing of the atoms, which in turn increases the probability of a photon 
hitting an atom. The interaction types are (from [108,111,121,122]): 

1. Photoelectric absorption leading to the excitation of an electron when the 
energy of the X-ray or gamma ray photon is transferred to an electron in the 
atom, causing the electron to be ejected from its orbit. This process is the 
dominant mechanism of absorption for low-energy X-rays. The probability 
of absorption depends on the energy of the X-ray and the atomic number of 
the material, with higher atomic numbers leading to greater absorption. 

2. Compton (incoherent) scattering where part of the photon energy is 
transferred to a recoiling electron. 

3. Thomson (coherent) scattering where the photon is deflected without it 
losing its energy. 

4. Pair production where the annihilation of a high-energy photon leads to the 
formation of an electron and a positron. 

5. Photodisintegration where the nucleus absorbs the energy of the photon. 
 
The nature in which alpha particles are absorbed and scattered depends on the 

material they are interacting with, however in general they interact with matter with 
the following ways (from [108,123]): 
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1. As alpha particles pass through a material, they can ionize the atoms and 
molecules in their path due to the alpha particle being positively charged. 
This can cause the material to become electrically charged, which can then 
inflict damage in the matter or tissue. 

2. Alpha particles can excite atoms in the material they are passing through, 
causing them to become unstable and emit secondary particles (such as 
electrons). These secondary particles can then interact with other atoms in 
the material, leading to further ionizations. The excitation is due to the alpha 
particle being positively charged, but not having enough influence to ionize 
the atom. 

3. Coulomb scattering: The positive charge of the alpha particle causes it to 
interact with the negatively charged electrons in the material it is passing 
through. This can cause the alpha particle to scatter in different directions, 
losing energy in the process. 

Because of these mechanisms, alpha particles have a very short range in most 
materials. For example, in air, alpha particles can travel only a few centimeters 
before being stopped. This makes alpha particles much less penetrating than beta or 
gamma radiation, but also much more damaging if they are inhaled or ingested, as 
they can inflict significant damage to living tissue. 

2.6.4 Scintillation and XEOL 
Scintillation is a phenomenon in which certain materials emit light when they are 
exposed to ionizing radiation, such as X-rays, alpha particles, beta particles, or 
gamma rays. This emission of light is known as scintillation light, and it is produced 
as a result of the interaction of the ionizing radiation with the material. The process 
can be simplistically described as follows [124–127], also depicted in Figure 8: 

1. Ionizing radiation is absorbed by a scintillator material. 

2. Core-shell electrons of an atom are excited, leading to the formation of 
electron‒hole pairs and a cascade of secondary electrons and holes. 

3. After a thermalization event, electrons and holes of the excited atoms 
recombine in a luminescence center in the bandgap, releasing energy in 
the form of a photon. 
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Figure 8.  The mechanism of scintillation. When a scintillator is exposed to high-energy radiation, 

a core-level (e) electron is excited or ionized leaving a hole (h), which leads to the 
multiplication of both charge carriers due to collisions inside the material. After 
thermalization the two recombine in a luminescence center, and a photon is emitted.  

The light can then be detected by a photosensor, such as a photomultiplier tube 
or a silicon photomultiplier, which converts the light into an electrical signal that can 
be measured and analyzed. 

Scintillation creates a number of electron‒hole pairs that depends on the initial 
incident photon energy, with higher energies producing more pairs. In XEOL ‒ 
which is essentially a technique where scintillation of the material can be used to 
study its optical properties upon X-ray irradiation ‒ the creation of electron‒hole 
pairs follows the relation EX-ray photon/2Ebandgap in ionic crystals. However, most 
scintillator materials follow ideal behavior only in a limited energy range, typically 
at the lowest energies. While ideally the intensity of the emission relative to the X-
ray energy plotted against the X-ray energy (i.e. I/E versus E) is a horizontal line, it 
mostly follows an ascending series since the scintillation luminescence intensity 
grows with energy. [125,128] 

The scintillation process is important in a variety of fields, including nuclear 
physics, particle physics, and medical imaging. Scintillation detectors are commonly 
used in these fields to detect and measure ionizing radiation. For example, 
scintillation detectors are used in positron emission tomography (PET) scanners, 
which are used to image the distribution of radioactive tracers in the body for medical 
diagnosis and research. Some scintillator materials are e.g. CeF2, Bi4Ge3O12, CsI, 
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BaF2, LaF3, CdWO4, YTaO4, CsF, BaF2, KMgF3, Gd2O3:Eu3+, Gd2O2S:Pr3+, 
Gd2O2S:Tb3+, CaF2:Eu2+, Lu2SiO5:Ce3+, LaF3:Nd3+, NaI:Tl+, CsI:Tl+, CsI:Na+, 
CdS:Te2‒, ZnS:Ag, CuI, and PbI2. [108,113,114,127,129] 

2.6.5 Detection methods 
The detection of high-energy radiation is based on its interaction with matter, mainly 
by using the following methods. 

1. Photographic film: the photon excites an electron in a silver halide crystal 
to a nearby crystal defect, which in turn attracts a nearby silver ion. The 
recombination event produces silver metal, which appears as an opaque 
spot in the film, contrary to the transparent silver halide. [130] 

2. Optically stimulated luminescence (OSL): upon photon irradiation, an 
electron from the dopant material is excited to a crystal defect in the host 
lattice, e.g. BaFBr:Eu2+ in which the europium ion is oxidized to Eu3+ and 
the electron is trapped inside a vacancy energy level residing in the 
bandgap of the material. The electron is liberated from the vacancy using 
laser stimulation, after which the electron emits a photon in the visible 
range. Other examples are e.g. α-Al2O3:C [131,132], CaSO4:Mn [133], 
opal (SiO2 ∙ nH2O) [134], spodumene (LiAlSi2O6) [135], ZrO2 + PTFE 
[136], RbCdF3:Mn2+ [137], AlN-Y2O3 [138], KBr:Eu [138], KCl:Eu 
[138], LiAl(SiO3)2 [138] and MgS:Ce,Sm [139]. 

3. Thermoluminescence: the method works similarly with OSL, but the 
electron is liberated from the trap with heat stimulation. Example 
materials are CaS:Ce and Dy2O3 nanophosphors, Li2B4O7, CaSO4, 
Mg2SiO4, LiF [140], NaCl [141] , KMgF3 crystals [142], CaF2 [143], 
diamonds [144], AlN [144] α-Al2O3:C, α-Al2O3:C,Mg, and Gd2O3:Eu3+. 
[145–153] 

4. Fluoroscopy: this method does not require a material with defects, as it is 
based on fluorescence. The high-energy photon excites an electron in the 
material’s valence band, after which the electron recombines immediately 
with its hole, emitting a visible photon. This enables either intermittent 
(computed tomography, CT) or real-time surveillance of the functioning 
of tissues and organs. Even though the radiation exposure is rather low 
due to the method being only a supporting tool and not a diagnostic scan 
in itself, it still contains the risk of exposing the subject to large doses of 
ionizing radiation if used for prolonged times. In fluoroscopy, along with 
more rarely used gadolinium-based materials, mostly organic iodinated 
contrast agents such as diatrizoate, iothalamate, ioxaglate, iohexol, 
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ioversol, iopamidol, and iodixanol are used to make a radiodensity 
gradient inside the body. [154–159]  

5. Semiconductor detectors: a high-energy photon impinges upon a 
semiconductor material and converts the electron excitation either directly 
or indirectly (through scintillation-induced visible light detection) to 
electrical signal. The advantage with these materials, e.g. lithium-drifted 
Si, Ge, GaAs or Si, is their fast speed and sensitivity. [160–163] 

6. Gas ionization detectors: a high-energy photon creates an ion pair in a gas 
chamber with an external electric field. The electrons moving in different 
directions induce a dose rate-proportional current, which is detected by 
the instrument. These detectors are classified into three categories: ion 
chambers, proportional counters, and Geiger–Müller counters. [164] 

7. Radiochromic films: a film where the high-energy photon alters the 
structure of the material so that there is visible color change which can be 
measured e.g. densitometrically or with reflectance spectroscopy. [165–
167] 

Some recently discovered radiation detection materials are based on metal-
organic frameworks that are sensitive and show a clear response [168–173], but due 
to their organic nature they are less robust than crystalline inorganic materials. 

