

Xiaotian Bi

Machine Learning NLP-based recommendation
system on production issues

Vaasa 2023

School of Technology and Innovations
Master of Science thesis

Industrial Systems Analytics

2

UNIVERSITY OF VAASA
School of Technology and Innovations

Author: Xiaotian Bi
Title of the thesis: Machine Learning NLP-based recommendation system on produc-

tion issues
Degree: Master of Science in Technology
Discipline: Industrial Systems Analytics
Supervisor: Mohammed Elmusrati

Petri Välisuo
Year: 2023 Pages: 77

ABSTRACT :

The techniques related to Natural Language Processing (NLP) as information extraction are in-
creasingly popular in media, E-commerce, and online games. However, the application with such
techniques is yet to be established for production quality control in the manufacturing industry.

The goal of this research is to build a recommendation system based on production issue de-
scriptions in a textual format. The data was extracted from a manufacturing control system
where it has been collected in Finnish on a relatively good scale for years. Five different NLP
methods (TF-IDF, Word2Vec, spaCy, Sentence Transformers and SBERT) are used for modelling,
converting human digital written texts into numerical feature vectors. The most relevant issue
cases could be retrieved by calculating the cosine distance between the query sentence vector
and corpus embed matrix which represents the whole dataset. Turku NLP-based Sentence Trans-
former achieves the best result with Mean Average Precision @10 equal to 0.67, inferring that
the initial dataset is large enough using deep learning algorithms competing with machine learn-
ing methods. Even though a categorical variable were chosen as a target variable to compute
evaluation metrics, this research is not a classification problem with single variable for model
training. Additionally, the metric selected for performance evaluation measures for every issue
case. Therefore, it is not necessary to balance and split the dataset.

This research work achieves a relatively good result with less data available compared to the size
of data used for other businesses. The recommendation system can be optimized by feeding
more data and implementing online testing. It also has the possibility to transform into collabo-
rative filtering to find patterns of users instead of simply focusing on items, in the condition of
comprehensive user information included.

KEYWORDS: NLP, Recommendation System, Mean Average Precision @K, Sentence Trans-
formers, SBERT.

3

Acknowledgements

I would like to express my gratitude to my academic advisor, Prof. Mohammed Elmusrati

and Petri Välisuo, providing incredible support and useful insights to make my thesis re-

search proceeding smoothly.

I also appreciate that Mr. Christian Sundman offered this interesting topic to me, and

other employees from company side gave valuable advice from MES and data science

point of view.

4

Contents

1 Introduction 7

2 Natural Language Processing (NLP) and Recommendation System 10

2.1 Natural Language Processing (NLP) 10

2.2 Recommendation System 12

2.3 NLP-based Recommendation system 14

3 Methodology 16

3.1 Content-based Recommendation System 16

 3.2 Python Libaries for NLP 20

3.3 NLP Methods 21

3.3.1 Term Frequency-Inverse Document Frequency 21

3.3.2 Word2Vec 23

3.3.3 SpaCy 25

3.3.4 Sentence Transformers 28

3.3.5 SBERT 29

3.4 Evaluation Metrics 31

3.4.1 Decision Support Metrics 32

3.4.2 Ranking-based Metrics 34

3.4.3 Other Metircs 36

4 Case Study 38

4.1 Data Collection and Introduction 38

4.2 Data Pre-processing 39

4.3 Data Analysis and Visualization 41

4.4 Model Training and Prediction 44

4.4.1 Term Frequency-Inverse Document Frequency 45

4.4.2 Word2Vec 46

4.4.3 SpaCy 47

4.4.4 Sentence Transformers 48

4.4.5 SBERT 50

5

4.5 Results 51

5 Conclusions, Discussions and Future Works 55

References 58

Appendices 61

Appendix 1. Wordcloud for Each Class in “REASON_CLASS” 61

Appendix 2. Distribution of AP@10 for the Models 67

 Appendix 3. Distribution of MAP@K based on “REASON_CLASS”(K=10) 71

6

Abbreviations

AI Artificial Intelligence
MES Manufacturing Execution System
NLP Natural Language Processing
TD-IDF Term Document-Inverse Document Frequency
BERT Bidirectional Encoder Representations from Transformers
SBERT Siamese BERT
P@K Precision @K
AP@K Average Precision @K
MAP@K Mean Average Precision @K
POS Part-of-Speech
NER Named Entity Recognition
NLTK Natural Language Toolkit
CBOW Continuous Bag-of-Words
RNN Recurrent Neural Networks
MLM Masked Language Modelling
NDCG@K Normalized Discounted Cumulative Gain
ARHR Average Reciprocal Hit Rank

