
Analysing the work required in creating
and maintaining a mobile application

M.Sc. in Technology Thesis
University of Turku
Department of Computing
Software Engineering
2023
Joakim Riikonen

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

UNIVERSITY OF TURKU
Department of Computing

Joakim Riikonen: Analysing the work required in creating and maintaining a
mobile application

M.Sc. in Technology Thesis, 50 p., 1 app. p.
Software Engineering
May 2023

When providing a service on the web, there is an ever increasing need for offering
a mobile application as one method of usage. Developing a mobile application is
expensive, however, as platform specific technologies are required when creating fully
native applications, resulting in the need to build and maintain multiple separate
code bases for effectively the same application.
To solve this issue, different technologies have been created that allow for multiple
platforms to be targeted without having to create a separate code base for each one.
Cross-platform frameworks allow for a single code base to target multiple mobile
platforms, while native runtimes and progressive web application methodologies
allow for web technologies to be used in the creation of a mobile application. The
goal of this thesis is to evaluate these technologies in terms of work required in
creating an application and the quality of the application produced. First, the
benefits and drawbacks of each technology are analysed, after which two prototypes,
based on the same web application, are built with the most fitting technologies. The
prototypes are then compared against each other to see the differences between the
technologies in practice.
For the case study performed in this thesis, the most promising technologies were
cross-platform frameworks and native runtimes. The cross-platform framework Re-
act Native and the native runtime Capacitor were chosen to be used in the con-
struction of the prototypes. The results gained from comparing the two frameworks
showed that the prototype built with Capacitor was of higher quality than the one
built with React Native, while also requiring less development time for its creation.

Keywords: Mobile application, React Native, Capacitor, Web application

Contents

1 Introduction 1

1.1 Research questions and methodology 1

1.2 Structure of the thesis . 2

2 Background 4

2.1 Web applications . 4

2.2 Mobile applications . 6

3 Different mobile technologies 10

3.1 Native SDKs and APIs . 10

3.2 Cross-platform frameworks . 11

3.3 Native runtimes for web applications 13

3.4 Progressive Web Applications . 15

4 Analyzing the problem 18

4.1 Case Study . 18

4.2 Native application as a solution . 21

4.3 Cross-platform framework as a solution 22

4.4 Native runtimes as a solution . 23

4.5 Progressive Web App as a solution 24

4.6 Summary . 25

i

5 Implementation of the prototypes 28

5.1 Hypotheses . 28

5.2 React Native prototype . 29

5.3 Capacitor prototype . 34

6 Result analysis 37

6.1 Quality . 37

6.2 Amount of work . 41

7 Conclusion 46

7.1 Answering the research questions . 46

7.2 Limitations of the thesis . 49

References 51

Appendices

A Mobile device details A-1

ii

1 Introduction

Web applications are a very popular way of offering digital services. The mobile

platform is becoming increasingly more important, however, and it is common that

both web and mobile versions of an application exist. Unfortunately, creating and

maintaining a mobile application in addition to a web application commonly takes

a lot of time and resources. This is partly due to the fact that mobile applica-

tion development requires the use of platform-specific technologies, meaning that

applications generally require a separate code base for each platform they target.

Different solutions have been created to avoid depending on platform-specific

technologies, ranging from cross-platform frameworks to technologies such as pro-

gressive web applications, which focus on improving the web experience on mobile

devices. This thesis sets out to explore these different solutions and find out how

much they affect the development time required in creating and maintaining a mobile

application.

1.1 Research questions and methodology

The main goal of this thesis is to review and evaluate different technologies for

mobile application development, focusing on scenarios where an existing web appli-

cation will serve as a basis for the mobile application. The technologies are mainly

evaluated in terms of the development time required for creating an application, as

well as the overall quality of the application itself, taking into account aspects like

1.2 STRUCTURE OF THE THESIS 2

performance and user experience. This goal can be represented by the following

research questions:

• RQ1: What challenges are there in creating a mobile application based on an

existing web application?

• RQ2: How suitable are different mobile technologies for creating a mobile ap-

plication based on an existing web application? How do they compare against

each other?

• RQ3: How much does the chosen technology affect the amount of work re-

quired in creating and maintaining a mobile application?

In practice, the goal will be achieved by initially evaluating the technologies

through a literature review. Afterwards, application prototypes will be built on

two of the most promising technologies. The prototypes will be based on the same

existing web application. Each prototype would implement the fundamental func-

tionality of the application, such as authentication and translation support, and

some of the core features. After building a prototype, the results are then analyzed,

mainly focusing on the quality of the prototypes and the work required to implement

them, as well as any further issues or otherwise noteworthy points that might have

turned up during the prototype development.

1.2 Structure of the thesis

The thesis consists of a literature review and a case study. Chapter 2 goes through

the background of web and mobile applications in general, while Chapter 3 goes

further into different technologies that are used in mobile application development,

focusing on native SDKs, cross-platform frameworks, native runtimes, and progres-

sive web applications. Chapter 4 introduces the case study, as well as analyzes and

1.2 STRUCTURE OF THE THESIS 3

evaluates the technologies introduced in Chapter 3 in the context of the case study.

Chapter 5 goes through the process of creating the prototypes, highlighting the most

significant features of the applications as well as some of the challenges that were

faced during development. Chapter 6 then analyzes the results of the prototype,

evaluating the quality of the final prototypes and the work required in creating

them. Finally, Chapter 7 summarises the thesis and the results, going through

the answers to the research questions, reviewing the limitations of the thesis, and

explores options for further research.

2 Background

2.1 Web applications

Web applications are accessed by using a web browser. Just like websites, they

are built using the common web technologies, such as Hypertext Markup Language

(HTML), Cascading Style Sheets (CSS) and JavaScript (JS). HTML is responsible

for depicting the structure and content of the website, CSS describes the presen-

tation of the web page, and JavaScript is used in scripts responsible for dynamic

functionality and behaviour. [1]

HTML, CSS and JavaScript are all defined by their own standards. The HTML5

standard is maintained by WHATWG1, the CSS standard is maintained by W3C2,

and JavaScript conforms to the ECMAScript standard, which is maintained by Ecma

International3. Different browsers then contain implementations for the technolo-

gies that depend on the standards. Rendering engines, such as Blink4 or WebKit5

create a visual representation of a website based on the HTML and CSS [2], while

JavaScript engines, such as SpiderMonkey6 or V87, are responsible for executing the

1Web Hypertext Application Technology Working Group, https://html.spec.whatwg.org/
2World Wide Web Consortium, https://www.w3.org/Style/CSS/specs.en.html
3https://tc39.es/ecma262/
4https://www.chromium.org/blink/
5https://webkit.org/
6https://spidermonkey.dev/
7https://v8.dev/

2.1 WEB APPLICATIONS 5

JavaScript contained in a web page. Because each browser contains different im-

plementations for the standards, differences between how web pages are displayed

or what JavaScript APIs are available might exist between different browsers and

between different versions of the same browser.

While there is no exact definition on what separates a web application from

a website, websites are commonly considered as a collection of static web pages

with the goal of providing information or content, while offering limited amounts

of interactability. Web applications, on the other hand, are considered as more

dynamic than websites, allowing users to manipulate the data of the application.

[3][4]

Web applications can be grouped into two different categories: Multi-page ap-

plications (MPAs) and single-page applications (SPAs):

Multi-page applications consist of several different pages with mostly static con-

tent. When moving to a page or between pages, the browser requests the whole

page at once, causing the browser window to refresh. As the browser requests

the web page, the HTML file and the data included in it are generated on the

server side, which the web browser then receives and displays.

Single-page applications consist of only one page, which contains the whole ap-

plication. Because of this, the web browser does not refresh when moving

between different views, as there is no need to download a new page. Request-

ing data from the server is done through asynchronous JavaScript requests.

Instead of containing the entire page that will be displayed, the requests con-

tain only the necessary data that the application needs, using a data format

such as JSON or XML. When received by the application, the web page is

then dynamically updated with the data. [5]

Because the requests contain only the required data instead of a whole HTML

page, the size of the requests in single-page applications may be significantly smaller

2.2 MOBILE APPLICATIONS 6

than in multi-page applications. On the other hand, because single-page applications

are downloaded all at once, the initial file size may be much higher than in multi-

page applications. Because of this, the usage of techniques such as lazy loading is

common. With lazy loading, instead of having to download the entire application

when entering a website, only the most critical resources are loaded first. Further

resources are then downloaded when necessary, such as when the user navigates into

a page that requires the resource in question. [6]

As web applications are accessed through a web browser, there is no need to in-

stall them like traditional applications. Additionally, many different modern devices

have support for web browsers, meaning that web applications are also very accessi-

ble through multiple kinds of devices by default. However, this does not mean that

accessibility requires no effort. Because the web supports such a variety of devices,

numerous varying factors, such as different screen sizes and dimensions, interaction

methods (mouse, keyboard, touchscreen, etc.), and browser-specific limitations have

to be accounted for.

