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TIIVISTELMÄ:

Diplomityön tarkoitus on rakentaa neuroverkko, joka pystyy valitsemaan tärkeät kuvat 3D-

mallinnusta varten videosta ilman kuvauksen tarkkuuden heikentymistä verrattuna kuvauk-

seen, joka on tehty kaikilla videon kuvilla. Useasti peräkkäiset kuvat videossa sisältävät

samanlaista tietoa, joka ei lisää 3D-mallinnukseen tarkkuutta. Kuinka paljon kuvissa on

uutta tietoa verrattuna edelliseen kuvaan, riippuu kameran liikkeestä ja liikkeen nopeud-

esta. 3D-mallinnuksen rakentamiseen kuluu paljon aikaa ja laskentakapasiteettia, jos kaikkia

videon kuvia käytetään 3D-mallinnuksen rakentamiseen, mikä on ongelmallista sulautetuissa

järjestelmissä. Tässä työssä on käytetty oletusta, että sulautettu laite kuvaisi ympäristöä ja

valitsisi kuvat, joissa on tärkeää informaatiota 3D kuvauksen tekemistä varten, jonka jälkeen

valitut kuvat tallennettaisiin laitteen muistiin. Itse 3D-mallinnus tehtäisiin jälkikäteen

pöytätietokoneella. Työssä on tehty tietokanta neuroverkkojen opetusta varten kokonaan

pöytäkoneella.

Tietokanta opetusta varten on tehty vSLAM-menetelmällä, jossa kuvista poimitaan piirteitä,

joita voidaan yhdistää kuvien välillä ja niistä laskea kameran liike kuvien välillä. Jotta ope-

tustietokantaa saadaan enemmän näytteitä, käytetyt videot on jaettu lyhyisiin kuvasarjoihin.

Näin saadaan myös opetukseen käytettyä laskenta-aikaa lyhennettyä. SfM-menetelmällä on

laskettu 3D-mallinnus kuvista, työssä on käytetty pistepilveä. Pistepilvet on laskettu jokaisen

kuvan jälkeen. Kuva on määritelty tärkeäksi, jos sen lisääminen pistepilven laskentaan tekee

pistepilvestä samanlaisemman viiste-etäisyydellä kuin pistepilvi, joka on laskettu kaikilla ku-

vasarjan kuvilla. Pistepilvien samanlaisuutta on mitattu viiste etäisyydellä jokaisen pistepil-

ven laskentaan lisätyn kuvan jälkeen. Riippuen kuinka paljon viiste etäisyys pienenee ku-

valle määritellään luokka. Neuroverkon rakenteena käytetään LSTM takaisinkytkeytyvää neu-

roverkkoa, koska se pystyy luokittelemaan jokaisen kuvan koko aikaisemman kuvajonon pe-

rusteella, eikä vain sen kuvan perusteella, jota parhaillaan luokitellaan. Matlab-ohjelmistoa

on käytetty diplomityössä tietokannan ja neuroverkkojen rakentamiseen.

Diplomityön tuloksena LTSM takaisinkytkeytyvä neuroverkko pystyy valitsemaan

tärkeimpiä kuvia lyhyistä kuvasarjoista, mutta kuvien valintatarkkuutta pitää vielä tulevaisu-

udessa parantaa ennen kuin esitettyä järjestelmää voisi käyttää sulautetussa järjestelmässä.

Neuroverkko ei oppinut valitsemaan yhtä ja vain yhtä kuvaa samanlaista tietoa sisältävien

kuvien joukosta työssä käytetyillä riskifunktioilla.

Avainsanat: vSLAM, SfM, LSTM neuroverkko, 3D-mallinnus, Pistepilvi
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ABSTRACT:

The aim of the thesis is to build a neural network, which is capable of choosing frames from a

video, which have important information for building a 3Dmap of the depicted structure with-

out losing the 3Dmap accuracy. Many times, consecutive frames have redundant information,

which do not add to 3D map any significant information or some frames might be, for exam-

ple, distorted, which do not add to 3D map at all. It all depends on how a camera is moved

around when a video is filmed. If all the frames of the video are used in the reconstruction of

the 3D map, it will take a long time and it will require a lot of resources, which is problematic

especially in the embedded devices. In this thesis it has been considered that embedded de-

vice would choose the most informative frames for building the 3Dmap, but the 3Dmap itself

would be built afterwards with the saved frames on a desktop computer. A database is built

from video feeds for neural network training and testing.

To build the data base for training a neural network a visual simultaneous localization and

mapping algorithm is used to extract features, connecting points between frames and estimate

the camera movement from each frame of the video feed. To get more training samples and

make the training less time consuming, video feeds have been divided into short sequences

of frames. A structure from motion algorithm is used to construct a 3D point cloud of image

subsets. A 3D point cloud is then constructed after each frame. To determine whether a frame

is a frame with important information for 3D point cloud construction, chamfer distance is

used to calculate how close the 3D point cloud is after each added frame to the 3D point cloud

constructed with all the video frames. Based on the chamfer distance change then class label

is determined for each frame. For the neural network a long short-term memory recurrent

neural network structure was chosen, because it can learn from the entire sequence of data.

The data base construction, neural network training and validation all were done withMatlab.

The result of this master’s thesis is a simple long short-term memory neural network that can

choose the important frames from a short sequence of images, but the accuracy needs to be

further improved to use the presentedmethod in real embedded device. The custom loss func-

tion developed in the thesis did not perform well enough that any of the similar consecutive

frames could be chosen, but not more than one of those.

Keywords: vSLAM, SfM, LSTM network, Chamfer distance, Point cloud



4

Contents

Figures 6

Tables 8

1 Introduction 11

2 Methods used in thesis 14

2.1 Camera model 15

2.2 Point cloud 17

2.3 Chamfer distance 18

2.4 Visual simultaneous localization and mapping 20

2.5 Neural networks 23

2.5.1 Loss functions 33

2.5.2 Neural network training 37

2.5.3 Validating results 38

2.6 Structure from motion 39

2.7 Tools 41

3 Previous work 42

3.1 Selecting important frames 42

3.2 Point clouds 43

3.3 Neural networks 44

3.4 Loss function for neural network 44

4 Scheme structure 46

5 Construction of databases for training and testing 49

5.1 Image subsets for database 50

5.2 Predictor extraction 53

5.3 Determining label for each image 53

6 Experiments 58



5

6.1 Neural network depth comparison 59

6.2 Chamfer distance threshold examination 62

6.3 Chamfer distance loss function 64

6.4 One image prediction from image set 68

7 Results 71

8 Conclusion and future work 76

Bibliography 77



6

Figures

Figure 1 Pinhole camera model terminology 15

Figure 2 Chamfer distance calculation illustrated between two point clouds 19

Figure 3 A simple perceptron structure 24

Figure 4 A neural network with one hidden layer and weights shown 27

Figure 5 Chamfer distance loss in regression problem 34

Figure 6 Sigmoid function and its derivative 35

Figure 7 Binary cross entropy loss and chamfer distance loss derivatives

with ground truths of zero (blue line) and one (orange line) 36

Figure 8 Environment for the developed neural network to work on in em-

bedded device on left and process description of the system in the em-

bedded device on right 46

Figure 9 Training and testing process used in the thesis 48

Figure 10 Flowchart of training data construction 50

Figure 11 Dividing fr3/long office household image set to subsets 51

Figure 12 Process how chamfer distance is calculated in different stateswhen

images are added 54

Figure 13 Flowchart of how it is determined if image has important informa-

tion for a point cloud construction 55

Figure 14 Chamfer distance calculation after each added image 57

Figure 15 Balance of label classes in training datawith chamfer distance thresh-

old of -5 % 59

Figure 16 Evaluation of different network structures on the test data 60

Figure 17 The balance of class labels in training data with chamfer distance

threshold of +5 % on the right side of the figure and -25 % on the left side 62

Figure 18 Chamfer distance threshold difference effect to predictions 63

Figure 19 Predicted images compared to ground truth images and the cham-

fer distance change 64

Figure 20 Plan for loss function to minimize chamfer distance of predicted

images 65



7

Figure 21 Used loss function to minimize the chamfer distance of the pre-

dicted images 67

Figure 22 The predicted images compared to the ground truth images 68

Figure 23 The balance of class labels of 10 image set of images on the left

side and labels with oversampling on the right side 69

Figure 24 Confusion matrix of the prediction results 70

Figure 25 Predicted images compared to ground truth images with higher

amount of hidden unit 72

Figure 26 Predicted images compared to ground truth images with lower

amount of hidden units 73

Figure 27 Predicted images compared to ground truth images with smaller

chamfer distance value 74



8

Tables

Table 1 Binary cross entropy loss and chamfer distance loss with indica-

tive backpropagation corrections of different ground truth and predicted

value combinations 36

Table 2 How to deal with the backpropagation factors for each image 66

Table 3 More general training data effect to model predictions 70



9

Abbreviations

2D Two-dimensional space

3D Three-dimensional space

AUC Area under the curve

BRIEF Binary robust independent elementary feature

CD Chamfer distance

CNN Convolutional neural network

FAST Features from accelerated and segments test

FN False Negative

FP False positive

GPS Global positioning system

GPU Graphics processing unit

LiDAR Light detection and ranging

LSTM Long short-term memory

ORB Oriented FAST and rotated BRIEF

P3P Perspective-3-Point

PnP Perspective-n-Point

ROC Receiver operating characteristics

SfM Structure form motion

SLAM Simultaneous localization and mapping

TN True negative



10

TP True positive

vSLAM Visual simultaneous localization and mapping



11

1 Introduction

Three-dimensional structure recognizing around our environment is very easy for us hu-

mans. A lot of effort has been used in computer vision to develop techniques that could

recognize three-dimensional shapes andpresence of objects in images in theway humans

do as descried by Szeliski (2021). The aimhas been to achieve the same level of detail with

a computer as would a human get by looking around. Mathematical techniques have

been developed for retrieving 3D objects from 2D images according to Szeliski (2021).

Deep neural networks have been shown to have great potential in computer vision prob-

lems like in robust and real-time monocular image-based localisation (Kendall & Cipolla,

2017; Uy, Pham, Hua, Nguyen, & Yeung, 2019).

The aim of this thesis is to find a supervised classification neural network structure which

is capable of choosing smallest number of frames from a video feed. The chosen frames

have an important information for building a 3D point cloud of a structure of interest with

minimal lost in the 3D point cloud accuracy. Based on these selected most informative

frames 3D point cloud is then constructed afterwards. According to Chen, Yan, and Lin

(2020) choosing of the most important frames has been researched extensively. Many

of the methods proposed either consume a lot of time or are lacking in flexibility.