7

1 Introduction

Retrieving relevant information from big data with machine learning model is a popular

application in the business environment. Embedding such function into program works

as search engine to suggest items that users might be interested in, or new items could

have some relation with. The algorithms for recommendation are based on keywords,

user activity or other features characterizing users or items that systems serve for. The

most common feature is in a contextual format, such as product description, customer

reviews, etc. Information supporting recommendation is normally collected from web-

site with massive of data accessible. Therefore, well-developed recommendation system

appears more often in the platforms of E-commerce and media business, like Amazon

Prime, Netflix, and Google.

In the field of manufacturing industry, quality control is a trivial but difficult topic which

determines the reputation of a company and its product. Even though artificial intelli-

gence (AI) is widely involved in many phases of manufacturing, quality control still lacks

AI applications to support with less data available. Another reason might be the fact that

very few pre-trained deep learning models can be utilized for a narrow scope of indus-

tries with terminology words in non-English.

This research is sponsored by a manufacturing company aiming to make its way of work-

ing smarter by using AI technology and its history data. The idea is to build a recommen-

dation system for production control system named as Manufacturing Execution System

(MES), providing relevant history cases to new issue case according to production issue

descriptions recorded by factory employees in a digital written format.

The data has been collected from MES during the period of 11/2016-06/2022 reported

by around 60 employees with over 30,000 comments on issue descriptions in the lan-

guage of Finnish.

8

Various of Natural Language Processing (NLP) methods are applied in recommendation

system modelling, such as TD-IDF, Word2Vec, spaCy, sentence transformers and Siamese

BERT (SBERT). NLP-based models enable the machine to search for documents within a

dense corpus that are highly related to new issue topic. Semantic similarity is computed

to retrieve the most relevant production issues by every single model.

Chapter 2 introduces the concepts which are engaged in the thesis, such as NLP, recom-

mendation system, and NLP-based recommendation system. The methodology chapter

describes the theories applied in this research. Content-based recommendation system

is further explained, and the principles of five NLP methods are briefly illustrated. Term

Frequent-Inverse Document Frequent (TF-IDF) are the baseline of those models by using

the frequency of the words and creating vectors for sentences. Word2Vec is a simple

neural network with the advantages of detecting analogy. SpaCy provides pretrained

pipelines for multiple languages with state-of-the-art performance. Sentence transform-

ers and SBERT are deep learning methods for vectorization, and they contain mature

pre-trained models for Finnish language. (LD, 2021) Evaluation metrics are introduced in

the methodology chapter as well to validate the performance of the recommendation

system. Precision @K (P@K), Average Precision @K (AP@K) and Mean Average Precision

@K (MAP@K) are three metrics to evaluate both order-unaware and order-aware lists.

In the chapter 4, the actual case study is demonstrated. After data pre-processing and

visualization, the NLP-based models are trained and tested by retrieving top 10 relevant

issue cases by randomly choosing an issue description. The obtained results are reviewed

with the conclusion that deep learning algorithms such as sentence transformers and

SBERT achieve best results compared to other methods.

In the end of chapter 4, some proposals are suggested for future optimization, such as

reviewing the result with online A/B testing or change target variable with different in-

terests. The recommendation system can be converted into collaborative filtering when

the structure of dataset changes with more engagement of system users. The limitation

of this research is revealed, leaving improvement space for future investigation. There

9

were some challenges to confront with during implementation, but the research is finally

completed with a relatively good result utilizing a smaller size of data compared with

other recommendation systems built from big data.

