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This thesis will inspect, if coupling a simple U-Net segmentation model with an image-to-image 

transformation Generative Adversarial Network, CycleGAN, will improve data augmentation result 

compared to sole CycleGAN. To evaluate the proposed method, a dataset consisting of weather 

images of different weather conditions and corresponding segmentation masks is used. Furthermore, 

we investigate the performance of different pre-trained CNNs in the encoder part of the U-Net model. 

The main goal is to provide a solution for generating data to be used in future data augmentation 

projects for real applications. 

Images of the proposed segmentation and CycleGAN model pipeline will be evaluated with Fréchet 

Inception Distance metric, and compared to sole CycleGAN results. 

The results indicate that there is an increase in generated image quality by coupling a segmentation 

model with a generator of CycleGAN, at least with the used dataset. Additional improvements might 

be achieved by adding an attention model to the pipeline or changing the segmentation or generative 

adversarial network model architectures. 
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Tämä tutkielma selvittää, tuottaako yksinkertaisen U-Net segmentaatiomallin yhdistäminen kuvasta-

kuvaan generatiiviseen vastakkaisverkkoon, CycleGANiin, parempia tuloksia kuin pelkkä 

CycleGAN. Esitetyn ratkaisun arvioimiseksi käytetään sääkuvista ja niitä vastaavista 

segmentaatioleimoista koostuvaa datasettiä. Lisäksi tutkimme, paljonko eroavaisuuksia 

esiopetetuilla CNN:llä on U-Net arkkitehtuurin enkooderissa suorituskyvyn osalta. Tutkielman 

päätavoite on tuottaa ratkaisu uuden datan generoimiseksi reaalimailman sovelluskohteisiin. 

Ehdotetun segmentaatio- ja CycleGAN-mallista koostuvan liukuhihnan suorituskyky arvioidaan 

Fréchetin aloitusetäisyys-menetelmällä, jota myös verrataan pelkällä CycleGANilla saatuihin 

tuloksiin.  

Tutkielman tulokset implikoivat, että kuvanlaatu nousee esitettyä liukuhihnaa käyttämällä ainakin 

kyseessä olevalla datasetillä. Lisäparannuksia voi saada aikaan liukuhihnaan erillisen huomiomallin 

tai muuttamalla segmentaatio- tai generatiivisen vastakkaisverkon arkkitehtuuria. 

 

Asiasanat: Generatiivinen vastakkaisverkko, GAN, syväoppiminen, Konvolutiivinen Neuroverkko, 

Kuvasta-kuvaan muunnos, Semanttinen segmentaatio 
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1 Introduction 

1.1 Research background 

Machine learning is the process of a program gaining new information from existing data to 

be used in novel situations. Generative Adversarial Network (GAN), a type of deep machine 

learning architecture, can generate new data by using a setup of two competing neural 

networks, and this new data can be further refined to address some data extensive problem. 

Augmenting new data examples with GANs can be used for example to generate new data 

for training a different model, such as computerized tomography scans, a stack of X-ray 

images of cancer patients to train a segmentation model [1], as collecting real data of medical 

patients can be expensive and slow, or to find some new knowledge about the patterns of the 

data. Generating new types of cyber-attacks [2] or drug types [3] can help to automate testing 

of different fields. 

It might be difficult to collect images of every weather condition from every location, but 

with GANs one might need to only have a single image of a given location to use it to 

generate images of different weather conditions of the said location. These generated images 

could then be further used for environment design, traffic planning, etc. 

Architecture of a GAN and deep learning model general is sometimes a black box, which 

makes choosing the right layers and hyperparameters empirical; this property leaves much 

room for optimization, and there are possible unfound solutions which might perform better. 

Therefore, it’s important to both look into generally accepted practices and wherever 

possible, attempt to slightly alter an architecture. 

1.2 Literature review 

After the introduction on GANs in 2014 [4], the architecture has seen many different 

implementations. These include StyleGAN [5], CycleGAN [6] and DiscoGAN [7].  

StyleGAN introduces a specific style-vector. StyleGAN generator model has upscaling 

structure, starting from very low resolutions. At each resolution, random noise input is fed 

to a fully-connected mapping network to produce the style-vector, which is combined with 

Adaptive instance normalization [8] and then fed to the generator model. This method is 

used to train and modify features at different resolutions, be it (in case of face generation) 

hair color or eyelash length etc. However, one common defect of StyleGAN was appearance 
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of artifacts or “blobs”, which during training appear to gradually transform into different 

features, but are almost always present somewhere in the image. Later, StyleGAN was 

improved with StyleGAN v2 [9], which solved the artifact problem by removing Adaptive 

instance normalization layers from the generator.  

CycleGAN, the model used in this thesis, learns the mapping between two different image 

domains without requiring the images to be paired. Not requiring the images to be paired 

makes the data collection much easier, as one isn’t required to make image pairs with static 

backgrounds where only the domain subject varies. The idea during training is to transfer 

the input image from domain X to domain Y and then back to X, and measure the difference 

between the initial and final X domain images.  

DiscoGAN works for the most part the same way as CycleGAN, the main difference being 

that CycleGAN uses one cycle-consistent loss between the models during training, whereas 

DiscoGAN uses two reconstruction losses, one for each generator. This difference might 

make CycleGAN more stable and require less supervision during training. 

Challenges of training GANs include training instability (as there are two models, which 

improve each other in turn, so they have to be in sync), requirement for a large amount of 

data, overfitting to a certain output (mode collapse), and generally a large computational cost 

compared to classification models, for example [10]. Evaluating GANs can be expensive, 

but solutions including Fréchet Inception Distance [11] or Kernel Inception Distance [12] 

are commonly used by comparing images generated by a GAN model to the last feature layer 

of a pre-trained model, most commonly Inception v3 [13]. 

Out of the common GAN models, CycleGAN appears to be well-suited and popular choice 

for translating an input image to another domain with reasonable amount of data and training 

time [14]–[16], whereas StyleGAN excel in generating completely new images from random 

noise input, but is expensive computationally and requires a lot of data.  

Segmentation models aim to detect certain areas from the input and distinguish different 

objects. Combining a generator of a GAN model with a segmentation model can improve 

the quality of the generated images, as the segmentation model can be used to both 

emphasize areas of interest, or to ensure that the generator detects certain objects. 

WeatherGAN [17] combines the generator of a GAN with a segmentation and attention 
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models, and trains all models simultaneously. In this thesis, the same idea is used but by 

having a distinctly trained segmentation model and GAN-generator model. 

1.3 Research questions 

The thesis will revolve around the following two research questions: 

RQ1: Investigate, if there is significant difference in data augmentation results between 

CycleGAN output and CycleGAN output coupled with segmentation model. 

RQ2: Inspect how well different segmentation model configurations and pre-trained models 

affect segmentation results and quality of images outputted by the proposed CycleGAN-

segmentation model pipeline. 

Given the research questions, this thesis will have a look and implement modern data 

augmentation techniques with GANs for the purpose of modifying images with image-to-

image translation. In addition, I investigated wherever adding a segmentation network 

together with a GAN will produce better output images than just a GAN. Produced solution 

is intended to be applicable to different datasets. The scope of this thesis looks into image 

transformation with weather images by first transforming a source image of some weather 

condition X to a target weather condition Y (for example, sunny to cloudy). Additionally, 

I’m using a segmentation model to select the pixels that are most related to weather 

conditions to add the pixels with weather-cues to the original image. Finally, producing a 

distinct attention model which defines how strongly the weather-cues from the segmentation 

model should be applied over the original image is attempted. 

Answering RQ1 can help us in future image-to-image transformation projects to consider, 

whether training a distinct segmentation model and generating the segmentation masks for 

a dataset will be useful. 

Answering RQ2 will clarify, if there is a significant difference between using a pre-trained 

model networks over the other tested ones. Although the segmentation model is important 

as a part of the GAN-pipeline, the knowledge RQ2 can generate is also applicable to 

segmentation problems without the GAN module. 
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1.4 Thesis organization 

Chapter 2 describes the background in semantic segmentation, GANs and Image-to-Image 

transformation, which will be needed to produce the presented solutions in this thesis. 

Chapter 3 introduces an image transform pipeline based loosely on WeatherGAN [17]. The 

pipeline includes two modules; GAN-based generative model and segmentation model. 

Additionally, chapter 3 also presents the collected results in the thesis by evaluating the 

proposed methods based on the common metrics. 

Finally, chapter 4 concludes the thesis and proposes some suggestion for possible future 

works. 
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2 Background 

2.1 Deep learning 

Deep learning (DL) is a subcategory of machine learning. The term “deep” (network) being 

ambiguous as opposed to “shallow” (network), and there is no clear definition of how many 

layers a network needs to have to be “deep”. 

