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The goal of this thesis is to detect and classify acute myocardial infarctions from
smartwatch ECG data. As the smartwatches have been increasing in numbers, and
many of new smartwatch models have capability to detect ECG data. This study
aims to answer to the question whether or not the ECG data from smartwatches
can be used to detect acute myocardial infarctions.
To answer to this question, and existing database has been used in tandem with
smartwatch ECG data gathered from two different smartwatches. Five different
machine learning models have been used to detect and classify ECG data. The best
performing machine learning model was Extra Trees, which achieved accuracy of
90.84% with using Leave-One-Out Cross-Validation.
These results show that ECG data from smartwatches could be used to detect in-
farctions. Measuring ECG with smartwatch is much easier than using clinical ECG
measurement devices, meaning that ECG measuring could reach much wider audi-
ence that it has prior to this been able to reach.
Further research could include gathering larger database from smartwatch ECG,
and the data ownership of smartwatch, and other medical and biological data that
companies collect.
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1 Introduction

In this chapter we will look at the motivation of reading this thesis, and how im-

portant acute myocardial infarctions are to detect and to treat. We will take a look

in the history of studying cardiovascular diseases, and how detection methods of

hearts and heart signals irregularities have been improved in the last century. We

will also look at the research questions that this thesis has, and general structure of

the thesis.

1.1 Research motivation

In the beginning of the 20th century the cardiovascular diseases were the fourth

highest cause of deaths in the United States, only behind pneumonia, tuberculosis,

and diarrhea. Only ten years later cardiovascular diseases had risen to the top of the

causes of death. By the half of the century cardiovascular diseases were the reason

for the half of the deaths, not only in the United States but also in the rest of the

industrialised world [1].

As the mortality rate from cardiovascular diseases rose, so did the deaths from

acute myocardial infarctions. By the mid 20th century, acute myocardial infarctions

were the leading cause of death in the United States. Luckily with the major devel-

opments in the care of the acute myocardial infarctions, death from the infarctions

have been on the descent [1].

Myocardial infarction is defined as the cell death due to ischemia. This means
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that the cells in the heart are dying due to lack of blood flow to them [2]. This

means that myocardial infarctions can cause major damage to the heart muscle and

to the blood vessels supplying oxygen and nutrients to the heart.

Even as the deaths from acute myocardial infarctions have been on the down-

turn and many methods for detecting and treating infarctions have been invented,

these changes have been received perhaps with too much optimism, as despite the

inventions and overall progress in prevention, detection, curing, and treating car-

diovascular diseases still remain the leading cause for death in developed nations

[1].

These diseases of the heart can be detected with multiple ways, and one of the

most used methods is an electrocardiogram (ECG). ECG was a series of anatomical

and technological in the field of heart diseases and technology. ECG has even been

called one of the most valuable tools in medicine. ECG can be used to detect

different abnormalities from a heart rate, such as acute myocardial infarctions. The

electrocardiogram works by showing the electrical signals produced by the heart.

These signals are then transmitted by the body through different tissues in the

human body, until they reach the skin of the patient. Then the signal is captured

by the leads. Usually there are 12 leads that record the humans’ signals, but ECG

can be recorded with smaller amount of leads. For this thesis we are interested

in the electrocardiograms’ ability to detect acute myocardial infarctions, especially

with smart wearable devices [3] [4].

Electrocardiogram is not perfect, even if it is extremely powerful tool to diagnose

heart problems. The accuracy is not perfection and there is always human variation

as human doctor is examining the graph created by ECG. There is also variation

between different patients. This variation between patients can have a confusing

effect that may lead to wrong diagnosis on the root condition of the heart. This

then may lead to decreased accuracy of the ECG diagnosis [4] [5].
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There are multiple methods of tackling downsides that the ECG has. One is

serial ECG (S-ECG). With conventional ECG performed by emergency department

correct diagnosis for acute myocardial infarction was only between 24 and 60 percent

[6] [7].

There is also a high-frequency electrocardiography (HF-ECG) method for de-

tecting hearts irregularities and acute myocardial infarctions, but in this, thesis we

will concentrate on the serial electrocardiography method. This HF-ECG has shown

ability to detect and diagnose acute cardiac diseases [8].

The increase of the consumer smart wearables especially the increase in the

consumer smartwatches and the ability of these smartwatches to measure simple

electrocardiographs, gives us the ability to monitor and track the patients ECG

with greatly bigger frequency compared to clinical ECG. This increase in the sheer

number of smartwatches that have the ability to detect ECG, provides more ways

to diagnose and even prevent acute heart problems and diseases. Smartwatches are

also more approachable than devices that are specially designed to detect ECG. This

kind of medical devices are not usually marketed towards greater population, but

among people, who are already buying smartwatches, the ability to monitor ECG

comes as a bonus feature [9] [10].

The last decade of 19th century and the first decade of 20th century, were spe-

cial in the advancement of identifying heart problems, as both chest x-rays and

electrocardiograms were invented [11]. For detecting irregularities in hearts rhythm,

electrocardiogram was crucial invention. This invention was made by Dutch phys-

iologist Willem Einthoven in 1902. This invention gave physicians a capable tool,

when trying to diagnose problems in the patient’s heart, such as arrythmias and

acute myocardial infarctions [12].
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1.2 Research questions

The main research questions for thesis are:

1. Can machine learning be used to detect and classify acute myocardial infarc-

tions?

2. Can wearable smartwatches be used in detecting acute myocardial infarction?

The question about can machine learning used to detect acute myocardial in-

farctions, will be answered with machine learning methods using electrocardiogram

data from STAFF III database [13]. These machine learning models will be then

used with data collected from smart watches, and compared how well will the data

from smart watches perform in detecting acute myocardial infarctions.

1.3 Research method

The thesis will consist of literacy overview about the usage of machine learning and

artificial intelligence in the field of detecting acute myocardial infarctions. The other

part of this thesis will tackle the usage of smartwatch ECG.

In the literacy overview chapter of this thesis, we will immerse ourselves into

the field of machine learning and using machine learning to detect heart problems,

especially acute myocardial infarctions. This literature overview will be done by

focusing om research papers and studies done on how well machine learning models

can detect and classify heart’s rhythm irregularities.

In the analysis of the smart watches chapter, we will measure ECG data with

multiple different smart watches and try to use machine learning methods to detect

if there are any irregularities or sign of acute myocardial infarctions. These different

manufacturer’s smart watches are then going to be compared to each other to find if
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there are any differences in the capability that machine learning models can detect

hearts irregularities.



2 Background

In this chapter, we will take a deeper look on the thesis’ theme. We will familiarise

ourselves with the electrocardiogram, hearts irregularities, mainly acute myocardial

infarctions, and at the end of the chapter we will take a closer look in the machine

learning methods that we will be using later in the thesis.

2.1 Electrocardiogram

Electrocardiography has been a critical tool for detecting and diagnosing heart prob-

lems for some while now. ECG can be used to detect from a heart rate to severe

irregularities in heart such as cardiac arrhythmias, myocardial ischemia, that may

lead to acute myocardial infarctions, and even changes in QT interval [14]. Heart

diseases have been one of the largest reasons of death for over a half century now and

show little to no signs of decreasing. As seen in the Figure 2.1 the cardiovascular

diseases have had a quite rapid growth in the last century. These critical and often

quite acute diseases can be detected with ECG, and such ECG has become a staple

tool in the field of cardiovascular science [1]. ECG has an extremely important part

in diagnostics when patient is suspected of having acute myocardial infarction. It is

usually the first test to be done to the patient in an emergency setting [15].

Classical ECG consists of 12 leads. These leads are electrodes placed on the

skin of the patient, which detect the signals transmitted by the patient’s heart.