2.2 Mobile applications

Generally speaking, a mobile application is an application that runs on a mobile

device, such as a phone or a tablet. Unlike web applications, which are accessed

through the web, mobile applications are stored on the device and have to be in-

stalled before use. Mobile applications are usually restricted to one specific platform

or operating system which they target.

Mobile operating systems are operating systems that have been designed to run

on mobile devices. Currently there are two main operating systems which control

the vast majority of the market share: iOS and Android. [7] Like many other oper-

ating systems, these both consist of a layered architecture, with increased amounts

of abstraction on each layer. The operating systems provide a high-level API for

2.2 MOBILE APPLICATIONS 7

applications to rely on. The API commonly provides features such as a view sys-

tem, which allows applications to create and manage a user interface and access to

system applications and hardware, such as the camera. By offering such an API,

application developers do not necessarily have to consider the low-level details of

the operating system when creating an application.

An example of a layered architecture is shown in Figure 2.1, which depicts the

Android operating system. The highest levels contain the APIs most applications

will rely on, such as the previously mentioned view system API, while the lowest

level consists of the Linux kernel, which contains the drivers for the hardware of

the device. The middle layers contain abstractions over the drivers inside the Linux

kernel, while also encompassing native libraries such as WebKit and the Media

Framework.

Mobile applications are commonly distributed through a centralized application

marketplace such as Apple’s App Store8 or Google’s Play Store9. Depending on

the platform, applications might also be installable from outside of an application

marketplace. This is also known as sideloading an application. For the Android

operating system, applications can be freely installed from outside sources in the

form of application packages (APKs), as long as the user grants permission to in-

stall unknown applications. For iOS, which is the operating system of the iPhone,

installations of applications outside the App Store is essentially not possible, as

Apple only allows for application sideloading during application development. It is

possible to bypass this restriction by "jailbreaking" the device, but Apple strongly

cautions against this and considers it as a violation of the iOS end-user software

licence agreement. [9] In general this means that the distribution of applications

is heavily reliant on the centralized marketplaces. This may be an issue, as all

8https://www.apple.com/app-store/
9https://play.google.com/

2.2 MOBILE APPLICATIONS 8

Figure 2.1: The Android software stack, from Android’s official documentation [8]

2.2 MOBILE APPLICATIONS 9

applications are not eligible for a marketplace, as each marketplace has their own

policies and requirements which must be abided by. In addition, the marketplaces

commonly contain service fees and commissions. These include commission rates for

all paid applications and in-application purchases. For both Apple and Google, the

standard commission rate is 15% to 30%. [10][11] This means that if an application

is distributed through a marketplace, a significant portion of all of the application’s

income is lost in the form of service fees.

Mobile applications can be developed with a multitude of different technolo-

gies, such as platform-specific native technologies, frameworks capable of targeting

multiple platforms, and web-based technologies, where the application is run on an

integrated browser on the device. These technologies will be further discussed in

Chapter 3.

3 Different mobile technologies

3.1 Native SDKs and APIs

Native applications are commonly built with software development kits (SDKs),

application programming interfaces (APIs), and technologies that only target one

specific platform. These SDKs and APIs offer the best performance and the most

support for device specific functionality, as these are fully supported by the com-

panies behind the products themselves. The SDKs and APIs usually only offer

support for specific languages. Examples of these kinds of development kits are the

iOS SDK, which supports Swift and Objective-C, the Android SDK, which supports

Java, Kotlin and C++, and the now discontinued [12] Windows Phone SDK.

Native applications commonly use platform-specific, pre-built UI components in

constructing the UI of the application, making the user experience feel more cohesive

throughout the platform. The providers of the platform in question may also offer

design guidelines to make designing the UI for the native application easier. For

example, Apple has created their own Human Interface Guidelines1 for developers

on Apple platforms, while the official Android documentation recommends devel-

opers to follow Google’s Material Design guidelines2 when creating their Android

application.

Because the native applications are tied to a specific platform, developing an

1https://developer.apple.com/design/human-interface-guidelines/guidelines/overview/
2https://m3.material.io/

3.2 CROSS-PLATFORM FRAMEWORKS 11

application with native languages for multiple different platforms is expensive, as

multiple different code bases of the same application are required. Using a platform-

specific API also makes you dependent on that specific platform, which might have

negative consequences. For example, the target platform’s usage might decrease

or it might even get discontinued. One of the most notable platforms which this

happened to was the Windows Phone, where support for the operating system ceased

in 2019, therefore making all of the software written for the platform obsolete.

Common use cases for native SDKs and APIs include applications requiring

high performance such as video games, applications with a large budget, where the

expenses included with having multiple code bases are not an issue, and where the

large cost can be justified with an improved user experience, and applications that

only need to target one platform. An example would be an application that is based

on a feature only available on a specific platform, or an application whose target

users only use one specific platform.

3.2 Cross-platform frameworks

In order to avoid the issue of having multiple codebases for different target plat-

forms, cross-platform frameworks capable of targeting multiple platforms while only

requiring one codebase have been created. Examples of these kinds of frameworks

are React Native by Meta3, Flutter by Google4 and Xamarin by Microsoft5. The

performance of these frameworks, while not as good as in applications made with

fully native languages, is usually good enough for most use cases, with both React

Native and Flutter being capable of holding a steady 60 frames-per-second [13] [14].

Support for device functionality, such as GPS or the camera, follows in a similar

3https://reactnative.dev/
4https://flutter.dev/
5https://dotnet.microsoft.com/en-us/apps/xamarin

3.2 CROSS-PLATFORM FRAMEWORKS 12

vein, where most frameworks support most features available on both iOS and An-

droid. In case some platform functionality is not supported by the framework, or

the usage of native languages and APIs is necessary, most frameworks also support

integration with platform-specific languages.

Cross-platform frameworks are commonly based on a non-native language. For

example, React Native is based on JavaScript, Flutter is based on Dart, and Xa-

marin is based on C#. This means that most frameworks either compile into a

native-compatible language or offer some sort of interface between the framework

language and APIs and the native language and APIs. For example, React Native

offers a JavaScript layer and a native layer with a bridging layer between them, as

shown in Figure 3.1, and Flutter works on top of a platform-specific embedder that

coordinates with the target operating system to gain access to the required services.

Xamarin, on the other hand, contains bindings between the .NET APIs and the

native APIs and compiles into native ARM assembly in the case of iOS, or into

an intermediate language which is then Just-In-Time compiled into native assembly

during application launch in the case of Android.

One big disadvantage of using such a framework in building an application is

that the application will become heavily dependent on the framework in question.

This means that if, for example, the framework loses support and becomes depre-

cated, the application will now rely on an outdated framework and switching to a

better alternative will be expensive and take time. An example of this happening

to a framework would be the now discontinued MoSync framework. MoSync was

a cross-platform mobile application SDK, which allowed for mobile applications to

be created using HTML5 and C/C++. [16] The SDK was discontinued and lost

support when the company developing it, MoSync AB, filed for bankruptcy in 2013.

[17]

3.3 NATIVE RUNTIMES FOR WEB APPLICATIONS 13

Figure 3.1: React Native application architecture [15]

3.3 Native runtimes for web applications

It is also possible to transform a single-page web application directly into a mobile

application by using a native runtime such as Capacitor6 or Cordova7. These types

of frameworks function through the use of a WebView inside a native application

wrapper. WebViews are native application components available on both iOS and

Android which allow for apps to display web content as part of the app itself, usually

without UI elements such as the URL field in order to make the web content feel

more native to the application. Web content inside a WebView works like any other

web page or web application, with completely functional HTML, CSS, JavaScript,

and network capabilities. Because they are typically executed within a sandbox,

applications within WebViews do not normally have access to native features.

In addition to the WebView, frameworks such as Capacitor or Cordova also pro-

6https://capacitorjs.com/
7https://cordova.apache.org/

3.3 NATIVE RUNTIMES FOR WEB APPLICATIONS 14

Figure 3.2: Cordova application architecture, from the official Cordova documenta-

tion [18]

vide JavaScript APIs that can be called from inside the WebView. These JavaScript

APIs then invoke plugins which function as an interface between the framework and

the operating system API, granting the application access to device features such

as the camera or the device storage. Both Capacitor and Cordova maintain a set of

official plugins, which provide access to the most commonly used APIs, but several

third-party plugins maintained by the community are also available.

The relationship between the web application, the plugins, and the mobile device

is further illustrated in Figure 3.2, which describes the architecture of a Cordova

application.

Native runtimes for web applications offer many benefits when compared to

native applications. Because a website can be transformed into an app directly from

the HTML, CSS and JavaScript source, there is no need for separate code bases

when bringing a web application to mobile platforms. Because of this, bringing the

application to mobile is also a lot faster and cheaper when using a native runtime

3.4 PROGRESSIVE WEB APPLICATIONS 15

instead of creating a native app, as more traditional app development will cost more

time and resources.

When compared to cross-platform frameworks, native runtimes also offer an ad-

vantage relating to dependency. While applications made with cross-platform frame-

works are usually fully bound to the framework being used, and have to be remade

completely if there is a need to change frameworks, with native runtimes, the web

application stays mostly separate from the runtime itself. The native runtime func-

tions as a wrapper around the web application, meaning that if there is a need to

switch to another technology, only the code relating to the native runtime itself has

to be redone.