2.6.6 Photochromic minerals and high-energy radiation 
Since inorganic crystalline materials exhibit intrinsic defects where charge carrier 
trapping can occur, many experiments have been conducted since the invention of 
X-rays by Wilhelm Röntgen in the late 19th century. The plethora of reports about 
X-ray-colorable inorganic materials emerged soon after the invention: 

1. Barium platinocyanide pastilles developed by Raymond Sabouraud, Henri 
Noiré, and Léonard Bordier were one of the first commercial materials for 
detecting radiation. Upon exposure they changed their color from green to 
dark yellow or orange. [129] 

2. Doelter’s coloration experiments with spodumene (LiAl(SiO3)2), topaz 
(Al2SiO4(F,OH)2), and quartz (SiO2). The conclusion to the color change 
was given as the change of oxidation and reduction states of metallic oxides. 
[174] 

3. Stuhlman & Daniel’s kunzite (LiAl(SiO3)2) experiments where the color 
change was a side discovery of phosphorescence research. [175] 
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4. After these, the level of interest grew further, and when a high-brilliance 
X‑ray source was developed in 1947, Pough & Rogers published their broad 
experiments with gem stones spodumene (LiAlSi2O6), beryl (Be3Al2Si6O18), 
corundum (Al2O3), tourmaline (complex silicate), quartz (SiO2), topaz 
(Al2SiO4∙(F,OH)2), diamond (C), spinel (MgAl2O4), phenakite (Be2SiO4), 
apatite (Ca5(F,Cl)(PO4)3), fluorite (CaF2), opal (SiO2∙nH2O), scapolite 
(complex silicate), brazilianite (Na2Al6P4O14∙4H2O), simpsonite 
(Al10Ta6O20), dioptase (H2CuSiO4), hackmanite (Na8Al6Si6O24(Cl,S)2), 
cancrinite ((Na,Ca,◻)8Al6Si6O24(CO3,SO4)2·2H2O), lapis lazuli (complex 
Na aluminosilicate containing lazurite), zircon (ZrSiO4), chrysoberyl 
(BeAl2O4), and oligoclase ((Na,Ca)(Si,Al)4O8). [176] 

5. During the next decade, Claffy experimented with hiddenite (LiAl(SiO3)2) 
and spodumene (LiAl(SiO3)2), and Medved and Kirk carried out their 
groundbreaking work focusing on hackmanite and its underlying coloration 
mechanism. [8–10] 

The phenomenon of high-energy radiation-induced coloration in gemstones has 
long been a subject of fascination and intrigue, yet it has not been given the level of 
scientific attention it deserves in terms of exploring its underlying mechanisms and 
details. Despite the efforts of some researchers listed above who have treated 
gemstones with high-energy radiation to gain insights into the mechanism, this field 
remains largely unexplored. There are still many unanswered questions regarding 
the fundamental mechanisms and processes that lead to the generation of color 
centers in gemstones under the influence of high-energy radiation. As such, there is 
a pressing need for more systematic and rigorous scientific investigations to unlock 
the secrets of this intriguing phenomenon and to deepen the understanding of the 
physical and chemical principles underlying the coloration of gemstones induced by 
high-energy radiation. 

2.6.7 Commercial passive high-energy detection materials 
Current commercial X-ray and gamma radiation detectors, i.e. radiochromic films, 
are mainly based on polydiacetylene and lithium-10,12-pentacosadiynoate 
(LiPCDA), which go under the trade name family GAFchromic™. The usable range 
of these materials is 0.01−2500 Gy [177–179], although the American Association 
of Physicists in Medicine’s radiochromic film dosimetry task group suggests not to 
exceed 1 kGy with these films. [180] On the more higher dose scale, radiochromic 
films with hydrophobic-substituted tripentylmethane leucocyanides work with dose 
ranges up to 106 Gy. [181–186] 
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These materials work as passive dosimeters since there is a clear color change 
that does not need to be converted to an electrical signal, however, practically the 
dose is read densitometrically. [187] The disadvantage of these materials is that they 
are single-use only, they show darkening under ambient light and should be protected 
from temperatures over 60 °C to avoid non-desirable molecular transformations of 
the radiochromic material. [180] Thus, there is a need for research of reusable 
materials. 
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3 Materials and methods 

3.1 Synthesis of hackmanite samples 

3.1.1 X-ray coloration experiments 
Five different hackmanite samples were tried in the coloration experiments, 
abbreviated as Na, Li, K, Br, and Rb. Their full meanings are given below: 

1. Na = Na8Al6Si6O24(Cl,S)2 i.e. standard or pristine hackmanite. This 
material was synthesized by weighing 0.700 g of zeolite A (Sigma 
Aldrich, dried at 500 °C for 1 h prior to weighing), 0.240 g of NaCl (J. T. 
Baker, >99.5%), and 0.0600 g of Na2SO4 (Merck, >99%). First, the NaCl 
crystals were crushed into powder form in an agate mortar, after which 
the Na2SO4 was added and ground together with the NaCl, and finally the 
zeolite was added and the mixture was ground together for a few minutes 
by hand. The mixture was then poured into an alumina crucible (Ceramic 
Oxide Fabricators model CB-0005) and heated in air atmosphere at 
850 °C for 48 h, the ramp rate being 10 °C/min. After the furnace had 
cooled down to room temperature passively, the mixture was ground once 
again in the agate mortar and given the same temperature treatment in a 
flowing H2/N2 (12%/88%) atmosphere. Then, after cooling passively to 
room temperature, the finished product was ground once more. 

2. Li = LiNa7Al6Si6O24(Cl,S)2 i.e. Li-doped hackmanite. This was made with 
the same procedure as Na, but with the following reagents: 0.700 g of 
zeolite, 0.0850 g of LiCl (Acros, 99%), 0.1200 g NaCl, and 0.0600 g 
Na2SO4. 

3. K = (K,Na)8Al6Si6O24(Cl,S)2 i.e. K-doped hackmanite. This was made 
with the same procedure as the previous ones, but with the following 
reagents: 0.700 g of zeolite, 0.306 g of KCl (E. Merck, Suprapur), and 
0.0600 g Na2SO4. 

4. Br = Na8Al6Si6O24(Br,S)2 i.e. Br-doped hackmanite. This was made with 
the same procedure as the previous ones, but with the following reagents: 
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0.700 g of zeolite, 0.427 g of NaBr (J. T. Baker, reagent grade), and 
0.0600 g Na2SO4. 

5. Rb = (Na,Rb)8Al6Si6O24(Cl,S)2 i.e. Rb-doped hackmanite. This was made 
with the same procedure as the previous ones, but with the following 
reagents: 0.700 g of zeolite, 0.496 g of RbCl (Sigma, ≥99.0%), and 
0.0600 g Na2SO4. 

To make the handling, measurement, and transportation easy, the hackmanite 
powders were mixed with a binder and plasticizer to make flexible tapes. First, a 
mixture of 40 m-% of hackmanite, 30 m-% of 2-butanone, 15 m-% of ethanol and 
2 m-% of Triton X-100 was mixed in a Philips Minimill PW4018/00 ball mill at 
speed 1 for 10 minutes, after which 7 m-% of polyvinyl butyral and 6 m-% of benzyl 
butyl phthalate were mixed with the mill operating at speed 5 for 2 minutes. Then, 
the ready mixture was cast onto a 0.1-mm thick Folex® Premium Universal Copy 
Film X-100 A4 (art no. 39100.100.44000) polyethylene film with an Erichsen 
Coatmaster 510 film applicator using 300 µm wet thickness. After drying in room 
temperature, the finished film consists of ~73% of hackmanite when the 2-butanone 
and ethanol have completely evaporated. 

3.1.2 Gamma radiation coloration experiments 
In gamma coloration experiments, another batch of Na, Li, K, Br, and Rb 
hackmanites were synthesized with the same procedure as in the X-ray coloration 
experiments, but the heating in air atmosphere was shortened to 2 h after it was 
noticed that the Na hackmanite does not need 48 h of first heating, but only 2 h 
suffices to produce the tenebrescence effect. 

3.1.3 Photography 
The hackmanite sample used for photography was synthesized with the same 
procedure as the Na sample in the gamma coloration experiments. 

3.1.4 Upscaled batches 
The hackmanite samples used for researching an upscaled synthesis process were as 
follows: 

1. A 1-kg batch was made by pouring 700 g of zeolite A (Sigma Aldrich, 
dried at 500 °C for 1 h prior to weighing), 240 g of NaCl (J. T. Baker, 
>99.5%, crushed into a powder prior to weighing), and 60 g of Na2SO4 
(Merck, >99%) into a 2-litre ziplock bag and shaking the bag for 
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5 minutes. Then, the mixture was poured into a custom-made clay (Kerasil 
product number 525205, 267 vaalea/keltainen AR-267 koulusavi 0‒
0,2 mm samotilla) crucible coated with Cotronics Resbond® 989 
aluminium oxide paste. The paste was used to prevent the leaching of clay 
minerals from the container to the sample at high temperatures. The 
temperature treatment was 2 h in a Thermolyne F30400 furnace at 850 °C 
(ramp rate 18 °C/min), then after passive cooling to room temperature, the 
sample was crushed with a mallet and poured into the container again. It 
was then reduced at the bottom of a steel-lined heavy-duty retort furnace 
in Hilamet Oy, Ylihärmä, Finland for 2 h at 850 °C, the ramp rate being 
10 °C/min. Prior to heating, the furnace was flushed with 2.5 m3 of 
Formier® 10 gas with a flow rate of 83 l/min, and during the synthesis the 
gas flow was lowered to 1.0 l/min. 

2. A 100-g batch was made similarly as the 1 kg batch, but the amount of 
reagents were 1/10th of the 1-kg batch. In addition to this, a lid was made 
for the clay container to see if it could protect the batch from impurities 
from the oven. The heating steps and equipment were the same as in 1. 