These electrodes are placed on specific parts on the patients skin, and are used to
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Figure 2.1: Percentage of Deaths from Cardiovascular Disease in the United States

from 1900 to 1950 [1]

.

create the ECG graph. The 12 leads that are usually used in a clinical ECG include

three bipolar limb leads (leads I, II, III), also known as Einthoven’s Triangle and

Einthoven’s leads [16], six unipolar precordial leads (leads from V1 to V6), and three

modified unipolar leads (augmented limb leads aVr, aVl, aVf) [4].

Normal heartbeat consists of five different peaks or waves. These peaks are from

left to right P-, Q-, R-, S-, And T-peaks. In the Figure 2.2 we can see these different

peaks. PQ interval is the time and amplitude between P-wave and Q-peak. QRS

complex is the complex that is created by Q-, R-, and S-peaks. ST interval is the

section between S-peak and T-wave [17]. Acute myocardial infarctions are usually

divided to ST elevation(STEMI), and non-ST elevation(NSTEMI) infarctions by the

ST interval [18].
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Figure 2.2: ECG from a normal sinus rhythm [19]

.

2.2 Acute myocardial infarction

Myocardial infarction is defined as myocardial cell death due to prolonged ischemia,

meaning prolonged blood loss to the specific area of the heart, in this case to the

heart. The onset of ischemia is not immediate, but it does not take long to develop.

Ischemia can be developed as fast as in 20 minutes from the loss of the correct blood

flow. The diagnosis of the ischemia caused myocardial necrosis can take multiple

hours, using microscopic examination means. Complete necrosis of the myocardial

cells happens from two to four hours after the cut of blood flow, but the onset of

necrosis can take longer if the collateral circulation is present to supply blood to the

ischemia affected parts [2].

In the beginning stages of myocardial infarction is myocardial ischemia. This

ischemia happens from the imbalance of supply and demand of the blood around
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the heart. This myocardial ischemia can be detected from the patient with ECG

and with patient’s history. The ischemia can cause different symptoms to the pa-

tients, which include pain or discomfort in the upper body, arms, or upper abdomen

during both exercise and even rest. Often this pain and discomfort is dispersed

and scattered around the body and is not affected by the movement of the painful

area. Unluckily these symptoms are not contained only by myocardial infarctions

and can be produced by plethora of other conditions. Myocardial infarction can

be also occurred without symptoms. If myocardial ischemia is detected by changes

in the patients ECG together with myocardial injury, and manifested by rising or

falling pattern of cTn (cardiac troponin I and cardiac troponin T [20]) values, an

acute myocardial infarction diagnosis can be given. [2].

2.3 Machine learning

Automated learning or more popularly known as machine learning (ML) is "teach-

ing" computers to "learn" from input given to the machines. Learning is this case is

the ability to use past experiences to create new knowledge or expertise. Usually in

ML, training data given to the algorithm is the "past experiences" and the output

that the algorithm creates from input and the training data is the ability to use the

past experiences to create domain specific knowledge. For example, nature is full

of these ML algorithms. Animals can have these learning experiences that can be

regarded as ML algorithms. For example, a rat that eats a new kind of food, after

which it develops some symptoms, for example nausea. If the rat comes across the

same food again, it will not eat it as it can learn from the past experiences. This

example can be used to mimic similar behaviour in simple ML task. Task can be

that we want a simple spam filter. The filter can use ML by collecting data and

linking that data to some categories. If message is spam, that message can be tagged

as spam, and the ML algorithm can try to learn what makes that specific message
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a spam message. Next time ML algorithm sees similar message it can deduct that

the message is likely spam message, and the algorithm can filter it out [21].

This spam message filtering approach can be quite effective, but it has one fatal

flaw that learning system should have. It cannot categorize messages that it has

not seen before. A good ML algorithm should be able to move from remembering

past messages to be able to generalise. The rat in our previous example can use the

previously gathered experiences to new unseen food. If new food has same smell,

look, and taste as the food that previously gave it nausea, it can induct that the new

food can also cause nausea, and the rat will not eat the food. The rat can learn from

previous experiences, but it can also use this experience to create new knowledge.

We can try to use this example from nature to improve our spam message filtering

algorithm. Our algorithm can take into account suspicious words inside the spam

messages, and when it comes across these suspicious words in incoming messages, it

can induct that the message might be spam [21].

This inductive reasoning raises a problem, which is that it can flag real messages

as spam, also known as false positive. In the rat example the rat can skip a perfectly

fine piece of food, because it smelled similar to food that previously gave it nausea.

Other good example in for this reinforced leaning is Pigeon Superstition where pi-

geons are in a cage. They are fed in regular intervals and are not stimulated with

anything else. When these pigeons are fed, they are doing seemingly randoms ac-

tivities. But the delivery of food is reinforcing these random activities that pigeons

are doing, and they are more likely to do these activities, when they are fed next

time, and the reinforcement loop is created. Pigeons are more likely to do specific

activities when fed, and they induct that the specific activity means that they are

getting food [22]. This pigeon example highlights a problem. How to distinguish

a useful learning mechanism from a pigeon superstition? For human this ability to

distinguish is trivially easy with some common sense, but ML algorithms do not
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have this "common sense". So when creating ML algorithms, we need to present

principles that protect the algorithm from conclusions that are not common sense

[21].

2.4 Consumer smartwatch

Smartwatches are small computers that can be worn on the wrist instead of a conven-

tional watch. Smartwatch can be categorised as smart wearable computers. Similar

to conventional watches smartwatches can show time, take time, be used to set an

alarm, but instead of conventional watches smartwatches can be used to install and

run different digital applications. Many of these smartwatches can be connected to

users’ smartphones, and with that have the ability to receive incoming messages,

calls, e-mails, and other notifications. The newer smartwatches even have the ability

to track users sleep, measure heart rate, and the most interesting in the case of this

study, some smartwatches can be used to measure users ECG [23] [24].

The number of smartwatches in circulation has been steadily increasing in the

few latest years, as stated by the Fortune Business Insight’s study [10]. The same

study also is projecting that the market share of the smartwatches is not decreasing,

instead it is going to increase, and quite rapidly as well. The global smartwatch

market size was 18.62 billion US dollars in 2020 and was forecasted to increase to

58.21 billion US dollars [10].

With the increase in the usage of smartwatches, also comes the newest models’

ability to record ECG. At the current time smartwatches that have the US Food and

Drug Administration approval are Apple Watch Series 8, Apple Watch Ultra, Apple

Watch Series 7, Google Pixel Watch, Samsung Galaxy Watch 4, Samsung Galaxy

Watch 4 Classic, and Fitbit Sense [9]. With Samsung and Apple dominating a lion’s

share of the whole smartwatch market value with almost half of the shipment share

of the new smartwatches in first quarter of 2022 [24]. As seen on the Figure 2.3
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Figure 2.3: Smart wearable shipment volume in 2021 [25]

.

Apple and Samsung, along with Huawei have been able to conglomerate a sizable

shipment volume of all smart wearables. Apple has the market share tightly in their

grip as Apple has over half of the market share in 2020 [10].



3 State of the art

In this chapter we will take a deeper look on how and how well previous studies

have been able to detect ECG with smartwatches. We will also take a look how

previous studies have been able to analyze ECG with machine learning methods

and machine learning, especially how well these machine learning methods are able

to detect myocardial infarctions.

3.1 Performance metrics

When comparing different machine learning methods and models it is important

to have some kind of a way to compare models. For this purpose, we introduce

confusion matrix and accuracy, sensitivity, and specificity. Confusion matrix is a

matrix helps with the performance evaluation of machine learning model in use.