10

2 Natural Language Processing (NLP) and Recommendation

System

Rooted from 1950s, Alan Turing introduced a criterion of machine intelligence-Turing

test, which can measure the humanity of artificial intelligence with the engagement of a

computer program and a human judge in a real-time written conversation environment.

(A.M.Turing, 1950) As the progress of technology, computer has been developed into

understanding not only text but also voice like human. Nowadays in the era of big data

from various applications and Internet, people prefer to obtain precise suggestions, as-

sisting them to make efficient decisions from a tremendous number of products and

services. Many of the sources that recommendations come from are in textual form, like

user reviews, or product descriptions.

2.1 Natural Language Processing (NLP)

NLP, short for Natural Language Processing, evolved from computational linguistics, uti-

lizes approaches from different disciplines, such as computer science, artificial intelli-

gence, linguistics, and data science, enabling computers to understand human language

in both written and verbal forms. (Kavlakoglu, 2020)

The research and development of NLP have gone through the phases of symbolic-based,

statistical-based, and neural network-based NLP.

During 1950s to early 1990s, the machine can emulate a few functions of NLP tasks given

a collection of rules, such as automatic translating a limited number of sentences into

another language, therapist simulation working with restricted vocabularies, and con-

ceptual ontologies structured real-world information into computer understandable

data. Even though rule-based methods are less accurate than machine learning, sym-

bolic methods nowadays still take vital roles on NLP pipelines such as tokenization,

knowledge extraction from syntactic parses. (Wikipedia, Natural language processing,

2023)

11

Statistical NLP grew rapidly with the development of machine learning algorithms during

the period of 1990s and 2010s, which concentrating on building up statistical models,

providing soft, probabilistic decisions based on input features from dataset. Compared

with rule-based methods, machine translation works more efficiently by applying statis-

tical model on text corpus. With the availability of big data on the internet, statistical

NLP models can solve unsupervised or semi-supervised problems analyzing non-anno-

tated data or a combination of annotated and non-annotated data. (Wikipedia, Natural

language processing, 2023)

Neural networks NLP, utilizing deep learning instead of machine learning algorithms, be-

comes relatively popular since 2010s due to state-of-the-art result achievement in mod-

eling and parsing. Machine translation has been shifted to neural machine translation,

implementing neural networks approaches on sequence-to-sequence transformations.

(Wikipedia, Natural language processing, 2023) Higher-level NLP tasks such as question

answering, text summarization, grammatical error correction can be realized by captur-

ing semantic properties with word embeddings or even directly utilizing pretrained

model for transfer learning, which are some of popular techniques of neural networks.

NLP consists of enormous practical applications in the field of healthcare diagnoses,

cyber security, and online customer services. One of the famous NLP applications is

ChatGPT which is an artificial intelligence chatbot developed by OpenAI and launched in

November 2022. It uses supervised and reinforcement learning to build and fine-tune

large language models, providing solutions to customers across many domains of

knowledge. (Wikipedia, ChatGPT, 2023)

Common NLP tasks are listed like following: (Jung, 2021)

• Speech recognition (or speech-to-text): It is the task of converting voice to text.

12

There are many challenges for task realization, such as the way people talk, gram-
matical errors and background noise.

• Part of speech tagging (or grammatical tagging): It is a process for determining
the part-of-speech (PoS) tagging of a particular word or piece of text based on its
use and context.

• Word sense disambiguation: It is the selection of the meaning of a word with
multiple meanings through a process of drawing meaning from text.

• Named entity recognition (NRE): It is the process of finding entities that can be
categorized into names, locations, percentages, etc.

• Sentiment analysis: Performing opinion mining or emotion analysis from cus-
tomer reviews and analyzing it with NLP techniques.

• Natural language generation: Conversational systems like chatbots enable to gen-
erate text like human produced.

There are many other NLP tasks, like image captioning, question answering and so on,

which will not be analysed in this chapter.