In addition, if all the frames of a video are used to construct of a 3D point cloud, it will

take a long time and it requires a lot of calculation resources. Many times, consecutive

frames have redundant information, which do not add anything to 3D point cloud. It

can also be that, for example, 10 consecutive frames have very similar information, for

example, a camera has not moved at all. All depends how a camera is moved around

when a video is filmed. Embedded systemwith a camera, especially mobile ones, benefit

fromhigher frame rateswhenmovement is changing rapidly. When the change is smaller,

smaller frame rate is enough to produce the required accuracy for the platform (Chen et

al., 2020).
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A neural network will be used to select the essential frames or images that have impor-

tant information, so that the 3D point cloud can be built without losing any significant

information while optimizing the required resources. The neural network should be able

to determine, based on frames’ camera movement and matching points, which of the

frames to be saved and which not. Based on the saved frames, structure from motion

(SfM) algorithm is used to construct a 3D point cloud. Several 3D volume information

representation formats have been studied as stated in da Silva Cruz et al. (2019). These

formats include light fields, holography, and points clouds (da Silva Cruz et al., 2019).

Point clouds have become a first choice of 3D data representation format in environment

mapping in autonomous driving systems, urban landscape mapping and virtual and aug-

mented reality based on da Silva Cruz et al. (2019).

For a neural network to be able to select frames with important information, it needs

training data. The training data is constructed by first extracting features from images.

Next these features are compared to each other, and a comparison ismade to find out the

matching points between frames. Based on these matching points, camera movement is

estimated. The visual simultaneous localization and mapping (vSLAM) algorithm is used

to find out the matching points between consecutive images and to estimate the camera

movement which will be inputs for a neural network. The training data is constructed to

mimic that the vSLAM and trained neural network would work in an embedded system

with limited resources. Limited computational resourcesmake challenges in the real time

system to get accurate, stable and well-distributedmatches from images that have noise,

changing lighting conditions and movement for vSLAM (Chen et al., 2020). In embedded

systems, it is important to have the most informative frames to be picked efficiently to

obtain robust tracking (Chen et al., 2020).

In the thesis, the training and the testing of the neural network is done in MATLAB. The

data for a neural network teaching will be also constructed in MATLAB. The problem will

be considered as a classification issue. The training data will be constructed so that it

will have labels to tell whether construction of the 3D map is acceptable or not. Based

on the chamfer distance between point cloud the label is assigned to that set of images.
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The datasets of images will be constructed with different number of images. During the

training, data constructed from sequential image data will be compared to structures

build with all the frames. Network’s ability to choose an image from image sets is also

investigated with different training data. Own loss function is investigated for neural net-

work.

At first, in the thesis are introduced methods used to build the database for training

and testing and structure of neural network used. Next chapter will look into the pre-

vious studies made about choosing frames from video feed, loss functions and neural

network structure. Fourth chapter presents the way the neural network would be used.

The database construction with vSLAM, SfM and chamfer distance is presented in fifth

chapter. Chapter six shows the experiments done with neural network structures and

loss functions. The seventh and eighth chapters present the results and conclusions of

the thesis.
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2 Methods used in thesis

In computer vision, one of the central topics has been, right from the beginning, to re-

cover a three dimensional structure of the environment from images according to Szeliski

(2021). This is also called 3D reconstruction, where shape is derived from 2D images. 3D

reconstruction can be then used to understand overall surroundings. Prince (2012) gives

examples of a 3D reconstruction use in a robot that can use 3D information of its own

environment to navigate in it or 3D reconstruction can also be used in object recognition.

Full visual reconstruction is very challenging because the solution is non-unique based

on (Prince, 2012) as for example if the light source intensity changes and the object re-

flectance changes as well comparably, but in opposite direction, the image will remain

the same. In 3D reconstruction, the environment in question is modelled by a set of 3D

points called a point cloud.

In the thesis, training database is constructed for neural networks for 3D reconstruction.

From images, features are extracted, and they are matched by visual simultaneous local-

ization and mapping algorithm. Camera movement also is extracted with vSLAM. Point

clouds for 3D reconstruction are calculated from matched points between images using

structure from motion algorithm. Point clouds are compared using chamfer distance. A

long short-term memory (LSTM) neural network will be trained to select the essential

images from image sequence that have important information so that the 3D point cloud

from those selected can be built without losing any significant information.

A short description of theories related to the thesis subjects is presented related to previ-

ous descriptions of the thesis structure. First, cameramodel terminology used in the the-

sis is described. Then point clouds and chamfer distance are reviewed. vSLAM algorithm

is descried in general level in following chapters. A neural network structure presented

together with loss function and validation metrics used. A SfM algorithm is descried next

in general level. Finally, tool used to build the neural networks and databases for its train-

ing and testing is presented.
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2.1 Camera model

The cameramodel used in the thesis is derived from simple pinhole cameramodel, which

is a mathematical geometric camera model that describes how 3D points are projected

into an image (Prince, 2012). A pinhole camera is made of a closed chamber, which has a

small round hole called a pinhole. An object situated in front of the pinhole is projected

through the pinhole on the back of the closed chamber called an image plane. In the

mathematical equivalent model of the pinhole camera, it is considered a virtual image

that is right-way-up, Figure 1.

Figure 1. Pinhole camera model terminology.

The camera model expresses how a 3D point in world coordinate system is represented

in a 2D image coordinate system. In the camera model, in Equation 1, a point of [X, Y, Z]

in the 3D Euclidean space is transferred in the 4D homogeneous coordinate presentation

of [X, Y, Z, 1]. By using Cartesian coordinates, the mapping of the 3D world points to 2D

image plane points is nonlinear. By using homogeneous coordinates, the mapping can

be made to be linear. A point in the image plane also is presented in the homogeneous

coordinates, in 3D homogeneous coordinate presentation of [x, y, 1].
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The 3D point of [X, Y, Z] is transferred to 2D point [x, y] with intrinsic and extrinsic pa-

rameters. The intrinsic parameters (ϕx, ϕy, γ, δx, δy) represent the camera and the extrin-

sic parameters [R|t] define the camera pose, the position and orientation of the camera

in the world coordinates system (Prince, 2012). To transfer world coordinates to camera

coordinates, extrinsic matrix is used, Equation 2.
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The extrinsic matrix consists of the rotation matrix R, Equation 3, and the translation

vector t, Equation 4. Rotation matrix is a combination of yaw (rotation of z axis), pitch

(rotation of y axis) and roll (rotation of x axis).
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The intrinsic matrix, shown in Equation 5, is used to convert points from the camera co-

ordinate system to the image coordinate system. In the intrinsic matrix ϕx and ϕy are

scaling factors which take in to account that an image is measured in pixels and not in

physical units and the spacing of the light responding cells may be different in x- and y-

axis direction. These scaling factors are calculated with the camera focal length F (Figure

1), unit is usually in millimeters, and number of pixels in x and y direction, respectively.

The camera might not be in the centre of the origin of the world coordinate system. This

is compensated with the principal point of the camera in pixels in x and y direction, δx

and δy. With skew γ projected x is balanced to world height Y .

K =











ϕx γ δx 0

0 ϕy δy 0

0 0 1 0











(5)

In this work, only images taken with calibrated cameras are used and therefore camera

intrinsic matrices are known. If they would not be known, the camera calibration should

be performed. The rotationmatrixR and the translation vector t are used in this thesis as

inputs for a neural network. The rotationmatrix and the translation vector are calculated

with visual simultaneous localization and mapping.

2.2 Point cloud

Alexiou and Ebrahimi (2017) describe a point cloud as a collection of three-dimensional

points in space representing of an object. Each point is defined by its position in x, y,

and z coordinates. Together the points form a cloud of points. A single point can also

have associated information added to it, as in some associated features based on Alexiou

and Ebrahimi (2017). 3D volume information representation formats have gained interest

among the industry and academia. These formats include, for example, light fields, holog-

raphy and points clouds (da Silva Cruz et al., 2019; Javaheri, Brites, Pereira, & Ascenso,
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2017). Point clouds can also be used in applications where data acquiring is performed

in real-time according to Javaheri et al. (2017). Applications like environment mapping in

autonomous driving systems, urban landscape mapping, virtual and augmented reality

and applications like photogrammetry and 3D printing are driving the choice of 3D data

representation format to be the point cloud (Alexiou & Ebrahimi, 2017). Point clouds can

provide a detailed yet simple representation of a 3D volume information representation

as stated by Javaheri et al. (2017), which makes it increasingly popular for 3D volume

information representation in computer vision.

A point cloud can be created in many ways. There are instruments that produce point

clouds direct like LiDAR (Feng, Hu, Ang Jr, & Lee, 2019) and they can be created fromdepth

sensors or be extracted from images with algorithms like vSLAM and SfM, like done in the

thesis. The point cloud created by LiDAR has advantages according to Feng et al. (2019)

that the point cloud created by it has a higher accuracy and the absolute scale defined

directly. The point clouds reconstructed from images do not have absolute scale directly

available without the help of another source. They tend to have more noise, which is

due to image quality issues. Point cloud format is unstructured, which makes the quality

assessment challenging problemaccording on Javaheri et al. (2017). To compare similarity

of two point clouds, chamfer distance is chosen in the thesis to be used.

2.3 Chamfer distance

The chamfer distance is a measure of how similar the two point clouds are, it was intro-

duced by Barrow, Tenenbaum, Bolles, and Wolf (1977) as metric. It is computed by sum-

ming the squared distances between nearest neighbour correspondences of two point

clouds. This is done by taking one point from point cloud to which the other point cloud

is compared to. Squared distances are calculated to every point in compared point cloud

from which the smallest distance is chosen. Process is repeated with all the points in the

point cloud to which the other point cloud is compared to. That way minimum distance

from each point is found out to the other point cloud points. Illustration of minimum



19

distances are shown in Figure 2. As shown in Figure 2, minimum distance of a point to

other point cloud’s points might not be the minimum distance in both ways. Point 1 of

the purple point cloud has the minimum distance to point 2 of the green point cloud but

point 2 minimum distance to the purple point cloud is to point 3 instead.

Figure 2. Chamfer distance calculation illustrated between two point clouds.

From these minima the values average is calculated, which gives the chamfer distance.