3.2 Characterization methods 

3.2.1 Reflectance and XEOL spectroscopy 
One of the most important tools to compare and quantify the tenebrescence feature 
in hackmanites was measuring the coloration’s reflectance spectrum. At Karlsruhe’s 
synchrotron facility and Swedish Defence Research Agency, the spectra were 
collected using Avantes AvaSpec ULS2048CL-EVO CCD spectrometer coupled 
with an Avantes FC-IR600-1-ME-HTX optical fiber, and Ocean Optics LS-1 Cal 
lamp providing a continuous spectrum for the measurements. For UV- and XRF-
induced coloration experiments, the spectra were collected using Avantes AvaSpec 
HS-TEC CCD spectrometer coupled to a FC-IR600-1-ME-HTX optical fiber. The 
light source was either a 60-W incandescent lamp or Ocean Optics LS-1 Cal 
calibration lamp. Konica Minolta CM-2300d was used for the gamma coloration 
experiments at the Finnish Radiation & Nuclear Safety Authority’s premises. In 
further gamma radiation-induced coloration experiments, the reflectance 
measurements were carried out with an Avantes AvaSpec ULS2048CL-EVO CCD 
spectrometer coupled to an Avantes FC-IR600-1-ME-HTX optical fiber. The light 
source was either a 60-W incandescent light bulb (color fading measurements) or an 
Ocean Optics LS-1 Cal calibration lamp (other measurements) directed towards the 
sample 20 cm away. In all figures showing reflectance spectra, individual spectra 
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show the difference between a non-irradiated and irradiated sample. The irradiation 
wavelength for inducing the color change was 254 nm (lamp UVLS-24 254 nm 
4 W). 

When measuring the bleaching spectra, the sample was irradiated with a 150 W 
xenon arc lamp. A LOT MSH300 monochromator was used to select the 
wavelengths, and the irradiation time at each wavelength was 10 min for the Li 
sample, 1 min for Br and Na, and 30 s for Rb. The different times were due to 
material-specific differences in the optical energy needed to induce large enough a 
change in the reflectance spectrum. 

For the XEOL measurements, an Avantes AvaSpec ULS2048CL-EVO CCD 
spectrometer coupled with an Avantes FC-IR600-1-ME-HTX optical fiber was used 
in scope mode. 

3.2.2 VUV measurements 
Vacuum ultraviolet spectroscopy (VUV) measurements were performed at the 
Toroidal Grating Monochromator [188] beamline in the Brazilian Synchrotron Light 
Laboratory. The system uses quartz filters to avoid higher harmonic excitation. The 
emission spectra were measured with an optical fiber coupled to an Ocean Optics 
QE65000 spectrometer. 

3.2.3 Cathodochromism 
Cathodochromism, i.e. electron beam-induced coloring, was induced with a Nuclide 
Corporation ELM2EX luminoscope coupled to a Nuclide Corporation ELM2B 
vacuum chamber. The color intensity was determined outside the vacuum chamber 
from reflectance spectra measured using Avantes AvaSpec HS-TEC CCD 
spectrometer coupled to a FC-IR600-1-ME-HTX optical fiber, with Ocean Optics 
LS-1 Cal lamp acting as the light source. 

3.2.4 Thermotenebrescence 
Thermotenebrescence [19,21] curves were constructed by measuring the reflectance 
spectra of a fully colored sample as a function of temperature using Avantes 
AvaSpec HS-TEC CCD spectrometer coupled to a FC-IR600-1-ME-HTX optical 
fiber, with Ocean Optics LS-1 Cal lamp as the light source. MikroLab 
Thermoluminescent Materials Laboratory Reader RA'04 programmed at a heating 
rate of 3 °C/s was used for the heating. The curves were corrected for spontaneous 
fading in the lighting conditions used. 
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3.2.5 X-ray analysis methods 

3.2.5.1 X-ray diffraction (XRD) 

In this work, PXRD was used to obtain information about the purity of the products, 
and also to see if there were any changes in the crystal structure after exposure to 
high-energy photons. The X-ray diffractograms were obtained with PANalytical 
Aeris operating at 40.0 kV and 7.5 mA using Cu Kα1,2 radiation, and Huber G670 
position sensitive detector and CuKα1 radiation from a Rigaku Geigerflex X-ray 
source using 40 kV and 30 mA. The detector in Aeris was PIXcel1D-Medipix3, and 
the optical setting was a 13 mm mask, 1/2° divergence slit, 0.04 rad soller slits, 9 mm 
anti-scatter slit, nickel beta-filter, high beam knife, 1 rounds per second spinner 
speed. The data acquisition was obtained using a scan rate of 0.201 °/s with a step 
size of 0.0217°. Quantitative phase analyses and unit cell parameter refinements 
were conducted with Rietveld refinements using PANalytical HighScore Plus 
4.9.0.27512 with the following settings: 

1. Background was determined with a bending factor of 2 and granularity 20 
using smoothed input data. 

2. Peaks were searched with a minimum significance of 2.00, minimum tip 
width 0.01, maximum tip width 1.00, peak base width 2.00, method 
Minimum 2nd derivative. 

3. The search & match pattern list was used from a subset that contained 
PDF-4+ 2021 4.21.0.2 (database version 4.2103) database occurrences 
04-016-5475 (NaCl) and 04-017-7136 (Na8Al6Si6O24Cl1.8S0.1). The peaks 
were fitted with a default profile fit and finally refined with default 
Rietveld using available background as the method in global variables. 

The Micro-XRD patterns were measured with a PANalytical Empyrean 
diffractometer with CuKα1,2 radiation. The setup yielded a 0.4 mm × 0.5 mm 
irradiation beam on the sample surface. Gamma-colored films’ X-ray diffraction 
measurements were carried out using PANalytical Empyrean using CuKα1,2. 

3.2.5.2 X-ray fluorescence (XRF) 

XRF (PANalytical Epsilon 1 with internal Omnian calibration) was used to gain 
knowledge about the upscaled batch’s washing procedure; mainly the levels of NaCl 
and hackmanite in the washing water. 

The micro-XRF line sweep scan was conducted using a Bruker Tornado M4 
micro-XRF spectrometer. 
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3.2.5.3 XANES and XAS 

The XANES spectra were collected at Karlsruhe Institute of Technology’s 
Synchrotron Laboratory for Environmental Studies (Synchrotron Umwelt-Labor) 
SUL-X beamline [189] with an adjustable X-ray energy of 2.3‒20 keV. The SUL-X 
beamline employs a wiggler radiation source and a Si(111) fixed exit double crystal 
monochromator for tuning the X-ray energy. In Li sample’s case, the X-ray beam 
was focused with a Kirkpatrick‒Baez mirror system to c.a. 50 µm (vertical) and 150 
µm (horizontal), and when irradiating the Na, Rb, and Br samples the beam was 
collimated to c.a. 0.5 mm (vertical) 1.3 mm (horizontal) at the sample distances. 
When tracking the pre-edge peak maximum, a focused beam of about 50 µm × 50 µm 
was used. The energy level was calibrated to 2481.4 eV at the highest point of the 
sulfate peak on the S K-edge XANES spectrum of a Scotch tape. Using a seven-
element silicon drift diode detector equipped with 12.5µm DuraBeryllium windows 
(model SiriusSD-M7x65133-BE-INC-V, Rayspec) at xMAP and Falcon electronics 
(XIA), the S Kα fluorescence emission intensities were measured. The S Kα 
fluorescence emission was utilized to measure the intensities of the pre-edge 
maximum during irradiation, the whole pre-edge peak, and the S K XANES spectra. 
The energy step width across the pre-edge and absorption edge was set at 0.2 eV. All 
measurements were performed under vacuum.  

3.2.5.4 X-ray photoelectron spectroscopy (XPS) 

XPS measurements were carried out using Perkin Elmer PHI 5400 ESCA and 
Thermo Scientific NEXSA XPS systems using Mg and monochromated Al X-ray 
sources respectively. 

3.2.6 Electron paramagnetic resonance (EPR) 
X-band (9.43 GHz) EPR spectra were measured with a Magnettech GmbH MS-200 
Miniscope high resolution spectrometer equipped with a XL Microwave frequency 
counter (Model 3200) at 77 K by submerging the sealed samples in liquid nitrogen. 
The spectra were calibrated against 2,2-diphenyl-1-picrylhydrazyl (DPPH, 
g = 2.0036). 

3.2.7 Raman spectroscopy 
The Raman spectra were recorded using an inVia Qontor confocal Raman 
microscope (Renishaw, Gloucestershire, UK) using 785 nm continuous wave laser 
excitation. 
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3.3 Irradiation methods 
In the X-ray induced coloration experiments, the irradiation was conducted at 
Karlsruhe Institute of Technology’s Synchrotron Laboratory for Environmental 
Studies (Synchrotron Umwelt-Labor) SUL-X beamline. In X-ray imaging 
experiments, PANalytical Epsilon 1 XRF instrument that probes the sample with Ag 
Kα radiation (ca. 22 keV) was used. 

In nuclear radiation coloration experiments, the quantitative dose series samples 
were subjected to a collimated 60Co gamma ray beam at Finnish Radiation and 
Nuclear Safety Authority’s premises in Helsinki, Finland. The air kerma values (0.2, 
1.0, 3.0, 5.0, and 7.0 kGy) and thus gamma radiation doses at the samples’ positions 
were controlled by placing the samples at different distances from the source. The 
gamma radiation qualities were established according to ISO standard 4037-1:2019. 
Qualitative nuclear and particle radiation coloration experiments were conducted 
with 109Cd, 133Ba, 137Cs, 210Pb, 241Am, 238U, and 18F at the Swedish Defence Research 
Agency (Totalförsvarets forskningsinstitut, FOI), Sweden. Table 1 lists the used 
nuclides and their predominating emission energies. 

Table 1.  The radiation sources used in the nuclide coloration experiments. Reproduced from II 
with permission from the Royal Society of Chemistry. 