2.2 Recommendation System

A recommendation system is a subclass of information filtering system, usually associ-

ated with machine learning, that uses big data to suggest or recommend additional prod-

ucts to consumers. (Nvidia, 2023) It is widely used especially in commercial industries by

providing personalized suggestions to enhance customer satisfaction, engagement, and

sales revenue. To illustrate the importance of recommendation system in real-world,

Amazon, Spotify and Google spent much effort on their own systems optimization. Net-

flix even organized a competition asking for a more advanced recommendation system

with 1 million dollars.

To suggest relevant items to users, recommendation systems can be classified into three

categories: (Figure 1)

13

• Content-based filtering

• Collaborative filtering

• Hybrid

Figure 1. Summary of the different types of recommendation systems algorithms

(Rocca, 2019)

Content-based filtering selects items based on the correlation between the content of

the items and this certain user’s preferences. For example, if user A read one article,

another similar article will be proposed to him or her. This technique can be user or item

centered, which will be further illustrated in the methodology session. (Figure 2) Con-

tent-based filtering has the advantage of no demand of other users and possibility of

niche items recommended, while it requires much domain knowledge and provides out-

comes merely based on existing interests of the user. (Krasnoshchok, 2014)

Collaborative filtering chooses items based on the correlation between people with sim-

ilar preferences. For example, if two articles were read by both A and B, the recommen-

dation system would define A and B as similar users, then the other articles read by A

will be suggested to B. Collaborative filtering can be divided into memory-based and

model-based approaches depending on whether the model is parametric or non-para-

metric related. (Figure 2) Compared to content-based filtering, collaborative filtering

doesn’t need domain knowledge and new interests can be discovered for users. However,

14

it is purely a cold-start method and difficult to include features beyond query.

(Krasnoshchok, 2014)

Figure2. Content based methods vs Collaborative filtering methods

(Source: https://www.themarketingtechnologist.co/building-a-recommendation-en-

gine-for-geek-setting-up-the-prerequisites-13/)

Hybrid recommendation system is the combination of content-based and collaborative

filtering methods, which possesses the advantages of content-based and collaborative

filtering, generates a more comprehensive system, and exhibits higher accuracy.

2.3 NLP-based recommendation system

Since the recommendation system is to suggest relevant items to users based on their

interests, the elements which can reflect users’ preferences or item’s attributes would

become crucial to analyse. Numerical data such as rate of a product, age of user or years

of working experience are normally easy to be handled, however, in the real-world the

most meaningful feature for recommendation systems is textual data, like user reviews,

product descriptions and audio messages in a conversation platform. Therefore, NLP

15

methods serve for data pre-processing, model training and prediction on textual related

input.

Pretrained models which have been previously trained on large dataset are popular to

implement as neural networks NLP boosted lately. Models from spaCy library based on

convolutional neural networks outperform a pipeline of functions for text processing and

understanding. Transformers, BERT (Bidirectional Encoder Representations from Trans-

formers) and GPT-3 represent excellent performance on NLP common tasks, reducing

computational cost and time, and saving the resources of building up a model from

scratch. Applying those deep learning methods enables the recommendation systems

working on the datasets in different languages without intentionally translation into Eng-

lish.

16

3 Methodology

Since the research is to find approaches retrieving relevant items based on textual de-

scriptions, the recommendation system is content based and implemented in Python by

the means of various NLP models. It is always good to quantitively evaluate the perfor-

mance of the models; thus, several evaluation metrics are introduced in this session.

3.1 Content-based Recommendation System

The content-based filtering is according to description of the items and recommends

relevant items to user. Unlike collaborative filtering methods, it has no restrictions of

cold start problem, which means that it can provide suggestions related to new entities

simply according to the features of the new items or users. The content-based methods

have the root of information retrieval and information filtering research, and it can be

categorized into item-centered and user-centered. If recommendation system uses sim-

ilarities between new item and previous items for suggestion, it can be defined as item-

centered, while recommending items by collecting user’s information is user-centered.

In this research, the recommendation system is content-based item-centered filtering

due to production issue description in the dataset as single feature space to compare

similarities with.

Selecting an appropriate similarity metric is the essential part of setting up a successful

recommendation system. There are multiple similarity metrics, and four commonly used

ones are briefly introduced in the thesis. (Deutschman, 2023)

• Cosine similarity: This metric is to measure the similarity between two vectors of
an inner product space, which is widely used in high-dimensional features, espe-
cially in text mining.