 

Figure 1: An example of fully-connected neural network with 3 input nodes, hidden layers with 8 
and 7 nodes, and 2 output nodes. 

 

A deep neural network layer consists of nodes that are connected to other layers’ nodes via 

weight connections. If every node of a layer connects to every node of the following layer, 

a network is fully-connected, as shown in Figure 1. The weights are learnable parameters, 

which adjust their values during network’s training phase. A cost function will be used to 

measure how far a neural network’s output, prediction, is from the real result. Based on the 

result of this cost function, a method known as backpropagation is the most common method 

to be applied to the network to optimize its weights.  
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How much the weights are updated depends on the difference between the prediction and 

target values, optimizer and learning rate used etc. Additionally, there are biases and 

activation functions with learnable parameters as well [18]. 

Hidden layers allow a deep neural networks’ layer to specialize on specific tasks, such as 

image network having different layers extract features in certain resolutions. On the other 

hand, too many layers increase the complexity of a model and its training and interference 

time. Additionally, large number of layers might cause a model to overfit, where the model 

memorizes the data instead of being able to generalize to new data. Avoiding overfitting is 

one of the major reasons why models are trained and tested on different data, which allows 

one to see how a model performs on novel data. 

2.2 Convolutional neural networks 

Convolutional Neural Network (CNN) is highly efficient model for visual DL, as its 

architecture is capable of delegating working with different levels of details and patterns to 

specific layers. This reduces the number of connections required compared to a fully-

connected network with multi-layer perceptrons, instead scanning the problem space with 

feature filters that map the space in how much certain features appear. CNN features scanned 

on first layers are often low-level features consisting of edges and other basic pattern shapes, 

and on later layers the features begin to be more specialized on certain details and 

distinguishing shapes. 

Striding is a parameter of a CNN, that sets how much movement in an image kernel or filter 

window is present at a time, for example how many pixels to move along an axis. Related to 

striding is padding, that can add empty "pixels" to the edges of an image matrix to prevent 

striding from going over a corner, when the remaining pixels are not even with striding value. 

This prevents the kernel from visiting the center pixels more than the corner ones. 

Pooling is a dimensionality reduction technique to downsample spatial (x and y) dimensions, 

which is done to a pooling window of specific size. The values inside each pooling window 

can be reduced by averaging the values (average pooling) or taking the largest value (max 

pooling). Pooling aids in reducing computational cost and overfitting of a model, as with 

less dimensions layers are forced to learn feature information of the data. As only either the 

average or largest value is carried over with pooling operation, it is non-invertible operation, 

but it’s possible to estimate the original values from resulting pooling operation. To instead 
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increase the resolution of an image, upsampling with nearest neighbours can be used, where 

one value is copied to neighbouring pixels. Other methods to upsample include solutions 

such as linear or bi-linear interpolation and transposed convolution, which includes a 

learnable filter to learn the mappings from a lower resolution. 

Convolution applies a learnable filter to the striding window, and transposed convolution is 

in practice an inverse of convolution, i.e. reversing the result image to the one it was before 

applying convolution filter [19]. Fully-strided convolution decreases the image size, while 

transposed increases it.  

Figure 2 shows an example of CNN architecture, with two convolutional hidden layers each 

containing convolution and max pooling operations. The last hidden layer is a fully-

connected layer, and output is two nodes producing predictions such as classification 

probabilities. Each convolution and max pooling operation gets its input as a filter of certain 

size.  

 

Figure 2: A basic architecture of a classification Convolutional Neural Network, with one-
dimensional (black and white) input image, and two output nodes. 

 

Full and transposed convolutions in CNNs make it possible for spatial down- and up-

sampling operations, respectively, to be achieved. These operations handle the change in 

resolution and locations of patterns or features, that are mapped from image space to the 
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latent space. Striding is a useful alternative for usual pooling functions, as pooling is a static 

function but strided convolution has learnable parameters. Therefore striding can increase 

the task-specific adaptation of the neural network model at the expense of computation time 

in some cases [20]. 

Batch normalization is noted to be a useful addition to most CNN layers to increase the 

stability of training. Batch normalization is a normalization method to standardize the inputs 

inside each mini-batch (snapshot of training data used in the current round of gradient 

updates). However, it has been reported [21] that having a batch normalization layer for 

output layer of generator and input layer of discriminator can cause sample oscillation and 

model instability. This might have been caused by the two networks no longer sharing the 

same, independent data distribution.  

Dropout layers are used to set a percentage of their randomly selected inputs to 0 during 

training. This helps by preventing some single weights from making the network too 

dependent on them, forcing the other weights to work with different combinations of the 

same layer weights. This reduces the chance that the network learns some exact feature 

values instead of generalizing to the whole dataset, so it helps to avoid overfitting.  

2.3 Attention 

Attention, as a method in neural networks and DL, is the process of noting what are the areas 

of interest in the neural network model's prediction, which features had the most influence 

on a prediction instead of the whole input (for example, a classification being decided to be 

of a certain class). Attention in computer vision works with the same analogy as the attention 

human eyesight has when focusing on a certain target, where the more distant or less 

significant targets are given lower weights. In CNNs, one can visualize the intermediate 

activation maps to see the high- or low-level features, depending on the layer. In addition to 

its applications to computer vision, attention has been used in natural language processing, 

for example in the bidirectional encoder representations from transformers models [22]. 

2.4 Semantic segmentation 

Segmentation in computer vision is the process of partitioning an image to different subparts 

by every pixel of an image. This partitioning is done by applying some methodology, that 

can distinguish the parts from each other using various methods. 
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Semantic segmentation requires, that every processable unit of the segmentation object is 

labeled with the desired segmentation domain. Most commonly, this means an image that 

has an associated mask with every pixel labeled into segmentation categories. 

Depending on the complexity of the object and the variation of the examples, a solution 

might be plausible with an algorithmic approach. One basic algorithmic segmentation 

method is thresholding [23], [24], in which an image is transformed to grayscale and pixels 

that exceed a threshold value are classified to a certain class, which might be coupled with 

flood-fill algorithm (expand selection in each direction, until encountered with a pixel that 

does not exceed the threshold) or other rules. Other algorithmic solutions include edge-based 

segmentation [25], [26], which detects changes of patterns when reaching the border of an 

area and the change’s direction, and region-based detection [25] where an area is filled 

starting from certain seed location. In chapter 3.1 we review the proposed segmentation 

models in this thesis. 

2.5 U-Net 

U-Net [27] is an encoder-decoder type neural network architecture for segmentation, often 

used for medical imaging solutions.  First part of U-Net has a contracting path structure that 

is often present with CNNs, in which the input feature resolution increases. U-Net combines 

contracting path structure with expansive path, where skip connections feed features from 

layers not directly before them. The benefit of these skip connections is that while using an 

encoder-decoder architecture that shrinks the number of features, more generalizable 

features might get overwhelmingly dominant weights, while the more dataset-specialized 

features might become irrelevant. However, with skip connections these more specialized 

features are also sent to the corresponding decoder layer from the encoder layer. 
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Figure 3: U-Net architecture [28]. 

 

The contracting and expansive paths are often similar to each other in structure, making the 

model resemble a U-shape. The segmentation is done with subparts of the input image, tiles, 

and these tiles require a border area around them larger than themselves to predict the tile 

area. For tiles whose surrounding border area is not completely in the input image, the 

missing area is mirrored from the existing border area.  

U-Net was initially designed for biomedical image segmentation, where availability of data 

is often low [27]. In Figure 3, an example U-Net architecture is shown, with 572*572*1 

input and 388*388*2 output size. 

2.6 Data augmentation 

Data augmentation [29], [30] is the process of generating more data examples by learning 

probability distribution of some data and adding variations to the data in some way. This 

includes cases such as removing sensitive information which allows the data to be used more 

freely and generating more data for training to learn more about the patterns in it or to 

balance an imbalanced dataset. Data augmentation operations such as rotating, cropping and 

changing colors are also commonly used in pre-processing steps of machine learning, which 



11 
 

help in allowing the model to be trained on a more representative and diverse dataset and be 

less prone to overfitting. 

The aim of this thesis to changing the weather condition of an image but leaving the rest of 

the image unchanged is one example of conditional data augmentation. Uncontrolled 

generation, where a model will generate random data from the learned probability 

distribution is also a possibility [31]. 

2.7 Generative adversarial networks 

Generative adversarial networks (GANs) [4] are most often unsupervised deep machine 

learning algorithms, which attempt to generate novel and diverse data, “fakes”, which ideally 

is indistinguishable from real data. The basic structure of GANs consists of two opposing 

networks:  

- Generator network, which learns to simulate the underlying patterns in the real 

data, and 

- Discriminator (i.e., classifier) network, to rate both the generator’s output and real 

data. 

In Figure 4, the architecture of a basic GAN model is shown. 