If point clouds are exactly the same, the chamfer distance is zero. The chamfer distance

value increases when point clouds are more different from each other. The chamfer dis-

tance is usually calculated in both ways; each point cloud is kept as reference point cloud

to which the other point could is compared. In the thesis, chamfer distance is calcu-

lated in two directions. The point clouds calculated after each time image is added, is

compared to the point cloud calculated from all the images. When S1, S2 ∈ R
3 two di-

rectional chamfer distance can be calculated with equation 6. Before two point cloud are

compared to each other, they need to be aligned to the same coordinate system (Luque,

Carrasco, Martı́n, & de las Heras, 2021). It can be done, for example, with iterative closest

point method presented by Besl and McKay (1992). It is not expected, that point clouds

constructed from same images and with a calibrated camera, to have difference in axis
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scaling.

dCD(S1, S2) =
1

N

∑

x∈S1

min
y∈S2

∥x− y∥22 +
∑

x∈S2

min
y∈S1

∥x− y∥22 (6)

2.4 Visual simultaneous localization and mapping

In robotics, simultaneous localization and mapping (SLAM), introduced by Mouragnon,

Lhuillier, Dhome, Dekeyser, and Sayd (2006), has been developed side by side to the

computer vision community’s structure of motion (Häming & Peters, 2010) according to

Szeliski (2021). According to Prince (2012), a simultaneous localization and mapping is

a method used to build a map of surroundings and localize item into that map at the

same time. In real time environment SLAM is reconstructing a 3D model of its surround-

ings while moving through the environment. SLAM has been researched for many years.

SLAM differs from bundle adjustment in two fundamental aspects and it allows for a va-

riety of sensing devices, when structure from motion instead is restricted to tracked or

matched feature points based on Szeliski (2021). The other one is that it solves the local-

ization problem online, with minimal lag in providing the current sensor pose according

to Szeliski (2021). This makes SLAM the method of choice for both time-critical robotics

applications such as autonomous navigation and real-timeaugmented realitywith the ad-

vantage of that it also produces better solutions with low-quality sensors (Prince, 2012;

Szeliski, 2021). With extensive improvements in processing speed of computers and the

availability of inexpensive sensors such as cameras and laser range finders, Prince (2012)

reports that SLAM is today used for practical applications in an increasing number of ar-

eas. SLAM can use sensors like GPS, inertial measurement units, laser altimeter, LiDAR,

and images. When SLAM uses images as source of information, it is called a visual simul-

taneous localization and mapping.

A visual simultaneous localization andmapping (vSLAM) uses images fromdifferent types

of cameras and other image sensors. Cameras used with vSLAM do not need to be top of
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the range cameras. Algorithms of vSLAM can be classified into two categories. Accord-

ing to Prince (2012), these categories are sparse methods, which match feature points

of images and use algorithms such as ORB-SLAM, and dense methods, which use the

overall brightness of images and use algorithms such as dense tracking and mapping.

Computation of vSLAM is usually performed on a compact and low-energy embedded

microprocessor that have limited processing power (Prince, 2012). Prince (2012) men-

tions that optimization calculations such as loop closure are high computation processes

which makes the challenge of how to execute such computationally expensive process-

ing on embedded microcomputers. Prince (2012) states, it is essential to execute image

processing and point cloud matching at high frequency to achieve accurate localization

with vSLAM. Visual SLAM algorithms are broadly classified into two categories, depend-

ing on how they estimate the camera motion based on Ai et al. (2021). In the indirect

way feature-based method uses feature points of images to minimize the reprojection

error (Ai et al., 2021). The direct way, based on Ai et al. (2021), uses the overall brightness

of images to minimize the photometric error. Ai et al. (2021) continues that major part

of vSLAM systems need to assume static features in the environment. The performance

of a vSLAM system relying on the static-world assumption can be reduced from moving

objects according to Ai et al. (2021).

SLAM is used for practical applications, but several technical challenges restrain more

general adoption according to Szeliski (2021). Szeliski (2021) continues that each of the

challenge has a corrective action that can help to overcome the problem. Localization

errors accumulate over time causing significant deviation from actual values based on

Szeliski (2021). SLAM estimates sequential movement, which include some margin of

error, can also cause the map data to distort which leads to consecutive searches chal-

lenge describes Szeliski (2021). As the error accumulates, embedded device’s start and

stop points no longermatch, according to Szeliski (2021), this is called a loop closure prob-

lem. Szeliski (2021) states that pose estimation errors like these are inevitable. Mur-Artal,

Montiel, and Tardós (2015); Szeliski (2021) emphasize that it is important to detect loop

closures and quantify the accumulated error. One way to mitigate this is to recall some

attributes from the place which was visited before and use those to minimize the local-
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ization error according to Szeliski (2021). He also states that pose graphs are created to

minimize the errors. Generated map data is more accurate when error minimization is

addressed as an optimization problem based on Szeliski (2021). This kind of optimiza-

tion is called bundle adjustment in vSLAM (Szeliski, 2021). Localization inaccuracy can be

mitigated either by using a recovery algorithm or by using the sensor data from multiple

sensors to calculate the motion model (Szeliski, 2021).

vSLAMworkflow consists of following steps according to (Szeliski, 2021). At first, features

are extracted from the images and correspondences between images are located. Cam-

era pose is extracted. The initialization of the map is done to find the starting point for

the map. Next, features are tracked for each new frame and camera pose is estimated. A

local 3D map is created with new of points. Finally, loop closure and drift correction are

performed. In the thesis only themap initialization is used to extract features, to find cor-

respondences between images and to get the camera movement. For features oriented

fast and rotated brief features are used.

Rublee, Rabaud, Konolige, and Brandski (2011) presented a fast binary descriptor called

oriented fast and rotated brief (ORB) which gives good performance and requires only

low computational power. In their work, Rublee et al. (2011) introduced improvements to

both FAST key point detector (Rosten & Drummond, 2006) and BRIEF descriptor (Calon-

der, Lepetit, Strecha, & Fua, 2010). Rublee et al. (2011) have introduced a orientation

component by intensity centroid to FAST detector and a learning step to BRIEF descrip-

tor to improve performance in rotation. ORB features can be used in real-time operation

without GPU computations giving a good performance in viewpoint change based on

Mur-Artal et al. (2015) study. vSLAM used in the thesis is ORB-SLAM.

Mur-Artal et al. (2015) introduce a novelmonocular vSLAMsystem,which is based onORB

features. As shown by their study ORB-SLAM can operate in real time in large environ-

ments andmany kinds of environments. ORB-SLAM uses ORB features to track, mapping,

re-localization and loop closing, which makes the system more reliable and efficient. As

shown by Mur-Artal et al. (2015) their system real time camera relocalization is not af-
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fected by viewpoint or lighting and the system has novel initialization procedure that

improves accuracy. In ORB-SLAM, redundant key frames are discarded, which improved

long term performance.

In the thesis predictors for the neural networks are camera movement between images,

the rotation matrix and the translation vector, and matched feature point between im-

ages. The neural networks are using them to predict the importance of the images for

the 3D reconstruction.

2.5 Neural networks

Neural networks are technique in machine learning. They are commonly used with su-

pervised, unsupervised, and reinforced learning paradigms. In this thesis, supervised

learning is used. In supervised learning data, that is used to train the model that has

labels or ground truths (Yan, 2021). The supervised learning is divided into regression

problems whose target is to predict a continues real numbers and classification prob-

lems, which will predict discrete class labels. For example, in two class classification the

binary representation can be used to express a target variable has value of 0 or 1. Neu-

ral network and, especially deep neural network, are very commonly used classifiers due

to their structure that can be changed to be adapted to a specific need. Deep learning

techniques are growing fast among 3D data due to computational resources gettingmore

powerful. They have showed potential in solving object classification and segmentation

of point cloud data even tough classifying a real-world object data set is still a very chal-

lenging task based to Uy et al. (2019).

The neural network structure is inspired by a brain. The brain has incredible abilities,

which currently outperforms computers in many areas, like vision, speech recognition

and learning according to (Alpaydin, 2014). Engineers are trying to copy how these func-

tions are addressed in the brain and figuring out ways to implement them for computers.

Even though not all the details are known, according to Alpaydin (2014), processing units
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in the brain are neurons, which operate parallel and are connected to many other neu-

rons, which is believed to be the key for its computational power. Neurons are processors

of the brain although much simpler and slower than in a computer. On the other hand,

there are a very large number of neurons in the brain compared to processors in a com-

puter. In the brain, neurons are processing information and connections between neu-

rons act as memory and both of them are active, whereas in a computer only processors

are active and separated memory is passive. The artificial neural networks are interest-

ing because it is believed that they will make better computer systems. In conventional

approach to programming, a big problem is broken down to smaller tasks, which are

clearly defined, for the computer to perform. The neural network approach is opposite,

as Nielsen (2019) describes that in neural networks and, more generally inmachine learn-

ing, computer is not told how to solve the problem rather it is figuring out the solution

by learning from the data.

Alpaydin (2014) describes a single layer perceptron, which is a basic processing element

and mimics loosely a brain’s neuron. A single layer perception has one output and one

or more inputs. It has a single layer of weights that can approximate linear functions. In

Figure 3 a simple perception is shown. The perception has inputs xj ∈ ℜ, i = 1, ..., d,

coming from an environment or from other perception outputs and an output y. Each

input variable x has a connection weight wj ∈ ℜ.

Figure 3. A simple perceptron structure.
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In the simple perceptron, as shown in Figure 3, output is weighted sumof inputs as shown

in Equation 7. A bias unit x0 value is always +1. The weight coming from a bias unit is an

intercept value w0, which makes the model more general. Model weights wj need to be

learnt that correct output is generated with given inputs. Model weights are also called

system parameters. If d = 1, it can be seen that Equation 7 becomes an equation of a

line withwj been the slope andw0 the intercept. A single perceptron with one input and

output z can model a linear line. When the input amount is increased, the line becomes

a plane that can implement multivariate fit according to Alpaydin (2014). The learning

of the perceptron starts with random weights. Each iteration the weights are adjusted

to minimize the error between desired output and predicted output without forgetting

what has been learned in previous iterations (Alpaydin, 2014).