Below is a simple binary confusion matrix 3.1. This confusion matrix consists of

true positives, true negatives, false positives, and false negatives. True positive is a

guess or classification that machine learning model estimated correctly. For example,

it labeled ECG data instance as normal, and the data was from normal patient. True

negative is a classification model estimated also correctly. For example, it labeled

ECG data instance as abnormal, and the data was from abnormal patient. False

positive is when model classified data incorrectly. For example, model labeled ECG

data instance as normal, and the data was from abnormal patient. False negative

is when model classified data incorrectly. For example, model labeled ECG data
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instance as abnormal, and the data was from normal patient [26].

True

positive
p′

p

False

positive

n total

P′

False

negative
n′

total P

True

negative
N′

N

Prediction

values

Actual values

Accuracy can then be concluded from the confusion matrix with a simple fraction:

Accuracy =
TP + TN

TP + FP + FN + TN

Sensitivity and recall can be calculated with fraction:

Sensitivityorrecall =
TP

TP + FN

Specificity can be calculated with fraction:

Specificity =
TN

TN + FP

Precision can be calculated with fraction:

Precision =
TP

TP + FN

F-score can be calculated with fraction:

F − score = 2× precision× recall

precision+ recall
=

2× TP

2× TP + FP + FN

Accuracy is simply the model’s ability to classify data correctly. True positives

and true negatives are summed up and divided by all the classifications, including

false classifications. This score tells us how well model can classify data correctly.

Sensitivity is the model’s ability to detect positive instances. This is calculated

by dividing true positives with true positives and false negatives. Sensitivity is
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also known as true positive rate. Specificity is model’s ability to classify negatives

correctly. Specificity also known as true negative rate is calculated by dividing true

negatives with true negatives and false positives. Precision is calculated by dividing

true positives with sum of true positives and false negatives. F-score is created with

precision and recall [27].

3.2 Detecting myocardial infarction with artificial

intelligence

The parameters of each study differ greatly, in this chapter I have tried to summarize

most important parts and the conclusion of the studies chosen for this literacy

overview. Studies use different amount of leads for the ECG, studies also use different

machine learning methods.

I chose to include more classical and less computationally demanding algorithms.

I also had more experience using these machine learning algorithms.

• K-nearest neighbors

• Support vector machine

• Decision trees

• Random forest

• Extra trees

To conduct the literacy overview I chose to use Google Scholar.

3.2.1 K-nearest neighbors

K-nearest neighbors (KNN) algorithm was created by Fix and Hodges for the US

Air Force School of Aviation Medicine [28]. KNN algorithm is a quite straightfor-
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ward and uncomplicated algorithm. It can solve both classification and regression

problems. While it can perform regression prediction, but it is mostly used for clas-

sification predictions. KNN works by creating clusters from input data, and when

algorithm meets new unseen data, it classifies it by assigning it to the cluster that

has its nearest neighbors, meaning that the cluster has most similar data as the new

data point. While KNN algorithm is effective, it has weaknesses [29].

KNN can be defined as supervised learning algorithm as it classifies new data

with previous training data. It needs a training set that has data points which

are labeled into corresponding classes. This classification is done by calculating

Euclidean distance to its neighbors, and the closest neighbors are chosen. The new

data is then classified according to the classes of the nearest neighbors. This simple

Euclidean calculation means that the computational strain is low. One of the biggest

weaknesses of the KNN algorithm is, that the algorithm is lazy. This means that

the calculations are done when new data is introduced to the algorithm. This means

that the training of the algorithm is mainly just storing and memorizing the training

data [29].

Let’s look at a simple example of a KNN algorithm. In Figure 3.1 we can see a

data set which includes green and yellow points. These express two different classes.

Blue point is a new unseen data for the algorithm. Algorithm then calculates nearest

neighbors for the blue point, and in this case most of the neighbors are green, so the

algorithm classifies the new data point as a green class. In our simple example the

"K" of KNN algorithm was a five. This "K" tells us how many neighbors are taken

into account.

First, I searched for articles and studies that used K-nearest neighbors method.

This was done with search keyphrase "Detecting myocardial infarction in electro-

cardiogram AND nearest neighbor". When searching for latest articles, only seven

articles were found, from which not one was using K-nearest neighbors machine
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Figure 3.1: KNN graph

.

learning method as the any of the main methods to classify myocardial infarctions.

Some studies, such as Elmannai, Saleh, D.Algrani, Mashal, Kwak, El-Sappagh, and

Mostafa study [30] used k-nearest neighbor as meta-learner models, which were a

part of a bigger convolutional neural network model.

Especially when using Google Scholars "sort by relevance", which is on by de-

fault, the studies were quite good. These studies achieved high ninety percent

classification accuracies. Some of the articles that were using k-nearest neighbor

algorithm as their classification method, were quite old, such as Arif, Malagore, and

Afsar article from 2012 [31]. I chose to keep this in the in the comparison as it was

able to get quite good classification accuracy. Articles that did not use k-nearest

neighbor algorithm were removed from the articles chosen for the comparison.

Other articles that I chose from Google Scholar search were Acharya, Fujita,

Sudarshan, et al. article [32], Acharya, Fujita, Adam, et al. article [33], Savostin,

Ritter, and Savostina article [34], Sridhar, Lih, Jahmunah, et al. article [35], and

Fatimah, Singh, Singhal, Pramanick, Pranav, and Pachori article [36].

In the Arif’s article Arif, Malagore, and Afsar were able to achieve overall accuray

of 98.3%, with sensitivity of 99.97%, and specificity of 99.9%. They used 20,160
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Article Acc Sen/Recall Spe

[31] 0.983 - -

[32] 0.9880 0.9955 -

[33] 0.985 0.997 0.985

[34] 0.9703 0.9734 -

[35] 0.974 0.984 0.928

[36] 0.9996 0.9996 -

Table 3.1: Accuracy, sensitivity, and specificity of algorithms in the articles achieved.

KNN

heartbeats in their method. They used wavelet transform to extract features from

the electrocardiogram, and then used k-nearest neighbor classifier to classify heart

beats. K-nearest neighbor was given 36 features, and cross validation was done with

ten folds [31].

In Acharya’s article Acharya, Fujita, Sudarshan, et al. were able to achieve a

accuracy of 98.8%, with a sensitivity of 99.45%, and specificity of 96.27%. Acharya

and et al. used 47 features. The data set included 61,1405 heart beats. Acharya, and

et al. used ten folds for the cross validation, similarly to Arif, and et al. Acharya,

and et al. were able to slightly increase the classification accuracy compared to Arif,

and et al [32].

3.2.2 Support vector machine

Next machine learning algorithm, from which I searched previous studies and arti-

cles, was support vector machines. Support vector machine (SVM) is also similarly

to KNN, an algorithm which main function is to classify and label objects. SVM

can similarly to KNN classify for example handwritten digits, or in our case can

classify if ECG data is normal or the hearts beats are irregular [37].
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SVM algorithms work by trying to move the data into a higher dimension, in

which the SVM tries to find a Support Vector Classifier, which is then used to

classify the data points in the data set. And when new data is introduced to the

algorithm, classifying is trivial, by looking at the Support Vector Classifier.

Let’s look at an example on how SVM works on a 1-dimensional data set. In

Figure 3.2 we can see on how the two different classes stand on a line. SVM cannot

create a Support Vector Classifier in this case, so it will change the dimension to two

dimensions, as seen on the Figure 3.3. In this dimension SVM can create a Support

Vector Classifier, show as a blue line. Now when introducing new data points to

the algorithm, it can easily classify them to either red or green classes, depending

on which side of the Support Vector Classifier new points land on. SVM algorithm

works similarly with data sets have higher dimensions.

Figure 3.2: SVM 1d

.