 

Figure 4: GAN logic [10]. 
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These two networks are trained in succession, and the Min-Max game they are playing is the 

mainstay of this algorithm; the generator is trying to pass all of the fake images it has 

produced as reals to the discriminator. Disciminator receives as input both the generator’s 

images and real images, and its goal is to rate real images with high probability (ideally 1) 

of being real, and fake images with low probability (ideally 0). Generator network’s input 

space, which called latent space, will start at random noise, and based on discriminator’s 

ratings on generator’s output images the latent space will attempt to map combinations of 

features that would represent real data. An analogue about the generator being a person 

making fake artwork and discriminator being an art critic trying to distinguish real art from 

fake is very representative of GAN logic. 

GANs fall into the category of implicit density models, which means that they do not find 

the data distribution, but instead learn a method to map some points of data into the latent 

space and build a model or simulation of the problem based on the features these examples 

reveal. Opposed to implicit density models are explicit density models, that try to find the 

exact data distribution, where some other generative models belong to.  

Adversarity in machine learning applies as a min-max problem, where the minimizer 

(discriminator), who works as a classifier, tries to find parameters that minimizes the cost of 

classifying. The maximizer (generator) then tries to find inputs that maximize the classifying 

cost. Google's AlphaGo used an adversarial algorithm when it played different versions of 

itself against each other, successfully improving from it [32]. 

A generator represents mapping from noise space to data space with 𝐺(𝑧, 𝜃𝑔), where G is a 

differentiable function of neural network with parameters 𝜃𝑔. 

The original value function of a GAN is: 

min
𝐺

 max
𝐷

 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝑙𝑜𝑔𝐷(𝑥) + 𝐸𝑧~𝑝𝑔(𝑧)𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))  (1) 

where 𝑝𝑑𝑎𝑡𝑎(𝑥) is the probability density function of random vectors x from the real data 

space, and 𝑝𝑔(𝑧) is the probability distribution of vectors from the generator's latent space. 

Equation (1) is known as Binary Cross-Entropy Loss. The optimal case is 𝑝𝑔(𝑧) =

 𝑝𝑑𝑎𝑡𝑎(𝑥), when the discriminator outputs a probability of 0.5 for every data sample it 

receives, meaning it cannot tell fakes from reals [4]. This state is known as Nash equilibrium, 
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a game theory phenomenon where no player can choose more optimal strategy in response 

to their opponent’s most optimal strategy [11]. In this thesis we are concentrating on deep 

convolutional neural network GANs (DCGAN), but GANs themselves can be implemented 

with any differentiable system, that can map datapoints between spaces. DCGANs use CNN 

architecture, which is ideal for image data, whereas original idea of neural network GANs 

[4] use Fully-connected neural networks consisting of multi-layer perceptrons.  

2.8 Adaptive moment estimation (Adam) 

DCGANs often use Adam optimizer [33], as opposed to first GANs that used Stochastic 

Gradient Descent with Momentum [34], a variant of Stochastic Gradient Descent (SGD) 

[35]. Adam uses adaptive, independent learning rate for each parameter. The moment 

estimation part of Adam comes from the fact it uses estimations of first and second moments 

(mean and variance) of the gradients. 

Update in a network parameter θ𝑡 with Adam can be written as 

 𝐦𝑡 =
β1∗ 𝑚𝑡−1+(1−β1 )∗𝑔𝑡

(1−β1𝑡
𝑡 )

 (2) 

 𝐯𝑡 =
β2∗ 𝑣𝑡−1+(1−β2)∗𝑔𝑡

2

(1−β2
𝑡 )

 (3) 

 θ𝑡 = θ𝑡−1 −
 𝛼 ∗ 𝒎𝑡

(𝒗𝑡+𝜖)
      (4) 

where 𝛼 is learning rate, t is timestep, initially 0, m is first moment, mean, v is second 

moment, variance, β1 and β2 are the independent decay parameters for m and v (default value 

for β1 = 0.9, β2 = 0.999), 𝜖 is a small utility variable to prevent division by zero error 

(default value 10−8), 𝑔𝑡 is gradients at some time t, 𝒎𝑡 and 𝐯𝑡 are bias corrected with a 

decaying multiplier, so that at the start of the training their initialization to 0's wouldn't affect 

training too much.  

All in all, Adam has multiple benefits compared to many other optimizers, including fast 

convergence, generalizes well for different datasets, is resistant to noise and needs little 

manual tuning [33]. 

As GANs have two networks to be trained simultaneously, it can be possible that the 

adaptability and stability of Adam comes in use. SGD with momentum can sometimes 

generalize better than Adam, while Adam tends to converge faster and better in extreme 
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regions such as saddle points of a function [36]. However, as it’s hard to keep GAN training 

converging, it might be better to make use of Adam’s ability to converge faster and more 

evenly, and use other methods (presented later) to ensure the quality of generations, that for 

example ensure that the generated images vary from each other. 

In [37] they show Adam also has a property of performing better with cycle problem than 

SGD. Cycle problem rises from Min-Max game, where the non-continuous nature of two-

player GAN-training prevents Nash equilibrium from being reached. Instead, the 

convergences of distributions  𝑝𝑔 and  𝑝𝑑𝑎𝑡𝑎 cycle a certain distance away from the 

equilibrium. Adam seems to perform well in cycle problem thanks to its historical averaging 

on both first and second moments and the decay parameters β1, β2. β1 seems to help to deal 

with noise that spawns from mini-batch training, but a trade-off value for it is needed, as too 

large value will cause divergence. A well-chosen β2 helps in approaching equilibrium with 

the second moment. As the training advances and the cycle radius shrinks, the window at 

which historical gradients are averaged also shrinks, which requires one to change the 

parameter β2 at the end of training. Later introduced FID could help to solve cycle problem 

by setting a single equilibrium point, but it requires extra work if it's to be done during 

training at every gradient update. Good performance of Adam with cycle problem was seen 

to be coincidental. There have been some new optimization functions that are applicable to 

DCGANs, some of which are variations of Adam, including AdamW [38] and AdaBelief 

[39]. 

I think that because as Adam has been around for some time and been widely used, some 

methods and architectures still in use might have been planned to work well with it. Since 

some areas of DL are still rather experimental, perhaps the currently used "rules of thumb" 

(like architecture choices or hyperparameter values) are also found to be working well when 

using Adam. In addition, Adam's historical averaging and decay parameter can help to solve 

cycle problem. Adam can be seen as a safe choice in reaching convergence as it's tested to 

work with many cases, but newer optimizers like AdaBelief or AdamW might perform better 

in specific cases. 

2.9 Training GANs 

Training a GAN can be very unstable (examples in the following subchapter 2.10 “Problems 

in training GANs”), and careful management is needed as the two networks must always be 
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around the same level of convergence for the models to improve. Earlier mentioned Nash 

equilibrium is also one limitation that affects convergence.  

During training the generator and the discriminator alternate turns, where one model 

interferes the other, frozen model, updating its weights. After the training is finished, only 

the generator is needed to generate new data. However, the discriminator might also still 

potentially have its uses, for example it can be used to rate the initial dataset of real examples. 

The real examples with the lowest score could then be removed from the dataset. These 

images might be useful to enrich the dataset, but in large datasets some images might be 

corrupted or not representative of the subject. The last layer of the discriminator can also be 

removed, and its last hidden layer used for feature extraction.  

2.9.1 Problems in training GANs 

There is a multitude of possible problems in the data examples that GANs generate, of which 

some are listed in this chapter. In the next chapter I introduce some of the most common 

solutions to these problems. 

2.9.1.1 Mode collapse  

Mode collapse occurs, when the generator gets stuck in generating the same output that the 

discriminator rates as very probable of being a real data example. If the discriminator is 

simple, it might never detect this kind of behaviour from the generator’s part, and 

improvement of the GAN halts. 

2.9.1.2 No convergence  

Sometimes one or both networks fail to capture meaningful representation of the data. This 

can be caused by chosen model architecture or hyperparameters, data, loss function, noise 

or multiple other reasons. 