NUCLIDE RADIATION ACTIVITY (Bq) ENERGY (keV) 
Co-60 γ 

γ 
β 

215·103 1173 
1333 
318 

Co-60 γ 
γ 
β 

4.2·109 1173 
1333 
318 

Cd-109 γ 
X 
β 

87·103 88 
22 
126 

Ba-133 γ 
X 
β 

n.a. 356 and 80 
31 
80 

Cs-137 γ 
β 

80·106 662 
514 

Pb-210 γ 
β 
α 

20·103 46 
17 
3720 

Am-241 γ 
X 
α 

2·103 60 
12–22 
5486 

U-238* α n.a. 4198 
F-18 Positrons 

γ** 
2.4·106 634 

511 
* depleted uranium 
** annihilation photon 
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Exposure to beta radiation (positrons) was performed by pipetting 18F-water (3 µl 
in triplicate) with a measured activity concentration (Veenstra VDC-405 dose 
calibrator) directly on the film at the Radiochemistry Turku PET Centre, University 
of Turku, Finland 

3.4 Computational details 

3.4.1 Geometry optimization in X-ray coloration 
Using the ab initio CRYSTAL17 code [190], geometry optimizations were 
conducted with periodic boundary conditions (PBC) in the framework of density 
functional theory (DFT). The global hybrid functional PBE0 [191] was selected 
along with a localized (Gaussian) basis, which is known to give accurate geometrical 
parameters for sodalites. [23] All-electron double-ζ basis sets with polarization 
functions were used for all hackmanite elements except sulfur, which received 
treatment with all-electron triple-ζ basis sets with polarization functions. The 
reciprocal space was sampled according to a sublattice with a 12×12×12 k-points 
mesh for the geometry optimization of the bulk system, and a single k-point (the Γ 
point) was used for geometry optimization of the 2×2×2 supercells containing the 
default sulfur species. The convergence criterion for the SCF cycle fixed to 10‒7 Ha 
per unit cell. 

3.4.2 Geometry optimizations in gamma coloration 
The calculations for optimizing geometry were carried out using PBC in the DFT 
framework. To perform these calculations, the ab-initio CRYSTAL17 code [190] 
was used in conjunction with localized (Gaussian) basis sets and the global hybrid 
functional PBE0 [191]. 

All-electron double-ζ basis sets with polarization functions were employed for 
Si ([4s3p1d]/(20s12p1d)), Al ([4s3p1d]/(17s9p1d)), O ([3s2p1d]/(10s4p1d)), and Cl 
([4s3p1d]/(16s10p1d)), while all-electron triple-ζ basis sets with polarization 
functions were employed for Na ([4s3p1d]/(15s7p1d)). Additionally, to accurately 
describe the trapped electron present in all structures, a basis set optimized with the 
111G(d) structure was utilized. The optimized coefficients can be found in the 
Supporting Information of I. For the geometry optimization of the bulk system, the 
reciprocal space was sampled using a sublattice with a 12×12×12 k-points mesh. For 
the geometry optimization of the 2×2×2 supercell, only a single k-point (the Γ point) 
was utilized. The convergence criterion for the SCF cycle was set to a fixed 10−7 Ha 
per unit cell. In the case of considering the formation of a sodium vacancy as the 
deformed color center (Na4VCl → Na3VCl), the resulting loss of electroneutrality was 
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offset by substituting one Al3+ with one Si4+ in the β-cage situated around the 
vacancy. 

TD-DFT calculations were carried out using the B3LYP functional and the 
Gaussian 16 code [192]. To perform these calculations, clusters were extracted from 
the geometries optimized in PBC and embedded in a sphere of pseudopotentials, 
along with an array of point charges [24]. These point charges were used to simulate 
the Madelung potential of the crystal and were generated through the Ewald package 
[193], utilizing a 5×5×5 supercell. The fitting procedure led to an RMS error of less 
than 1 μV on the Ewald potential. 

3.4.3 XANES simulations 
To perform XANES calculations, a TD-DFT formalism was utilized, which was 
implemented in the ORCA program [194–196]. These calculations were performed 
at the B3LYP/def2-SVP level of theory. Relativistic corrections were taken into 
account utilizing the ZORA method, and to accelerate the calculations, the RIJCOSX 
approach was employed. The energy convergence criterion for the SCF cycles was 
set to a fixed 10‒8 Ha per unit cell. For these calculations, the excitation window was 
limited to the 1s core orbital of the relevant sulfur species, along with virtual orbitals 
that possessed energies higher than the first virtual orbital of the sulfur species. A 
total of 240 transitions were computed, and these calculations were carried out on a 
cluster that was extracted from the optimized geometry. The cluster employed in this 
study comprises the sulfur impurity, the Na4 tetrahedron, and the surrounding β-cage. 
To model the cage, pseudopotentials were employed to describe the cations, and a 
cloud of point charges was utilized. The point charges were generated using the 
Ewald package [193] to simulate the Madelung potential of the crystal. To generate 
the point charges, a 5×5×5 supercell was utilized, and the fitting procedure resulted 
in an RMS error of less than 1 μV on the Ewald potential. This methodology is 
consistent with prior work reported in [24]. 
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4 Results and discussion 

4.1 X-ray-induced color centers 
Reversible color centers can be studied with a) the energy required to induce 
coloration b) the absorption spectrum c) the optical energy required to bleach the 
coloration d) the thermal energy to bleach the coloration and e) the spontaneous 
fading of the coloration at a steady temperature. These properties were studied with 
X-ray- and UV-colored Li, Na, Rb, and Br samples. The reflectance spectra in Figure 
9 show that the X-ray- and UV-induced color centers show similar characteristics in 
terms of absorption bands, which the optical fading spectra in Figure 10 support. 
There are some discrepancies that, however, are within the boundaries of 
experimental inaccuracy and effects that are likely caused by inhomogeneities from 
the tape casting process and the differences in coloration depth. 
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Figure 9.  Reflectance spectra of all studied samples, showing similar absorption characteristic for 

254 nm UV- (U) and ~22 keV X-ray-induced (X) coloration. Figure adapted from I with 
permission from John Wiley & Sons, Inc. 

 
Figure 10.  Optical bleaching spectra of 254 nm UV- (U) and ~22 keV X-ray-induced (X) coloration. 

Figure adapted from I with permission from John Wiley & Sons, Inc. 
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Figure 11’s thermotenebrescence (thermal activation energy of the coloration’s 
bleaching [19,21]) curves, i.e. thermal liberation of the trapped color center 
electrons, have some variation but are very close when the activation energies are 
calculated from the curves (Table 2). The different linear regions in the thermal 
fading curves when the natural logarithm of the coloration is plotted as a function of 
inverse temperature (see Supporting Information of I) give very close results that 
have normal variance of experimental experiments. This suggests that the formed 
color centers are the same as after UV coloration. 
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Figure 11.  Thermal bleaching spectra of 254 nm UV- (U) and ~22 keV X-ray-induced (X) coloration, 

corrected for spontaneous fading. Figure adapted from I with permission from John 
Wiley & Sons, Inc. 

Table 2.  The thermal activation energies of Li, Na, Rb, and Br samples calculated from the data 
shown in Supporting Information of I. Numbers 1 and 2 signify different linear regions in 
the thermal fading curves when the natural logarithm of the coloration is plotted as a 
function of inverse temperature. Table adapted from I with permission from John Wiley 
& Sons, Inc. 

 ACTIVATION ENERGY / eV 

SAMPLE UV 1 X-RAY 1 UV 2 X-RAY 2 
Li 0.23 0.21 0.41 0.42 
Na   0.44 0.36 

Rb 0.12 0.09 0.26 0.28 

Br   0.61 0.56 

 
In UV-induced coloration, the color saturates fast with a simple handheld 254 nm 

lamp. The saturation is reached after a UVC dose of 200 mJ/cm2, which translates to 
1 minute of irradiation at a 20-mm distance from the lamp, as is shown in Figure 12. 
The dose calculations are based on irradiance values measured with Opsytec Dr. 
Gröbel Radiometer RM 12 equipped with RM12 sensor calibrated for UVC. 
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Figure 12.  Hackmanite’s coloration rise curve as a function of UVC dose. 

However, the results from X-ray-induced coloration indicate that even a high-
brilliance synchrotron X-ray beam is not enough to saturate the coloration after 
1 hour of irradiation, as depicted in Figure 13a, which suggests that the coloration 
has a different mechanism than in UV-induced coloration. The coloration rise curves 
seen in Figure 13b are plotted against absorbed X-ray photons (incident photons 
divided by the mass attenuation coefficient, µM), which shows that the coloration rise 
rate is dependent on the energy of the X-ray beam: the lower the energy, the faster 
the coloration rate. This decreased coloration efficiency is proposed to be due to a 
stronger bleaching effect of the sample in the intense X-ray beam due to heat 
generation, as reported by Warren et al. [197], Kastengren [198],  and Wallander and 
Wallentin [199] for various materials in different X-ray irradiation setups.  
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Figure 13.  a) The coloration rise curves of Li hackmanite sample under different X-ray energy 

beams. b) Coloration rise curves as a function of absorbed X-ray photons (incident 
photons divided by the energy-dependent mass attenuation coefficient of Li 
hackmanite). Figures adapted from I with permission from John Wiley & Sons, Inc. 

Figure 14a shows the same general behavior: the higher the X-ray energy, the 
lower the coloration. In scintillation, the dependence is reversed; if the flux is being 
kept at the same level, a higher energy translates to a higher signal output. The 
energy‒intensity relationship in hackmanite was confirmed by irradiating a sample 
with electrons with different energies and measuring the coloration, which can be 
seen in Figure 14b. Since this cathodochromism behaves in a way that scintillation 
does, then there are other parameters that affect X-ray-induced coloration. 