The main disadvantages of native runtimes are related to performance and access

to device features. Because the applications made with these kinds of frameworks

are basically websites running inside WebViews, the performance is worse than that

which could be offered by a native application. Additionally, at least in the case of

Capacitor and Cordova, native device features are accessed via open-source plugins

maintained by the community. This means that when developing on these platforms,

the developer has to rely on these community-maintained plugins, which might wary

in quality and otherwise lack behind their native counterparts.

3.4 Progressive Web Applications

Progressive Web Applications (PWAs) are web applications that can still give a

native-like experience to the end user. They are accessible both on the web and as

an "application". In reality, the application is just a modified browser window which

displays the web application while giving it the resemblance of a native application.

[19]

Progressive Web Applications offer many advantages. Because they are still fun-

damentally web applications, they can be indexed through search engines, increasing

3.4 PROGRESSIVE WEB APPLICATIONS 16

their discoverability. They are installable through the browser, and users can add

PWAs to their mobile home screens, giving them easy access to the application. This

increases their accessibility compared to normal web applications and even enables

offline access to the application by downloading the site content and caching other

potential data on the device. This is achieved through the use of a service worker,

which essentially serves as a proxy server between the web application and the web

server. [20] In addition to enabling offline access, service workers also have other

responsibilities such as enabling the application to perform data synchronization in

the background as well as reacting to push notifications. PWAs support progres-

sive enhancement, where features of the application can be progressively enabled on

more modern and capable browsers and devices, while still keeping the experience

as good as possible on older, less capable browsers, meaning that the application

offers the best possible experience for every user. [19]

Another advantage of PWAs is that the creation of a mobile "application" by

adding PWA capabilities to an existing web application is much faster and cheaper

than the creation of a separate mobile application. To create a basic PWA, the

addition of an application icon, a secure domain (HTTPS), a service worker and a

web application manifest would be enough. The web application manifest contains

information about the application such as the name and description of the applica-

tion, the display settings and the index URL which is shown by default when the

application is started. [21]

Progressive Web Applications also have access to some native device features,

such as push notifications and geolocation. Unfortunately some features may be

either completely inaccessible or only accessible on some platforms. For example, at

the time of writing this thesis, out of Chromium, Firefox, and Safari, only Chromium

offers Bluetooth support. This is especially a problem on operating systems like iOS,

which only allows browsers based on the WebKit engine to be installed, meaning

3.4 PROGRESSIVE WEB APPLICATIONS 17

that features not supported by WebKit are completely inaccessible on the entire

iOS platform. Additionally, the Firefox browser has cut back on PWA support in

general [22], which highlights the issues of compatibility in PWAs even more, while

also making it uncertain if the support for progressive web applications will be scaled

down even more in the future.

4 Analyzing the problem

4.1 Case Study

This thesis focuses on solving the problem for a specific client company with a web

application that is currently available only on the web. While the web application

is completely usable on mobile browsers, creating a native or native-like application

that could take advantage of mobile features, such as push notifications, would be

desirable.

The application is a single-page application built with the React library. In

addition to React, the application also uses plenty of other JavaScript frameworks,

such as Redux1 for state management. The app has two different versions, which

target different countries and contain features specific to those countries, and also

supports full translation of all texts for multiple languages. Even though the app

has two different versions, the versions still share the same code base, and the

country-specific features are enabled or disabled through configuration files during

the deployment process. The application also contains a suite of automated unit

tests that target the main functionalities of the application, which are continuously

maintained and updated throughout the development process.

The application is dependent on two other services: an intermediary API that

serves data to the web application, and an identity provider (IDP) service that is

1https://redux.js.org/

4.1 CASE STUDY 19

responsible for authentication and authorization. The application is fully dependent

on up-to-date data from the API and the IDP, so offline use of the application is

not a possibility and therefore will not be a requirement of the mobile application.

Authentication to the application functions through a redirect to a login page

under a separate domain where the IDP resides, where the user logs in and is

then redirected back to the web application. This is noteworthy in the sense that

this type of redirection could cause issues when creating the mobile application

prototype, but fortunately the IDP service does also offer support for authentication

through a REST API call, so using the web-based login page is not mandatory. The

interactions between the web application, the API server, and the IDP service during

the authentication and data fetching processes are further visualized in Figure 4.1.

In order to fully take advantage of the mobile platform, the application has some

explicitly defined requirements:

• The application must be available for both iOS and Android.

• The application must be capable of being available on the App Store for iOS

and on the Play Store for Android. Naturally, the prototype itself will not be

available on an app store, but the app itself must be app store compatible.

• The application must support push notifications.

• Signing in to the application must be easy, but still secure. The application

could take advantage of mobile security features such as biometrics.

• Although the application cannot support offline usage, it should still gracefully

handle being unable to access the API or the IDP.

During the case study, two different prototypes based on the original application

will be built, with two different technologies. As they are prototypes, they will

not contain the full feature set of the original application. Instead, the prototypes

4.1 CASE STUDY 20

Figure 4.1: Sequence diagram of the interactions between the web application, API

server and IDP service during authentication and data fetching processes

4.2 NATIVE APPLICATION AS A SOLUTION 21

will contain implementations for fundamental features such as authentication, state

management, and internationalization. In addition, a set amount of basic features

that are included in the original application will be implemented as well. Suitable

technologies for the prototypes are analyzed in the following sections, of which the

two most fitting will be chosen. The amount of work required in implementing the

prototypes will be logged, and the data gathered is then later used to compare the

two technologies in terms of what was achieved, how much work it took and how

much work would be required for a full implementation.

4.2 Native application as a solution

Creating the application with fully native technologies would offer two main ad-

vantages: The best performance and the best access to native features possible.

Unfortunately, using fully native technologies also comes with a large drawback,

which is the amount of work required. At least two different applications would

have to be built and eventually maintained, one for the iOS platform and one for

the Android platform. By taking into account the already existing web application,

this would result in having to maintain a total of three different applications, each

made with different technologies targeting the different platforms. In addition to

demanding the most work from the developer team, this would also end up requiring

the most knowledge from the team due to the amount of different technologies used.

The main benefits gained by using fully native technologies are also not that

relevant to this application specifically. The application is mainly used for view-

ing and submitting data, which does not require much performance-wise. There-

fore, the performance gained by using a native technology would most likely have

negligible impact on the end user experience. In a similar fashion, the application

only demands support for notifications and, potentially, biometric authentication, as

listed in the application requirements. Through official and community-maintained

4.3 CROSS-PLATFORM FRAMEWORK AS A SOLUTION 22

APIs, packages, and plugins, these features are also available for hybrid frameworks

[23][24], native runtimes [25][26], and even web applications [27][28], so it would not

be necessary to create a fully native application instead of using one of the above

technologies.

As a result, fully native technologies will not be used in creating the prototypes,

as the negligible gains in performance would not justify the large amount of work

required in building and maintaining the application.

4.3 Cross-platform framework as a solution

Compared to fully native technologies, the main advantage of using a cross-platform

framework would be, as the name suggests, the ability to target multiple platforms

without having to build multiple codebases. In the case of this application, it would

mean that a total of two codebases would have to be maintained, one for the web

application and one for the mobile applications. The disadvantages in using a cross-

platform framework relate to decreased performance and lesser support for native

features, but as discussed in Section 3.2, cross-platform frameworks are very much

capable of performing well enough for this kind of an application. As for support for

native features, namely notifications and biometric authentication, the chosen frame-

work does not offer an out-of-the-box solution that would work on both iOS and

Android. This means that the application will have to either rely on a community-

maintained package or build its own abstractions around the required native fea-

tures and implement them separately for both platforms, which would require a

lot of work. Regardless, achieving support for the native features is still certainly

achievable. Therefore, cross-platform frameworks look like a suitable technology for

building the application.

For this reason, one of the prototype applications will be built with a cross-

platform framework. There are multiple different technologies to choose from, such

4.4 NATIVE RUNTIMES AS A SOLUTION 23

as the previously mentioned React Native, Flutter, and Xamarin, but for practical

reasons the framework of choice for this prototype will be React Native. The devel-

oper team responsible for this application already has some existing experience with

React Native, while having none with other cross-platform frameworks. Addition-

ally, as the original web application has been built with React, one could assume

that rebuilding the application would be easier with React Native than with another

framework.

4.4 Native runtimes as a solution

Using a native runtime such as Cordova or Capacitor would allow for the existing

web application to be directly converted into a mobile application by using the native

wrapper provided by the framework. Building the mobile application like this would,

at least in theory, greatly reduce the amount of work required. Additionally, by

using a technology like this, it might be possible to create and maintain the mobile

application without having to maintain more than one codebase in total, since the

web application is directly converted into the mobile application. These are both

very big advantages when comparing this technology to other options and, as such,

make it seem like a very promising option.