A multilayer perceptron is a neural network structure, which is a nonparametric esti-

mator and can be used for classification and regression problems according to Alpaydin

(2014). The multilayer perceptron, also known as the feed-forward neural network, uses

parametric forms for the basic functions and the parameter values are adapted during

training based on Bishop (2006). For the multilayer perceptron, where there are hid-

den layers, Equation 7 is used to all perceptrons in that layer and are called activation

aj . When a feedforward multilayer perceptron has hidden layers between the input and

the output layers, the multilayer perceptron network can be implemented in nonlinear

problems.

aj =
d
∑

i=1

wjixi + wj0 (7)

wj0 are called as biases, wji are referred as weights and aj are called activations. Us-

ing a nonlinear differentiable function h(.) to transform function, activation function can

have nonlinear output, shown in Equation 8. For hidden layers, a transform function is

generally chosen some sigmoidal function such as the logistic sigmoid or the hyperbolic

tangent function, tanh.
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zj = h(aj) (8)

For an output layer, previous layer values are again linearly combined to give output unit

activations (Alpaydin, 2014). Shown in Equation 9 where k = 1, ..., K andK is the num-

ber of outputs.

ak =
m
∑

j=1

wkizi + wk0 (9)

To get network outputs yk, the output unit activations are transformed using an appro-

priate activation function, Equation 21, according to Alpaydin (2014). The activation func-

tion type is determined by data and assumed target variables. For regression problems

yk = ak, the activation function is the identity. For classification problems, the activation

function can be the sigmoid function, Equation 11, for binary classification problems and

the softmax function, Equation 12, for multiclass classification problems.

yk = σ(ak) (10)

σ(a) =
1

1 + e−a
(11)

σ(a) =
ea

∑K

j=1 e
aj

(12)

For a neural network that has one hidden layer, Figure 4, overall network function for

binary classification is shown in Equation 13. In the equation (1) stands for hidden layer
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and (2) for output layer. The neural network model has simple a nonlinear function,

which has input variables of xi and weights vector w give the output of yk.

yk(x, w) = σ

(

m
∑

j=1

w
(2)
ki h

(

d
∑

i=1

w
(1)
ji xi + w

(1)
j0

)

+ w
(2)
k0

)

(13)

Arrow in the Figure 4 shows the information flow direction in the network during forward

propagation. According to Bishop (2006), there are many ways to name the network in

Figure 4. The network could be called a 3-layer network, counting all the layers, input,

hidden and output layer. It could also be called a single-hidden-layer network. Bishop

(2006) suggests the terminology to call the network in Figure 4 as a two-layer network

due to it having two layers that have adaptive weights, which are in a key role to deter-

mine the network properties.

Figure 4. A neural network with one hidden layer and weights shown.
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When x0 = 1 is used, the bias parameters can be absorbed into the weight parameters.

Then Equation 7 becomes an Equation 14 and Equation 13 becomes Equation 15.

aj =
d
∑

i=1

wjixi (14)

yk(x, w) = σ

(

m
∑

j=1

w
(2)
ki h

(

d
∑

i=1

w
(1)
ji xi

))

(15)

Each of the two stages in Figure 4 appear like the single perceptronmodel, but perceptron

model uses step-function nonlinearities, which is not differentiable. The neural network

uses differentiable sigmoidal nonlinearities in the hidden units based on Alpaydin (2014),

which have a key role in the network training. If error function is used to calculate the

error between desired output and predicted output, it is differentiable, then gradient

descent can be used as stated by Alpaydin (2014).

To determine the network parameters error between the network’s predicted outputs

yn(xN , w) and corresponding ground truth values tn is determined. Overall set of input

vectors xn, where n = 1, .., N is expressed as a cross entropy error function with tn in

Equation 16, which is used for a binary classification with independent observations.

E(w) = −

N
∑

n=1

K
∑

k=1

(tnk ln y(xnk, w) + (1− tnk) ln (1− y(xnk, w))) (16)

Based on Bishop (2006), use of cross entropy error function for a classification problem

makes the training faster and improves generalization when comparing to the sum-of-

squares error. According to Alpaydin (2014), the training aims to find a weight vector w

that minimized function E(w). As E(w) is continuous and smooth function of w, it has

smallest values at points where the gradient of the error function vanishes, Equation 17,
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described by Alpaydin (2014); Bishop (2006). These points are called stationary points,

which includeminima,maxima, and saddle points. Based onAlpaydin (2014), it is possible

to have several points in the weight space in which the gradient vanishes as the E(w)

typically has a highly nonlinear dependence on theweights and bias parameters. A global

minimum is a point in which error function get the smallest value for any weight vector.

All the other minimums are called local minimum. In neural network training, it is not

generally known if found minima is global minima or not and it may not even be needed

to find a sufficiently good solution according to Bishop (2006).

∇E(w) = 0 (17)

Because it is very unlikely to find an analytical solution for the Equation 17, iterative nu-

merical solution is used. Bishop (2006) describes the optimization of continuous nonlin-

ear functions to be a widely studied problem and efficient ways to solve the issue can be

found from literature.

In error backpropagation technique, information is sent backwards and forwards through

the network in a sequence of steps tominimize the error functionby changing theweights

of neurons of the network (Buduma& Lacascio, 2017). The error propagates from the out-

put to inputs, fromwhere comes the name backpropagation based on Bishop (2006). He

continues that each learning set has two different stages. In the first stage, an error func-

tion gradient with respect to theweights is evaluated. At the second stage, the calculated

derivatives are used to adjust the weights. This simple technique of gradient descent is

presented by Rumelhart, Hinton, andWilliams (1986). Other method can also be used to

calculate derivatives like the Jacobian (Loomis & Sternberg, 1990) and Hessian (Meyer,

2000)matrices in the first stage. In the second stage, the weight adjustment can be done

with a variety of optimization schemes. Most of these methods are more powerful than

simple gradient descent according to Bishop (2006).
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In a network which has more layers, the previous layer is input for current layer and so

on. Initial weights are randomly initialized. By evaluating the gradient, the direction of

steepest descent can be found and a step towards biggest gradient descent direction can

be taken. This is repeated to get closer the minimum error every step until the point of

minimum error is found as described by Buduma and Lacascio (2017). To determine how

far each step is taken, learning rate, ϵ, is used. The learning rate should not be too big that

minimum error is not found, nor should it be too small that the training process takes a

long time.

The backpropagation algorithm to adjust theweights of one layer in the network is shown

with cross entropy error function and sigmoid activation function, a combination used in

binary classification tasks (Bishop, 2006). The weightsw are updated each iteration with

the delta rule, Equation 18,

∆wk = −ϵ
∂E

∂wk

(18)

The gradient can be calculated with a chain rule shown in Equation 19.

∂E

∂wk

=
∂E

∂yk

∂yk

∂z

∂z

∂wk

(19)

A partial derivative is calculated from loss function, loss over weights. Last part of Equa-

tion 19 is partial derivative of Equation 7 over weights, which is shown in Equation 20.

∂z

∂wk

= x (20)

For classification network, outputs sigmoid function is used as activation function, which
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changes real number to range of (0, 1). Network predictions y is shown in Equation 21.

Sigmoid function is shown in Equation 11.

yk = σ(z) (21)

In the middle part of the chain rule, partial derivative of network prediction over activa-

tion function is calculated, shown in Equation 22.

dσ(z)

dz
=

d

dz
((1 + e−z)−1) = −1(1 + e−z)−2(−e−z)

=
e−z

(1 + e−z)2
=

1

1 + e−z

e−z

1 + e−z
=

1

1 + e−z

1 + e−z − 1

1 + e−z

=
1

1 + e−z
(
1 + e−z

1 + e−z
−

1

1 + e−z
) =

1

1 + e−z
(1−

1

1 + e−z
)

=σ(z)(1− σ(z)) = yk(1− yk)

(22)

For classificationnetwork, a binary cross-entropy loss (E(t, y)) is used (Good, 1952), where

t is true class and y is predicted class. Binary cross-entropy loss shown in Equation 16. Bi-

nary cross-entropy loss partial derivative over prediction is shown in Equation 23.

∂E(t, y)

∂y
=

1

N

N
∑

n=1

−(ti log yi + (1− ti) log 1− yi)

=−
t

y
+

1− t

1− y
=

y − t

y(1− y)

(23)

To get the weights w chain Equations 19, 20, 22 23 are substituted to Equation 18, which

is shown in Equation 24.
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∆wk = −ϵ
yk − t

yk(1− yk)
yk(1− yk)x = −ϵx(yk − t) (24)

Staudemeyer and Morris (2019) are describing a feed-forward neural network to be the

most common type of neural network. A feed-forward neural network can only handle

static classifications tasks. In classification problem, there can be two or more classes.

Most classification algorithms can be reconstruct as a distance-based classifier, Alpaydin

(2014). In some cases, instead of making a decision between two options’ type decision,

it may be needed to calculate a probability, P (Y |X).

By only being able to do amapping between input and output layers in a static way, it lim-

its a network to be unable to do time based classification (Staudemeyer &Morris, 2019).

In order a network to be a dynamic classifier, it also requires a signal from a previous

time step to recur in the network. These networks are called recurrent neural networks

(RNN) presented by Rumelhart et al. (1986). A simple recurrent network is able to look

back in time about 10 time steps based on Staudemeyer and Morris (2019). This is since

feedback signal is either vanishing or exploding. Issue of vanishing or exploding can be

avoided by using a further developed recurrent neural network called Long Short-Term

Memory (LSTM) recurrent neural network (Hochreiter & Schmidhuber, 1997), which is

able to learn more than 1000 time steps depending from network structure as described

by Staudemeyer and Morris (2019). To overcome vanishing or exploding issue of RNN,

LSTM networks use additional gates to control what information is past from the hidden

cell as output to the next hidden state based on Hochreiter and Schmidhuber (1997). Ac-

cording to Hochreiter and Schmidhuber (1997), the additional gates make the learning

of the long-term relationships in the data more effectively. Hochreiter and Schmidhuber

(1997) also state that LSTM networks’ lower sensitivity to the time gap makes them out-

perform simple RNNs in sequential data analyse. LSTM block typically has a memory cell,

an input gate, an output gate, and a forget gate added to the hidden state (Hochreiter &

Schmidhuber, 1997). Hochreiter and Schmidhuber (1997) continue that, the weights and

biases of the forget gate are used to control the amount of a value remains in the cell
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and the output gate’s weights and biases are used to control the output activation of the

LSTM block.

A long short-term memory networks are used with sequential data because these net-

works can learn long-term dependencies between time steps of data (Staudemeyer &

Morris, 2019). Staudemeyer and Morris (2019) mentioned applications that use LSTM

networks include sentiment analysis, language modelling, speech recognition, and video

analysis. Staudemeyer and Morris (2019) describe LSTM recurrent neural networks as

one of the most powerful dynamic classifiers which are openly available.

Important part of the neural network is a loss function. A Loss function effects heavily

how well the neural network perform in the given tasks.

2.5.1 Loss functions

Loss function is used in supervised learning to compare predicted values to ground truths.

Loss function minimises the error between predicted values to ground truths depending

on what the function is. Commonly cross-entropy loss is used for classification problems

Bishop (2006), shown in 16. Loss function is designed to perform well in certain tasks.