𝑐𝑜𝑠𝑖𝑛𝑒(𝑥, 𝑦) =
∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1

√∑ 𝑥𝑖
2𝑛

𝑖=1 √∑ 𝑦𝑖
2𝑛

𝑖=1

17

From the formular above, we can see that cosine similarity can compute the difference

between two given documents in terms of directions but not magnitude.

Figure 3. Cosine Similarity

The angle between two item vectors is the visual reflect to cosine similarity, (Figure 3)

the smaller the angle, the higher the similarity of two items would be. Converting angle

into cosine value, the cosine similarity can be interpreted in another way, that the larger

cosine similarity value is, the more likely two items would be alike.

• Jaccard similarity: This is the metric to measure the similarity between two sets
of data or binary vectors, dividing the size of the intersection by the size of the
union.

18

Figure 4. Jaccard Similarity (Chandana, 2021)

Jaccard similarity can be used for text mining, semantic segmentation, and recommen-

dation systems. However, it cannot apply to the vectors with rankings or ratings, and it

costs more for computation than cosine similarity.

• Euclidean distance: This is the distance metric for the L2-norm of a difference
between vectors and vector spaces. It can be applied in a user-centered recom-
mendation system for measuring the similarity of user’s preferences.

𝑑(𝑃𝑒𝑟𝑠𝑜𝑛𝑖 , 𝑃𝑒𝑟𝑠𝑜𝑛𝑗) = √(𝑋1 − 𝑋2)2 + (𝑌1 − 𝑌2)2

In the formula above, X and Y represent the scores a user ranks for two items. By calcu-

lating Euclidean distance, a preference space is generated between two users. The less

distance between User1 and User2 on ratings for two items, the more possibilities that

two users have similar tastes. However, Euclidean distance does not consider the corre-

lation between users and draws inaccurate conclusion on similarities. For example, if the

distribution of rates given by one user is much different from another one, the Euclidean

distance will imply dissimilarity between two users, however users can be likely corre-

lated with consistence on the ranking differences.

• Pearson correlation coefficient: This metric is to measure the slope of the line
that represents the relation between two vectors of users’ ratings. (Deutschman,

19

2023)

𝑟 =
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑛

𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 × √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

The coefficient of Pearson correlation ranges from -1 to 1, which 1 stand for fully positive

linear correlation, and -1 means fully negative linear correlation. If r equals to 0, there is

no linear correlation between two users. With the regression line as the model for pre-

diction, a new rate of a product can be estimated for one user.

 Figure 5. Process of recommendation system for cosine similarity comparison

In this research, cosine similarity is the metric selected for sorting and ranking relevant

items. Each textual description can be converted into a vector via different NLP methods,

and cosine value of the angle between vectors determines the score of two items’ simi-

larity. (Figure 5) The recommendation system listed top k (k=10) relevant history cases

for new query in a decreasing similarity score order.

Jaccard similarity is another metric for evaluating model performance with Precision @K,

Recall @K and F1 score @K. However, it is generally calculated for order-unaware rec-

ommendations. If the ranking of relevant items matters, Average Precision @K (AP@K)

and Mean Average Precision @K (MAP@K) are computed.

20

3.2 Python Libraries for NLP

The research for case study was implemented by Python, which can be seen as one of

the most efficient and user-friendly programming languages with its large number of

open-sources libraries available. Python provides a wide range of NLP tools and libraries

to handle various tasks, such as topic modelling, document classification, part-of-speech

tagging, word vectors, sentiment analysis, and so on. Here lists some popular ones: (Jung,

2021) (McFarland, 2022)

• Natural Language Toolkit (NLTK): It is an open-source library strong at text pro-
cessing for classification, tokenization, stemming, tagging, parsing and semantic
reasoning.

• SpaCy: It is an open-source library with pre-trained statistical models in over 64
languages, integrating with other deep learning libraries such as PyTorch and Ten-
sorFlow.