Unfortunately, using a technology like this will bring with it some notable disad-

vantages. First of all, the performance of the application could suffer significantly,

since the mobile application would basically be a web application running inside an

integrated browser. The performance loss could end up being severe enough that

it would start affecting the user experience of the end users. Additionally, even if

the web application can be directly converted into a mobile application, the applica-

tion will still require some changes specific to the mobile application. For example,

the integrated browser will not contain the page history navigation buttons that a

browser normally contains, so the inclusion of extra UI elements might be necessary

4.5 PROGRESSIVE WEB APP AS A SOLUTION 24

to maintain the user experience. Naturally, the features regarding notifications and

biometric authentication would be completely new and would require work as well.

Finally, in both Cordova and Capacitor, native functionality is achieved through

the use of plugins, as discussed in Section 3.3. Some of these plugins are official

and maintained by the teams behind the frameworks themselves, while others have

been created and are maintained by the community. In Capacitor’s case, there is an

official plugin for notifications, but only community-maintained ones for biometric

authentication. This would mean that if Capacitor was to be used, the application

would have to rely on a plugin maintained solely by the community.

Because a native runtime has the potential to greatly reduce the amount of work

required in creating and maintaining the application, one of the prototypes will be

built with a native runtime, even though it may be accompanied by some significant

disadvantages. The framework that will be used in the prototype will be Capacitor,

as it seems like a more modern solution than Cordova, and is even considered as a

successor to Cordova by some. [29] Although it would be interesting to use both of

the frameworks to see what their differences are in practice, unfortunately the time

and resources available for the thesis are limited and the amount of prototypes had

to be limited to a total of two.

4.5 Progressive Web App as a solution

Transforming the existing web application into a progressive web application would

likely be the fastest way to create a mobile-friendly version of the application. It

would have the benefit of not having to create and maintain multiple codebases,

as the PWA capabilities would just be added to the existing application. These

attributes make PWAs in general a very solid option for quickly bringing a web

application to mobile platforms.

Unfortunately, PWAs are far from a perfect solution, as they currently have sev-

4.6 SUMMARY 25

eral shortcomings when it comes to distribution and native feature support. Most

of these are Apple and iOS related. Firstly, on iOS, progressive web application

installation is only supported on the Safari browser [30], so if the user was using

another browser, such as Chrome or Firefox, installing a PWA is not possible. Sec-

ondly, web browsers on iOS lack support for some critical features, namely push

notifications [27]. This means that, at the moment, it is simply not possible to send

notifications through a web application on iOS, which is one of the key require-

ments of the application. Fortunately, this will change in the future, as Apple has

mentioned that they will be adding support for Web Push for iOS and iPadOS in

2023. [31] The final major issue is that the final application must be distributable

through the Apple App Store. According to multiple articles, however, PWAs are

not accepted to the Apple App Store. [32][33] This sentiment is also reflected in

Apple’s App Store Review Guidelines, where it is declared that "Your app should

include features, content, and UI that elevate it beyond a repackaged website.". [34]

For these aforementioned reasons, adding progressive web application capabilities

to the existing application is unfortunately not a viable approach in this case. This

is a shame, since overall PWAs seem like a very good method for enhancing the

mobile experience of an existing web application, and will certainly be a good fit for

some projects. With the increasing amount of support PWAs are receiving, perhaps

in the future it will be a more suitable choice for projects like this as well.

4.6 Summary

Each technology has its strengths and weaknesses, with some being more relevant

to this case study than others. Native applications offer the best performance and

native feature support, but due to the fact that a separate code base would be

required for each target platform, the amount of work that would be required makes

this approach unfeasible. Cross-platform frameworks, on the other hand, can target

4.6 SUMMARY 26

multiple platforms with the addition of just one code base, while also offering good

enough performance and support for native features. Therefore, the first prototypes

will be built with the cross-platform framework React Native.

The need for additional code bases can be eliminated altogether by using so-

lutions such as native frameworks or progressive web applications, but these bring

with them their own issues. PWAs have major issues regarding feature support,

which makes it unfeasible for this case study as it is unable to fulfill some of the key

requirements of the project. Feature support can be an issue with native runtimes

as well, but to a lesser extent. Additionally, performance may become an issue,

especially on more demanding tasks. Regardless of the drawbacks, native runtimes

seem like a suitable choice, so the second prototype will be built with the native

runtime Capacitor.

The pros and cons of each technology are also listed in Table 4.1

4.6 SUMMARY 27

Table 4.1: Summary of how suitable the different technologies are for this case study

Solution Pros Cons Used in

a proto-

type

Native application Best performance

Best native feature

support

Requires one code-

base per target

platform

No

Cross-platform

framework

Can target multiple

mobile platforms

with one codebase

Drop in perfor-

mance

Lesser support for

native features

Yes

Native runtime Shared codebase

between web and

mobile platforms

Drop in perfor-

mance

Lesser support for

native features

Yes

Progressive Web

Application

Fastest way to

create a mobile-

friendly version of

the web application

Major issues re-

garding feature

support

No

5 Implementation of the prototypes

5.1 Hypotheses

Regarding the amount of work required, the hypothesis of this thesis is that con-

verting the existing web application into a mobile application with Capacitor will

take less time than creating the complete mobile application with React Native.

This would be due to Capacitor not requiring the creation of a completely new code

base for the mobile application, instead allowing for the original code base to be

used with the mobile application, thereby reducing the work required by a signifi-

cant amount. It should be noted that the actual time used for both prototypes will

most likely be similar. With the Capacitor prototype, the entire application will be

converted, while with the React Native prototype, only the core functionality of the

application, alongside a single feature, will be implemented.

On the other hand, regarding performance, the hypothesis is that the React

Native application will perform much better and will be of higher quality overall

than the Capacitor application. As shown in Figure 3.1, React Native contains a

native layer which is responsible for rendering the UI, among other things, while the

Capacitor application is contained inside an integrated browser. Therefore it would

be fair to assume that the native characteristics of React Native application would

allow it to have better performance than the browser-based Capacitor application.

5.2 REACT NATIVE PROTOTYPE 29

5.2 React Native prototype

In general, the creation of the React Native prototype was relatively smooth. This

was largely due to the fact that the original web application was made with React,

which meant that the overall structure of the React application code could be used

as a basis for the React Native application. Because both frameworks are based

on JavaScript, it was even possible to use some of the web application code in

the prototype without any modifications. For example, it was possible to directly

copy the state handling logic from the original React application into the React

Native application. Because of these similarities, most of the actual work during the

prototype development went into transforming web components into React Native

components, and the authentication flow.

One of the main differences between React and React Native is the core com-

ponents the frameworks use in building the UI. As React is a framework used for

web development, it uses HTML-like markup called JSX to form the UI [35], which

is not compatible with React Native. Instead, React Native uses Native Compo-

nents. These are components that contain implementations for both the Android

and iOS platforms, where the corresponding implementation is selected by React

Native during runtime based on the platform the application is running on. [36]

Just like traditional web applications, React uses CSS to style the JSX compo-

nents. Relatedly, React Native uses a CSS-like technology in styling components,

with the main difference being that the styles are written with JavaScript instead

of CSS. The styling in React Native strives to match how CSS works on the web,

with many of the keywords being shared, although some differences do exist. [37]

For example, instead of using pixels or other units, component dimensions in React

Native are unitless, and represent density-independent pixels. In practice though,

the dimensions function in largely the same way, and the pixel dimensions used in

CSS can usually be directly converted into the unitless dimensions in React Native.

5.2 REACT NATIVE PROTOTYPE 30

Figure 5.1: Code snippet showing the similarities between CSS and React Native

styling. CSS is shown on the left and React Native code is shown on the right.

A comparison of the syntax CSS and React Native uses for styling is shown in Figure

5.1.

When transforming the React components into their React Native counterparts,

the main hurdles were with forms and form components. HTML contains many

different types of inputs, such as buttons, text fields, checkboxes, and drop-down

lists, which are all supported on the vast majority of browsers. React Native, on

the other hand, lacks most of these types of ready-made inputs, containing out-of-

the-box support only for buttons in the form of Buttons and Touchables1, and text

input2. This means that other input components, such as the checkboxes or drop-

down lists, have to either be made from scratch using the available React Native

components, or a third-party library has to be used. In this prototype specifically, a

library was used for the checkbox implementation, while other forms of input such

as the drop-down list were implemented from scratch.

1https://reactnative.dev/docs/handling-touches
2https://reactnative.dev/docs/textinput

5.2 REACT NATIVE PROTOTYPE 31

In addition to the form inputs, HTML contains form tags which are used in

encapsulating forms and enable users to submit data to a web server. The React

application takes advantage of these form tags for most of its form logic. Unfortu-

nately, React Native does not offer any direct replacement for the HTML form tags,

which means that alternate approaches have to be used for creating forms in React

Native. Third-party form libraries, such as Formik3 or React Hook Form4 may be

used for implementing the missing form functionality, and many of these libraries

are compatible with React as well. In this case, however, the forms in the prototype

were simple enough that no third-party library was necessary. Instead, the form

state was controlled through the React useState hooks, which is noted as a standard

approach in the React documentation. [38]

Authentication also works quite a bit differently in the mobile prototype than

in the original web application. The web application uses a library for handling

the authentication flow which did not contain support for React Native, so the

authentication flow had to rebuilt completely.