The keyphrase used for this search was: "Detecting myocardial infarction in

electrocardiogram AND support vector machine". This gave quite good articles and

studies, similarly, to search for studies that used K-nearest neighbors algorithm.

Similarly, to K-nearest neighbors search, "sort by relevance" seemed to give the

best results. The results were not sorted by the year, so it was critical the check the

year, that specific article was published. For example, Dhawan, Wenzel, George, et

al. article [38] from 2012, might not have the latest methods that machine learning

field might have to offer.

Articles for support vector machine that I chose from Google Scholar search were

A. Diker, Z. Cömert, E. Avci, and S. Velappan [39], A. K. Dohare, V. Kumar, and

R. Kumar [40], Sridhar, Lih, Jahmunah, et al. article [35], and Fatimah, Singh,
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Figure 3.3: SVM 2d

.

Singhal, Pramanick, Pranav, and Pachori article [36]. Sridhar’s [35] and Fatimah’s

[36] articles both had K-nearest neighbors algorithm, as well as support verctor

machine, so both studies were in K-nearest neighbors and support vector machine

previous studies subchapters.

A. Diker, Z. Cömert, E. Avci, and S. Velappan in their article [39] started with 23

features, that they used in their supporty vector machine. These 23 features helped

them to achieve accuracy of 86.44%, sensitivity of 88.33% and specificity of 81.12%.

They then fed the features to a generic algorithm. This generic algorithm chose

best 9 features for their support vector machine. These better features were able to

achieve accuracy of 87.80%, sensitivity of 86.97% and specificity of 88.67%. Both

accuracy and specificity increased, but decreasing the features caused sensitivity

to decrease. The accuracy of this support vector machine compared to k-nearest

neighbor algorithms is not great. Next support vector algorithms luckily achieved

results more comparable to k-nearest neighbor algorithms, from sub chapter 3.2.1.



3.2 DETECTING MYOCARDIAL INFARCTION WITH ARTIFICIAL
INTELLIGENCE 21

Article Acc Sen Spe

[39] 0.878 0.8697 0.8867

[40] 0.9666 0.9666 0.9666

[35] 0.979585 0.988946 0.938093

[36] 0.9987 0.9961 -

Table 3.2: Accuracy, sensitivity, and specificity of algorithms in the articles achieved.

SVM

3.2.3 Decision trees

Next machine learning algorithm, from which I searched previous studies and ar-

ticles, was decision trees. Similarly, to KNN and SVM, decision trees (DT) is an

algorithm able to solve regression and classification problems. This means that

DT is a good algorithm to for problems like classifying regular and irregular ECG

graphs. DT in the simplest form reduces to a hierarchy or a tree of if/else clauses.

DT algorithm can be though as a tree of true or false questions, and at the end of

these questions are different classes that DT can classify inputs as [41].

In Figure 3.4 we can see a simple example on how DT algorithm works. This

example tries to classify multiple different animals with some questions. In this

example each node represents a question or an answer. The depth of this tree is

2, which means that the algorithm asks two questions from the data points. The

complexity of the can be increased by adding more layers to the decision tree. This

allows us to tackle more complex problems, and in higher dimensions [41].

The keyphrase used for this search was: "Detecting myocardial infarction in elec-

trocardiogram AND decision trees". Second keyphrase for search was: "Detecting

myocardial infarction in electrocardiogram AND decision trees -treebagger". "Tree-

bagger" was excluded, because without the exclusion many of the search results were
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Figure 3.4: DT graph

.

studies done with Random Forest algorithm, specifically using MatLab’s TreeBag-

ger method [42]. And excluding TreeBagger results were more likely to use decision

trees machine learning algorithm.

Similarly, to two previous searches, "sort by relevance" seemed to give the best

results. The results were not sorted by the year, so it was critical the check the year,

that specific article was published.

Articles for decision trees, that I chose from Google Scholar search were Liu, Liu,

Wang, et al. article [43], Zhang, Lin, Xiong, et al. article [44], Ibrahim, Mesinovic,

Yang, and Eid article [45], and Sridhar, Lih, Jahmunah, et al. article [35].

3.2.4 Random forest

Next machine learning algorithm, from which I searched previous studies and arti-

cles, was random forest. Random forest (RF) is an ensemble method. This means

that it combines multiple machine learning methods to create better and more pow-
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Article Acc Sen Spe

[43] 0.895 0.942 0.74

[44] 0.9990 0.9998 0.9952

[45] 0.975 0.935 0.994

[35] 0.955145 0.973553 0.873551

Table 3.3: Accuracy, sensitivity, and specificity of algorithms in the articles achieved.

Decision trees

erful machine learning methods. This means that RF algorithm combines multiple

DT algorithms, and uses their combined results to make a classification. Decision

trees method has an overfitting problem, meaning that the training data is too

closely corresponded. When model is overfitted it cannot predict reliably new un-

seen data. RF algorithm tries to address this overfitting problem, by having multiple

slightly different decision trees. The pretense of RF is that each of the decision trees

used can do classification quite well, but are slightly overfitted. And when we use

multiple different trees we can get rid of the overfitting by taking an average of all

the different trees [41].

The name random forest comes from the "forest" of decision trees, and from in-

cluding some randomness to each of the decision tree of the forest. This randomness

is used to ensure that the decision trees are different enough, to not cause problems

with the overfitting. If multiple trees are similar and similarly overfitted, then the

random forest method is also overfitted, which then beats the purpose of having

multiple decision trees [41].

Random forest also uses thing called Bootstrap aggregating (Bagging) which is

a method for making multiple different training data sets from a single bigger data

set. This bagging method creates multiple different data sets that then can be used

for individual decision trees. Bagging makes slightly different data sets for different
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Article Acc Sen Spe

[48] 0.9962 - -

[47] 0.9971 0.997 0.9973

[49] 0.943 0.9413 0.9798

[46] 0.9988 0.9998 0.9939

[50] 0.9927 - -

Table 3.4: Accuracy, sensitivity, and specificity of algorithms in the articles achieved.

Random forest

decision trees, and in this way helps with the decision tree methods of overfitting.

The keyphrase used for this search was: "Detecting myocardial infarction in

electrocardiogram AND random forest".

Articles for random forest, that I chose from Google Scholar search were J. Zhang,

M. Liu, P. Xiong, et al. article [46], Z. Wang, L. Qian, C. Han, and L. Shi article

[47], S. Nita, S. Bitam, and A. Mellouk article [48], . Kayikcioglu, F. Akdeniz, C.

Köse, and T. Kayikciogl article [49], and W. Zhang, R. Li, S. Shen, et al. article

[50].

3.2.5 Extra trees

Next machine learning algorithm, from which I searched previous studies and ar-

ticles, was extra trees. Extra trees (ET) is similar to random forest algorithm. It

is also an ensemble method meaning that extra trees consists of multiple different

decision trees. Extra trees is similar to random forest, excluding couple of key dif-

ferences. Where random forest uses bagging to create different training data sets

to different decision trees, extra trees uses the complete training data set for each

of the decision trees. This means that the decision trees overfitting problem needs

to be solved with different methods. Extra trees method uses random values to
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Article Acc Sen Spe

[50] 0.9951 - -

[53] 0.832 0.830 -

[54] 0.96 0.96 -

Table 3.5: Accuracy, sensitivity, and specificity of algorithms in the articles achieved.

Extra trees

split the features of the data set. Compared to random forests, which uses greedy

algorithm to choose best values to split the features. This random values at which

to split the features, means that extra trees is computationally less costly compared

random forest [51] [52].

The keyphrase used for this search was: "Detecting myocardial infarction in

electrocardiogram AND extra trees". Unlike other machine learning methods ET is

not as widely used. This can be attributed to many things, from which can be the

popularity of RF method, and as ET and RF are quite similar ensemble methods,

RF has shadowed other ensemble methods.