 
Figure 14.  a) X-ray-induced coloration spectrum of Li, Na, Rb, and Br hackmanites. b) Coloration 

as a function of electron bombardment energy, i.e. cathodochromism. Figures adapted 
from I with permission from John Wiley & Sons, Inc. 

One phenomenon that affects the coloration is radiation damage, which is a known 
effect that has also been reported for barium and strontium aluminates, which are 
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certain persistent luminescence materials. [200,201] This was observed in the 
measured samples (Figure 15a). An irradiated spot that had received a dose of 467 kGy 
of 6.5 keV X-rays showed to be solarized to a point where it did not change its color 
anymore under 254 nm UV irradiation (Figure 15b). Probing this spot with a micro-
XRF sweep scanning (Figure 15c) showed no changes in the elemental composition 
of the hackmanite film, but micro-XRD (Figure 15d) surprisingly revealed an 
increased NaCl’s (220) reflection, suggesting preferred orientation of NaCl that has 
crystallized with the (220) plane parallel to the surface, which means that the NaCl has 
left the sodalite structure and, as a result, created Na and Cl vacancies. An identical 
behavior is reported by Oliva-Ramirez et al. [202] in vapor-deposited NaCl. 

 
Figure 15. a) Heavily irradiated spots of Na hackmanite sample in the synchrotron X-ray beam. b) The 

same sample film colored with 254 nm UV. c) Micro-XRF sweep scan over a spot showing 
coloration fatigue. d) Micro-XRD measurement of a spot showing coloration fatigue. Image 
from I, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

During X-ray irradiation, a XEOL signal was observed in the UV range, peaking 
at c.a. 400 nm (Figure 16a). By looking at Figure 16d’s vacuum-ultraviolet‒
ultraviolet emission measurements, it can be seen that the excitation energy nearing 
hackmanite’s bandgap (7.7 eV [18]) shifts the emission from the Ti3+‒VO pair in a 
hypsochromic fashion to the range which should be able to color hackmanite. To 
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study whether this scintillation-related emission could induce tenebrescence, this 
was later simulated in laboratory by using the same intensities of UV irradiation and 
seeing whether there is any tenebrescence from this emission (Figure 16e). After 30 
minutes of irradiation there was no visible tenebrescence signal in the reflectance 
spectrum, therefore it was concluded that XEOL is not responsible for the coloration. 
Figure 16b and c show that hackmanite’s XEOL behaves in scintillation’s manner 
(the higher the energy, the higher the XEOL signal), but decreases as a function of 
time. This is another result that suggests that there is radiation-induced damage in 
the structure which affects the coloration process. 

 
Figure 16.  a) XEOL under 5 keV irradiation in the Li sample, peaking at c.a. 400 nm. b) XEOL as 

a function of X-ray energy, showing increasing XEOL intensity. c) XEOL as a function 
of time under a steady X-ray beam, showing intensity decrease. d) VUV-induced 
emission spectra. e) Spectra of UV lamps that were used in XEOL coloration simulations 
and hackmanite’s reflectance spectrum after 30 minutes of this irradiation. Image from 
I, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

The Li, Na, Rb, and Br samples were probed with XANES measurements over 
sulfur’s K edge region. In Figure 17a’s XANES spectra, the edge and pre-edge 
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peaks’ intensities are changing as a function of measurements (i.e. X-ray exposure), 
which is shown more clearly in Figure 17b and c: the intensity of the pre-edge peak 
increases, while the edge peak decreases. Since the increase of the pre-edge peak has 
a multicomponent rise function (Figure 18) similar to the deepening of tenebrescence 
(Figure 12), the pre-edge peak can be attributed to the rise of the coloration. 

 
Figure 17.  a) XANES spectra of Li, Na, Rb, and Br samples. b) The evolution of the pre-edge peak 

at ~2.465 keV as a function of measurements. c) The evolution of the edge peak at 
~2.470 keV as a function of measurements. Image from I, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 
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Figure 18. The pre-edge peak rise as a function of measurements. The Rb sample has been 

excluded since there were only three data points. Figure adapted from I with permission 
from John Wiley & Sons, Inc. 
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To study the correlation deeper, quantum chemistry calculations were conducted 
by substituting a chloride ion with S2

‒ and S2
2‒ ions inside sodalite’s β-cage and a 

Na4 tetrahedron, and calculating their transition properties under X-ray irradiation. 
The bandgap (Figure 19) of hackmanite contains the energy levels of an S2

2‒ and VCl 
electron trap, which are the basis of the coloring process. The σ* is the empty orbital 
in S2

2‒, whereas π and π* are occupied. 

 
Figure 19.  The density of states of an S2

2‒ and VCl in hackmanite’s bandgap. Image from I, licensed 
under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

According to the calculation results, the lower energy pre-edge signal is due to a 
1s→π* transition of S2

‒, indicating that there has already been this sulfur species 
readily available for the transition to occur prior to the XANES measurement. The 
coloration of hackmanite by energies below the K edge of sulfur (2.4720 keV [119]) 
was confirmed from a coloration matrix where the X-ray energy started from 
2.35 keV (Figure 20). This suggests that the excitation of sulfur’s core shell electrons 
does not directly play a role in inducing the coloration. 

https://creativecommons.org/licenses/by/4.0/
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Figure 20.  An X-ray coloration matrix with steady-state X-ray beams with different energies, 

starting from 2.35 keV and ending at 17.0 keV (20.0 keV for the Li sample). Image from 
I, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

Although the computational spectra in Figure 21a are not aligned perfectly with 
the experimental (Figure 21b), the qualitative features of pre-edge and edge bands 
explain the electronic transitions. Contrary to the differences of 1s→σ* transitions 
of S2

2‒ and S2
‒ seen in the computational spectra, the experimental energy difference 
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has been established to be ~1 eV for S2‒ and S0 [203]. This means that for the species 
seen in the spectra, i.e. S2

‒ and S2
2‒ (which correspond to S0.5

‒ and S‒, respectively), 
the K edge energy differences can be deduced to be ~0.25 eV. Thus, this energy 
difference cannot be seen in the experimental spectrum, i.e. the signals overlap in a 
way that the edge signal is a sum of 1s→σ* transitions of S2

2‒ and S2
‒. The 

transitions, however, give different intensities, and by calculating their linear 
combinations the peaks’ evolution directions can be estimated. The calculation 
results of the contributions from different mixtures of S2

2‒ and S2
‒ reveal that the pre-

edge peak rises (Figure 21e) as there are more S2
‒ ions, which is a result of a loss of 

one valence electron that subsequently leads to the coloration of the material. The 
edge peak, however, decreases as a function of relative S2

‒ content (Figure 21e). In 
Figure 21f there is an estimate of the relative amount of the different disulfide species 
during the first XANES scan (blue) and after the sixth scan (blue), confirming that 
the same oxidation occurs in the crystal lattice as in UV-induced tenebrescence. 
These results are in total agreement with experimental measurements, and it is thus 
evident that the S2

2‒ ions transform to S2
‒ ions upon X-ray irradiation. 

 
Figure 21.  a) The computational XANES spectra of S2

2− (black) and S2
− (red). b) Actual measured 

XANES spectra of the Li sample. c) Possible electronic transitions of S2
−. d) Possible 

electronic transition of S2
2−. e) Computed XANES spectra of different mixtures of S2

2− 
and S2

− when there is a complete overlap of the 1s→σ* transition. f) Computed XANES 
spectra estimating the S2

2−: S2
− ratio of the Li sample shown in b). Image from I, licensed 

under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 
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4.2 Qualitative coloration tests with alpha, beta, 
and gamma radiation 

Hackmanite films were subjected to radiation qualities listed in Table 1. Although 
the gamma sources were relatively weak, they all induced tenebrescence in the 
samples (Figure 22a). The coloration with an 241Am source was tested with both 
gamma and alpha emissions by putting an Al filter in front of one sample and having 
no filter in front of the other (Figure 22b). Both radiation types induced coloration, 
which means that alpha radiation colors hackmanite as well. This was also confirmed 
with depleted uranium (Figure 22c). 

Coloration with beta radiation was tested with 18F (Figure 22d), yet there is a 
possibility that the coloration is due to the photons (gamma) that are produced after 
the annihilation of the positron after colliding with an electron. During these 
qualitative tests, it was noticed that these high-energy radiation types not only create 
the normally observed symmetric, broad 530 nm absorption band, but also two 
additional bands at ca. 480 and 600 nm, which are especially visible in Figure 22b. 
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Figure 22.  Reflectance spectra of a) gamma-irradiated Na hackmanite, b) gamma- and alpha-

irradiated Na hackmanite from a 241Am source, c) gamma- and alpha-irradiated Na 
hackmanite from a depleted uranium source, d) beta radiation-irradiated Na 
hackmanite, e) Na hackmanite with irradiation from a 60Co source. Reproduced from II 
with permission from the Royal Society of Chemistry. 
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4.3 Gamma radiation coloration effects with 60Co 
Na, Br, K, Li, and Rb hackmanite samples were subjected to air kerma values of 200, 
1000, 3000, 5000, and 7000 Gy from a 60Co source (gamma photon energies 1.1732 
and 1.3325 MeV) and their reflectance spectra were measured within 30 minutes 
after stopping the exposure. Figure 23 shows the coloration of the samples after the 
exposure to the high-activity radiation source. 