As described in Section 4.1, the web application authenticates the user by redi-

recting them from the web application domain to the IDP domain for login. In the

prototype, the redirection works the same as in the web application, except instead

of redirecting from a web domain into another web domain, the user is redirected

from the application to the IDP domain using an integrated browser, and then the

IDP site redirects the user back to the mobile app by using a deep link5 on Android

or a universal link6 on iOS. It should be noted that deep links are not secure and

should not contain sensitive data. The deep link scheme can be arbitrarily chosen by

the developer, meaning that hijacking a deep link for an application is possible by

3https://formik.org/
4https://react-hook-form.com/
5https://developer.android.com/training/app-links/deep-linking
6https://developer.apple.com/ios/universal-links

5.2 REACT NATIVE PROTOTYPE 32

simply creating another application with the same deep link scheme. This security

flaw can be and is being mitigated by using a authorization flow such as PKCE7,

where the client application generates a secret which is used when requesting the

access token after authentication, blocking potential hijackers from gaining access

to the access token.

Then, instead of using a web-only technology such as cookies or localStorage

to store the authentication tokens granted by the IDP, they are stored inside an

encrypted container on the device. The implementations for the encrypted container

is known as KeyStore8 on Android and KeyChain9 on iOS, but in order to avoid the

need for platform-specific code, the library react-native-keychain10 was used as an

abstraction over the platform-specific credential stores.

As demonstrated by Figure 4.1, the web application uses access tokens and re-

fresh tokens to authenticate requests to the API. The access token has a lifespan of

2 hours, while the refresh token used to request a new access token has a lifespan of

4 hours. Because we do not want the user to have to log in every time they open the

mobile application, this 4 hour lifespan is not enough. Therefore, instead of using

a refresh token with a lifespan of 4 hours to request the new access tokens, we use

an offline token, which functions otherwise just like a refresh token, except it has

a lifespan of 30 days. Just like the refresh token, this token is also refreshed every

time the access token is refreshed. This means that the user will only have to log in

when they have not used the application for over 30 days.

The authentication flow of the initial user authentication is pictured in Figure

5.2. Fetching data and refreshing the access token still function similarly in the

prototype as in the web application, as depicted in Figure 4.1.

7https://oauth.net/2/pkce/
8https://developer.android.com/training/articles/keystore
9https://developer.apple.com/documentation/security/keychain_services

10https://github.com/oblador/react-native-keychain

5.2 REACT NATIVE PROTOTYPE 33

Figure 5.2: Sequence diagram of the interactions between the mobile application

and the IDP service during the initial user authentication

5.3 CAPACITOR PROTOTYPE 34

Finally, a couple things should be noted about development and testing. The

prototype application was developed on the Windows operating system, and tested

on an emulator as well as a real Android device through USB debugging. The

application testing was unfortunately limited only to Android. The company devel-

opment environment was only accessible through in-house computers, which were

only available with the Windows operating system, and as building the application

for an iOS device requires an Apple Mac, testing on iOS was not a possibility. While

the application was not tested on iOS, it should theoretically still function on the

operating system with only some additional work required, as platform-specific code

was intentionally kept at a minimum, with only unavoidable platform-specific code,

such as application configuration, being created as necessary.

5.3 Capacitor prototype

Transforming the web application into a Capacitor application was overall pretty

straight-forward. Most of the work required for creating this prototype went into

creating the Capacitor configuration, modifying some of the React configuration

into a form compatible with Capacitor, as well as readjusting the authentication

flow to function in the context of the Capacitor application. Most of the Capacitor

specific configuration is contained in a separate file and is shared for both iOS and

Android, meaning that the Capacitor-specific code stays mostly separate from the

web application code.

The authentication flow used in this prototype highly resembles the one used in

the React Native prototype, although there are some significant differences. The

authentication flow begins by redirecting the user to the IDP domain for login. In

the prototype this is done by opening the login site in the default browser app of

the device, which is not ideal as it adds unnecessary friction to the authentication

flow. In the full implementation, this would be done by using an in-app browser,

5.3 CAPACITOR PROTOTYPE 35

which can be accomplished by using the Capacitor Browser API11. After login, the

user is redirected back by using a deep link or a universal link depending on the

platform, just like in the React Native prototype. To handle the deep link redirect,

the Capacitor App API12 is used to respond to the event fired by the redirect, which

then redirects the user to the correct page on the web application. As in the React

Native prototype, the inherent security flaws contained in deep links are mitigated

by using the PKCE authorization flow.

The authentication tokens acquired during the authorization process are stored

inside cookies, just like in the web application. This is not ideal, as the cookies

are not encrypted, and in the full implementation they would be stored inside an

encrypted container, such as KeyChain or KeyStore. The reason why the tokens

are not stored in the secure container is that the original web application uses a

framework for for handling most of the authentication flow. The framework was

clearly designed for a web-only environment and contained a very limited amount

of customization options, which meant that the way the tokens are stored could not

be reconfigured.

Other issues with the framework also emerged. For example, the silent renewal

of the authorization token did not function, as the framework relies on using an

iframe to execute the silent renewal, which does not function the same way on a

Capacitor application as it does on the web. The way to solve this issue would

be to either use or create a library that would work on both web and Capacitor

environments. Migrating to such a library for a prototype was deemed to take too

much work, which is why the authentication flow in the prototype ended up being

lacking in some ways.

Apart form the issues mentioned above, transforming the web application into

11https://capacitorjs.com/docs/apis/browser
12https://capacitorjs.com/docs/apis/app

5.3 CAPACITOR PROTOTYPE 36

a Capacitor application was quite smooth and resulted in a fully functional mobile

application. Regarding the development environment, this prototype had the same

Windows-related limitations that the React Native prototype had, meaning that

the application was only able to be tested on an Android emulator and an Android

device. Regardless of this, with the addition of some iOS-specific configuration, the

application should still work on iOS without requiring any extensive work.

6 Result analysis

6.1 Quality

The original hypothesis that was formed before making the prototypes was that the

React Native prototype would be of higher quality than the Capacitor prototype due

to it being based on native technologies. In practice, this would mean that the React

Native prototype would perform better, would contain a better user experience, and

would contain less defects or bugs than the Capacitor prototype. The quality of

the applications was measured by testing their performance in terms of frames per

second and CPU usage, measuring their file size, as well as testing them manually

for bugs or defects.

Regarding performance, neither one of the prototypes had any major issues.

Both prototypes ran at a stable 60 frames per second on both the emulator and the

real device regardless of the activity that was being performed on the application.

In addition to measuring the frame rate of the prototypes, the CPU usage of the

applications was also tested.

For the performance test, the same task is performed on both applications, and

the CPU usage during the task is recorded. The task chosen for the test was scrolling

through a case list view. The case list view involves loading and rendering hundreds

of case card components, where each card contains multiple text components as

well as an image component, making it one of the most computationally intensive

6.1 QUALITY 38

tasks the prototypes contain. The tests were performed on a real device, the details

of which are included in Appendix A, and the CPU activity on the device was

inspected by using the CPU Profiler provided in Android Studio1. The results of

the performance tests are shown in Figure 6.1.

Based on the performance test, the Capacitor prototype performs significantly

better than the React Native prototype. While scrolling through the list, the average

CPU usage of the React Native application was 21.7%, while for the Capacitor

application it was only 12.3%. This quite clearly goes against the original hypothesis,

where it was assumed that the React Native prototype would perform better than

the Capacitor prototype due to Capacitor using an integrated browser instead of

the native components of the platform in question, like React Native does. While

the difference in performance could be, at least partially, due to poorly optimized

code being used in the React Native prototype, the performance difference is likely

caused by the frameworks themselves.

The differences in performance between React Native and Capacitor have been

observed before. In an article written by the Ionic team comparing the perfor-

mance between the frameworks on iOS [39], a similar test was performed, where

the CPU usage of applications was recorded while scrolling through an example list

of employees. The results obtained from their test show an even higher difference

in performance: The highest recorded CPU usage of the React Native application

in question was "nearly 200%", whereas for the Capacitor application it was only

"upwards of 10%". The article mentions that the reason for this is in the JavaScript

engines being used: On iOS, Capacitor uses the much faster WKWebView engine,

while React Native uses the slower JavaScriptCore engine. It should be noted that

the article was written in March 2022. Since then, in September 2022, React Native

0.70 was released, which switched the default JavaScript engine from JavaScriptCore

1https://developer.android.com/studio/profile/cpu-profiler

6.1 QUALITY 39

(a) CPU usage of the React Native application

(b) CPU usage of the Capacitor application

Figure 6.1: CPU usage of the React native and Capacitor applications while scrolling

down a list of cases in terms of percentage of the phone’s CPU used. Three separate

tests and an average of the tests are shown.