Articles for extra trees, that I chose from Google Scholar search were W. Zhang,

R. Li, S. Shen, et al. article [50], M. Shimizu, M. Suzuki, H. Fujii, et al. article [53],

and J. Sandelin’s article [54].

3.3 Summary of different machine learning methods

All the articles and studies are in a single table 3.6. In the first column we have

the article itself, in the second what method the article used. In the third column

we have accuracy that writers of the article achieved, fourth column has sensitivity

that the writers achieved, and fifth column has specificity. Last column has how

many leads was used for the ECG. Every row has a different article, or if the article
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had multiple different models rows are for different models.

Article Method Acc Sen Spe Leads

[31] KNN 0.983 - - 12

[32] KNN 0.9880 0.9955 - 12

[33] KNN 0.985 0.997 0.985 1

[34] KNN 0.9703 0.9734 - 12

[35] KNN 0.974 0.984 0.928 1

[36] KNN 0.9996 0.9996 - 12

[39] SVM 0.878 0.8697 0.8867 12

[40] SVM 0.9666 0.9666 0.9666 12

[35] SVM 0.979585 0.988946 0.938093 1

[36] SVM 0.9987 0.9961 - 12

[43] DT 0.895 0.942 0.74 12

[44] DT 0.9990 0.9998 0.9952 12

[45] DT 0.975 0.935 0.994 12

[35] DT 0.955145 0.973553 0.873551 1

[48] RF 0.9962 - - 12

[47] RF 0.9971 0.997 0.9973 12

[49] RF 0.943 0.9413 0.9798 5

[46] RF 0.9988 0.9998 0.9939 12

[50] RF 0.9927 - - 12

[50] ET 0.9951 - - 12

[53] ET 0.832 0.830 - 12

[54] ET 0.96 0.96 - 1

Table 3.6: Accuracy, sensitivity, and specificity of algorithms in the articles achieved.
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3.4 Leave-One-Out Cross-Validation

Cross-validation is used to get an estimation on how well will the machine learning

model perform. Cross-validation happens with first splitting data set to two parts,

one for training the model and other to test the accuracy of the model. With this

split we can ensure that the model is not trained with the data that we are using

to test the accuracy. If the testing data is same as the training data we cannot

get accurate performance of the model, because it can "remember" data from the

training phase, meaning that the model will not unnecessarily work with data that

it has not seen before [55].

Figure 3.5: Leave-One-Out Cross-Validation

To refine cross-validation even further we can use Leave-One-Out Cross-Validation

(LOOCV). In LOOCV the data set in split into as many parts as there are samples

in the original data set. Then the model is trained on all the samples, excluding the

one sample that was left for testing. After the model is trained, then it is tested

with the one test sample. This loop is then repeated for every sample in the data

set. In Figure 3.5 we can see how the data set is split into training data, and one

test sample, and how this is repeated n-times, for every sample in the data set.

LOOCV allows us to use the whole data set, and this is why it makes it important

for smaller data sets. LOOCV also gives a more accurate performance estimations,
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as the model is trained and tested multiple times. This also means that LOOCV is

more computationally demanding [55]. The LOOCV method used in this thesis is

one from Python’s scikit-learn package [56].



4 Data from smartwatches

In this chapter, we will take a look on the how we will get the ECG data from

Samsung Galaxy Watch 4 and Apple Watch 6. This can be quite challenging as

neither of these devices have been designed for research purposes. After the data

acquisition, we will do some preprocessing to the data. Then we will train the

machine learning algorithms from previous chapters with the data and classifications

that we got out of the Samsung Galaxy Watch 4 and Apple Watch 6. And finally,

we will try to use the trained algorithms to try and classify new and unseen data to

the algorithms.

4.1 Devices

Both devices that are used for the data gathering are smart wearable watches and

have the ability to gather ECG data from the wearer. The watches are from Ap-

ple and Samsung, two of the main players in the smartphone and the smartwatch

markets.

4.1.1 Samsung Galaxy Watch 4

Samsung Galaxy Watch 4 is a smartwatch made by Samsung. The watch has a single

channel ECG measuring capabilities. The ECG data is gathered with the BioActive

sensor on the behind of the watches crown, and with the Home Key of the side of

the watch as seen on the Figure 4.1. Watch can be used to measure different leads
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from all over the body, but it is mostly developed to be used on the left wrist, which

means that the Einthoven’s Lead II is the primary lead to be measured. The watch

is capable of 500 Hz sampling size. But as the data is not readily available to users

of the watch this sampling size is not the actual sampling size that we can use for the

data analysis part of this thesis. This problem is addressed more in the chapter 4.3.

In Figure 4.2 we can see the watches front and back, and how it looks on hand. The

Samsung Galaxy Watch 4 is not medical device, so when using the data provided

by the watch, one must be cautious [57].

Figure 4.1: Samsung Galaxy Watch 4 blueprint [58]

As Sandelin has argued in his thesis, wearable devices could be used to detect

irregularities in the heart’s signals. This could be enhanced with weekly or even daily

ECG measuring [54]. And if we can use the patient’s own smartwatches, without

needing new devices, this measuring would be much easier. Samsung Galaxy Watch

4 does not measure ECG automatically, so patient needs to start the measuring

themselves, and the measurement is quite sensitivity to movement, meaning that
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Figure 4.2: Samsung Galaxy Watch 4

during the measurement, the subject should remain stationary.

4.1.2 Apple Watch Series 6

The other device that was used in this thesis was an Apple Watch Series 6 -

smartwatch. Similarly, to Galaxy Watch, Apples watch has a capability to measure

single channel ECG signal, and similarly to Galaxy Watch the sensors are on the

backside of the crown of the watch and on the upper button on the side of the watch.

Watch can be used to measure different leads from all over the body, but it is mostly

developed to be used on the left wrist, which means that the Einthoven’s Lead II

is the primary lead to be measured. The watch is capable of 512 Hz sampling size.

But similarly, to Galaxy Watch, this sampling rate is not transferred to the data

perfectly as the data must be scraped from the pdf-files (Portable Document For-

mat) that the Apple supplies from the measurement. More on this in the chapter

4.3. In Figure 4.3 we can see the watches front and back, and how it looks on hand.
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Figure 4.3: Apple Watch 6

4.2 Data gathering

The smartwatch data was gathered with two different devices, from a single person.

Both watches recorded about 30 minutes of ECG data. This data was gathered in

a sitting position. The subject was relaxed and had not been exercised before the

measurement. For each device the measurements were 30 seconds long and 60 of

these measurements were taken in a single sitting. The measurements were taken

with the watches tightly on left hand and right hands index finger on the upper

button of the watch.



4.3 DATA PREPROCESSING 33

Figure 4.4: Samsung Watch 4 measuring

The measurement produces a single pdf-file. Shown in the Figure 4.5. This

pdf-file is then prepossessed to a format that can be used. This preprocessing is

explained in more detail in section 4.3.

4.3 Data preprocessing

First problem of the data preprocessing was to extract the data from the wearable

smartwatches. Both Apple and Samsung are quite stingy when it comes to the

sharing of the data they have collected. In both devices the data comes in pdf-files.

This makes it hard for to use this data, as it has to be somehow changed to format,

in which data could be used for machine learning applications. With Samsung I

had to download data from their Samsung Health app to a pdf-file that had the

ECG graph. This graph had to be read with Python. Then the graph had to be

extracted, and then the pixels with correct colors had to be read and saved. The

x,y-coordinates were the ECG data as raw data points.

At first the quality of the images that were converted from pdf-files, was bad.
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This caused issues when reading the graphs from the converted images. This quality

issue was fixed with using PyMuPDF [59]. PyMuPDF packages had methods that

allowed pdf-files to be converted png-files (Portable Network Graphics) without

much data loss.