 
Figure 23.  The irradiation matrix of Na, Br, K, Li, and Rb hackmanite films, showing the increase of 

coloration as a function of air kerma values. Figure adapted from II with permission from 
the Royal Society of Chemistry. 

The coloration behaves multiexponentially as a function of dose, as in UV and 
X-ray coloration (Figure 12, Figure 13a and [19]), and as is visible in Figure 23, the 
Br hackmanite samples show the deepest coloration. This was also confirmed from 
the coloration intensities that were calculated from the integrals of the reflectance 
spectra shown in Figure 24a. When these spectra are normalized (Figure 24b), there 
is a clear broadening of the typical tenebrescence absorption band as a function of 
dose. The determination of dose-dependent broadening is shown later in the 
Applications section, in Figure 36. 
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Figure 24.  a) Reflectance spectra of Br hackmanite samples that have received 200, 1000, 3000, 

5000, and 7000 Gy. b) The spectra normalized, showing additional bands. 

4.3.1 Spectral characteristics of the absorption band 
broadening 

When looking at the UV-, X-ray-, and gamma-colored samples, initially there seems 
to be no visible difference in them, as is shown in Figure 25b. However, when the 
reflectance spectra are measured from these samples, there are quite substantial 
differences, especially the broadening caused by gamma radiation (Figure 25c). To 
study the behavior of the gamma-induced broadening of the reflectance spectrum, 
Na hackmanite’s optical bleaching spectra were recorded from a sample that had 
received a dose of 7000 Gy. 

To study the color centers further, the coloration fading spectra (Figure 25d) and 
curves (Figure 25f) were also measured, which revealed that the red and blue parts 
in the gamma-colored sample have different bleaching energies and lifetimes 
compared to UV-colored (Figure 25e): for the UV-colored, the fading of the main 
peak (530 nm), red part (650 nm), and blue part (450 nm) is a single-component 
function with lifetimes of 16.4 ±0.1, 14.8 ±0.2, and 13.5 ±0.2 min, respectively. The 
gamma-colored sample’s main peak’s fading is at least a two-component function 
with lifetimes of 14.9 ±1.8 (30% amplitude) and 187 ±67 min (30% amplitude). As 
can be seen from the values, the former component is similar to the UV-induced 
fading and can be assigned to the same color center. The interesting red and blue 
parts in the gamma-colored sample has lifetimes of 206 ±41 and 229 ±66 min, 
respectively, which leads to the assumption that the main peak’s second component 
and the red and blue bands are interlinked. 
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Figure 25.  a) The mechanism of tenebrescence in hackmanites. b) Photographs of non-colored, 

UV-, X-ray-, and gamma-colored Na hackmanite. c) The normalized reflectance spectra 
of Na hackmanite that has been subjected to X-rays, UV, gamma + alpha, and gamma 
radiation, showing the braodening effect in samples with gamma exposure. d) The 
bleaching spectra of Na hackmanites with gamma (different components of the 
spectrum in red, blue, and green) and X-ray exposure. e) The optical fading curves of a 
UV-colored Na sample. f) The optical fading curves of a gamma-colored Na sample. 
Reproduced from II with permission from the Royal Society of Chemistry. 

4.3.2 Origin of the red and blue bands 
To gain information about the peak broadening effect and origin of the red and blue 
bands in a gamma-colored sample, the reflectance spectra from the samples 
presented in Figure 23 were analysed. From the data in Figure 26a, it can be seen 
that the broadening occurs as a function of gamma radiation dose, and the additional 
band can be seen especially from the dotted line showing the difference spectrum of 
a Na hackmanite sample that have received 200 and 7000 Gy. The figure also shows 
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a reflectance spectrum of a UV-colored sample, which does not possess the 
additional red and blue bands. 

Earlier studies have assigned absorption bands at 465 and 595 nm in ultramarine, 
Na8Al6Si6O24(Cl,S)2 (S = S3

‒, S2
‒), to S3

‒ and S2
‒, respectively. [204] As hackmanite 

has a similar structure to ultramarine, it is likely that both S3
‒ and S2

‒ could also exist 
in hackmanite. However, the computational results suggest that the absorption of 
these sulfur species in hackmanite would occur at 385 nm for S2

‒ and at 585 nm for 
S3

‒. Therefore, it is unlikely that the two additional peaks observed in hackmanite's 
spectra are caused by S3

‒ and S2
‒. This was verified with EPR and Raman 

measurements; the EPR spectra of UV, X-ray-, and gamma radiation-colored 
Na8Al6Si6O24(Cl,S)2 samples (Figure 26b) showed little difference compared to each 
other, and they all exhibited the F-center signal at g value 2.0 [4]. There are also 
additional and expected signals from an iron(III) impurity at 2.12, 2.17, and 2.24 
[205,206]. The most important aspect of the spectra is the absence of signal at ~2.03, 
which would originate from S3

‒ [207,208] The Raman spectra (Figure 26c) also 
confirm that there is no signal from the S3

‒ species, which is expected to manifest at 
548 cm‒1 [207]. 

In addition to the NaCl results from X-ray irradiation tests showing the NaCl 
phase leaving the sodalite structure (Figure 15d), previous research on ion mobility 
in hackmanites has revealed that Na ions can migrate between β-cages [21]. While 
these subtle changes in the color center can hardly be measured with satisfactory 
accuracy using experimental techniques, a hypothesis where the color center changes 
from Na4VCl to Na3VCl was researched with TD-DFT calculations. The β-cage with 
Na4VCl and Na3VCl are shown in Figure 26d, and their respective simulated 
absorption spectra in Figure 26e. Similar to what the experimental reflectance 
spectra have shown in the gamma radiation-exposed samples, the red component 
from the Na3VCl dominates the absorption spectrum compared to the blue 
component. This thus suggests that the additional bands indeed originate from a 
distorted color center, Na3VCl. 
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Figure 26.  a) The gamma-exposed Na hackmanite’s reflectance spectra with a difference spectrum 

(dotted line) of samples exposed to 200 and 7000 Gy. b) EPR spectra of UV-, X-ray- 
and gamma-irradiated Na hackmanite samples. c) Raman spectra of UV-, X-ray- and 
gamma-irradiated Na hackmanite samples. d) The visualisation of computational results 
of Na3VCl and Na4VCl. e) Simulated absorption spectra of the two color center forms. 
Reproduced from II with permission from the Royal Society of Chemistry. 

4.3.3 Gamma radiation-induced color centers 
To research the possible mechanism of the coloration, the gamma radiation-induced 
coloration was compared with X-ray-induced. In the X-ray-induced coloration, the 
mechanism for high-energy radiation was hypothesized to be caused by a 
scintillation-type electron‒hole torrent that leads to the formation of color centers 
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after thermalization. The X-ray and gamma radiation coloration yields were 
compared by investigating the color intensity as a function of absorbed dose using 
~22 keV X-rays and 60Co emission. The results (Figure 27a) indicate a difference in 
the coloration, which can be explained with the fact that the unfiltered X-rays 
originating from the XRF device’s Ag tube that was used in the tests also contains 
lower-energy bremsstrahlung, whereas the standardized 60Co source only produced 
two characteristic gamma radiation emission lines accurately, with no other 
emission. However, despite these differences it seems that the color yield is in the 
same order of magnitude, which leads to the assumption that the coloration is caused 
by the same mechanism as with X-rays, which is shown in Figure 27b. 

 
Figure 27.  a) The coloration yield of Na hackmanite that has received X-rays and gamma rays, 

both corrected with the mass attenuation factor of hackmanite. b) The mechanism of 
both high energy radiation-induced coloration in hackmanites. Reproduced from II with 
permission from the Royal Society of Chemistry. 
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Since alpha and beta radiation have energies much higher than UV, it can be 
assumed that the coloration induced by them are also caused by the same mechanism 
as with X-rays and gamma radiation. If the energy is high enough, some of the 
Na4VCl color centers transform into Na3VCl, thus it can be assumed that the 
mechanism of color center formation depends on the energy rather than radiation 
type. 

4.3.4 Gamma exposure memory 
When the recolorability of a gamma-exposed Na hackmanite film was tested (Figure 
28a‒c), a serendipitous finding was discovered: not only does the gamma-colored 
sample color perfectly normally with UV after bleaching with white light, but also 
its additional absorption bands manifest again (Figure 28d). This means that the color 
center distortion caused by gamma radiation is a stable structure that can be 
harnessed for practical purposes, which is discussed more in detail in the 
Applications section. To confirm the broadening portion, reflectance of a hackmanite 
sample from around a Th/U inclusion was measured (Figure 28e). This sample has 
been assumed to be exposed to gamma emission from Th and U for more than 200‒
250 million years, which is the latest marble formation age in the basic rock of the 
inclusion. [209,210] 
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Figure 28.  a‒c) Photographs of a gamma-colored (7000 Gy) sample being bleached with light and 

colored again with UV. d) Reflectance spectra of a gamma-colored sample, the same 
sample after bleaching and recoloring with UV, and a UV-colored reference that has not 
received any gamma radiation showing that the gamma-colored sample ”remembers” 
the previous gamma exposure. e) Reflectance spectra of a natural hackmanite found 
near a Th/U inclusion. Reproduced from II with permission from the Royal Society of 
Chemistry. 