6.1 QUALITY 40

to Hermes2, a JavaScript engine optimized specifically for React Native, meaning

that the findings of the article are at least partially outdated. [40] Another thing to

note is that the article was written by Ionic, which is the team behind Capacitor,

so it is in their interest for them to portray Capacitor in a good light. Regardless of

the switch in JavaScript engines, it seems that Capacitor still performs better than

React Native, at least in this case.

In addition to performing better, the file size of the Capacitor prototype is also

considerably smaller than the file size of the React Native prototype. The install

size of the release build of the Capacitor application is 19.34 MB, while the React

Native application is more than double than that with a size of 44.81 MB. While

already much larger than the Capacitor application, it should also be considered that

the React Native prototype contains a partial implementation, while the Capacitor

prototype already contains the full implementation of the original web application.

Because of this, it would be expected that the size of the final application built with

React Native would be even larger than the 44.81 MB. Regardless, even though the

difference between the file sizes is quite large, the React Native prototype is of an

acceptable size for a modern mobile application, and is far from the 150 MB limit

enforced by Google for Android App Bundles published in the Google Play Store

[41].

In regards to defects, no bugs were discovered in either one of the prototypes

during the manual testing of the final prototypes. This is not surprising, as the

prototypes have not been extensively tested in production environments, and bugs

found during development were also fixed as they were encountered. Therefore it

could be said that the prototype application are of equal quality in this aspect.

Finally, while performance and defects are easy to measure and compare quan-

titatively, user experience is harder to assess in such a way. Fortunately, since both

2https://hermesengine.dev/

6.2 AMOUNT OF WORK 41

of the prototypes mimic the web application as closely as possible, the end result

is that the user experience in both applications is nearly identical. The only major

difference is in the authentication flow, where the Capacitor application redirects

the user to the authentication domain through an external browser app instead of

an integrated browser, as mentioned in Section 5.3. However, this is the case only

due to the amount of work restructuring the authentication flow would require,

and in the full implementation the Capacitor application would use an integrated

browser just like the React Native application. Therefore the user experience in the

application prototypes could be considered equivalent regardless of the differences

in authentication flow.

In summary, the Capacitor prototype performed significantly better than the

React Native prototype, while also having a smaller file size. There were no differ-

ences in the user experiences of the prototypes, and no major defects were found

in either one. Therefore it would be fair to say that the Capacitor prototype was

of higher quality overall than the React Native prototype, which makes the original

hypothesis regarding quality incorrect.

6.2 Amount of work

Regarding the amount of work required for the prototypes, the original hypothesis

was that the Capacitor prototype would require less work than the React Native

prototype due to it not requiring the construction of an entirely new code base. Dur-

ing the development of the prototypes, the work that went into the two prototypes

was measured in terms of time used. The work measured was divided into different

categories based on what was being developed. These categories include initializa-

tion and setup, general development, authentication, and feature-specific categories.

The measured work contains only the time that was spent actively developing the

prototypes, so time spent on activities such as meetings or performance tests are not

6.2 AMOUNT OF WORK 42

included in the results. The breakdown of the work performed during the creation

of the prototypes is shown in Figure 6.2.

The initialization and setup category includes time spent on setting up the de-

velopment environments as well as the prototype projects. The time spent setting

up was about the same for both prototypes, and in both cases the process was rela-

tively smooth with no major issues, since both React Native and Capacitor offer a

solid "getting started" documentation that made initial setup very easy.

The general development category functions as a catch-all category for activi-

ties that did not really fall under any of the other labels. For the React Native

prototype, this encompasses things like the development of generic, common com-

ponents, setting up the API client, and replicating the state management logic from

the original web application. In the case of the Capacitor prototype, this category

mainly contains changes to the application configuration. The React Native pro-

totype required much more of general development than the Capacitor prototype.

This was to be expected, since in Capacitor the web application is directly used in

the mobile application, meaning that all of the functionality already exists, whereas

in the React Native application all of the functionality has to be reimplemented.

Implementing authentication took a similar amount of time for both prototypes,

but for different reasons. In the React Native prototype, the authentication flow

was redone from scratch to function in a mobile environment. Since the React

Native prototype only targets mobile platforms and does not have to function on

the web environment, the authentication flow was implemented accordingly. The

Capacitor prototype, on the other hand, targets both web and mobile platforms

and contains only one shared code base for all of the targeted platforms. Because

of this, the existing authentication implementation on the original web application

was modified to work on both web and mobile platforms. As discussed in Section

5.3, the prototype implementation of the authentication flow is incomplete and has

6.2 AMOUNT OF WORK 43

flaws concerning both features and security, which are mostly due to the fact that

the original web application uses a web-only authentication framework to handle

most of the authentication implementation.

Because of this, more work would be required to create a complete authentication

implementation for the final Capacitor application. To make an authentication

system that both works and is secure on all platforms, both web and mobile, would

take a considerable amount of research, work, and testing, which is why it was

omitted from the prototype implementation. A conservative estimate would be that

at least 40 man-hours would be needed to complete the final implementation. This

would mean that the amount of work required to implement the authentication

in the Capacitor application is much larger than in the React Native application.

This should come as no surprise though, as, again, the Capacitor application has

to function in more environments than the React Native application, making the

authentication implementation more complex.

For the React Native prototype, although the existing React code could still

be used as a guide or a template, and some of the original code could even be

replicated directly into the prototype, since the application required a completely

new code base, all of the features of the original web application also had to be

rebuilt. In the prototype these features were limited to implementing a part of the

form components required by the application, as well as the entirety of the case list

feature. Implementing just these features took a considerable amount of work, and

considering that the full application contains a much greater amount features than

the prototype, some of which are very complex, it is evident that a major amount

of work would be required to complete the application.

The Capacitor prototype, contrarily, uses the existing web application as a basis

for the mobile application, meaning that there is no need to reimplement any of the

features that already exist in the web application. Therefore, when compared to the

6.2 AMOUNT OF WORK 44

React Native application, a substantial amount of work is eliminated by avoiding

the need to reimplement the already existing features.

Finally, it should be considered how the amount of work required would be

affected if, in the future, both the web and mobile application are to be extended

with new features. In the case where the mobile application was made with React

Native, two separate code bases would exist, one for the web platform and one

for the mobile platforms. This would mean that the feature would have to be

implemented twice, so that both code bases would contain the implementation. In

the case where the mobile application was made with Capacitor, only one code base

would exist that would be shared between web and mobile platforms. Therefore

only one implementation of the feature would be necessary, resulting in a smaller

amount of work required. The feature still has to be implemented in such a way that

it is compatible with both web and mobile platforms, meaning that it would still

require more work than a web-only or a mobile-only implementation, but it would

be reasonable to assume that the total amount of work would still be less than that

required in creating two separate implementations.

To summarize, the Capacitor prototype required much less work in total than

the React Native prototype, even when accounting for the additional work required

to revise the inadequate authentication flow. This is mainly due to the fact that

when using Capacitor, the features of the original application do not have to be

reimplemented, as is the case with React Native. The same would hold true to

changes that would come in the future as well, due to the fact that with Capacitor,

the code base is shared between the mobile and web applications, avoiding the need

to create duplicate implementations of shared features, as would have to be done

if React Native was to be used. Therefore the original hypothesis regarding the

amount of work required was correct.

6.2 AMOUNT OF WORK 45

Figure 6.2: Breakdown of the work performed in the creation of the prototypes

7 Conclusion

7.1 Answering the research questions

The answer to RQ1 (What challenges are there in creating a mobile application

based on an existing web application?) was mostly discussed in Chapters 2 and 3.

The main challenges encountered mainly rely on the fact that the web and mobile

platforms are fundamentally different and rely on completely different technologies.

Therefore, converting a web application into a native mobile application usually

requires an entirely new code base built with technologies specific to the mobile

platform, where all of the features of the original application have to be reimple-

mented, ultimately resulting in a lot of knowledge and work being required for the

creation of the mobile application. Depending on the use case, browser-based mo-

bile applications, such as native runtimes or progressive web applications, might also

be an option, which may lessen the workload in creating the application, but also

might require compromises relating to performance, access to platform features, and

availability.

To answer RQ2 (How suitable are different mobile technologies for creating a

mobile application based on an existing web application? How do they compare

against each other?), four different technologies were evaluated during Chapters

3 and 4, each of them having unique benefits and drawbacks. Native applications

have the best performance and support for device features, but also require the most

7.1 ANSWERING THE RESEARCH QUESTIONS 47

work and knowledge, since every target platform requires their own code base that is

based on platform-specific technologies. For example, if the goal was to target web,

Android, and iOS platforms, three separate code bases would be required. Cross-

platform frameworks allow for the application to target multiple mobile platforms

while requiring only one code base, but still requires separate code bases between

web and mobile. This means that when expanding from web to mobile platforms, a

new code base still has to be created, which is better than having to create multiple

code bases but still requires a considerable amount of work. The drawback with

using cross-platform frameworks is lesser performance and and support for device

features, as well as having to bind the application to a specific framework.