2.9.1.3 Mismatch in convergence levels  

If the training isn’t stable one of the models (usually the discriminator) can get significantly 

better in detecting the fakes, so that the generator has no chance of getting a probability score 

much higher than zero for its output, therefore receiving no feedback on what images were 

on the right track and in what direction to update.  
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2.9.2 Solutions to problems of training GANs 

2.9.2.1 Mini-batch discrimination 

Mini-batch discrimination checks the distance between the current generated image and 

mini-batch of n images that it's a part of. Feature vectors f of every mini-batch image are 

collected to a matrix M. Then, calculate L1 norm between each m rows for current 𝑴𝒊 and 

every other (n-1) feature matrix. L1 is the sum of absolute differences: 

 𝐿1 = ∑ |𝑥𝑘 − 𝑦𝑘|𝑛
𝑘=1  (5) 

Similarity o(𝑥𝑖) of input 𝑥𝑖 is calculated with row-by-row L1 difference for each image, and 

taking a negative exponent of it: 

 o(𝑥𝑖) = ∑ ∑ exp (−||𝑀𝑖,𝑟 − 𝑀𝑗,𝑟||𝑛−1
𝑗=1

𝑚
𝑟=1 𝐿1

)  (6) 

This output o(𝑥𝑖) is then concatenated with the feature vector f(𝐱𝐢) which was the input of 

this minibatch layer. Fake images from the generator and real images from the training data 

are treated separately, and each mini-batch only contains images from one of them. Final 

layer of the discriminator will return probability of the input image being real like before, 

but now having this additional information about similarity. This helps to detect model 

collapse, as similarity o(𝑥𝑖) affects the final output the discriminator gives, which only 

affects the generator (as the real training images do not receive any information) [40]. 

2.9.2.2 Historical averaging (parameters) 

Historical averaging of parameters can be used to check that change in model's parameter 

values is not too high to make the training unstable, which aids in reaching convergence. 

This is calculated with equation 7: 

 ||θ −
1

𝑡
∑ θ𝑖||

𝑡
𝑖=1

2
  (7) 

which is a L2 difference between current parameter 𝜃 and t earlier parameters 𝛉𝒊. This term 

is applied to discriminator's and generator's cost in the value function. Historical averaging 

together with mini-batch discrimination can help in keeping generator around a “golden 

mean”, preventing its output from getting too homo- or heterogeneous [40]. 
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2.9.2.3 One-sided label smoothing 

Set the target of discriminator’s output probability to 0.9 instead of 1. Now the discriminator 

will never return 0 as a probability of image being real, therefore always giving the generator 

something to update on. Helps to solve discriminator getting too far ahead of the generator. 

It might also be useful to add noise to the real (and fake) images that the discriminator gets 

as an input during training, so that the boundary between real and fake images gets narrower. 

This way the imperfections (such as out-of-place colored blob artifacts) that the generator 

outputs in the images affect the predictions less, allowing it to concentrate on other features 

[40]–[42]. 

2.9.2.4 Rectified Linear Units vs Leaky Rectified Linear Units 

Both mismatch in training and no convergence can be caused by vanishing gradients. 

Vanishing gradients is the phenomenon when action functions used start returning very small 

gradients, for example when original rectified linear unit (ReLU) [43], [44] activation 

function goes to negative values. This can lead it becoming "dead ReLU" and providing 0 

gradient for the rest of the run [45].  

ReLU can be presented with equation 8: 

 𝑓(𝑥) = {
0, 𝑤ℎ𝑒𝑛 𝑥 < 0
𝑥, 𝑤ℎ𝑒𝑛 𝑥 ≥ 0

  (8) 

, where x is the input value to ReLU. 

LeakyReLU [46] can be presented with the equation 9: 

 𝑓(𝑥) = {
∝ 𝑥, 𝑤ℎ𝑒𝑛 𝑥 < 0

𝑥, 𝑤ℎ𝑒𝑛 𝑥 ≥ 0
  (9) 

, where ∝ is a multiplier for the negative slope. Default value varies on implementations, but 

on Keras the default is 0.3. 

Implementing LeakyReLUs instead of ReLUs into discriminator can reduce the vanishing 

gradient problem [46]–[48]. LeakyReLUs will return non-zero value even when negative, 

making sure that they will contribute at least minimally to training, as visualized in Figure 

5. It was shown in [21] that LeakyReLUs in discriminator gave much better performance 

than regular ReLUs. generator however was not changed from using normal ReLUs. At least 
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computation-wise computing LeakyReLU activation is slightly more expensive than ReLU, 

and performance was not seen to be noticeably better in generator which had LeakyReLU’s.  

 

 

Figure 5: ReLU and LeakyReLU activation function values in relation to x [49]. 

 

2.9.2.5 Other solutions 

One can also try to use different initial learning rate for discriminator optimizer than for the 

generator, to decrease the chance of training collapse. Updating the discriminator twice for 

every generator update was noticed with BigGAN to yield good results when one of the 

networks fell behind. However, this is also one tunable parameter, and using differing rates 

can also lead to instability [50]. 

Beginning the training from lower resolution than the final target resolution, to first train the 

networks on crude features, and slowly increase the resolution after certain number of 

batches. This can be achieved by downscaling the training data and decreasing the neurons 

at generator's output and discriminator's input. The benefit is to learn high-level features and 

patterns of the dataset first. Starting training from lower resolution can also help in 

convergence or increasing the quality of generated images. 

2.10 Evaluating GANs 

As GAN is usually a semi-supervised learning method (unsupervised except for the 

supervised loss from the discriminator), it is rather difficult to determine if the generator 

outputs realistic images. The discriminator might not be enough to determine, if a generated 

image would pass as real or not, and it is affected by bias from the training data which might 

not represent the whole problem space. Human evaluation on the other hand is expensive. 
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Some solutions for this have been presented, including: 

2.10.1 Wasserstein GAN  

Instead of using a discriminator to return a probability of an image being real, Wasserstein 

GAN [51] uses a critic (marked still as D) to rate the image's "quality". Wasserstein-1 

distance, also known as earth mover's distance, measures the difference between two 

probability distributions (here fake and real), and tries to find the minimum cost to make 

these two distributions identical. The original GAN value function (equation 1) presented 

earlier used binary cross-entropy loss. Wasserstein-1, which is used as the loss function, 

looks very similar with its min-max game: 

 min
𝐺

 max
𝐷

 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐷(𝑥) + 𝐸𝑧~𝑝𝑔(𝑧) (1 − 𝐷(𝐺(𝑧)))  (10) 

But it does not have logarithms unlike binary cross-entropy. This means that whereas BCE 

had to limit its output to be in relation to a ground truth probability, Wasserstein loss does 

not. It gives the benefit of easing vanishing gradient and mode collapse problems, as the 

generator now gets useful gradients also from very good or bad images. The loss function 

will also no longer contain flat areas like with BCE, which could lead to vanishing gradients 

problem. 

Wasserstein loss has a requirement of having the critic to be 1-Lipschthiz continuous; this 

means that at any given point, gradient of its norm can be at most 1. This requirement ensures 

that the function grows linearly and that the output is continuous and differentiable, which 

are requirements for Wasserstein-1 distance to be applicable. This requirement is necessary, 

as we don't have logarithms in the loss function anymore. 

We can make sure that 1-Lipschthiz continuity holds with either weight clipping or gradient 

penalty. With weight clipping, all gradient values that exceed maximum or minimum limit 

are set to the exceeded limit value.  

With gradient penalty, real and fake images are sampled to form an interpolation image y by 

calculating 𝜖𝑥 + (1 − 𝜖)𝐺(𝑧), where 𝜖 is a random probability [0, 1]. This sampled image 

is used to calculate a regularization term, which is added to the loss function: 

 min
𝐺

 max
𝐷

 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝐷(𝑥) + 𝐸𝑧~𝑝𝑔(𝑧) (1 − 𝐷(𝐺(𝑧))) +  λ(||g𝑦D(y)-1||)
2
 

 (11) 
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where λ is an optimizable hyperparameter (10 was found to be working in the paper), y is an 

image formed from a sampled random pair of real and fake images, and g𝑦 is a gradient 

associated with y. 

Gradient penalty was seen in the paper to be able to keep the norm of critic's gradient below 

or at 1 at "almost everywhere". With gradient clipping and enforcing a hard limit to gradient, 

there were problems in finding a working hyperparameters for correct values, and gradient 

penalty was seen to work generally better. Additionally, Wasserstein GAN uses RMSProp 

instead of Adam that the original GANs use [51], [52]. 

2.10.2 Fréchet inception distance 

Fréchet inception distance (FID) [11] uses a squared Wasserstein-1 distance (making it 

Wasserstein-2) to input generated images to a trained CNN, usually Inception v3 network. 

This model gives useful features and patterns on how human recognition of certain objects 

might be done. Last output layer of Inception v3 network is removed in FID to gain access 

to usually the final hidden feature layer, which will output a data distribution of the generated 

images, which will be used to compare against the real images to get an FID score. The layer 

used for feature extraction does not necessarily need to be the last hidden layer, but that layer 

usually has the most finalized information about different patterns. To access cruder or less-

category specific features, one can also use an intermediate hidden layer for the feature 

extraction. 

With feature extraction, the aim is to minimize the amount of features the data contains, 

while retaining the representational value of the data. By using FID, the evaluation will not 

be pixel-by-pixel comparison, but a feature-to-feature level comparison, giving the benefit 

of pixels being shifted, image being rotated etc. data augmentations not having any major 

effect on the results. Additionally, high-level features about the most prominent attributes of 

the dataset will be compared between images, instead of single pixels. By using a pretrained 

network such as Inception v3, all the different features learned from the wide range of data 

the network has been trained on can be used for feature extraction. 