• Gensim: It is an open-source library originally for topic modelling, and develops
into algorithms implementation, such as Word2Vec, FastText, Latent Semantic
Analysis, etc. It can be applied to find text similarity by converting words and
documents to vectors.

• Sklearn: It is an open-source library for data analysis, solving text classification,
regression, clustering, dimensionality reduction, preprocessing and model selec-
tion problems.

• Transformers: It is a Python library accessible to pre-trained models dealing with
NLP tasks like sequence classification, text generation, and so on.

• Pytorch: It is an open-source library to carry out NLP and computer vision tasks
with powerful APIs, ensuring quick processing even working on complex and big
data.

In this research, all the libraries above have been employed in the phase of data pre-

processing, model training and prediction.

21

3.3 NLP Methods

To measure cosine similarity of textual data, document representation is a critical step

by converting text document into vectors. The baseline model is to regard the document

as a bag-of-word without considering the relation of those words within vectors. There-

fore, the expression of document meaning and structure, word dependency and se-

quence becomes insufficient. Computing similarity between two documents will also

turn to be difficult in the case of analogy existence. Additionally, other models for docu-

ment representation are developed, such as Latent Semantic Analysis, Probabilistic La-

tent Semantic Analysis, Latent Dirichlet Allocation, Random Indexing and Language Mod-

els. (Jung, 2021) In this research, vector space model and language models have been

applied on document representation.

3.3.1 TF-IDF

Term Frequency-Inverse Document Frequency is the abbreviation of TF-IDF, which is a

widely used numerical statistical method in information retrieval by quantifying the im-

portance of each word in the given document relative to a corpus (the total document

set). By the means of TF-IDF, textual data is vectorized in the form of numerical value,

making the data easier to be analyzed with any programming tools. In a recommenda-

tion system, the search engine aims to figure out relevant documents and ranks them in

a descending order of similarity score based on a given query sentence. TF-IDF is an ef-

ficient method for calculating similarity score in a vector space model. Literally speaking,

TF-IDF is a matter of TF and IDF. TF stands for Term Frequency, while IDF represents In-

verse Document Frequency.

TF-IDF= TF*IDF

Term Frequency measures how often a term appears in a particular document, which is

highly depended on the document length and word generality. (Scott, 2019) However,

the length of the document should not become the factor affecting the word importance,

22

therefore the term frequency is normalized by divided with the total number of terms in

the document. Term frequency is calculated for all the possible words in the corpus.

TF (term, document) = (count of term in document) / (number of words in document)

Alike cosine similarity score, the value of term frequency ranges from 0 to 1. Nonetheless,

some common appearing words indicate wrong importance merely from term frequency,

such as ‘the’, ‘a’, ‘are’. Taking those words into serious account for text analysis will lead

to bad results, hence some of them are grouped as “Stop Words” which are normally

removed in the data preprocessing phase, while some non-StopWord detected by all the

documents are given less weight to reduce their importance in the corpus by calculating

inverse documents frequency.

Document frequency measures the importance of documents containing the term in the

whole corpus. By inversing the document frequency, most occurring words in all the doc-

uments present low discriminative value, ensuring that all the target terms could acquire

reasonable weights for further analysis.

IDF (term) = log (total number of documents / number of documents with term)

In some special cases, there might be no document including target term, so the denom-

inator adds 1 to keep IDF formular valid.

 IDF (term) = log (total number of documents / (number of documents with term+1))

TF-IDF provides the importance score for each term in the query document by assigning

more weight to words that occur only in a document but not too frequently in the rest,

(Jung, 2021) under the assumptions that the relevance of a term to the document topic

depends on its frequency in the document, while higher frequency of a term appears in

23

all documents could discriminates poorly between documents. (Robin van Meteren,

2000)

In this research, the recommendation system with TF-IDF model has suggested top k

(k=10) items according to the cosine similarity between query vector and documents’

vectors from embedded matrix.