Loss function backpropagates error to update weights in the network. Gradient descent

uses the derivatives to update the weights. The derivative of binary cross-entropy loss is

shown in Equation 23. Chamfer distance loss function derivative of Equation 6 is shown in

Equation 25. It was presented by Fan, Su, and Guibas (2017) for 3D object reconstruction

from single image. They concluded that chamfer distance is differentiable, efficient to

compute and robust against small number of outliers.
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∂dCD(S1, S2))

∂ŷ
=

1

N
[
∂

∂ŷ
(∥y − ŷ∥22 + ∥ŷ − y∥22)]

=
1

N
[
∂

∂ŷ
((
√

(y − ŷ)2)2 + (
√

(ŷ − y)2)2)]

=
1

N
[2(y − ŷ)(−1) + 2(ŷ − y)(1)] =

1

N
[2(ŷ − y) + 2(ŷ − y)]

=
4

N
(ŷ − y)

(25)

Chamfer distance loss plot is shown in Figure 5. In the Figure 5 chamfer loss and deriva-

tive of it are plotted with ground truth of zero. On the figure x-axis is chamfer distance

between predicted and ground truth point clouds. When chamfer distance is loss is used

with in regression problem, the derivative is shown in Figure 5. In the regression problem

backpropagation correction grows as the predicted value is further away from the ground

truth value.

Figure 5. Chamfer distance loss in regression problem.

In binary classification problem also sigmoid function (Equation 11) has be included, be-
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cause the prediction of the neural network is probability of the class. In Figure 6 is shown

sigmoid function and the derivative of the sigmoid function.

Figure 6. Sigmoid function and its derivative.

From the Equation 19 in regression problem the term ∂yk
∂z

= 1, while in classification

problem it is the sigmoid function (Bishop, 2006). The chamfer distance loss derivative

in Figure 5 is calculated with ∂E
∂yk

∂yk
∂z

= ∂E
∂yk

· 1 as in regression problem. When loss func-

tion derivative is plotted in binary classification problem, it is a product of Equation 25 as

∂E
∂yk

and Equation 22 as ∂yk
∂z

(function also shown in Figure 6) when chamfer distance loss

is used and a product of 23 and Equation 22 when binary cross-entropy loss is used. Both

of these loss functions combined derivative with sigmoid function are shown in Figure 7,

binary cross-entropy loss on left and chamfer distance loss in binary classification prob-

lem on right. From Figure 7 can be seen that with chamfer distance loss neural network

might not learning properly.
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Figure 7. Binary cross entropy loss and chamfer distance loss derivatives with ground truths of

zero (blue line) and one (orange line).

In Table 1 the difference of cross-entropy loss and chamfer distance loss are shown in bi-

nary classificationproblemwith different ground truth andpredicted value combinations.

There can be seen thatwith cross-entropy loss if correct value is predicted then backprop-

agation correction is zero and if incorrect value is predicted there are corrections with

direction. With chamfer distance loss if correct value is predicted then backpropagation

correction is zero, but if incorrect value is predicted also then backpropagation correction

is zero. In Table 1 backpropagation values are indicative of direction and relative magni-

tude of different ground truth and predicted value combinations, actual backpropagation

values are real numbers.

Table 1. Binary cross entropy loss and chamfer distance loss with indicative backpropagation

corrections of different ground truth and predicted value combinations.

Ground truth Predicted

Binary cross

entropy loss

backpropagation

Chamfer

distance loss

backpropagation

1 1 0 0

1 0 -1 0

0 1 1 0

0 0 0 0
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The neural network needs to be trained for the given task, for it to be able to predict

reliable.

2.5.2 Neural network training

In machine learning, algorithms are developed to improve with the training based on

Staudemeyer and Morris (2019). They continue that, in theory, more the algorithms are

trained, better they can perform tasks. Based on the training data characteristics, same

machine learning algorithm can excel in different tasks. An algorithm performance is

measured by applying algorithm with some new data for the algorithm.

The error on the validation set starts to increase when more training epochs are made

while the error on the training set decreases (Alpaydin, 2014). Alpaydin (2014) continues

that initially all the weights are close to zero meaning that they have a little effect. The

value of the most important weights will increase as training progress based on Alpay-

din (2014). Almost all weights are updated away from zero if training is continued to get

less error on the training set according to Alpaydin (2014). New parameters are added to

the system as training continues, based to Alpaydin (2014), the system will come more

complex which leads to poor generalization of the system. Learning should be stopped

in the right point to stop avoid of overtraining Alpaydin (2014); Staudemeyer and Mor-

ris (2019) guide. The optimal point to stop training and the optimal number of hidden

units is determined with cross-validation, the network’s performance is tested during

the training with validation data with data that is not used to network training (Alpaydin,

2014). Gradient descent converges to the nearest minimum which is problematic as the

error function has many minima due to the nonlinearity of the error function according

to Alpaydin (2014). (Alpaydin, 2014) guides to train the same network several times with

different initial weight values to define expected error, and compute the average of the

validation error. Once training is done, the results need to be validated to describe how

well the network performed.
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2.5.3 Validating results

Neural network predictions should be evaluated to determine how good the predictions

are. In binary classification, problem predictions can be divided into four cases, true pos-

itive (TP), false positive (FP), true negative (TN) and false negative (FN) (Alpaydin, 2014)

which can be presented in confusion matrix. True positive case is when ground truth is

positive, and the prediction is also positive. If the prediction is positive, but ground truth

is false, it is called a false positive. True negative case is when both ground truth and

prediction are false. In false negative case, the prediction is false when ground truth is

true.

From these four cases several metrics can be calculated. Overall prediction accuracy can

be calculated as shown in Equation 26. Precision shows how well model predicts pos-

itive labels, Equation 27. With perfect precision value, all positive predictions made by

themodel are predicted correctly, but not all positive values are necessary predicted cor-

rectly. Recall, also known as sensitivity, describes how well model identified true values

correctly, Equation 28. All positive values are predicted correctly, but also some negative

values could have been predicted to be positive. F1-score is combination of precision and

recall shown in Equation 29. F1-score describes model overall performance.

Accuracy =
TP + TN

TP + TN + FP + FN
(26)

Precision =
TP

TP + FP
(27)

Recall =
TP

TP + FN
(28)
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F1-score = 2 ∗
Precision ∗Recall

Precision+Recall
=

2TP

2TP + FP + FN
(29)

The classification performance can also be comparedwith receiver operating characteris-

tic curve (ROC), which shows model performance with all classification thresholds. With

changing the threshold, the model can be tuned to classify more positive or negative

values depending on the need. ROC shows whether precision or recall is more domi-

nant based on Alpaydin (2014). Area under the curve (AUC) value is calculated from the

area under the ROC curve, which gives model performance over all possible thresholds

as presented by Yan (2021). When AUC value is one, the model has a good measure of

separability. Poor model would get the AUC value of zero.

Once the neural network has predicted which images should be included in the 3D re-

construction, point clouds are calculated from them with structure from motion.

2.6 Structure from motion

One technique for establishing correspondences between 2D images and to build a 3D

model of a scene and to get the camera position with respect to object is structure

frommotion presented by Häming and Peters (2010). It involves simultaneously estimat-

ing both 3D geometry, also called structure, and camera pose, in other words, motion

(Szeliski, 2021). Structure frommotion is the process of reconstructing 3D structure from

projections of a series of 2D images taken from different viewpoints according to Szeliski

(2021). Incremental structure from motion is a sequential process that commonly starts

with feature extraction and matching, followed by geometric verification (Szeliski, 2021).

The reconstruction stage is constructed from the resulting scene graph, build from se-

lected two-view reconstruction, before adding new images, triangulating scene points,

filtering outliers, and refining the reconstruction using bundle adjustment according to

Schönberger and Frahm (2016)



40

A special case of feature-based positioning is estimating an object’s 3D pose from a set of

2Dpoint projections based on Szeliski (2021). In this pose estimationproblem the position

and orientation of the object in its coordinate system is describe in the camera coordinate

system (Szeliski, 2021). To recover the pose, it needs at least three correspondences, if

the camera is already calibrated, and is known as the perspective-3-point-problem (P3P),

with larger numbers of points generally known as PnP according to Szeliski (2021).

In triangulation a point’s 3D position is determined from a set of corresponding image

locations and known camera positions (Szeliski, 2021). Szeliski (2021) descries the easiest

way to solve this problem is to find the 3D point that lies closest to all of the 3D rays

corresponding to the 2D matching feature locations.

Bundle adjustment is the most accurate way to recover structure and motion by per-

forming non-linear minimization of the measurement errors based on Szeliski (2021).

Szeliski (2021) states that it is now the standardmethod of choice for most structure from

motion problems. Solving bundle adjustment every iteration becomes impractical when

the problem grows bigger due to high computational capacity need according to Szeliski

(2021). And because of the long calculation time, Szeliski (2021) reports that structure of

motion is not suitable for real time environment.

The first step of global structure of motion is to remove outliers by removing incorrect

point correspondences to solve the relativeorientations frompairwisematching between

different views, many outliers still exist because the epipolar constraints among local

views usually do not reveal outliers in long point tracks according to Wen, Zou, Miao,

Ying, and Liu (2019). Outliers will reduce the structure estimation if they are not handled

properly (Wen et al., 2019). Many computer vision applications outlier removal in model

fitting is fundamentally critical, including fundamentalmatrix estimation, homographma-

trix estimation, vision-based robotics navigation and global outlier removal according to

Wen et al. (2019).
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2.7 Tools

Many platforms exist in which deep learning algorithms can be used. There are open-

source libraries and frameworks for example for Python available. MATLAB is a com-

puting environment and proprietary programming language developed by MathWorks

(The MathWorks, 2022). MATLAB uses toolboxes for neutral network construction and

solving. MATLAB, (The MathWorks, 2022), has also toolboxes for computer vision, es-

pecially for autonomous vehicles, visual object detection, semantic segmentation, and

digital image processing. MATLAB enables use ofmultiple GPUs, parallel computing, clus-

ter computing, cloud computing for accelerating deep learning calculations, (Yan, 2021).

MATLAB can be used in a desktop version as well as an online version.
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3 Previous work

Previouswork on selecting important frames from video feed, point cloud usage in neural

networks, neural network and different loss function options are reviewed. The works

done by others will be compared to the results achieved in this thesis.

3.1 Selecting important frames

Selecting important frames with a fixed time or frame interval with parallel tracking and

mapping method has been investigated by Klein andMurray (2007). A high-quality track-

ing is required and key frames need to meet an exact transformation and rotation angle.

Tan, Liu, Dong, Zhang, and Bao (2013) used image overlap to choose key frames, but to

name a frame as key frame it has to meet several conditions. The camera position and

attitude must be estimated successfully, number of extracted feature points should be

over a specific threshold and shared feature points with last key frame should be lower

than a specific threshold value. Zhuang, Rui, Huang, and Mehrotra (1998) showed that

key frame selection, according to the image content index by calculating feature cluster-

ing space of the current frames and checking that feature distance is over a threshold, is

highly efficient way but lacks in accuracy. In their study Qin, Li, and Shen (2018) choose

key frames according to parallax that the average parallax of tracking feature exceeds

a certain threshold and the number of tracking features is less than another threshold.