FID is used in some state-of-the-art DCGANs, including StyleGANv1 and v2. Inception v3 

network is trained using a subset of ImageNet, a dataset of 15 million images labeled into 

1000 categories. 1.3 million of images from ImageNet dataset were used in training and 

50000 in evaluation, with some of the images including bounding boxes for low-level 
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segmentation cues. This amount of data can help in learning general features of different 

objects and patterns and be generalized to different domains. 

It appears that the wide range of data Inception v3 has, relatively low parameter count (and 

therefore low computational cost and less prone to overfitting) and its good accuracy makes 

it a good starting point for most general tasks. However, this might get problematic in some 

cases when these general features are not similar to the features in the training dataset. If this 

kind of problems arise, it might be beneficial to train a different comparison model or transfer 

learning Inception v3 network to the problem space [11]. 

2.11 Conditional GANs 

In conditional GANs (cGAN) [53] generator and discriminator include additional labels c, 

such as categories, in addition to normal GAN inputs to bring semantic information. For 

example, the commonly used MNIST-digit challenge generates a random number with a 

normal DCGAN, but with a conditional DCGAN with classes 0-9, one could choose the digit 

they want to generate, or with styles what kind of font it uses etc. The value function of 

conditional GAN is the same as original GAN except it has per-category labels: 

 min
𝐺

 max
𝐷

 𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)𝑙𝑜𝑔𝐷(𝑥|𝑐) + 𝐸𝑧~𝑝𝑔(𝑧)𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧|𝑐))) (12)  

where c is the additional information label. 
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Figure 6 shows the logic for a cGAN. 

 

Figure 6: Conditional GAN logic [10]. 

 

Apart from the losses in the original GANs, where one just wants to minimize the distance 

between the generator and discriminator, Conditional GANs need to consider both the 

image's validity in the context space and its correct translation. For the second task people 

have sometimes added a L2 loss function, which is just the sum of squared differences 

between the real and fakes: 

 𝐿2 = ∑ (𝑅𝑒𝑎𝑙 − 𝐹𝑎𝑘𝑒)𝑛
𝑖=1

2
  (13) 

where n is the training dataset size.  

2.12 Image-to-image translation 

Image-to-Image task is the translation of an image from source domain X to a target domain 

Y. It's harder to make generalize than uncontrolled DCGANs, and a major problem was that 

they often require specifically crafted loss functions or neural network architectures for 

every task [10].  
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2.12.1 Pix2Pix 

Pix2pix [54] is a conditional GAN for transforming one image (source) based on a 

conditional second image (target), which allows the resulting image to capture the desired 

transformation of the conditional image, which can be Monet-style transformation of a 

photograph, horse getting a zebra's skin etc. 

Authors of Pix2Pix further change the L2 loss to L1 loss, which is implemented in this 

context as 

 ℒ𝐿1(𝐺) = 𝐸𝑥,𝑦,𝑧 [||𝑐 − 𝐺(𝑥, 𝑧)||
𝐿1

]  (14) 

, as L2 loss resulted in more blurry generated images [6]. λ is used as a hyperparameter 

multiplier to optimize the ratio of L1 loss (generated image's plausibility as a transformation 

of the source image) compared to adversarial loss of the discriminator (generated image's 

plausibility in the target space). In the Pix2Pix paper 100 was found to be a good value for 

λ. Conditional adversarial loss is shown as: 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦[𝑙𝑜𝑔 𝐷(𝑥, 𝑦)] + 𝐸𝑥,𝑧[log(1 − 𝐷(𝑥, 𝐺(𝑥, 𝑧))] (15) 

G then trains on using a combined loss function of conditional adversarial loss between 

discriminator's predictions and its output and L1 multiplied with λ to measure the pixel 

difference between the generated image with transformation and expected real image: 

 𝐺∗ = arg min
𝐺

 max
𝐷

ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) +  λℒ𝐿1(𝐺) (16) 

Pix2Pix is intended to be a general algorithm for different image-to-image tasks. Unlike 

normal GANs, the generator does not take its input from latent space. Instead, the noise is 

drawn from the use of dropout layers in the architecture, that disregard random outputs of a 

layer at each forward pass. Pix2Pix generator uses the U-Net model architecture, which 

allows up- and downsampling by allowing layers to connect to layers not directly next to 

them.  

The discriminator on the other hand uses PatchGAN architecture, which rates the realness 

of NxN pixel patches of the input image, instead of the whole image. 70x70 patch size was 

deemed to be very applicable to different tasks in the related paper. PatchGAN receives two 

inputs; the source image and the target image of said image, and the task is to predict if the 
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target image is a real transformation of the source image. The output is a feature map of 

predictions, which can be averaged to get a complete, single prediction of the image [54]. 

With the above features, Pix2Pix is able to generalize quite well to use the same architecture 

and loss function for different image-transfer tasks (satellite to map, day to night, labels to 

façade or street, black-and-white to color). With some earlier Conditional GANs, such as 

next frame prediction [50], image prediction from sparse annotations [55] and clothing 

transfer [56] it was necessary to manually craft an application-specific loss function and 

architecture. 

2.12.2 Cycle-consistent adversarial networks 

Cycle-consistent adversarial network (CycleGAN) [6] is a conditional, convolutional GAN 

for transferring an image from a source domain X to a target domain Y. The main attraction 

of CycleGAN is that it does not need paired training data, that is the training images don't 

need to be of the exact same subject in domains X and Y. Instead, it can learn the most 

prevalent features in the two dataset domains [6]. It works in a two-way fashion with two 

generators, with the generator G transferring an input image of source domain X to target 

domain Y, and the generator F transferring the generator G's domain Y transformation back 

to the original domain X. Both generators G and F are penalized for difference between the 

generator G's input image and generator F's output image. With this, the generators are 

required to retain some aspects of the input image, therefore making sure that objects that 

are not points of interest do not change too much in the transformation. This penalization is 

called Cycle consistency loss; 

 ℒ𝐶𝑦𝑐(𝐺, 𝐹) = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥)||𝐹(𝐺(𝑥)) − 𝑥||𝐿1 + 𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦)||𝐺(𝐹(𝑦)) − 𝑦||𝐿1 (17) 

CycleGAN sometimes produces problematic results by transforming also un-related aspects 

of the image; this can be seen with the original horse ⟷ zebra translation in the original 

CycleGAN repo, where domain change also changed the hue of the whole background. 

Although when weather changes between sunny and cloudy the lightning and visibility of 

the ground might change also, I noticed this effect to be too prevalent by on every surface. 

This is why an added segmentation model might improve the results to detect the area, where 

weather cues are present and only apply the transformation to that area. 
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2.12.3 CycleGAN with attention 

In [57], they proposed an modification of CycleGAN with added attention module, which is 

combined with the output of the generator with element-wise addition to form fake images. 

2.12.4 WeatherGAN 

WeatherGAN [17] is a conditional GAN introduced by Xuelong Li, Kai Kou and Bin Zhao 

in the paper “Weather GAN: Multi-Domain Weather Translation Using Generative 

Adversarial Networks”. Its goal is to design an image-to-image transformation method for 

weather images that can be generalized to different domains. This goal is achieved by having 

a generator, segmentation and attention modules. Attention module focuses on recognizing 

areas of interest and balancing different parts of the image. 

In this thesis I implement loosely some ideas introduced in WeatherGAN paper, but as the 

code is not publicly available and the paper does not go very deep into details, I take the 

concept of coupling segmentation and attention models with an img2img-transformation 

GAN, as well as use a part of the dataset the authors presented. 
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3 Experimental setups and results 

In this chapter, I introduce the libraries, models and data that are used for implementation in 

my thesis. The code used for this thesis can be found on GitHub 1.  

I run my codes in a Jupyter notebook by using the following libraries: TensorFlow, an open-

sourced machine learning library developed by Google and Keras API to construct, train and 

run the models. 

Additionally, I use Numpy, which is a package for scientific computing, including inbuilt 

mathematical functions, array objects especially for multi-dimensional array processing and 

operations for linear algebra. In this thesis, Numpy is used for manipulating the datasets in 

both preprocessing and postprocessing steps.  

To process the segmentation masks, which are in MatLab format, SciPy library’s loadmat-

function is used. Additionally, OpenCV, Pillow and matplotlib’s pyplot libraries are used 

for visualization. 