4.4 Upscaled hackmanite synthesis 

4.4.1 Purity of batches 
The upscaled 100 g and 1 kg batches were analysed with XRD by isolating 19 
aliquots from evenly-distributed spots in the sample masses. The purity was 
determined from the amount of unreacted NaCl as determined with Rietveld 
refinements. The results in Figure 29 indicate that the 100 g batch is better in terms 
of ability to color. The intra-batch coloration variation in the sample mass shows that 
the center parts color better than the edges, which may be due to clay minerals that 
have leached from the containers, or from the reducing gas not reaching the lower 
part of the edges like in the porous center. The purity variation shows inconclusive 
behavior, but the average of NaCl impurities in the 100 g and 1 kg batches are 9.1% 
and 11.7%, respectively, which means that the 100 g batch’s overall purity is higher. 
The XRD diffractograms in Figure 30 show that the purity is relatively high in both 
samples, meaning that the syntheses were successful. 
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Figure 29.  2D purity and coloration maps of the 1 kg and 100 g batches. Image from III, licensed 

under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 
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Figure 30.  XRD diffractograms of the 100 g and 1 kg batches, and their matching phases from a 

PDF-4+ database. Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

In order to remove the excess NaCl, the samples were washed five times with 
deionized water, their NaCl content Rietveld-refined and coloration measured after 

https://creativecommons.org/licenses/by/4.0/
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each washing. The washing waters were also measured for NaCl and hackmanite 
content with XRF; the less hackmanite there is in the water, the more advantageous 
it is for the washing procedure. In Figure 31a, the purity increases after each 
successive wash cycle, whereas the coloration is virtually unaffected (there is only 
±5% variance, which falls within the boundaries of measurement error). Figure 31b 
shows the washing water’s analyte content, which supports the fact that NaCl indeed 
leaves the structure, and only a very small part of the hackmanite mass is transferred 
into the water. 

 
Figure 31.  a) The Rietveld-refined purity (red) and coloration depth (blue) as a function of performed 

wash cycles. b) The NaCl and hackmanite contents of the washing waters of a). Images 
from III, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

4.4.2 Iron as an impurity and its effect on luminescence 
Fe2+ ions are known to be effective quenchers of luminescence in many luminescent 
materials, including organic fluorophores and semiconductor quantum dots. This is 
because iron ions can act as non-radiative deactivators of excited states, leading to a 
decrease in luminescence intensity and quantum yield. The quenching effect of iron 
ions can be attributed to their ability to accept electrons from excited states of 
luminescent materials, which results in the formation of a charge transfer complex, 
in which the excited state energy is dissipated as heat instead of being emitted as 
light. In addition, iron ions can also promote the population of non-emissive states, 
which further contribute to luminescence quenching in several materials, including 
sodalites. The degree of quenching by iron ions can depend on multiple factors, e.g. 
the concentration of iron ions, the type of luminescent material, and the nature of the 
excited states involved.  [3,211–213] 

The 1-kg batch did not have a lid to protect the sample mass from contaminants 
in the steel-lined furnace, but the second batch, i.e. 100 g, had one. XRF was used to 
measure the iron content of the surface and bulk of the 1-kg batch, and the surface + 
bulk of the 100 g (because the depth of the sample mass was so low that it was not 
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possible to separate the surface and bulk). The XRF spectra in Figure 32 show that 
the 1-kg batch suffers from iron contamination at the sample surface, but the bulk’s 
content is almost at the same level as in the 100-g sample. This means that the surface 
layer of the 1-kg batch has acted as a protective cover for the bulk mass, whereas the 
actual lid in the 100-g sample has protected the whole sample. Thus, it is 
advantageous to use a lid when making large batches in a steel-lined oven to mitigate 
Fe contamination. Also, as an additional detail, in Figure 33 it can be seen that the 
1 kg sample’s surface layer has severely decreased optical properties. 

6,08 6,27 6,46 6,65
0

5000

10000

X
R

F 
co

un
ts

E / keV

 Hack 1 kg surface
 Hack 1 kg bulk
 Hack 100 g bulk + surface

Fe Kα = 6.4 keV

 
Figure 32.  XRF spectra from the Fe Kα region of the 1-kg sample’s surface (blue), bulk (black), and 

100-g sample’s bulk + surface (red). Higher intensity = higher Fe content. Inset: peak 
integrals taken from the XRF spectra, showing the quantitative relationships of the Fe 
contents. Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

https://creativecommons.org/licenses/by/4.0/


Sami Vuori 

 66 

 
Figure 33.  Photographs of the 100-g and 1-kg samples under different exposure conditions. Image 

from III, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

The differences in coloration could be due to competitive electron excitation 
processes: the stronger the luminescence, the more there are Ti3+‒VO pairs to absorb 
the UV radiation [3,18] and the less there are free UV photons for the electron 
excitation for the S2

2‒‒VCl process, which is responsible for the coloration. [18,19] 
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5 Applications 

5.1 Radiation dose determination with hackmanites 
As the coloration in hackmanites occurs as a function of X-ray dose logically 
following a multicomponent function behavior, it can be harnessed as a dose 
determination device. For measuring the absorbed dose from e.g. a ~22 keV 
unfiltered X-ray beam, it could be determined by making an irradiation series and 
plotting the sample’s coloration as a function of dose, thus acting as a visual 
dosimeter. Since there are substantial differences in the absorption of high-energy 
radiation with different photon energies due to e.g. abrupt changes in the mass 
attenuation coefficients from absorption edges, the calibration curves must be 
constructed with individual radiation sources precisely. Figure 34 shows an example 
where color intensity has been plotted against unfiltered ~22 keV X-ray dose using 
8 data points. The doses were measured using a Thermo RadEye B20-ER dosimeter. 
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Figure 34.  An irradiation series of Na hackmanite using 22 keV X-rays. Figure adapted from I with 

permission from John Wiley & Sons, Inc. 
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In a synchrotron source, a similar dose response curve can be constructed with 
air kerma values when the amount of incident photons is known from the photon 
counter found at the end of the beamline. To convert the photons to doses and dose 
rates inflicted upon the material, monoenergetic photon conversion coefficients are 
used. The International Commission of Radiation Units and Measurements (ICRU) 
has provided a list of air kerma area to unit fluence dose area product coefficients Ka 
Φ−1 (unit pGy cm2) from 10 keV to 10 MeV [116], but other conversion tables can 
also be used, e.g. Veinot et al. has provided an extended set with a useful fitting 
function with an accompanying equation [214]. 

For example, the dose of a 10 keV monoenergetic X-ray beam with a 6.00 ∙ 1010 
photon fluence on a sample area of 0.0500 mm2 can be calculated with Eq. 3 and Eq. 
4: 

 𝐾𝐾𝑎𝑎
Φ

= 𝐶𝐶 ⇔ 𝐾𝐾𝑎𝑎 = 𝐶𝐶 ∗ Φ (Eq. 3) 

 Φ = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑎𝑎

 (Eq. 4) 

C = dose area product coefficient (7.43 pGy cm2 for 10 keV [116]) 
𝐾𝐾𝑎𝑎= air kerma in pGy 
Φ = unit fluence 
dN = photon count 
da = exposure area in cm2 
By placing known values into Eq. 3 the dose can be calculated: 

𝐾𝐾𝑎𝑎 = 𝐶𝐶 ∗
𝑑𝑑𝑁𝑁
𝑑𝑑𝑑𝑑

= 7.43 pGy cm2 ∗
6.00 ∗ 1010

0.000500 cm2 = 892 Gy 

Similar curves can be constructed with gamma radiation. In Figure 35, the 
coloration rises as a function of air kerma from a 60Co source exposure. As can be 
seen from the data, the coloration is different for all samples; as Br hackmanite has 
the broadest dynamic range in gamma coloration, it is an ideal material for 
determining multi-kGy doses using the equation from its fitting function. As the 
material colors in the visible range, the dose can easily and instantly be determined 
inexpensively e.g. with a digital camera or a mobile application utilizing the phone’s 
camera. 
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Figure 35.  Five hackmanite samples colored with a 60Co source. The coloration rise follows a two-

component function for all samples. Figure adapted from II with permission from the 
Royal Society of Chemistry. 

However, as the main peak broadening due to the formation of Na3VCl also 
occurs as a function of dose, it can be used as an internal standard in the 
determination of dose, i.e., the dose is determined from the ratio of different parts of 
the spectrum (Figure 36). With this method there is no need to construct a batch-
specific lookup table since the original trap density (which changes from batch to 
batch) does not play a role, i.e. the overall coloration information is not needed at 
all. The disadvantage of this method is the cost, since accurate determination needs 
a spectrometer to scan the reflectance spectrum from the whole visible range. 
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Figure 36.  The ratio of the main peak and the red band of the reflectance spectrum in Br 

hackmanite exposed to 0.2, 1.0, 3.0, 5.0, and 7.0 kGy using a 60Co source. Figure 
adapted from II with permission from the Royal Society of Chemistry. 

In radiation settings involving living creatures the use of hackmanite is not 
applicable due to the coloration occurring only at a kGy level; for comparison, in 
humans a whole-body ionizing radiation dose has an LD50 value of 4.1 Gy [215], and 
a dose of 90 Gy would result in an instant death [216]. However, the described 
techniques could be applied for making a radiation dose distribution map in an 
industrial food irradiation station for e.g. onions and potatoes [217] by having e.g. 
nine hackmanite films distributed evenly under a radiation source, and then 
measuring their coloration after the irradiation. The coloration values would then be 
compared to the calibration series, and the doses would then be solved (an example 
graph is shown in Figure 37). 
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Figure 37.  An example of a radiation dose map constructed from coloration values using a 

calibration series. Figure adapted from II with permission from the Royal Society of 
Chemistry. 