Mur-Artal et al. (2015) have adopted the key frame selection of the fittest and ability to re-

move later redundant frames with ORB-SLAM to achieve robustness in difficult scenarios

without additional calculation cost.

Key frame choosing from a real-time high frame rate camera for vSLAM is investigated

by Chen et al. (2020) who are showing that their automatic key-frame choosing method

based on the improved PWC-Net for mobile platforms is improving the pose tracking

quality and increasing robustness against error caused by dynamic blur. PWC-Net was

introduced by Sun, Yang, Liu, and Kautz (2018), which is a compact and effective CNN
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model for optical flow, a technique used to describe image motion. PWC-Net is con-

structed with pyramidal processing, warping, and a use of a cost volume. According to

Sun et al. (2018), it outperforms all published optical flow methods. Chen et al. (2020)

are using two step decomposition to get the change of posture angle between frames in

their work. If threshold is not exceeded between images, then key frameswill be selected

in certain intervals (Sun et al., 2018). When threshold is exceeded, PWC-net is used to

associate the image content of the corresponding front and back frames. Sun et al. (2018)

method uses pre-trained neural network to extract contextual pixel information from in-

put frames. Optical flow algorithm is used to estimate bidirectional flow between input

frames according to Sun et al. (2018). In their system Chen et al. (2020) input frames

and their context maps are fed to a video frame synthesis neural network to produce the

interpolated frame in a context-aware fashion. If the change between frames exceeds

the threshold, then the improved PWC-Net is used to associate the image content of the

corresponding earlier and later frames to make the intermediate frame as a key frame

(Chen et al., 2020). With this work flow Chen et al. (2020) achieves key frames to be

more focused in complex areas and less in flat areas.

3.2 Point clouds

Deep learning techniques have showed potential in solving object classification and seg-

mentation of point cloud data even tough classifying a real-world object data set is still

a very challenging task according to Uy et al. (2019). Feng et al. (2019) have developed

the 2D3D-MatchNet, which is an end to end triplet-like deep neural network architecture

that learns the descriptors from 2D images and key points from 3D point clouds. Feng

et al. (2019) are using 2D3D-MatchNet for visual pose estimation with directly match-

ing 2D to 3D correspondence of images and point clouds. In visual pose estimation, the

camera pose is estimated in respect to coordinate frame of a reference point cloud (Feng

et al., 2019). The visual pose estimation is important part of visual Simultaneous Local-

ization and Mapping (Mur-Artal et al., 2015) and structure from motion (Schönberger &

Frahm, 2016). 2D3D-MatchNet localization results are better thanORB-SLAM2 (Mur-Artal
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& Tardós, 2017) in a large scale outdoor urban environment. DeepI2P is deep neural net-

work used to cross-modality registration of 2D image and 3D point cloud developed by Li

and Lee (2021). It classifies whether the projection of each point in the point is in front of

the camera or behind it (Li & Lee, 2021). Labelled points are then directed into an inverse

camera projection solver to estimate the relative pose (Li & Lee, 2021).

3.3 Neural networks

Hoang, Lilienthal, and Stoyanov (2020) have used a combination of convolutional neu-

ral networks and dense simultaneous localization and mapping system to recognize ob-

jects and recover camera pose. Ai et al. (2021) have combined ORB-SLAM2 (Mur-Artal &

Tardós, 2017) with object detection by deep neural network to reduce dynamic content

influence. In their system, deep object detection neural network is pre-processing data

to dynamic targets or static objects. With this Ai et al. (2021) are achieving more robust

and accurate localization and mapping results in highly dynamic scenarios.

3.4 Loss function for neural network

Kendall and Cipolla (2017) have used combined loss function to learn camera pose us-

ing PoseNet (Kendall, Grimes, & Cipolla, 2015) deep learning model. To combine lo-

calisation metrics to the same loss function they used a linear weighted sum Lβ(I) =

Lx(I) + βLq(I) of position and orientation errors to approximately equal. Camera posi-

tion and orientation are expressed in different units, a scaling factor β is needed. Kendall

and Cipolla (2017) found that β factor requires significant tuning to get reasonable re-

sults, but model that learns together the camera’s position and orientation, performs

better than a model that has been trained the position and the orientation separately.

Similar combined loss function is used by Uy et al. (2019). They are using deep neural

network to real-world point cloud classification with crowded backgrounds. Their loss

function combines cross entropy losses of classification and segmentation by setting fac-
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tor to 0.5. Segmentation loss is used to separate foreground points from background

points. Feng et al. (2019) are using in their 2D3D-MatchNet the weighted soft-margin

triplet loss L = lnαd introduced by Hu, Feng, Nguyen, and Lee (2018), which combines

image and point cloud descriptors. They use Euclidean distance of dpositive and dnegative

as d. Their deep network can converge faster and increase the retrieval accuracy thus

achieving better localization result. Wang, Ang, and Lee (2021) used chamfer distance

to calculate the reconstruction loss, which can be used for big data sizes as well. Their

overall loss included the reconstruction loss between the generated point cloud and the

ground truth, the adversarial loss, and the feature matching loss between the partial and

complete point features. Chamfer distance loss was presented by Fan et al. (2017) for

3D object reconstruction from single image. They concluded that chamfer distance is

differentiable, efficient to compute and robust against small number of outliers. Ping,

Esfahani, Jiaying, and Han (2022) have identified that Chamfer distance loss will assign

an equal weights to all points inside the point clouds. Chamfer distance loss is used by

Nazir, Afzal, Pagani, Liwicki, and Stricker (2021) to classify and shape completion of point

clouds and Saabni and El-Sana (2011) have used modified chamfer distance loss for spot-

ting handwritten words.
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4 Scheme structure

In the thesis, it is consider an environment where the developed neural network would

work, shown in Figure 8 on left. It is considered that neural network developed in the

thesis would work in embedded device, which has limited calculation resources. The

embedded platform would have a video camera, which would take frames, for example,

in a rate of 50 frames per second. Each frame is fed into a vSLAM calculation, and from

the calculation the input data for neural network is received. Trained neural network

processes each added frame one at a time and outputs binary classification, does the

frame have important information for point cloud construction. Embedded device saves

the images that are considered to be important and afterwards point cloud is constructed

with desktop computer with SfM.

Figure 8. Environment for the developed neural network to work on in embedded device on left

and process description of the system in the embedded device on right.
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The assumed process in the embedded device, Figure 8, includes feeding each video

frame into vSLAM calculation, which extracts features and feature points from the frame

andmatches the points with the previous frame’s points. Camera movement is extracted

from matched points. Matched points and camera movement is used as inputs to the

neural network for prediction if that frame has important information and should be

saved. The matched point represent how similar images are and camera movement that

how much movement there has been between frames. The neural network is classifi-

cation network that has binary output of not to save an image (0) and save an image

(1). Based on neural networks output then image is saved to embedded devices storage

space. Video frames are fed into the vSLAM calculation one by one in order. As neural

network should learn changes in the frames, that is why recurrent neural network is used,

which allows network to remember also previous steps and not only the current step.

The network training and testing are done following the similar process that would also

be used in the embedded device, but in the thesis all the steps are done with desktop

computer and using MATLAB. In the thesis a data base is constructed, which is used to

train the neural network and to test it. The data base includes predictors calculated with

vSLAM and ground truths for each image determined by chamfer distance change be-

tween point clouds calculated with SfM after each image and point clouds calculated

from all the images. The process of training and testing the neural network is shown in

Figure 9. In the thesis several ways to construct the data base are tested especially how

to determine the ground truths for each of the images.
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Figure 9. Training and testing process used in the thesis.

For the start, databases are created which can be used to train and test the neural net-

works. Several databases are made because labels, especially, change during experi-

ments.
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5 Construction of databases for training and testing

To train a neural network for some specific tasks, it needs training data. With the training

data, the neural network is trained to perform specifically on similar data also in the

future. The training data will have some number of predictors, which are then used to

predict, in the case of classification, labels. In the training, data ground truth labels are

signed for the predictors. During the training, predicted labels from the neural network

are compared to ground truths and the neural network weights are adjusted based on

them. The training data needs to have information how the task is generally solved.

There are a lot of labelled image sets available that can be used for a neural network train-

ing, but not suitable for the issue considered in this thesis. To train and to test a neural

network, a database is constructed for the thesis. The database for neural network is con-

structed inMATLAB using image sets collected by Sturm, Engelhard, Endres, Burgard, and

Cremers (2012). The datasets are available in the Technical University of Munich’s TUM

Department of Informatics Computer Vision Group (2022) web pages. The image sets

used are from the category of handheld SLAM. Theused sets are fr3/long office household,

fr2/large no loop, fr1/360 and fr1/desk. The image sets have 2585, 3359, 756 and 613

images in each of them respectively. The image sets are taken with monocular camera

and camera intrinsic parameters are known to include the camera focal length, principal

point, and image size. The image sets are video streams that are converted to set of im-

ages. As the image are real video streams, they already have images, which are blurred,

out of focus or images look stretched or sheared, no additional image augmentation was

used.

The training data is constructed as shown in Figure 10. The training data construction

starts from the chosen image sets. They are first divided into subsets to get more data

for the training and for more manageable data sizes. From each image subset, matched

points between images and camera movement are calculated with vSLAM. This informa-

tion is used as predictors for the neural network. To get a label for each image whether
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it holds key information or not, point cloud is calculated after each image. These point

clouds are then compared to point cloud calculated with all the images in the image sub-

set. Chamfer distance is used to measure how close the two point clouds are to each

other’s. Based on how much chamfer distance changes when image is added to point

cloud calculation, a label is signed to the image. Different thresholds are used to deter-

mine how much chamfer distance must change before image is labelled as an image to

be saved. In the final state, training data is saved to MATLAB data storage object, which

can then be used to train a neural network.

Figure 10. Flowchart of training data construction.

5.1 Image subsets for database

All the chosen image sets have too many images for the neural network teaching pur-

poses done in this thesis. If entire images sets would have been used for training, the cal-

culation time would have been extremely long, and many more image sets would have
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been needed to have enough data for a neural network to learn. All chosen image se-

quences are divided into smaller parts to get more data for training and more manage-

able calculations times. Image sets have been divided into smaller subset of 25 images in

each for sequential neural network input and subsets of 10 images from where one im-

age is picked. Some subsets are taken directly from original image sets while others have

been constructed by taking images in steps and some subsets are taken more randomly.

In all cases, images in the subsets are in the same time order as in the original image

set. In Figure 19 is shown how image set fr3/long office household has been divided into

multiple subsets. All image sets are divided in a similar fashion.

Figure 11. Dividing fr3/long office household image set to subsets.

At first, on the top row of the Figure 19, all the images are illustrated in the whole image
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set. Image set fr3/long office household has the total of 2585 images. The first 103 sub-

sets are taken in order, so that each subset has 25 images as shown in the second row of

the Figure 19. By taking images in order represents normal video feed with steady and

slow camera movement.