3.1 Segmentation 

I used U-Net as the baseline segmentation model with ReLU and maxpooling layers. The 

main reason for choosing U-Net is that the model architecture has been shown to perform 

well for semantic segmentation [27], [58], [59]. There are multiple existing segmentation 

models, so different model options are tested to see which one performs best for the task of 

this thesis. The U-Net model is constructed from backbone encoder and Pix2pix decoder 

parts, where the decoder’s weights are frozen to their pre-trained values. For the encoder 

part we included VGG19 model, as it was used in the WeatherGAN paper, as well as 

VGG16, which VGG19 is an updated version of. In addition, we included DenseNet 121, 

169 and 201 models, as they were also able to adapt well into different datasets. These 

networks include a high number of network layers with pre-trained weights, of which one 

can choose a subpart of layers to use.  

 

1 https://github.com/rajuranpe/WeatherGAN-Master-s-Thesis 
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3.1.1 VGG 

Visual Geometry Group (VGG) has developed a deep CNN, VGG19, that has performed 

well on ImageNet dataset. VGG16, an older version, is also tested. The full layer listing of 

VGG19 is shown in Figure 7, taken from plot_model()-function of Keras. 

 

 

Figure 7: VGG19 full layer listing. 

 

3.1.2 DenseNet 

DenseNet is a type of neural network, that has feature maps connecting to all lower layers, 

not just the next one. The layers are also connected to layers not directly above or under 

them, making the number of connections higher than for example in ResNet [60], [61]. 



28 
 

3.2 Generative adversarial network 

To produce a generator model, the CycleGAN model is trained, because it has been shown 

to perform well for an array of different datasets, such as removing raindrops [14], damaged-

undamaged structures [15] and aerial-satellite map translations [16]. This network is 

described in section 2.13.2 with more detail. 

3.3 Dataset 

The data used in this thesis is a part of "Multitask Weather" [62] dataset. The data consists 

of weather images in two categories "Sunny" or "Cloudy", and corresponding segmentation 

masks. Figure 8 shows example image and mask of these both categories.  

 

Figure 8: Data examples of Sunny and Cloudy category image and mask. 

 

In the related paper [62] the dataset is mentioned to also include masks and images for 

Snowy, Rainy and Foggy categories, but those were not in available in the dataset provided 
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on the project’s GitHub page 2. The resolution of images and masks (as a pixel in the mask 

corresponds a pixel in the image) is 300*300*3 (Width * Height * (RGB color)). The 

segmentation masks have each pixel labeled with one category 0-5, whose meanings are 

explained in the Table 1. 

Table 1: Segmentation label mask categories. 

Label Meaning 

0 No category/ground 

1 Sunny sky 

2 Sunny sky clouds 

3 Shadow 

4 Cloudy sky 

5 Clear sky 

 

Segmentation masks are labeled manually by humans, which requires a large amount of 

work. However, the masks are not pixel-by-pixel accurate, instead marking the general areas 

of the image with corresponding or most prevalent label with bounding boxes. This means 

that some edges and details are not labeled correctly, which is the cause that the evaluation 

of the segmentation models is not completely accurate. The “Multitask Weather” dataset is 

used to train the segmentation network to learn the segmentation masks’ correspondence to 

real weather images. Additionally, the real weather images without the segmentation masks 

are used for training the GAN in order to transform the domains cloudy to sunny and sunny 

to cloudy.  

3.4 Implementation 

To conclude, the pipeline consists of two parts: initial generator and segmentation modules, 

and additionally a discriminator to rate the generated images automatically during training. 

In Figure 9 the pipeline implemented in this thesis is shown. The pipeline takes an input 

image, which is fed to a CycleGAN model, which transforms the image from one weather 

domain to another (Sunny ⟷ Cloudy). Additionally, the input image is fed to the U-Net-

segmentation network to predict a segmentation mask. The transformed image and 

segmentation mask are then multiplied together with the input image to produce the final 

output image. In the final output image, the area in transformed image which intersects with 

 

2 https://github.com/wzgwzg/Multitask_Weather 
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the segmentation mask is applied over the input image, the rest remaining the same as the 

input.  

 

Figure 9: The proposed flowchart for implementation in this thesis. 

 

3.4.1 Preprocessing 

The dataset, “Multitask Weather”, consists of 10000 RGB images with size 300*300 and 

corresponding masks with size 300*300*1 (MATLAB files). 
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The dataset is divided into train and test datasets which consist 8000 and 2000 data examples, 

respectively. Then all images and masks in the dataset are resized into 256*256. The images 

and masks are normalized to -1, 1. Figure 10 shows a snapshot of code for reading the dataset 

images and segmentation masks. 

 

 

Figure 10: The code for reading and splitting the data. 

 

The GAN does not need the segmentation masks, so I only added the images to their 

respective categories “sunny” or “cloudy”.  

The input and output dimensions were chosen to be 256*256*3 to better use the U-Net 

model, as choosing a power-of-two resolution appeared to allow easier modification, but 

which could also have been solved with padding. It was decided that finding the right 

paddings would make testing different model configurations too time-consuming, since the 

results were good nonetheless and the image quality did not drop too much.  

In Table 2, data augmentation operations applied to the segmentation data (images and 

corresponding masks) are presented. It’s imperative that operations such as rotation, which 

alter the disposition of an image are also applied to the segmentation mask, lest the 

correlation between the image and the mask would be lost. Operations that only affect style 
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or color balance of the image, such as hue or brightness, are not applied to the mask, as their 

benefit is in increasing the data augmentation of the dataset. 

Table 2: Data augmentation methods for segmentation: 

Operation Tensorflow (tf.) Function applied to data example x Applied to 

Rotation tf.image.rot90(x) Image and mask 

Crop tf.image.central_crop(tf.image.resize(x, (256,256)), 
0.6) 

Image and mask 

Horizontal Flip tf.image.flip_left_right(x) Image and mask 

Vertical Flip tf.image.flip_up_down(x) Image and mask 

Brightness tf.image.adjust_brightness(x, 0.1) Image 

Gamma tf.image.adjust_gamma(x, 0.1) Image 

Hue tf.image.adjust_hue(x, -0.1) Image 

 

In Table 3, data augmentation operations applied to the GAN data (images) before training 

with CycleGAN are presented. 

Table 3: Data augmentation methods for CycleGAN: 

Operation Tensorflow (tf.) Function applied to data example x Applied to 

Random flip tf.image.random_flip_left_right(x) Image 

Resize before 
crop 

tf.image.resize(x , (300, 300))  

Random crop tf.image.random_crop(x) Image 

Resize after 
crop 

tf.image.resize(x, (256, 256)) Image 

 

3.4.2 GAN 

Using the sample code at [63] to implement CycleGAN, I trained a sunny-to-cloudy and 

cloudy-to-sunny image-to-image transformation GAN models. After the training, only the 

generators are used in the pipeline, as the discriminators’ use is in helping to train the 

generators, and right now there is no need to use the discriminator to rate and prune the 

dataset. I used Adam optimizer and trained the model for 20 epochs. 

3.4.3 Segmentation 

We compiled different segmentation models from VGG and DenseNet base models, and 

evaluated them to find the most suitable model for the task. In addition, the effect of two 

optimization algorithms (RMSProp and Adam) on the performance is investigated.  
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The sizes are chosen to produce a segmentation model with a symmetric encoder-decoder 

structure. 

3.4.3.1 Encoder 

For the encoder part, I evaluated segmentation models VGG16, VGG19, DenseNet121, 

DenseNet169 and DenseNet201, and the layers taken from those models are shown in Table 

4. The results how these models performed in accuracy evaluation can be found in the 

chapter 3.5.1 on Table 7.  

Table 4: Layers chosen from corresponding pre-trained models and their output dimensions. 

Encoder Layers 

VGG16 conv1 (256, 256, 64), pool1 (128, 128, 64), pool2 (64, 64, 
128), pool3 (32, 32, 256), pool4 (16, 16, 512), pool5 (8, 8, 

512) 

VGG19 conv1 (256, 256, 64), pool1 (128, 128, 64), pool2 (64, 64, 
128), pool3 (32, 32, 256), pool4 (16, 16, 512), pool5 (8, 8, 

512) 

DenseNet121 conv1/relu (128, 128, 64), pool2_relu (64, 64, 256), 
pool3_relu (32, 32, 512), pool4_relu (16, 16, 1024), relu (8, 

8, 1024) 

DenseNet169 conv1/relu (128, 128, 64), pool2_relu (64, 64, 256), 
pool3_relu (32, 32, 512), pool4_relu (16, 16, 1024), relu (8, 

8, 1024) 

DenseNet201 conv1/relu (128, 128, 64), pool2_relu (64, 64, 256), 
pool3_relu (32, 32, 512), pool4_relu (16, 16, 1024), relu (8, 

8, 1024) 

 

Figures 11 and Figure 12 have a plot for U-Net model with backbone VGG19 and 

DenseNet201 as an example, respectively. Architectures for VGG16, DenseNet121 and 

DenseNet169 are similar to their newer versions VGG19 and DenseNet201. 
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Figure 11: U-Net architecture with backbone VGG19. 