5.2 Hackmanite in X-ray imaging 
Since X-rays have a tendency to penetrate different materials to different depths 
depending on their mass attenuation coefficients and hackmanites show a coloration 
response to X-rays, these materials can be used for X-ray imaging. The imaging 
capabilities of hackmanite depicted in Figure 38 prove that hackmanite can be used 
for imaging inanimate objects such as dead insects or electronics. 
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Figure 38.  a) The principle of imaging a deceased ant specimen with ~22 keV X-rays using a 

hackmanite film: the X-ray photons that are absorbed in the creature’s body do not hit 
the hackmanite detector, whereas the transmitted photons color the film. b) The X-ray 
image using Na hackmanite captured with a digital camera. The overall equivalent dose 
was 105 mSv. c) A Nokia 9210 Communicator’s data transmission cable imaged using 
Br hackmanite: the wiring can be seen in the X-ray image. 

Since gamma rays color hackmanite in a similar way as X-rays, the X-ray 
imaging principle can be used in gamma imaging as well. The disadvantage in 
hackmanite is that it contains only relatively light elements and thus its response 
requires very high doses due to its gamma radiation transparency. 
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5.3 Using hackmanite as a photographic film 
In previous chapters, hackmanite’s use as a detection material for the direct forward 
reaction, i.e. charge carrier trapping in the crystal defects, has been established for 
UV and high-energy radiation. However, the backward reaction where the trapped 
electron is liberated from the trap, can also be used for detection of visible light since 
the coloration bleaches as a function of photon exposure. 

For the applicability of visible light detection, two films were made: mixed in 
silicone (20% of hackmanite powder and 80% of Dow SYLGARD™ 184) and as an 
organic film that consisted of ~73% of hackmanite. These films measuring 6 × 9 cm 
were first colored with a 9-W 254 nm UV lamp (model 博立恩 ZW9D12W-H145) 
for 5 minutes (Figure 39a) and then put into a VEB KWT Reflekta II medium format 
camera (Figure 39b and c) equipped with a Meritar 75mm f/3.5 lens. 

 
Figure 39.  a) A silicone film before and after coloration with 254 nm UV. b) A VEB KWT Reflekta II 

camera. c) Schematics of the camera, showing the hackmanite film at the back of the 
exposure chamber. Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

The film was exposed for 20 h in Finnish summer. The performance of the 
silicone film is depicted in Figure 40, showing unsatisfactory results due to heavy 
Gaussian blur despite the camera lens being in focus. 

https://creativecommons.org/licenses/by/4.0/
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Figure 40.  a) A 20-h exposure with the silicone film, showing heavy Gaussian blur. b) The image 

converted to greyscale. c) The actual setting. Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

The origin of the blurring in the silicone film could be due to the silicone itself 
being a transparent medium where photons scatter due to the distributed hackmanite 
crystals. This aspect was tested with an image analysis technique where the pixel 
values across a light-transmitting slit were plotted as a function of x coordinates, and 
the data in Figure 41 confirm that there is 18% more direct scattering in the silicone 
film compared to the organic film. 

 
Figure 41.  A light scattering test of a) the organic film and b) the silicone film where the pixel values 

from across the Al foil slit were taken to form the graph in c). The light scattering is 18% 
less in favor to the organic film. Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

There was a substantial difference when the organic film was used as the 
photographic medium. The 20-h exposure results can be seen in Figure 42. 
Compared to the silicone film, the clarity and sharpness has increased to a point 
where details can be seen effortlessly. 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Figure 42.  a) A 20-h exposure using the organic film. b) The image converted to greyscale. c) The 

actual setting, which was changed slightly due to the photo being taken some hours 
after the exposure. Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

After scanning the film, it was colored again and used as a film for taking more 
photos that are shown in Figure 43. The image a) suffers from overexposure due to 
lighting condition changes during the exposure, and image c) shows to be 
underexposed, which may be due to hackmanite’s low level of sensitivity to red light 
(Figure 10a), which is the dominant color in the image. However, all in all the film 
proved to function as a reusable photographic film. This type of film does not need 
any development chemicals since the result is easily seen with eyes, and the film 
base is also gelatin-free. Both of these properties are usable in tackling the 
sustainability issues in the film photography industry, which has been showing a 
resurgence for some years now in the 2020s [218]. 

https://creativecommons.org/licenses/by/4.0/
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Figure 43.  a) A 20-h exposure taken with the same film as in Figure 42. b) The actual setting of a). 

c) Another exposure using the same exposure time after scanning the image shown in 
a). d) The actual setting of c). Image from III, licensed under CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/). 

The photographic exposure speed of the films and the hackmanite powder was 
determined by measuring their sensitometric Hurter‒Driffield curves under a 
constant light source. Normally, the curves are constructed densitometrically using 
the optical density of a given wavelength as a function of exposure in lux seconds, 
but here the curves were constructed from the absorption maxima (540 nm) of the 
reflectance spectra. As is normal for photographic films, the curves show the 
characteristic four regions, i.e. the underexposed part, the linear region (the contrast 
region), the overexposure region and the last dip i.e. the region of solarization. 
[219,220] The data in Figure 44 show that the organic film is the fastest photographic 

https://creativecommons.org/licenses/by/4.0/
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medium since its contrast region begins at an earlier exposure region than the others, 
but the powder has the broadest applicable exposure region. 

 
Figure 44.  Hurter‒Driffield curves of the organic film, the silicone film, and the powder. Inset: The 

contrast regions (the linear regions of the curves, marked with dotted lines) of the three 
types of materials. All curves are vertically aligned to 100% level. Image from III, 
licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

If hackmanite would be used in a regular 36-exposure 35 mm film that has an 
exposure area of 24 mm × 36 mm (with 2-mm margins on each side), the overall 
exposable area would be 32800 mm2. One gram of hackmanite cast into the organic 
film (thickness 300 µm) format spreads to cover 5900 mm2 (Figure 45), thus there 
would be a need of 5.6 g of pure hackmanite powder for one roll of film. With the 
same logic, one medium format 120 film roll (56 mm × 56 mm ∙ 12 exposures) would 
require 6.6 g of hackmanite. 

https://creativecommons.org/licenses/by/4.0/
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Figure 45.  The surface area of the organic film as a function of wet (black) and dry (red) thickness. 

Image from III, licensed under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). 

 

https://creativecommons.org/licenses/by/4.0/
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6 Conclusions 

Even though hackmanite’s coloration under high-energy radiation has been known 
for decades, there have been no mechanistic approaches to study what actually 
happens during the coloration with these radiation types. The rather slow coloration 
and low coloration yield under high-energy radiation is due to a different mechanism 
than what has been established for UV-induced coloration throughout history. With 
both high-energy photons and nuclear/particle radiation hackmanite shows a 
mechanism similar to scintillation, yet contrary to typical light-emitting scintillation, 
part of the thermalized excited electrons and holes eventually recombine in color 
centers. Exposing hackmanite to X-rays with energies of <20 keV, the color centers 
show the same characteristics as in UV-induced coloration, however when a high-
activity and high-energy gamma source such as 60Co is used, some of the color 
centers are transformed from the normal Na4VCl to Na3VCl that shows absorption 
bands at the edges of the main absorption of ~540 nm. Interestingly, these additional 
bands can be used to determine the amount of radiation without the need for a 
coloration-dependent calibration series. Moreover, hackmanite “remembers” the 
gamma exposure since the deformed color centers are stable and manifest even after 
complete bleaching of the material; hackmanite only needs to be colored with UV to 
reveal this intriguing property. 

In addition to studying the mechanistic properties, another aim of the 
experimental work was to focus on possible practical applications. X-rays were 
shown to color hackmanite well, and an imaging experiment with a deceased ant 
specimen and an electronic cable showed that hackmanite does possess a capability 
to function as an imaging material. And since synthetic hackmanite also exhibits 
strong coloration under gamma radiation, it can be harnessed as a visible dosimeter 
for high-activity gamma sources used in e.g. food sterilisation. 

Hackmanite is increasingly being recognized for its potential applications in a 
variety of fields. For example, it has shown promise in tenebrescence imaging using 
X-rays or gamma rays, as well as leisure applications such as incorporating 
hackmanite into cellulose fibers to produce clothing that reacts to UV radiation or as 
the primary component in UV index meters. As a result, there is a growing demand 
for larger-scale production of hackmanite beyond what is feasible in a laboratory, 
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which was one aspect of the experimental work conducted. Phase-pure 1 kg and 100 
g batches of tenebrescent hackmanite were obtained by heating them in an industrial 
retort furnace normally used for quenching heavy-duty metal objects in Hilamet Oy, 
Ylihärmä, Finland. Since the furnace was steel lined, it was shown that an 
unprotected sample mass has severe iron contamination, whereas a sample container 
that had a lid was shown to have greatly decreased level of impurities. 

As a final curiosity, hackmanite was cast as flexible films that were used as 
gelatine-free photographic medium without the need of development chemicals. 
Although the exposure time, 20 h, is nowhere near practical ranges, this type of slow 
photography can be employed when e.g. taking ultra-long exposures from city 
centres or such. However, the most important aspect of hackmanite films is linked 
to other presented practical applications as well ‒ the photochromism property does 
not weaken with repeated use, hackmanite consists of only abundant elements and is 
non-toxic. 
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