3.3.2 Word2Vec

Artificial Neural Networks (ANN) take critical role in feature extraction for NLP tasks. By

building dense vectors for each word named as word embeddings, the data becomes

more informative by capturing word analogies and word similarities which bag-of-word

is incapable to do. Word2Vec embeddings introduced by Tomas Mikolov in 2013,

(Mikolov, 2013) demonstrated a simple neural network model can learn high-quality

word vectors from relatively huge dataset. The dense vector from Word2Vec embed-

dings model enables queries and logical reasoning from large corpora. (Hapke, 2019) For

example, the vector like “Finland-Helsinki+ Sweden = Stockholm” can be read as “Finland

is to Helsinki as Sweden is to Stockholm”.

Figure 6. Word2Vec model architecture

24

Word2Vec model contains an input layer of one-hot-encoded unique words vector, a sin-

gle hidden layer of word embeddings and an output layer of probability of being neigh-

boring word. (Figure 6) Weight matrix will be extracted from the final hidden layer and

perform as word embeddings for test document vector extraction. (Joshi, 2022)

To illustrate Word2Vec better, an example sentence is considered:

The University of Vaasa is an internationally competitive university with a

high-level expertise in business, technology, management and communi-

cations.

“university” in red is the center word, and the words in blue are neighboring words with

a context sliding window size of three. Word2Vec in this case is to calculate the proba-

bility of every single word in the vocabulary of being neighboring word in blue.

Figure 7. Word2Vec Architectures

25

There are two models for Word2Vec, Skip-gram and CBOW short for Continuous Bag-of-

Words. (Figure 7) Skip-gram is to predict the context by given the centre word, which is

suitable for small size of data and uncommon words. Continuous bag of words is to pre-

dict the centre word by given its context, which is faster and working well on common

words. (Jung, 2021)

In this research, a content-based recommendation system has employed a CBOW model

to endorse the top k (k=10) relevant items according to query encoded vector.

3.3.3 SpaCy

SpaCy is a free and open-source library for information extraction and natural language

understanding. Although spaCy can independently implement some of its features, load-

ing statistical models enrich the power of spaCy across a variety of languages for per-

forming NLP tasks, such as part-of-speech tagging, named entity recognition, and de-

pendency parsing.

The statistical models are trained pipelines, providing a series of components for linguis-

tic annotations. People might have a better insight on the perspective of contextual data

grammatical structure with spaCy models engaged. Spacy models build up a trained

pipeline for a text string going through tokenizer, tagger, parser, ner, ending up with an

NLP model object. (Figure 8) (Sanagapati, 2020)

Figure 8. SpaCy’s Processing Pipeline

26

Tokenization is the first step that spaCy model splits text into words based on whitespace

characters, specific rules and punctuations. For example, “John can hit the ball.” would

be word-tokenized as a list of [‘John’, ‘can’, ‘hit’, ‘the’, ‘ball’, ‘.’]. (Figure 9)

After tokenization, Part-of-Speech Tagging assigns grammatic word tag like noun, pro-

noun, verb to each token, indicating the word function in the sentence. (Figure 9)

Dependency Parsing identifies the relationship between root word and other words in a

sentence. Normally, the first verb in a text can be regarded as root word, since it is close

to the beginning of a sentence with less dependence to others and verb is usually more

informatively valid to be focused and analyzed. The edges in the figure below represent

the grammatical relationships between words and root word. (Figure 9)

Figure 9. Dependency Parse Tree of an Example English Sentence (Peng Xu, 2009)

Lemmatization is to reduce the inflected words by replacing with root word. For example,

studying and studies are replaced by their base form ‘study’, which can lower the amount

of analyzing words and normalize text at the same time.

Sentence boundary detection could extract sentences from given text, dividing by

comma character. Consider a text “I like summer in Finland. In the summer, I go to forest

picking up berries and mushrooms.” This text is split into two meaningful units from sign

of dot for further investigation such as entity extraction.

27

Named entity recognition (NER) can assign a name to some certain words. For example,

$10 million is entitled as money in NER feature. Since NER highly depends on pretrained

examples of selected model, spaCy is not always promising for NER, with tuning and op-

timization needed.

Entity detection can recognize critical elements, extracting information effectively from

text. With supported entity types provided by spaCy, some words are entity identified

and labeled. For instance, numbers are entitled as cardinal, locations are entitled as GPE,

etc. (Figure 10)

Figure 10. Entity Detection by spaCy

Similarity can be determined by comparing built-in vectors provided by spaCy model.