Native runtimes allow for the web application to be directly transformed into

a mobile application, which allows sharing the application code base between web

and mobile, thus avoiding the need to create separate code bases, which ultimately

results in less work required. Like cross-platform frameworks, native runtimes also

compromise on performance and support for device features, while also partially

binding the application to the framework being used. The binding is not as heavy

as with cross-platform frameworks, though, as the web application is still clearly

separate from the native runtime, meaning that if migrating to another framework is

necessary, only the code relying on the framework itself has to be migrated. Finally,

bringing an existing web application to mobile by transforming it into a progressive

web application requires much less work than creating a separate mobile application.

Using progressive web applications has some major drawbacks with having a lack of

support on some platforms and browsers, as well as having no access to some device

features, making it unfeasible in some use cases.

The cross-platform framework React Native and the native runtime Capacitor

were more closely compared during the creation of the prototypes in Chapters 5 and

6. The results show that, at least based on the prototypes, Capacitor seemed like a

7.1 ANSWERING THE RESEARCH QUESTIONS 48

better solution overall, resulting in less work required, better overall performance,

and otherwise equivalent quality when comparing the prototype applications.

To summarize, there is no one definitive answer to which technology one should

pick when bringing their web application to mobile, as it is heavily dependent on the

use case. For example, for applications that benefit a lot from great performance,

fully native applications as a good option. On the other hand, for simple applications

that do not require many device features, progressive web application seem like a

suitable solution. In the case of the case study performed in this thesis, the best

technology options for the mobile application were React Native and Capacitor, out

of which Capacitor seems like a better solution overall. In order to choose a good

technology for a mobile application, the requirements of the application must be

analyzed and the decision must be based on which technology fits the requirements

best.

The answers to RQ2 and RQ3 have some overlap, but to answer RQ3 (How

much does the chosen technology affect the amount of work required in creating

and maintaining a mobile application?) specifically, the choice of technology has a

major effect on the amount of work the creation and maintenance of the application

will require. Making fully native applications demands a lot of work, especially if

the goal is to target multiple different platforms. Cross-platform frameworks are

better in this regard, as they allow for multiple mobile platforms to be targeted

without having to create multiple code bases, but will still require at least two code

bases if we wish to target both web and mobile. Finally, by taking advantage of an

existing web application with technologies such as native runtimes and progressive

web applications, the amount of work required in creating and maintaining the

mobile application is vastly reduced.

7.2 LIMITATIONS OF THE THESIS 49

7.2 Limitations of the thesis

The main limitation of this thesis is that only two prototypes were built during

the prototyping phase. Because the prototypes were built using only React Native

and Capacitor, only those two technologies can be directly compared, and more

prototypes would be necessary for more in-depth comparisons between all technolo-

gies. The creation of a prototype with at least one native technology would have

served as a solid baseline for comparisons with other technologies, and had multiple

native prototypes been constructed for different platforms, the differences between

platforms could have also been analyzed.

Different cross-platform frameworks would have also been good to compare in

practice. Frameworks like Flutter and Xamarin differ a lot from React Native,

and so the quality of the prototypes and the work required in creating them could

have varied significantly between them. The effect of the technologies chosen for the

original web application and the mobile prototype could have also been analyzed had

more prototypes been created. In the case study, the existing web application was

made with React and the cross-platform framework chosen for one of the prototypes

was React Native. Since React Native is based on React, this likely resulted in an

easier transition than if transitioning from React to Flutter, for example.

Regarding the web application-based mobile technologies, Capacitor was chosen

as the native runtime for one of the prototypes due to being more modern than

Cordova, but the differences between the two frameworks would have been beneficial

to see in practice. The practical evaluation of progressive web applications in the

context of bringing an application to mobile platforms would have also been useful,

but unfortunately the technology was not a good fit for the use case of the case

study.

Finally, one overall problem the prototypes had was that they were developed

solely by a single developer, the author of this thesis. Developers may have varying

7.2 LIMITATIONS OF THE THESIS 50

experiences with different technologies, resulting in differences in the work required

to create applications as well as the quality of the applications produced. To properly

gauge the differences between the technologies, the experiences of multiple different

developers would be required. Additionally, developers of multiple different skill

levels should be included, as the knowledge and experience the developers have with

the technologies will highly influence the end result.

References

[1] “HTML: HyperText Markup Language”. (2023), [Online]. Available: https:

//developer.mozilla.org/en-US/docs/Web/HTML. (accessed 02.03.2023).

[2] “Rendering engine”. (2023), [Online]. Available: https://developer.mozilla.

org/en-US/docs/Glossary/Rendering_engine. (accessed 02.03.2023).

[3] V. Belsky, “Web application vs. website: finally answered”, 2017. [Online].

Available: https://www.scnsoft.com/blog/web-application-vs-website-

finally-answered.

[4] E. Designs, “Website vs Web App: What’s the Difference?”, 2019. [Online].

Available: https://medium.com/@essentialdesign/website-vs-web-app-

whats-the-difference-e499b18b60b4.

[5] V. Solovei, O. Olshevska, and Y. Bortsova, “The difference between developing

single page application and traditional web applications based on mechatronics

Robot Laboratory ONAFT application”, Automation technological and busi-

ness - processes, vol. 10, no. 1, Apr. 2018. doi: https://doi.org/10.15673/

atbp.v10i1.874.

[6] “Lazy loading”. (2022), [Online]. Available: https://developer.mozilla.

org/en-US/docs/Web/Performance/Lazy_loading. (accessed: 02.02.2023).

https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Glossary/Rendering_engine
https://developer.mozilla.org/en-US/docs/Glossary/Rendering_engine
https://www.scnsoft.com/blog/web-application-vs-website-finally-answered
https://www.scnsoft.com/blog/web-application-vs-website-finally-answered
https://medium.com/@essentialdesign/website-vs-web-app-whats-the-difference-e499b18b60b4
https://medium.com/@essentialdesign/website-vs-web-app-whats-the-difference-e499b18b60b4
https://doi.org/https://doi.org/10.15673/atbp.v10i1.874
https://doi.org/https://doi.org/10.15673/atbp.v10i1.874
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading
https://developer.mozilla.org/en-US/docs/Web/Performance/Lazy_loading

REFERENCES 52

[7] “Mobile Operating System Market Share Worldwide”. (2022), [Online]. Avail-

able: https://gs.statcounter.com/os-market-share/mobile/worldwide/

2022. (accessed: 03.02.2023).

[8] “Platform Architecture”. (2023), [Online]. Available: https://developer.

android.com/guide/platform. (accessed: 03.02.2023).

[9] “Unauthorized modification of iOS can cause security vulnerabilities, insta-

bility, shortened battery life, and other issues”. (2018), [Online]. Available:

https://support.apple.com/en-gb/HT201954. (accessed: 02.02.2023).

[10] “App Store Small Business Program - Apple Developer”. (2023), [Online].

Available: https://developer.apple.com/app-store/small-business-

program/. (accessed 29.04.2023).

[11] “Service fees - Play Console Help”. (2023), [Online]. Available: https : / /

support.google.com/googleplay/android-developer/answer/112622.

(accessed 29.04.2023).

[12] “Windows 10 Mobile End of Support: FAQ”. (2023), [Online]. Available: https:

//support.microsoft.com/en-us/windows/windows-10-mobile-end-

of- support- faq- 8c2dd1cf- a571- 00f0- 0881- bb83926d05c5. (accessed:

06.01.2023).

[13] N. Hansson and T. Vidhall, “Effects on performance and usability for cross-

platform application development using React Native”, M.S. thesis, Linköping

University, Human-Centered systems, 2016, p. 92. [Online]. Available: https:

//www.diva-portal.org/smash/get/diva2:946127/fulltext01.pdf.

[14] T. Tran, “Flutter Native Performance and Expressive UI/UX”, Metropolia

University of Applied Sciences, 2020. [Online]. Available: https://urn.fi/

URN:NBN:fi:amk-202005067530.

https://gs.statcounter.com/os-market-share/mobile/worldwide/2022
https://gs.statcounter.com/os-market-share/mobile/worldwide/2022
https://developer.android.com/guide/platform
https://developer.android.com/guide/platform
https://support.apple.com/en-gb/HT201954
https://developer.apple.com/app-store/small-business-program/
https://developer.apple.com/app-store/small-business-program/
https://support.google.com/googleplay/android-developer/answer/112622
https://support.google.com/googleplay/android-developer/answer/112622
https://support.microsoft.com/en-us/windows/windows-10-mobile-end-of-support-faq-8c2dd1cf-a571-00f0-0881-bb83926d05c5
https://support.microsoft.com/en-us/windows/windows-10-mobile-end-of-support-faq-8c2dd1cf-a571-00f0-0881-bb83926d05c5
https://support.microsoft.com/en-us/windows/windows-10-mobile-end-of-support-faq-8c2dd1cf-a571-00f0-0881-bb83926d05c5
https://www.diva-portal.org/smash/get/diva2:946127/fulltext01.pdf
https://www.diva-portal.org/smash/get/diva2:946127/fulltext01.pdf
https://urn.fi/URN:NBN:fi:amk-202005067530
https://urn.fi/URN:NBN:fi:amk-202005067530

REFERENCES 53

[15] P. Barsocchi, M. Girolami, and D. La Rosa, “Detecting Proximity with Blue-

toot Low Energy Beacons for Cultural Heritage”, Sensors, vol. 21, no. 21, 2021.

doi: https://doi.org/10.3390/s21217089.