 

Output shape of the segmentation models is 256x256x6; 6-sized vector for each class at 

every pixel. 

3.4.3.2 Decoder 

For the decoder, the Pix2Pix network is used to construct the upsampling stack with 

pix2pix.upsampling() function with the values shown in Table 5, each feature layer 

decreasing the number of the features [64]. The layer shapes are chosen to match the shape 

of the corresponding encoder layers. The pix2pix.upsampling() function in TensorFlow 

includes Transposed convolution, BatchNormalization and ReLU layers by default, as 

shown in Table 6.  
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Figure 12: U-Net architecture with backbone DenseNet201. 

 

Table 5: Layer shapes used for Pix2Pix decoder part of the segmentation models. 

Pix2Pix layer shape 

16, 16, 1024 

32, 32, 512 

64, 64, 256 

128, 128, 128 
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Table 6: Operations added to a layer in pix2pix.upsampling() function in TensorFlow. 

Operation Function 

Transposed 2D 
Convolution tf.keras.layers.Conv2DTranspose(filters, 3, strides=2, 

padding='same', kernel_initializer=initializer 

use_bias=False) 

BatchNormalization tf.keras.layers.BatchNormalization() 

InstanceNormalizatio
n 

tfa.layers.InstanceNormalization() 

DropOut tf.keras.layers.Dropout(0.5) 

ReLU tf.keras.layers.ReLU() 

 

 

In Figure 13, the code for loading a pre-trained VGG19 model and creating a U-Net model 

is shown. A new model for the segmentation is built starting with an input layer with input 

shape (256, 256, 3). Desired layer names from the pre-trained VGG19 model are defined, 

their outputs fetched and stacked, which form the encoder (downstack) part of the model. 

The encoder weights are set to non-trainable, as the pre-trained features appear to perform 

well for the initial segmentation task, and this reduces the training complexity.  

After that, each pix2pix-upsampling decoder layer is connected to an encoder layer in reverse 

order with concatenation. For the output layer, a Transposed 2D convolution layer with 

output shape 6 is used, as there are 6 segmentation labels. The code is similar for the VGG16 

and each DenseNet model. 
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Figure 13: Code snippet of creating the U-Net model from VGG19 layers. 

 

3.4.4 Attention 

Attention can be useful when combining different images with segmentation masks, as with 

it one can give higher emphasis to areas that contribute more to a pixel being labeled into a 
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certain class. The segmentation network only outputs the argmax of the different class 

probabilities of a certain pixel. The predicted classes will get values between [0, 1], called 

class activation maps, which affects how strongly a transformation takes effect together with 

segmentation. The class activation maps are multiplied with the segmentation layer to 

determine how strongly CycleGAN transformation output should be applied.  

3.4.5 Combining proposed model outputs 

Finally, our proposed pipeline consists of the generator model’s transformation of the input 

image I, segmentation model’s predicted mask of I and the segmentation networks class 

activation maps for the predicted class’s value for I. For the final result, these outputs are 

then combined with element wise multiplication and then applied over the original input 

image in the following fashion, inspired by the Weather GAN paper: 

𝑇(𝑥)𝐺𝑒𝑛+𝑆𝑒𝑔+𝐴𝑡𝑡 = (𝑆𝑒𝑔(𝑥) ⊙  𝐴𝑡𝑡(𝑥)) ⊙ 𝐺𝑒𝑛(𝑥) + (1 −  (𝑆𝑒𝑔(𝑥) ⊙  𝐴𝑡𝑡(𝑥))) ⊙ 𝑥

 (18) 

Output without the class activation maps is: 

 𝑇(𝑥)𝐺𝑒𝑛+𝑆𝑒𝑔 =  (𝑆𝑒𝑔(𝑥)) ⊙ 𝐺𝑒𝑛(𝑥) + (1 −  𝑆𝑒𝑔(𝑥)) ⊙ 𝑥 (19) 

where 𝑥 is the initial image, 𝑇(𝑥)𝐺𝑒𝑛+𝑆𝑒𝑔+𝐴𝑡𝑡 is the final transformation between CycleGAN 

model translation, segmentation model output mask and class activation maps form the 

segmentation model, 𝑇(𝑥)𝐺𝑒𝑛+𝑆𝑒𝑔 is the final transformation between CycleGAN model 

translation and segmentation model output mask, 𝑆𝑒𝑔(𝑥) is the segmentation model output 

mask, and 𝐴𝑡𝑡(𝑥) is the class activation map of the segmentation model. Figure 14 shows 

an example transformations from cloudy to sunny and sunny to cloudy. 
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Figure 14: Examples of of the final output using the proposed model. 

 

3.5 Evaluation 

3.5.1 Semantic segmentation 

Accuracy metric is simply testing what percentage of pixels of an image are correctly 

predicted, i.e., how similar the predicted mask and ground truth mask are. It’s important to 

note that the true masks in the Multitask Weather dataset are crude, as seen in the Figure 15 

and chapter 3.3. 
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Figure 15:  Problem with the way small details are labeled in the original data (Ground Truth) vs 
Prediction of the segmentation model. 

 

Nevertheless, the model is able to make predictions that do not follow the same large 

rectangular bounding box-pattern as the dataset. However, the evaluation metric results that 

use the dataset segmentation masks as ground truth cannot be completely trusted because of 

this reason. In Table 7, the evaluation results for the segmentation model are shown for 

validation and training data. 

Table 7: Average validation and training accuracy and losses: 

Default Model (Optimizer 
used) 

Validation 
Accuracy 

Val. Loss Training 
Accuracy 

Training 
Loss 

VGG16 (RMSProp) 83.39% 0.585 82.42% 0.600 

VGG16 (Adam) 83.6% 0.520 82.99% 0.565 

VGG19 (RMSProp) 85.06% 0.500 84.9% 0.489 

VGG19 (Adam) 85.01% 0.451 84.98% 0.406 

DenseNet121 (RMSProp) 83.24% 0.569 82.82% 0.533 

DenseNet121 (Adam) 83.9% 0.556 83.08% 0.520 

DenseNet169 (RMSProp) 84.24% 0.542 83.98% 0.491 

DenseNet169 (Adam) 84.07% 0.551 83.66% 0.509 

DenseNet201 (RMSProp) 81.67% 0.614 81.95% 0.550 

DenseNet201 (Adam) 84.02% 0.524 84.23% 0.490 

 

A general problem with accuracy metric is, that if there is a large imbalance in the categories, 

one might get a high accuracy result while the model would not perform well. For example, 

if only 1% pixels of an image is Class A and 99% of the pixels are Class B, if the model 

predicts 100% of the image to be of class B the accuracy will be 99%. If this kind of ratio is 
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also present in the training data, the model might well converge in a direction where always 

predicting class B will yield higher reward, i.e. overfit. 

However, in this training process the categories are divided to equal sizes. A possible 

problem with this dataset is that, since the ground data does not consider small details like 

shown in Picture 6, the benefit from alternative metrics such as Intersection-Over-Union 

[65] would be negligible. 

Overfitting does not appear to be present, as the model performed well on non-training data 

that it hadn’t seen before, and training and especially validation losses decreased throughout 

the training. Addition to this, the prediction results shown in Picture 6 also affirms on its part 

that the model hasn’t overfit to the dataset’s way of labeling large bounding box chunks. As 

shown in Figure 16, some images of the dataset do not provide much information for the 

generator or the segmentation network, and it might have been better to prune the dataset for 

the segmentation and/or GAN model of images containing only one segmentation mask.  

 

Figure 16: Some images in the dataset "Multitask weather" are not very distinguishable between 
categories, and only contain of one segmentation class. 

 

On manual inspection, and since evaluation based on the ground truth masks is not accurate, 

VGG19-based model appears to score the actual weather cues best out of the 5 models, and 

perform better on edges. Therefore, since there was no large gap in accuracies, VGG19 is 
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chosen as the segmentation model. However, all the proposed models appear to perform 

reasonably well for the task, answering RQ2 for this thesis that there isn’t a significant 

difference between tested segmentation models or optimizers. 

3.5.2 Combined model 

The combined model is evaluated with Fréchet inception distance (FID). FID is used to evaluate 

the performance of CycleGAN with and without the attention model. Figure 17 shows the code for 

FID score implementation. 

 

 

Figure 17: Code for FID score implementation. 

 

The problem with dataset segmentation masks being crude, mentioned in Chapter 3.5.1 

“Semantic segmentation”, does not similarly affect the evaluation of the combined model, 

as the comparison is done between the generated weather transformations and real images. 

The evaluation process is done by choosing a batch of images from weather category A, 

which are transformed to category B. After that, a batch of images from weather category B 
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are chosen for the evaluation, and FID scores are calculated for both batches using Inception 

v3 network. Figure shows the code for implementing FID score. 