These png-files were then read. For each read png-file, the file was masked for

hues of orange, which was the graph color in the Samsung Health Monitor ECG

-pdf files. This mask then changes all the pixels in the image that are not orange, to

black, and all the pixels that are hues of orange, are changed to white pixels. Then

the coordinates of these white pixels are saved.

Python packages used:

1. Matplotlib [60]

2. Numpy [61]

3. OpenCV [62]

4. PyMuPDF [59]

5. WFDB [63]

6. pyHRV [64]

7. BioSPPy [65]

8. scikit-learn [66]

9. pandas [67]

In Figure 4.5 we can see how Samsung Galaxy Watch 4 outputs ECG data. From

this pdf-file we need to extract the raw ECG data.
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Figure 4.5: ECG pdf, Samsung Galaxy Watch 4

And in Figure 4.6 we can see when the data has been extracted as raw ECG

data from the pdf-file.

Figure 4.6: ECG pdf to data, Samsung Galaxy Watch 4

Similarly to Samsung, Apple also only gives the ECG data as pdf-files, and we

need to extract the data to more usable form. In Figure 4.7 how the data looks from

Apple Watch5.
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Figure 4.7: ECG pdf, Apple Watch5

In Figure 4.8 we can see how the data has been extracted to raw ECG data

points.

Figure 4.8: ECG pdf to data, Apple Watch5

4.3.1 Normalisation

The ECG samples were normalised between 0 and 1. This was done to uniform

the values, as STAFF III data could be negative, and smartwatch data had values

between ranges 100 and 800.

n =
i∑︂
0

xi −min(x)

max(x)−min(x)
(4.1)
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4.4 Peak detection

Peak detection is important part, when studying the patients ECG graph. Filtering

is important to implement before the peak detection as, noise can warp the peak

detection [68]. The points of interests that we want to detect from ECG graphs are

QRS-complex, and P- and T-waves. With these we can calculate other important

values such as ST- and PQ-segments.

4.4.1 R-peak detection

R-peak detection was made with pyHRV Python package [64]. pyHRV is a toolbox

for measuring Heart Rate Variability (HRV) from ECG data. pyHRV has tools for

gathering Time Domain Frequency Domain, and non linear HRV parameters from

the ECG signal data. pyHRV uses BioSPPy package to detect the R-peaks [65].

BioSSPy is a Python package that is used to to analyse and process physiological

signals, such as electrocardiograms and electroencephalograms. Were are not in-

terested other than ECG signal analysing and processing functions. The function

that we used from BioSSPy was ’biosppy.signals.ecg.ecg’. This function takes signal

and sampling rate as inputs, and returns signals time series, filtered ECG signal,

and R-peaks of the signal. In Figure 4.9 we can see how R-peaks are detected from

signal.

4.4.2 P-, Q-, S- and T-wave detection

After the R-peaks are detected the other important landmarks from the ECG signal

can be extracted. P-, Q-, S- and T-waves all relate to R-peak.

The P-peak and the P-wave is detected with the R-peak. Similarly, to Sandelin’s

thesis, I chose the start of the detection window to be at 1/4th, before the R-peak,

of the mean interval between the R-peaks of the signal. The end of the detection
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Figure 4.9: R-peak detection

window was at 1/9th, before the R-peak. With the start and the end values, the

P-peak detection window is created, and the P-peak is the maximum value in the

detection window [54]. This P-peak detection window can be seen in Figure 4.10. In

the figure we can also see the P-peak itself, and how the window and P-peak relates

to R-peak of the heartbeat.

Q-wave was detected with similarly as the P-wave. I chose Q-peak detection

window start to be at 1/12th of RR-interval before the R-peak. The end of the

detection window was the location of R-peak. The Q-peak is the minimum value

between this detection window. This is shown in Figure 4.11.

Q-wave was detected with similarly as the P-wave. I chose Q-peak detection

window start to be at the location of the R-peak, and the end of the detection

window at 1/12th of RR-interval after the R-peak. The S-peak is the minimum

value between this detection window. This is shown in Figure 4.12.

T-peak detection is done similarly to P-peak detection. I chose the start of

the detection window 1/9th RR-interval of the R-peak, and the end of the detection
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Figure 4.10: P-peak detection window

Figure 4.11: Q-peak detection window
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Figure 4.12: S-peak detection window

window to be at the 4/9th RR-interval after the R-peak. The T-peak is the maximum

value in this detection window. The detection window, R- and R-peaks can be seen

in the Figure 4.13.

In the Figure 4.14 we can see all the heartbeats peaks detected.

4.5 Feature Extraction

To perform the classification of the patients, we first need to extract features from the

ECG data. In previous section 4.4 we detected and extracted peaks from the ECG

data. These peaks can be used in some features, but we still need more extracted

features, to achieve good detection accuracy. These features ideally should give

insight on how normal the specific snippet of data is. The features should lessen the

burden of computation, in other words they should compress the ECG data. This

compression should prevent data loss, meaning that the important features from
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Figure 4.13: T-peak detection window

Figure 4.14: All peaks of one heartbeat

the original data would not be lost. These features are then used in the machine

learning methods to create models, that can classify if signal is predicted as normal
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or predicted as having inflation.

The features that I chose for my machine learning models were:

• Heart rate (BPM)

• Root mean square of successive differences (RMSSD)

• Standard deviation of NN intervals (SDNN)

• Standard deviation of successive differences (SDSD)

• The proportion of RR intervals that have greater deviation than 20ms (pNN20)

• The proportion of RR intervals that have greater deviation than 50ms (pNN50)

• Very Low Frequency peak (VLF Peak)

• Low Frequency peak (LF Peak)

• High Frequency peak (HF Peak)

• Spread of RR intervals on the Poincaré plot (Poincaré plot SD1 and SD2 ratio)

• R-peak amplitude changes

• ST-segment amplitude changes

• ST-segment length changes

• PQ-segment amplitude changes

• PQ-segment length changes

• Slope of average waveform

These features were extracted from the STAFF III databases patient signals and

from the smartwatch data that I gathered. The features are paired with classifi-

cation, that tells if the features are from normal patient or are they from patient

undergoing infarction.



5 STAFF III –database

In this chapter we will take a look on what STAFF III database is, and what does

the database contain.

5.1 Database

The STAFF III is a database that contains a set of ECG data from patients that

are receiving percutaneous transluminal coronary angiography (PTCA). This is a

procedure where the blockage of an artery is opened, as seen on Figure 5.1. PTCA is

a basic procedure after myocardial infarction, and this procedure has been demon-

strated to have ability to normalise blood flow to coronary arteries and it has been

able to lower rates of recurrent ischemia, infarction, stroke, and even death [69]. The

aim of this database was to get a better understanding about myocardial ischemia

in regards of ECG data. And what makes this database special is the ability to

gather ECG data from patients that are going through acute myocardial infarctions

[70] [13].

STAFF III was collected between 1995 and 1996 at Charleston Area Medical

Center in West Virginia, USA. These procedures were single prolonged balloon in-

flation, to achieve best possible result in PTCA procedures. This single big inflation

was used instead of multiple smaller brief inflations. STAFF III database consist of

104 patients. Standard procedure for each of 104 patients was to gather at least one

baseline 5-minute-long ECG. Baseline ECGs were gathered either in supine position
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Figure 5.1: Percutaneous transluminal coronary angiography [71]

in relaxing room or in the catheterisation laboratory. For some patients two baseline

ECGs were gathered in both places. From each patient up to 5 different inflation

ECGs were gathered. These inflation ECGs were differing in lengths, ranging from

90 seconds up to 9 minutes and 54 seconds. Mean length for inflation records were 4

min 23 seconds. Similarly, to baseline ECGs post-inflation were acquired in relaxing

room or in catheterisation laboratory, in supine position [13]. In Figure 5.2 we can

see patient 102’s two baseline ECG graphs, inflation ECG, and post-inflation ECG.