[16] “Create iPhone and Android apps with JavaScript and C++ | cross-platform

mobile application development”. (2012), [Online]. Available: https://web.

archive.org/web/20120428171204/http://www.mosync.com/.

[17] “Mosync AB Bankruptcy”. (2016), [Online]. Available: https://web.archive.

org / web / 20160507095350 / http : / / www . allabolag . se / 5566727045 /

verksamhet.

[18] “Architectural overview of Cordova platform”. (2021), [Online]. Available: https:

/ / cordova . apache . org / docs / en / 10 . x / guide / overview/. (accessed:

03.02.2023).

[19] “Progressive web apps (PWAs)”. (2022), [Online]. Available: https://developer.

mozilla.org/en-US/docs/Web/Progressive_web_apps. (accessed: 10.01.2023).

[20] “Service Worker API”. (2022), [Online]. Available: https : / / developer .

mozilla . org / en - US / docs / Web / API / Service _ Worker _ API. (accessed:

10.01.2023).

[21] “Web app manifests”. (2022), [Online]. Available: https://developer.mozilla.

org/en-US/docs/Web/Manifest. (accessed: 10.01.2023).

[22] J. Newman, “Firefox just walked away from a key piece of the open web”, 2021.

[Online]. Available: https://www.fastcompany.com/90597411/mozilla-

firefox-no-ssb-pwa-support.

[23] “react-native-notifications - npm”. (2023), [Online]. Available: https://www.

npmjs.com/package/react-native-notifications. (accessed 09.02.2023).

[24] “react-native-biometrics - npm”. (2023), [Online]. Available: https://www.

npmjs.com/package/react-native-biometrics. (accessed 09.02.2023).

https://doi.org/https://doi.org/10.3390/s21217089
https://web.archive.org/web/20120428171204/http://www.mosync.com/
https://web.archive.org/web/20120428171204/http://www.mosync.com/
https://web.archive.org/web/20160507095350/http://www.allabolag.se/5566727045/verksamhet
https://web.archive.org/web/20160507095350/http://www.allabolag.se/5566727045/verksamhet
https://web.archive.org/web/20160507095350/http://www.allabolag.se/5566727045/verksamhet
https://cordova.apache.org/docs/en/10.x/guide/overview/
https://cordova.apache.org/docs/en/10.x/guide/overview/
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/Progressive_web_apps
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://developer.mozilla.org/en-US/docs/Web/Manifest
https://www.fastcompany.com/90597411/mozilla-firefox-no-ssb-pwa-support
https://www.fastcompany.com/90597411/mozilla-firefox-no-ssb-pwa-support
https://www.npmjs.com/package/react-native-notifications
https://www.npmjs.com/package/react-native-notifications
https://www.npmjs.com/package/react-native-biometrics
https://www.npmjs.com/package/react-native-biometrics

REFERENCES 54

[25] “Local Notifications Capacitor Plugin API | Capacitor Documentation”. (2023),

[Online]. Available: https://capacitorjs.com/docs/apis/local-notifications.

(accessed 09.02.2023).

[26] “capacitor-native-biometric - npm”. (2023), [Online]. Available: https://www.

npmjs.com/package/capacitor-native-biometric. (accessed 09.02.2023).

[27] “Push API - Web APIs | MDN”. (2023), [Online]. Available: https://developer.

mozilla.org/en-US/docs/Web/API/Push_API. (accessed 09.02.2023).

[28] “Web Authentication API - Web APIs | MDN”. (2023), [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_

API. (accessed 09.02.2023).

[29] D. Taft, “Ionic Capacitor emerging as successor to Cordova”, 2021. [Online].

Available: https://www.techtarget.com/searchmobilecomputing/news/

252496257/Ionic-Capacitor-emerging-as-successor-to-Cordova.

[30] “Add to Home screen (A2HS) | Can i use ... Support tables for HTML5, CSS3,

etc”. (2023), [Online]. Available: https://caniuse.com/web-app-manifest.

(accessed 10.02.2023).

[31] J. Simmons, “News from WWDC22: WebKit Features in Safari 16 Beta”, 2022.

[Online]. Available: https://webkit.org/blog/12824/news-from-wwdc-

webkit-features-in-safari-16-beta/#web-push-for-macos.

[32] O. Hoang, “Why should you publish your PWA on app stores and how to im-

plement it?”, [Online]. Available: https://blog.arrowhitech.com/publish-

pwa-on-app-stores/.

[33] M. Tatis, “Can You Put a PWA on the App Store?”, 2021. [Online]. Available:

https://www.koombea.com/blog/can-you-put-a-pwa-on-the-app-

store/.

https://capacitorjs.com/docs/apis/local-notifications
https://www.npmjs.com/package/capacitor-native-biometric
https://www.npmjs.com/package/capacitor-native-biometric
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API
https://www.techtarget.com/searchmobilecomputing/news/252496257/Ionic-Capacitor-emerging-as-successor-to-Cordova
https://www.techtarget.com/searchmobilecomputing/news/252496257/Ionic-Capacitor-emerging-as-successor-to-Cordova
https://caniuse.com/web-app-manifest
https://webkit.org/blog/12824/news-from-wwdc-webkit-features-in-safari-16-beta/#web-push-for-macos
https://webkit.org/blog/12824/news-from-wwdc-webkit-features-in-safari-16-beta/#web-push-for-macos
https://blog.arrowhitech.com/publish-pwa-on-app-stores/
https://blog.arrowhitech.com/publish-pwa-on-app-stores/
https://www.koombea.com/blog/can-you-put-a-pwa-on-the-app-store/
https://www.koombea.com/blog/can-you-put-a-pwa-on-the-app-store/

REFERENCES 55

[34] “App Store Review Guidelines - Apple Developer”. (2022), [Online]. Available:

https://developer.apple.com/app- store/review/guidelines/. (ac-

cessed 10.02.2023).

[35] “Writing Markup With JSX - React”. (2023), [Online]. Available: https://

react.dev/learn/writing-markup-with-jsx. (accessed 24.03.2023).

[36] “Core Components and Native Components · React Native”. (2023), [On-

line]. Available: https://reactnative.dev/docs/intro-react-native-

components. (accessed 24.03.2023).

[37] “Style · React Native”. (2023), [Online]. Available: https://reactnative.

dev/docs/style. (accessed 24.03.2023).

[38] “Forms - React”. (2023), [Online]. Available: https://legacy.reactjs.org/

docs/forms.html. (accessed 24.03.2023).

[39] C. Simmons, “Ionic vs. React Native: Performance Comparison”, 2022. [On-

line]. Available: https : / / ionic . io / blog / ionic - vs - react - native -

performance-comparison.

[40] D. Rykun, T. Malbranche, N. Corti, and L. Sciandra, “Announcing React

Native 0.70”, 2022. [Online]. Available: https://reactnative.dev/blog/

2022/09/05/version-070.

[41] “About Android App Bundles | Android Developers”. (2023), [Online]. Avail-

able: https://developer.android.com/guide/app-bundle#size_restrictions.

(accessed 12.04.2023).

https://developer.apple.com/app-store/review/guidelines/
https://react.dev/learn/writing-markup-with-jsx
https://react.dev/learn/writing-markup-with-jsx
https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/intro-react-native-components
https://reactnative.dev/docs/style
https://reactnative.dev/docs/style
https://legacy.reactjs.org/docs/forms.html
https://legacy.reactjs.org/docs/forms.html
https://ionic.io/blog/ionic-vs-react-native-performance-comparison
https://ionic.io/blog/ionic-vs-react-native-performance-comparison
https://reactnative.dev/blog/2022/09/05/version-070
https://reactnative.dev/blog/2022/09/05/version-070
https://developer.android.com/guide/app-bundle#size_restrictions

Appendix A Mobile device details

Device name Honor Play

Model COR-L29

Build number 9.1.0.406

Android version 9

CPU HiSilicon Kirin 970

RAM 4,0 GB

Total internal storage 64,00 GB

Screen resolution 2340 x 1080

	Introduction
	Research questions and methodology
	Structure of the thesis

	Background
	Web applications
	Mobile applications

	Different mobile technologies
	Native SDKs and APIs
	Cross-platform frameworks
	Native runtimes for web applications
	Progressive Web Applications

	Analyzing the problem
	Case Study
	Native application as a solution
	Cross-platform framework as a solution
	Native runtimes as a solution
	Progressive Web App as a solution
	Summary

	Implementation of the prototypes
	Hypotheses
	React Native prototype
	Capacitor prototype

	Result analysis
	Quality
	Amount of work

	Conclusion
	Answering the research questions
	Limitations of the thesis

	References
	Mobile device details