The next subsets are taken with an interval based on how many image sets of 25 will fit

to total amount of images. With this image set, the interval will be 30, meaning that the

first image is taken and then 31st image is taken next and so on until the subset also has

the total of 25 images. There will also be 103 subsets from this method. The next subsets

are taken in 20 image steps. It is very similar way than in interval subsets, but in this

case, the number of images is not decided based on howmany certain size subset will fit

the whole image set, but rather fixed step size. With the step size of 20, there will be 20

subsets that have 25 images in each subset. Two subsets taken in images in interval or in

steps represents video feed that is taken by moving camera fast, but in steady speed.

The two last ways to divide image sets to image subsets in the Figure 19 are two ways

of randomly taking images from the image sets. In the random 1 way, the first image is

randomly chosen from the first 25 images. When the first image is chosen then the next

image is randomly chosen within the next 25 images from the first image. This will be

continued until there are chosen 25 images to each subset. 15 subsets are constructed

this way. In the random 2 method, the first image is chosen similarly within the first 25

images as in random 1 method. The second image is chosen randomly within the next 25

image set, meaning that an image is chosen from images 26 to 50 of the image set. The

third image is chosen from images 51 to 75 of the image set and so on until image subset

has 25 images. 15 subsets are also done like this. Two subsets formed with randomly

represents video feed that is taken by moving camera with variable speed of the camera

movement.

From the 2585 images, 256 image subsets are constructed. From all four image sets,

total of 782 image subsets are constructed. All the image subsets have 25 images for

those neural network structures that are trained with sequential one image information



53

at the time input. For a neural network training where number of images are fed to the

neural network with one go as an input, image subset length of 10 images is used. The

training data is otherwise build as descried above.

5.2 Predictor extraction

After the image set have been divided into subsets, the vSLAM is used to find 250 ORB-

features from each of the images and match the features between consecutive images.

Camera movement between images is also determined. It was decided to use matched

points between two images together of the camera movement between images as pre-

dictors for the neural network training for each image. These are fast and easy to calcu-

late, also with low calculation power. The matched points between two images describe

how similar images are with each other. Camera movement is descried with rotationma-

trix and translation vector. There is together of 12 values describing camera movement

between images. Number of matched points between images is changing between im-

ages. There can also be image pairs that do not have enoughmatching point to determine

camera movement.

5.3 Determining label for each image

Structure ofmotion is used to calculate point clouds from the image subset. When images

come from a video camera, they come one by one. That is modelled by calculating a point

cloud after two images at the beginning of each image subset. Then a new point cloud is

calculated when next image, the third image, is added. This will continue until all images

are included in the point cloud calculation, shown in Figure 12.
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Figure 12. Process how chamfer distance is calculated in different states when images are added.

Point clouds are compared to the point cloud calculated with all the images in the subset.

Similarity of the point clouds is measured with chamfer distance. Change in chamfer

distance is determined to be a sign that the image has important information for the

point cloud construction. Based on a threshold value, a label is signed for the image,

if the chamfer distance is reduced more than a threshold value amount compared to

previous chamfer distance value, show in Figure 13. If an image is not needed, false label

is given and if image is needed then a true label is signed to it.
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Figure 13. Flowchart of how it is determined if image has important information for a point

cloud construction.
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Figure 14 shows how the chamfer distance value changes after each added image with

one of the image subsets. The first point cloud can be constructed from two images,

from which also the first chamfer distance is calculated between the point cloud with

all the images. That’s why the first chamfer distance value is calculated after the second

image in the Figure 14. At the beginning the chamfer distance is relative stable until the

12th image is added. After that, there is a big improvement meaning that the chamfer

distance has decreased. Also, the image 16 seems to improve the chamfer distance value

considerably as also does image 22. The images are labelled in the training data so that

the first image of the image subset is always set to be saved. From Figure 14 can be

seen that, for example, images that decrease the chamfer distance, the most are the

images 1, 8, 13, 16 and 22. Using these images to calculate the point cloud, we will receive

a closed point cloud to that point cloud that is calculated with all the subset images.

The situation is not unambiguous because also images 2, 9, 14 and 23 give very similar

decrease of chamfer distance compared to the previous image. Any of the images that

have a similar chamfer distance value could be chosen to get similar results, but only

one of these images should be chosen. For example, images 13, 14 and 15 have very

similar chamfer distance values, so one of these images should be included in images

from which the point cloud is calculated. If two images are chosen from images 13, 14

and 15, the chamfer distance is not improving, but the calculation time of the point cloud

will increase.
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Figure 14. Chamfer distance calculation after each added image.

Once the databases are done, experimenting with different neural network structures

can begin. The training data effect for the prediction performance is experimented.
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6 Experiments

Constructed databases are divided into training data and testing data for the neural net-

works. One of the smaller image sets is chosen to be the testing data, which is not used

during the network training. It is only used for the network testing. The same image set

is used for testing in all the experimented cases in the thesis.

Training data labels distribution is shown in Figure 15 for chamfer distance change thresh-

old of -5 %. Training data has 68 % of the labels zero and 32 % of one. The label zero

meaning that the image should not be saved and one meaning it should be saved. As the

training data is divided into image sequences of 25 images, this means that, on average,

out of those 25 images network should pick 8 images, which are then used to construct

the final point cloud. Often imbalance data is handled some way to avoid predictions

to be biased. The minority class should also be predicted with an equal importance. In

this case, resampling, over or undersampling, are not options, because there is no way

to increase the images to be chosen without also increasing the number of not to be

chosen or vice versa. The threshold of choosing the images to be saved can be changed.

Choosing the evaluating metric to more describe both classes can be used. According

to Luque, Carrasco, Martı́n, and de las Heras (2019), a major issue with an imbalanced

data set is to determine a suitable evaluation metric. F1-score is taking into account that

both classes are predicted, and it only increases if both the number and the quality of

prediction improves both of the classes.
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Figure 15. Balance of label classes in training data with chamfer distance threshold of -5 %.

6.1 Neural network depth comparison

Different neural network structures are tested, and multiple evaluation metrics are com-

pared. The cross-entropy loss is used. In Figure 16, six different networks are tested with

different amount of hidden units. The network structure consists of a sequence input

layer, LSTM-layer with different amounts of hidden units, batch normalization layer, relu-

layer, dropout layer, fully connected layer, softmax layer and classification output layer.

If two LSTM layers are used, then layers from LSTM layer to dropout layer are all dupli-

cated one after another. In MATLAB, sequence input layer is used when sequence data is

used for training the network. LSTM-layer used is a bidirectional LSTM layer that learns

long-term dependencies between time steps of sequence data. In LSTM layer, a hidden

unit number can be specified. A bigger number of hidden units can remember more in-

formation from previous time steps, but it does not determine of how many time steps

the layers remembers information. A batch normalization layer normalizes the data ob-

servations from each channel independently. It aims to stabilize the learning process and

reduce training epochs needed for the network training. Relu-layer, the rectified linear

activation function, will output positive input directly and zero if input is negative. A

relu-layer has been found tomake the training easier andmany times achieve better per-
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formance. A dropout layer drops nodes randomly during the training, which is effective

regularization method to reduce model overfitting and improves its generalization. In a

fully connected layer, inputs are multiplied with a weight matrix and a bias vector, which

means that all inputs influence every outputs. In this layer, it is also defined how many

outputs the network will have. A softmax layer applies a softmax function to the input of

the layer. A classification layer uses the cross-entropy loss for classification.

Figure 16. Evaluation of different network structures on the test data.

In Figure 16, it is shown that two LSTM-layer will cause the network to overfit and it does



61

not perform well with test data. With a lower number of hidden units, the model overall

performance is comparable to a higher amount of hidden units. Overall accuracy does

not change with different network structures. The recall that describes howwell the true

labels are predicted correct is very low. All the metrics, accuracy, precision, recall, F1-

score, or AUC are showing better performance if the values are higher. In the thesis it is

aimed to construct a neural network that can predict images for 3D construction, point

cloud. That is way these traditional metrics do not work well in this task and that is why

an evaluation metric of average chamber distance (CD) change is used. The chamfer dis-

tance value of a point cloud calculatedwith ground truth images is compared to the point

cloud calculated with all the images in the subset. This chamfer distance is taken as refer-

ence chamfer distance value. The point cloud calculated from predicted images from the

neural network is compared to the point cloud calculated with all the images in the sub-

set. Two chamfer distances are then compared to each other. If chamfer distance with

predicted images is smaller than reference chamfer distance, the predicted images are

then better for point cloud construction than reference images. Chamfer distance change

in Figure 16 is zero if predicted images are equally good for point cloud construction that

ground truth images, if value is negative predicted image produce better point cloud that

ground truth images. The observation that some of the predicted results are slightly bet-

ter than the given ground truth, indicates that the neural network performance could

benefit frommore suitable training data labeling. Still, even with the current labeling the

trained model is capable of performing the intended task. From all the subsets, the aver-

age change in chamfer distance is taken. Based on chamfer distance change low number

of hidden units predict as well as higher amount of hidden units. But also, this metric

does not describe well enough the results, because lower amount of hidden units only

learns the middle images to be zero in the image subset. They only learn the beginning

of the subset and the end. When the hidden unit amount is 500 and 1000 the networks

learn more about the middle images of the subsets, but they do not predict them cor-

rectly. When hidden unit amount is increased also the middle images in the subsets are

predicted better.
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6.2 Chamfer distance threshold examination

By changing the chamfer distance threshold in training data, the label balance can be

changed. Figure 17 shows the label balance with two different chamfer distance thresh-

olds. On the left-hand side, there is the class label balance of the training and the test

data that has been constructed with chamfer distance threshold of +5 %, meaning that

the chamfer distance can increased compared to the previous added image and still it is

determined as an image that should be saved. On the right hand side of the Figure 17,

there is a class balance of the training data that has a chamfer distance threshold of -25

%, so the chamfer distance has to decrease 25 % compared to a previous saved image

before it is determined to be saved image.

Figure 17. The balance of class labels in training data with chamfer distance threshold of +5 % on

the right side of the figure and -25 % on the left side.

Using different training and testing data to the same neural network structure, the 1 layer

LSTM network structure with 2000 hidden units from Chapter 6.1 is used, the effect of
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chamfer distance threshold value to evaluation metrics, can be seen as shown in Figure

18. The best chamfer distance change is achieved with data that is constructed with the

chamfer distance threshold of -7.5 %. With traditional metrics the best threshold value

would be different when they only describe how well the prediction compares to ground

truth values.

Figure 18. Chamfer distance threshold difference effect to predictions.