STAFF III database contains *.dat and *.hea files, with sometimes including

annotation file *.event. Full database can be found in physionet [13]. All of the

patients include multiple data files. Usually with A, and B post position marked files

are baseline ECG data. Files with C to G markings are inflation and postinflation

data files. The database includes an annotation Excel-file that describes all of the

data files that the database contains. This annotations file includes timings of the

infarctions, and how long each infarction lasted.

The database contains 152 occlusions, in major coronary arteries. These occlu-

sions are distributed into 58 left anterior descendent (LAD) artery, 59 right coronary

artery (RCA), 32 in left circumflex artery (LCX), and 3 in the left main (LM) artery

[13]. The annotations file distributes these occlusions even further. For example, left

anterior descending artery occlusion are divided into proximal, mid, and diagonal

segments. Some patients have had dye injections during the procedure. Some of

these injections have been annotated, but not all. Dye injections can cause changes
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Figure 5.2: Different ECG graphs from patient 102 of STAFF III database [13]

in ECG data, so users are advised to be cautious [13].

The STAFF III database is soon 30 years since it has been gathered, but studies

are still being published with the help of the database. This is partly thanks to the

uniqueness of the database. The database is great data set when developing new

methods for detecting ischemia and myocardial infarctions. STAFF III database

does have its limitations, for example it does not have any annotations for QRS

occurrence times [70].



6 Results

Results of the machine learning models, using the features that have been gathered

from the STAFF III database and from the smartwatch data.

6.1 Results of the STAFF database

From the STAFF III database I was able to gather 271 ECG graphs from patients

that were not undergoing infractions, and 130 ECG graphs from patients that were

suffering from infarctions. The signals that were from patients suffering from infarc-

tions were split into three different signals. This split was done to get more data

sets from irregular ECG signals. The database included 658 different instances of

ECG features.

This data set was then used with Leave-One-Out Cross-Validation and KNN,

SVM, DT, RF, and ET classification methods. Confusion matrices made by the

methods can be seen below.

In the Figure 6.1 we can see how the KNN model performed with only STAFF

III data set. 214 ECG graphs were predicted to be healthy and were healthy. 126

graphs were predicted to be healthy but had infarctions. 54 graphs were predicted

to have infarctions, but were healthy. 264 were predicted to have infarctions and

were having infarctions. The accuracy of KNN model was measly 0.73.

In the Figure 6.2 we can see how the SVM model performed with only STAFF

III data set. 184 ECG graphs were predicted to be healthy and were healthy. 64
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Figure 6.1: KNN confusion matrix without smartwatch data

Figure 6.2: SVM confusion matrix without smartwatch data

graphs were predicted to be healthy but had infarctions. 84 graphs were predicted

to have infarctions, but were healthy. 326 were predicted to have infarctions and

were having infarctions. The accuracy of SVM model was a bit better than KNN,

but still disappointing 0.78.
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Figure 6.3: DT confusion matrix without smartwatch data

In the Figure 6.3 we can see how the DT model performed with only STAFF

III data set. 222 ECG graphs were predicted to be healthy and were healthy. 47

graphs were predicted to be healthy but had infarctions. 46 graphs were predicted

to have infarctions, but were healthy. 343 were predicted to have infarctions and

were having infarctions. The accuracy of DT was much better than KNN and SVM,

a tolerable 0.86.

In the Figure 6.4 we can see how the RF model performed with only STAFF III

data set. 193 ECG graphs were predicted to be healthy and were healthy. Only 8

graphs were predicted to be healthy but had infarctions. 75 graphs were predicted

to have infarctions, but were healthy.382 were predicted to have infarctions and were

having infarctions. The accuracy of RF similar to DT model, with a 0.87. RF model

has a better precision at 0.90, than DT model, but at the cost of lower recall at 0.85.

In the Figure 6.5 we can see how the ET model performed with only STAFF III

data set. 234 ECG graphs were predicted to be healthy and were healthy. 25 graphs

were predicted to be healthy but had infarctions. 34 graphs were predicted to have
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Figure 6.4: RF confusion matrix without smartwatch data

Figure 6.5: ET confusion matrix without smartwatch data

infarctions but were healthy. 365 were predicted to have infarctions and were having

infarctions. The accuracy of ET was best one from all five models, with a 0.91. The

precision, recall, and F1 score was also best from all of the models, this means that

extra trees model is clearly best one from the five chosen models.
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Model Accuracy Precision Recall F1 score

KNN 72.64% 72.98% 73.77% 72.49%

SVM 77.51% 76.85% 76.12% 76.41%

DT 86.02% 85.55% 85.46% 85.50%

RF 87.39% 89.80% 84.98% 86.25%

ET 91.03% 90.91% 90.45% 90.66%

Table 6.1: Performance metrics for classification models without smartwatch data

As we can see from table 6.1, the results from different methods differ quite bit.

K-nearest neighbors and support vector machine methods are not great at classifying

normal and abnormal ECG signals. They both are still much better than guessing

the classes, but compared to decision trees, random forest, and extra trees methods,

they do not match up. The computationally burdensome methods random forest

and extra trees have better performance, with extra trees beating random forest

with great margin. The KNN and SVM performance is quite disappointing. All of

the methods were using LOOCV as the data set was quite small.

Table 6.1 answers to our first research question. These machine learning methods

can be used to detect and classify acute myocardial infractions, from the STAFF III

database. Extra trees model was able to classify normal ECG and infarction ECG

graphs with 91 percent accuracy.

6.2 Results of the smartwatch data

STAFF III database was used for training set, and smartwatch data was used as

testing set. As we can see from table 6.2, STAFF III database data and smartwatch

data is not comparable. This is why the data set should combine both STAFF III

data and data from smartwatches.
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Figure 6.6: KNN confusion matrix only smartwatch data

In the Figure 6.6 we can see how the KNN model performed with training from

STAFF III data set, and smartwatch data as testing data. 43 ECG graphs were

predicted to be healthy and were healthy. 0 graphs were predicted to be healthy

but had infarctions. 85 graphs were predicted to have infarctions, but were healthy.

0 were predicted to have infarctions and were having infarctions. The accuracy of

KNN model was measly 0.34.

In the Figure 6.7 we can see how the SVM model performed with training from

STAFF III data set, and smartwatch data as testing data. 20 ECG graphs were

predicted to be healthy and were healthy. 0 graphs were predicted to be healthy but

had infarctions. 108 graphs were predicted to have infarctions, but were healthy.

0 were predicted to have infarctions and were having infarctions. The accuracy of

SVM model was only 0.16.

In the Figure 6.8 we can see how the DT model performed with training from

STAFF III data set, and smartwatch data as testing data. 9 ECG graphs were

predicted to be healthy and were healthy. 0 graphs were predicted to be healthy but
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Figure 6.7: SVM confusion matrix only smartwatch data

Figure 6.8: DT confusion matrix only smartwatch data

had infarctions. 119 graphs were predicted to have infarctions, but were healthy. 0

were predicted to have infarctions and were having infarctions. The accuracy of DT

model was only 0.09.

In the Figure 6.9 we can see how the RF model performed with training from
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Figure 6.9: RF confusion matrix only smartwatch data

STAFF III data set, and smartwatch data as testing data. 1 ECG graphs were

predicted to be healthy and were healthy. 0 graphs were predicted to be healthy but

had infarctions. 127 graphs were predicted to have infarctions, but were healthy. 0

were predicted to have infarctions and were having infarctions. The accuracy of RF

model was only 0.008.