Average FID score of the models (lower is better) is calculated over 1000 images, as shown 

in Table 8. The comparison was done by selecting different samples from the test dataset, 

which was not used in training, in both categories, and calculating the scores for same real 

data on CycleGAN, CycleGAN with segmentation and CycleGAN with segmentation and 

Class-activation attention.  

To give a metric to compare to, Table 9 shows FID scores calculated between real cloudy 

and real sunny batches was around 380, and average between batches of the same domain 

was 238.5. 

Table 8: Fréchet inception score comparison between pipelines. 

Model Cloudy-to-Sunny FID Sunny-to-Cloudy FID 

CycleGAN 310.8 301.4 

CycleGAN with segmentation 290.5 285.7 

CycleGAN with segmentation and Class-
activation 

291.2 283.0 

 

 

Table 9: Fréchet inception scores between real data domains. 

Real data scores (for relevance) FID 

Score between batches of different domains 380.1 

Score between batches of Cloudy domain 232.0 

Score between batches of Sunny domain 244.9 

 

CycleGAN without segmentation model sometimes transfers also non-weather-related areas 

like the ground. Although such features often also change in color when the weather changes 

(for example, the brightness change between sunny and cloudy weather), the FID scores do 

support the claim that CycleGAN by itself transfers unrelated areas of the image too much.  

According to the FID scores, the answer to (RQ1) is that there are slight improvements when 

combining a segmentation model with a CycleGAN model, at least with the given data. 

When taking into account that the FID score between batches of the same domain was 238.5, 

the results appear to be acceptable, since they are closer to that score than the difference 

between the two domains, (380.1). 
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When also taking into note the blurring that CycleGAN produces to the images after domain 

transform, the benefit to overall image quality might be even higher. However, there was no 

clear benefit when multiplying the class-activation maps with the segmentation maps 

(equation 18) compared to only using the segmentation model (equation 19). 

On the other hand, there is added complexity when training two (CycleGAN and 

segmentation) models, and also a higher probability of one of the models not performing 

well. Therefore, adding additional models should only be done when a generator’s output 

alone is not enough to produce realistic images. 
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4 Conclusions 

To summarize, the following answers are provided to address the research questions 

introduced at the beginning; 

RQ1: Is there a significant difference in data augmentation results between CycleGAN 

output and CycleGAN output coupled with segmentation model? 

There is a slight difference, and when considering the blurring that CycleGAN does 

to the entire image when transferring image domains, there is a clear benefit on using 

a segmentation model. Future work might benefit from more sophisticated attention 

method (a distinct model). 

RQ2: How well different segmentation model configurations and pre-trained models 

affect segmentation results and CycleGAN-segmentation model pipeline output? 

VGG19 appeared best both according to the metrics and visual inspection of 

segmentation results, as the accuracy metric was not completely reliable with the 

segmentation masks having bounding box-level labeling. Difference between 

different segmentation model configurations was within 3.5% range using accuracy 

metric, but the configurations did however use mostly similar architectures. Large-

scale testing of different layer combinations was not carried out, but upon changing 

dataset and/or resolution, if model performance drops changing the architecture 

would become necessary. 

4.1.1 Benefits 

As can be seen from Figure 18, one of the benefits of the proposed thesis method is, that 

lone CycleGAN transformation often blurs all the details of an image, compared to the 

combined segmentation and CycleGAN model. Additionally, it can be seen that the roofs of 

the houses and some dirt is also colored in blue when they most likely shouldn’t, as 

CycleGAN alone is overfit to translating colors to sky blue. Using a segmentation model to 

only carry over the weather-cue pixels has the benefit of keeping the rest of the image intact. 
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Figure 18: Comparison between the blurring that CycleGAN sometimes does to the entire image 
and the image, that applies transformation only to area the segmentation model predicts. 

 

4.1.2 Problems 

Sometimes the segmentation mask does not correctly detect all weather-related areas, which 

results in sharp transitions between domains or CycleGAN weather transformation not being 

applied, as can be seen in Figure 19. Possible solution in future work to combat problems 

with rough edges or missing transformations, apart from improvements to the model, might 

be Gaussian blurring or denoising to the relevant border pixels. 
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Figure 19: A problem with the segmentation mask sometimes occurs, where all weather-related 
pixels are not correctly classified, as can be seen in the lower right corner. Blurring that occurs with 

CycleGAN only can also be seen in this image by inspecting, how features of the building and 
statue are affected. 

 

4.2 Future work 

4.2.1 Generalization to different datasets 

Given that there is a dataset that includes segmentation labels, this implementation can be 

used with other datasets with little alteration to number of segmentation model output 

classes, and if the resolution changes or performance is low, to the layer structure. For 

projects without segmentation labels, CycleGAN can be used by itself. 
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4.2.2 Improvement suggestions 

There would have been more room to experiment on by changing the U-Net model 

architecture, for example to use more convolutional layers instead of maxpooling layers from 

the pretrained DenseNet/VGG networks, increasing the amount of either layers or features 

and using a U-Net model with attention to see if the final output results improve. Attention 

U-Net adds an attention Gate module to U-Net’s decoder skip connections, which combine 

two layer outputs; the decoder layer before it, and corresponding encoder layer [66]. Another 

improvement on the segmentation model might have been using UNet++ or UNet3+ 

architectures, which extend ground truth supervision to additional layers, not just the output 

layer. These two architectures have been shown to improve on segmentation results at least 

in the medical field [67], [68]. 

Also, training a distinct attention model by using perceptual loss [69] against the 

segmentation model’s or base VGG19’s last hidden layer as target might have also provided 

more accurate transformations. However, adding a yet another model does increase the 

training complexity and possibility of one model not converging, but mutually robustness of 

the pipeline might increase if at least one spatial (segmentation or attention) model is 

accurate, given that the equations (18, 19) combining the outputs of the segmentation and 

GAN models is chosen well. Training by instead of training the models separately, 

combining the segmentation and generator outputs and inputting the result to the 

discriminator might also have improved the produced model pipeline.  

The dataset could also have been pruned by having the CycleGAN discriminator or distinctly 

trained classifier classify the images and remove lowest scored 10% of the images, for 

example. In this case the lowest score means the images, that according to the discriminator’s 

rating have the lowest probability of belonging to the class they are labeled to. As of now, 

the data did contain some images with minimal weather-cues, such as close-up images of 

environment without visible sky or other weather-elements, and no clear lightning 

difference, which should be removed for a more useful dataset. This could simply be done 

by removing images containing only one unique segmentation label, or where the 

distribution of labels is too unbalanced. Alternatively, one could attempt to generate 

segmentation labels for novel images by inputting an image to the segmentation model and 

using the generated segmentation mask. This practise is however risky, and would only 

produce useful masks for weather conditions that the segmentation model is already trained 
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on, unless some categories would reasonably translate to each other’s in labels (such as 

cloudy to foggy or rainy).  

Sometimes the segmentation mask did not correspond to whole weather area, leaving gaps 

consisting of a few pixels. Aside from improvements to the models, solution to this might 

be thresholding or denoising to the border of such segmentation result to ensure that the 

combining phase (with equations 18 or 19) doesn’t leave rough patches. However, this 

method would be troublesome for guessing how the image is supposed to usually be. 

There has been a tremendous advancement on the generative model field with diffusion 

models [70], which include text-to-image models StableDiffusion [71] and Dall-e [72], to 

name a few. The methods that those models use include both textual input and different 

generation methods. On the other hand, methods used in state-of-the-art projects might be 

expensive to train or use, or require a large amount of data. 

StableDiffusion’s diffusion model can be coupled with variational autoencoder (VAE). 

VAEs capture the average representation of data, thus capturing the low-dimensional 

patterns in data, but making generated examples less original than GANs, and VAEs have 

been less popular for image generation than GANs after StyleGAN and other state-of-the-

art GAN architectures. StableDiffusion’s method is to combine generative model to generate 

an initial image, and VAE to fix small detail errors, for which it appears to work well [71]. 

ControlNet [73] is one such StableDiffusion variation candidate, well suited for image-to-

image transformation from an input image without affecting all features of the input image. 

Diffusion model and VAE might be useful to replace the CycleGAN model altogether, use 

VAE with CycleGAN model, or alternatively look for different image-to-image GAN 

architectures. 

Possible continuations for the research questions in this thesis could be how well the 

produced data can be used in real-world applications, where collecting images of the same 

location in different weather conditions would be expensive. This could mean, for example, 

using an additional computer vision model to evaluate, how visibility changes in different 

weather conditions by inspecting the generated images. 

4.3 Final words 

The thesis generated knowledge about producing a working segmentation+GAN pipeline for 

a custom solution with weather data, which appeared to be a good baseline for future work. 
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The used evaluation methods seem to support this claim. The results give insights about the 

potential of the proposed method and what kind of alterations would most likely be useful 

to try to improve or generalize the solution. 
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