By taking one image subset of the test data to examination, can be seen how network

prediction picks images to be saved. One image subset is shown in Figure 19 with a test

data for that image subset and predicted values of that image subset. On left hand side

y-axis 0 means that image is not saved and 1 means that it is saved. The chamfer distance

values after each added image can also be seen in Figure 19 on yellow in right hand side

y-axis. In this case, the networks fail to pick some of the images that reduce the chamfer
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distance considerably, like image number 21. On the other hand, the network does not

pick any of the images that would increase the chamfer distance considerably.

Figure 19. Predicted images compared to ground truth images and the chamfer distance change.

6.3 Chamfer distance loss function

As shown in Figure 14, aminimal chamfer distance is achievedwith different set of images.

It does not need to be the same exact images that needs to be recognised to minimize

chamfer distance. To be able to pick one, but only one, of the images 13, 14 and 15, for

example, an own loss function is investigated, which would minimize the chamfer dis-

tance of the predicted image. The chamfer distance loss function is used to compare the

point clouds to each other. In Figure 20, it is shown a loss function idea. Predicted labels

after each iteration are received into loss function together with the ground truth labels.

From those predicted labels, images are picked based on whether an image is predicted
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to be a valuable for the point cloud construction or not. The point clouds are calculated

with SfM with all the predicted images. The point clouds are compared to a point cloud

calculated with all the images in each subset of images. The loss of the iteration is based

on average chamfer distances of all the training subsets.

Figure 20. Plan for loss function to minimize chamfer distance of predicted images.

An issue with the loss function, described in Figure 20, is that in the backpropagation

of the chamfer distance loss function is not a partial derivative respect to predictions

as in Equation 19. Other issue is shown in Table 2. On the top row of the table is, an

image number. In this example, there is only ten images in the image subset. A reference

point cloud is calculated with all the images, shown on the second row. On the third

row, are shown the images that the network has predicted for one iteration. To calculate
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a point cloud at least two images are needed, which means that the first point cloud

can be calculated after image 6, shown in row 4. To calculate chamfer distance change

two chamfer distance values are needed, the first chamfer distance change value can be

calculated to image number 9, shown in row 5. And also, backpropagation can only be

signed to images 9 and 10, shown in row 6. In the backpropagation, a correction value

should be signed to each sample, which is used to correct weights. Images are fed into

the network one by one. That is why the chamfer distance should be calculated after

each added image to get the chamfer distance change after each image and, based on

the chamfer distance changes, the back propagation change value would be calculated.

The problem is that the chamfer distance can be calculated after at least two images have

been predicted, so what should be the backpropagation correction if chamfer distance

cannot be calculated for images 1 to 8. In this work, an assumptionwas used that the first

image should always be selected. Because of that, the correction can be signed to the

first image. The correction value for the images between images 2 to 8 is hard to define

with only the chamfer distance value.

Table 2. How to deal with the backpropagation factors for each image.

1 2 3 4 5 6 7 8 9 10

All images x x x x x x x x x x

Predicted

images
x x x x

Calculated

point cloud

based on

predicted

images

- - - - - 1 - - 2 3

Calculated

chamfer

distance change

- - - - - - - - 1 2

Backprobagation

correction

based on

chamfer

distance chance

- - - - - - - - 1 2

As a solution for these issues, a loss function shown in Figure 21 is proposed. In that, the
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chamfer distance is used to check whether a concerned image would be selected or not.

Then the training ground truths are updated to correspond iteration predictions. That

way the earlier images can be also checked that they are correctly predicted and issue

with predicting one of Figure 14’s images 13, 14 and 15 would be equally as good as long

as only one of those images is included in predicted images. After the ground truths are

updated, cross-entropy loss is used for the predicted images and updated ground truths.

With this solution, backpropagation correction issue can also be handled.

Figure 21. Used loss function to minimize the chamfer distance of the predicted images.

With own loss function, the network performance is worse than with the binary cross-
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entropy loss. The chamfer distance change is 0.08. With the test data accuracy being

0.76, precision 0.81, recall 0.31, F1-Score 0.45 and AUC 0.84. The chamfer distance loss

function fails to predict images to be saved in the middle of the image subset as seen in

Figure 22.

Figure 22. The predicted images compared to the ground truth images.

Loss function with point cloud calculation from predicted images is time consuming to

calculate whichmakes the neural network training to take longer thanwith cross-entropy

loss. As ground truths are changing between epochs, the loss is fluctuating a lot during

the training.

6.4 One image prediction from image set

The training data is also constructed to try out if the images could be selected from an

image batch using cross-entropy loss. An image subset of ten images is created and the

chamfer distance after each image is used to determine which image gives the biggest

decrease in the chamfer distance in comparison to the previous image and that image
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is labelled as an image to be saved. The first image is not selected because, to calculate

the point cloud, at least two images are needed. The last image is also omitted from the

selection. Figure 23 shows how labels between different images are distributed. Indexing

is so that second image in the image subset is indexed as 1 and ninth image is indexed as

8. On the left side, labels are without a sampling and on right hand side are labels with

an oversampling to avoid imbalanced labels.

Figure 23. The balance of class labels of 10 image set of images on the left side and labels with

oversampling on the right side.

The best result achievedwith the test accuracywas 0.62. Training and validation accuracy

was 0.94 so the model was overfitting even though training data was oversampled and

L2 regularization was used to mitigate overfitting. From the confusion matrix in Figure 24

can be seen that the model has learned always to predict one of the last images.
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Figure 24. Confusion matrix of the prediction results.

To get a neural network to learn more of the general structure, more training data was

investigated. Now the training data had same image subsets several timeswith a different

labelling. Labels were selected so that, for example, images 13, 14 and 15 in Figure 14

would be selected in the different training data sequences. In one sequence, image 13

would be selected and images 14 and 15 not. In the other training data sequences, the

same predictors are used but this time image 14 would be selected and images 13 and 15

not and so on. By adding more training data, using same predictors with different labels,

did not affect the model predictions at all as seen in Table 3

Table 3. More general training data effect to model predictions.

Data with same

predictors with

different ground

truths

Data with one

ground truth to

predictors

Accuracy 0.77 0.77

Precision 0.71 0.70

Recall 0.38 0.38

F1-score 0.5 0.49

AUC 0.87 0.87

Chamfer distance

change
-0.97 -0.97
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7 Results

In this thesis, it was investigated how the neural networks can select an image with im-

portant information for the point cloud generation without losing point cloud accuracy.

The chamfer distance is used as a measure to label training data, which is built with vS-

LAM and SfM. LSTM neural networks were used to predict informative images from the

image subset. Although the chamfer distance between point clouds constructed from

predicted images and all the images in the subset, were smaller, in some cases than the

chamfer distance between the point clouds constructed from ground truth images and all

the images in the subset, models lack accuracy. The models were not able to learn from

the predictors generally the chamfer distance changes. When the neural network has

more of a hidden units in several layers it will learn more precisely the chamfer distance

changes as shown in Figure 25. In the Figure 25 on x-axis is images added. The predicted

labels for the images are shown in blue and test data labels in orange. On y-axis 0 means

that image is not saved and 1 means that it is saved. The model is also able to predict

images in the middle of the subset.
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Figure 25. Predicted images compared to ground truth images with higher amount of hidden

unit.

With a more simple network only image subset beginning and ending can be predicted

correctly, Figure 26. In the middle of the subset, all the images are only predicted not to

be important to be saved.
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Figure 26. Predicted images compared to ground truth images with lower amount of hidden

units.

From the results (Figure 16 and Figure 18) can be seen that in some case chamfer distance

is much smaller with predicted images than with ground truth images. As an average

neural network chose less images to be saved than there were ground truth images, still,

in many cases chamfer distance between point clouds from predicted images and from

all the images was smaller than with ground truth images. Based on this simple neural

network used in the thesis was able to choose better images than ground truth images

for 3D reconstruction. But this is probably more due to that chamfer distance change

alone is not enough to determine if image has important information for point cloud

calculation or not, but it needs also to have some additional information combined with

it to be able to determine more precisely if image has important information for point

cloud calculation or not. As an example, in Figure 27 is shown one case where there were

six ground truth images and the neural network predicted six images. They are not the

same images. The chamfer distance from the point cloud calculated from the predicted

images is about 50 % smaller than the chamfer distance from the point cloud calculated

from the ground truth images when comparing to the point cloud calculated with all the
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images in the subset.

Figure 27. Predicted images compared to ground truth images with smaller chamfer distance

value.

With the best model found in this thesis the point cloud computing time can be reduced

by 68 % when comparing to the point cloud calculation with all images without losing

too much of the accuracy of the point cloud, when the image sequence is relative short.

Direct comparison to previous investigations is hard to find. Chen et al. (2020) presented

that choosing important frames accurately in real-time on mobile platforms with the im-

proved CNN model called PWC-Net is possible, but they used separate neural network

structure to prevalidate the input images before using PWC-Net. Feng et al. (2019) pre-

sented the 2D3D-MatchNet, which is end to end a triplet-like deep neural network archi-

tecture that learns the descriptors from 2D images and key points from 3D point clouds

for visual pose estimation. 2D3D-MatchNet localization results outperform ORB-SLAM2.

DeepI2P is deep neural network used to cross-modality registration of 2D image and 3D
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point cloud developed by Li and Lee (2021). It classifies whether the projection of each

point in the point is in front of the camera or behind it. Labelled points are then directed

into an inverse camera projection solver to estimate the relative pose (Li & Lee, 2021).

Based on these studies and this thesis the neural network can be used to predict images

that are important to point cloud reconstructing, but better results could be achieved by

further development of the training procedure.
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8 Conclusion and future work

In the thesis, it was investigated how the neural networks recognise images with impor-

tant information for the point cloud generation without losing the point cloud accuracy.

The chamfer distance is used as a measure to label training data, which is built with vS-

LAM and SfM. LSTM neural network were able to predict key images from the image

subset with more complex networks with a higher precision. With the best model found

in this thesis, the point cloud calculating time can be reduced by 68 % when compar-

ing to point cloud calculation with all images without losing too much of the accuracy

of the point cloud, when the image sequences are relatively short. The learning of the

general concept needs to be improved. To learn more about generally chamfer distance

change effect, some other concept might be needed apart from supervised learning, be-

cause there aremultiple ground truths that produce equally good end results. Reinforced

learning that does not use any labelled data or semi-supervised learning that used some

labelled data and a lot of non labeled data could learn better the general concept of min-

imising the chamfer distance of image sequences. Predictor influence on the neural net-

work prediction accuracy should also be investigated individually to see which predictors

have the most correlation with the choosing of images with important information for

3D point cloud construction. Other predictors than used camera movement and match

feature points between images could be considered, for example, statistical information

of feature points in each image.
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