In the Figure 6.10 we can see how the ET model performed with training from

STAFF III data set, and smartwatch data as testing data. 4 ECG graphs were pre-

dicted to be healthy and were healthy. 0 graphs were predicted to have infarctions,

but were healthy. 124 graphs were predicted to have infarctions, but were healthy.

0 were predicted to have infarctions and were having infarctions. The accuracy of

ET model was only 0.03.

From the table 6.2, we can see that smartwatch data and STAFF III database

data were so different, that they could not be used interchangeably, meaning that

other data set could not be used to train the models, and other data set used to

test.
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Figure 6.10: ET confusion matrix only smartwatch data

Model Accuracy Precision Recall F1 score

KNN 33.59% 50.00% 16.80% 25.15%

SVM 15.63% 50.00% 7.81% 13.51%

DT 9.38% 50.00% 4.69% 8.57%

RF 0.78% 50.00% 0.39% 0.78%

ET 3.13% 50.00% 1.56% 3.03%

Table 6.2: Performance metrics for classification models, trained with STAFF III

and tested with smartwatch data

6.3 Results of the STAFF database and smartwatch

data

Both STAFF database and smartwatch data was merged for this classification, as

the smartwatch data set was quite small, containing only 128 entries.

As with only the STAFF III data, this data set was then used with Leave-One-
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Out Cross-Validation and KNN, SVM, DT, RF, and ET classification methods.

Confusion matrices made by the methods can be seen below.

Figure 6.11: KNN confusion matrix

In the Figure 6.11 we can see how the KNN model performed with STAFF III

and smartwatch data sets. 328 ECG graphs were predicted to be healthy and were

healthy. 129 graphs were predicted to be healthy but had infarctions. 68 graphs

were predicted to have infarctions, but were healthy. 261 were predicted to have

infarctions and were having infarctions. The accuracy of KNN model was measly

0.75.

In the Figure 6.12 we can see how the SVM model performed with STAFF III

and smartwatch data sets. 298 ECG graphs were predicted to be healthy and were

healthy. 78 graphs were predicted to be healthy but had infarctions. 98 graphs

were predicted to have infarctions, but were healthy. 312 were predicted to have

infarctions and were having infarctions. The accuracy of SVM model was similar to

KNN with a measly 0.78.

In the Figure 6.13 we can see how the DT model performed with STAFF III
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Figure 6.12: SVM confusion matrix

Figure 6.13: DT confusion matrix

and smartwatch data sets. 349 ECG graphs were predicted to be healthy and were

healthy. 59 graphs were predicted to be healthy but had infarctions. 47 graphs

were predicted to have infarctions, but were healthy. 331 were predicted to have

infarctions and were having infarctions. The accuracy of DT was quite a bit better
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than both KNN and SVM models, with a 0.87.

Figure 6.14: RF confusion matrix

In the Figure 6.14 we can see how the RF model performed with STAFF III

and smartwatch data sets. 345 ECG graphs were predicted to be healthy and were

healthy. 66 graphs were predicted to be healthy but had infarctions. 51 graphs

were predicted to have infarctions, but were healthy. 324 were predicted to have

infarctions and were having infarctions. The performance of RF was worse than DT

model with accuracy of 0.85.

In the Figure 6.15 we can see how the ET model performed with STAFF III

and smartwatch data sets. 363 ECG graphs were predicted to be healthy and were

healthy. 39 graphs were predicted to be healthy but had infarctions. 33 graphs

were predicted to have infarctions, but were healthy. 351 were predicted to have

infarctions and were having infarctions. Like with only the STAFF III data, the

performance of RF model was the best. Accuracy was 0.91, precision 0.91, recall

0.91, and F1 score 0.91.

As we can see from table 6.3, the more robust methods such as ET, RF, and
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Figure 6.15: ET confusion matrix

Model Accuracy Precision Recall F1 score

KNN 74.94% 75.55% 74.88% 74.75%

SVM 77.61% 77.68% 77.63% 77.60%

DT 86.77% 86.80% 86.76% 86.76%

RF 85.11% 85.17% 85.10% 85.10%

ET 90.84% 90.85% 90.83% 90.84%

Table 6.3: Performance metrics for classification models

DT perform better than KNN and SVM methods. All the models performed worse

with data from both STAFF III and smartwatches. Still DT and ET models were

able to classify ECG graphs with good accuracy, with ET even reaching 90 percent

classification accuracy. Like the models that were using only STAFF III data, models

with both data sets were using LOOCV as the data set was still quite small, even

with the smartwatch data.

Table 6.1 answers to our research question. These machine learning methods

can be used to detect and classify acute myocardial infractions, from the STAFF
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III database and gathered smartwatch data. Extra trees model was able to classify

normal ECG and infarction ECG graphs with 91 percent accuracy.



7 Conclusion

In this thesis we were trying to detect and classify acute myocardial infarctions from

electrocardiograph data, that was both collected from medical ECG machines, as

well as gathered from Samsung Galaxy Watch 4 and from Apple Watch Series 6

watches. These wearable smartwatches could be a more practical way to measure

patient’s ECG data, as watches do not require complex ECG measuring devices

compared to ECG machines used in medical settings. If these everyday carry watches

could measure ECG data well enough, that the data could be used to detect acute

myocardial infarctions, it would be highly beneficial.

The use of machine learning in detecting infractions, and other abnormalities in

ECG graph data has been studied before, some of these studies and articles have

been listed and discussed in chapter 3. These studies have been done with clinical

ECG data, so a study how commercial use smartwatches that have the ability to

measure ECG data would give a different perspective how useful machine learning

methods could be. When in clinical settings the data is purer, this means that the

studies done only with clinical data cannot be directly used, as ECG data gathered

by patient’s themselves, with wearable smart devices us not as clean as from clinical

devices.

This thesis had two research questions. Answer for the first question can be

seen from the table 6.1. The classification accuracy for the best model, which was

extra trees, was over 90%. The machine learning models that were listed in that
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table were made from STAFF III database. This database included healthy and

abnormal ECG data. This answers our first research question, and the answer is

yes. Machine learning can be used to detect and classify myocardial infarctions, from

data that includes healthy and infarction ECG data. The second question was about

if wearable smartwatches could be used to detect acute myocardial infarctions. To

get answer to this I gathered data from two different smartwatches. Machine learning

models were then trained with smartwatch and STAFF III database data. In table

6.3 we can see how well. The best machine learning model was also extra trees

which achieved classification accuracy of 91%. This means that the smartwatch data

tandem with STAFF III data can be used to detect acute myocardial infarctions.

7.1 Further research

For further research it could be interesting to compare different manufacturers.

Would there be differences between different manufacturers that offer smartwatches

capable of measuring ECG. The ECG measuring ability between different commer-

cial smartwatches, could be one reason when choosing smartwatches.

There are many reasons why Samsung and Apple are not releasing raw ECG

data what their smartwatches measure. Regulatory requirements can be one reason

why Samsung and Apple are not willing to release their raw ECG data, as the raw

data might not be properly validated. Other reason could be that the ECG data is

sensitive information, and if that sensitive information is shared to end users, this

could pose a cyber security risks. These smartwatches are not medical equipment, so

the raw data is not as reliable as data gathered from medical grade ECG measuring

devices. This means that if the data is used as high-quality medical data, users

could be harmed.

Lastly perhaps the biggest reason why Apple and Samsung are not willing to

release their hard-earned data is intellectual property concerns. They have used
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their own valuable resources to gather this valuable user data, that they themselves

can use to better their own algorithms. This is why they are not keen to release this

data to other parties, as they understand the value that this biomedical data has

and will have in the future.
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