The larger statistical models are loaded, the more vectors are included to compare with.

Similarity prediction is a common method to build a recommendation system, and spaCy

becomes one possible tool for likeliness prediction among objects.

In this research, “fi_core_news_lg”, a finnish pipeline optimized for CPU, has been cho-

sen for retrieving the embedded vectors of text.

28

3.3.4 Sentence Transformers

Transformer introduced in 2017 (A.Vashwani) is one of the most powerful and state-to-

the-art approaches to NLP tasks using the attention mechanism solving the bottleneck

issue between encoder and decoder models that old recurrent neural networks (RNN)

created.

Figure 11. Encoder-decoder with the attention mechanism (PINECORE)

Context vector produced by encoder model is passed into attention mechanism with less

information loss. Decoder produces translated text as a continuation of encoder. The

attention mechanism can figure out the relationships between all words in a sentence.

(Figure 11) For example, given the sentence “The dog’s bark was so vicious”, the trans-

former pays attention to the word “dog” and determines that the word “bark” refers to

the sound made by a dog instead of the outer layer of a tree in this sentence. Trans-

former contributes a remarkable change to NLP ecosystem with excellent performance

and incredible capability for generalization.

Pretrained transformer model achieves various functions simply by shifting the order of

last few layers, however, sentence-level embeddings are not the ones transformer model

29

working on for producing sentence vector, resulting into insufficiently capturing the com-

plete semantic meaning of phrases. Sentence transformers based on SBERT utilizing

mean pooling on the final output layer could generate sentence embeddings.

A python library called sentence-transformers provides multiple models for different

tasks, such as feature extraction and sentence similarity. “paraphrase-multilingual-

MiniLM-L12-v2” is a quick sentence transform model with high quality, mapping sen-

tences and paragraphs to a 384-dimensional dense vector space. (sentence-

transformers/paraphrase-multilingual-MiniLM-L6-v2, ei pvm) Pretrained Finnish sen-

tence embeddings are obtained with sentence transformers of “sbert-cased-finnish-par-

aphrase” trained by Turku NLP Group. For the purpose of this research, those two mod-

els have been applied on computing items’ similarity.

3.3.5 SBERT

BERT stands for Bidirectional Encoder Representations from Transformers, delivering an

incredible result on implementing NLP tasks. The base of BERT is the transformer archi-

tecture with the additional ability of bidirectionally training by understanding the text

from left-side and right-side simultaneously. Unlike transformer, BERT as a stack of en-

coders applies Masked Language Modelling (MLM) by the means of masking 15% words

randomly and predicting the masked word within the sequence itself according to the

full context of the sentence. (Sanagapati, 2020)

There are many BERT models free of charge in Hugging face, an AI community providing

state-of-the-art models for various NLP tasks. One reason BERT gets highly promoted is

due to the fact that it is straightforward to use for specific tasks, by simply adding a small

layer to the core model. For example, to measure sentence similarity with BERT, a clas-

sification head fully connects to the top of the Transformer output. (Figure 12)

30

Figure 12. The BERT cross-encoder architecture of a BERT model for sentences simi-

larity (PINECORE)

Compared to cross-encoder architecture, BERT with a Siamese architecture (SBERT) em-

ploys mean pooling on the final output layer to acquire a sentence embedding instead

of classification head. A Siamese architecture applies on BERT with two identical BERTs

in parallel and shares the same network weights. (PINECORE) (Figure 13)

31

Figure 13. SBERT model for sentence embeddings (PINECORE)

This research has employed two sentence-transformer models from Hugging Face, “par-

aphrase-multilingual-MiniLM-L12-v2” and “sbert-cased-finnish-paraphrase”, to build up

recommendation system.

3.4 Evaluation Metrics

Normally, it is not easy to measure the performance of a recommendation system be-

cause of insufficient data available to a new business or working on unlabelled data.

However, being able to evaluate it in a quantity way is necessary for model selection and

optimization. In general, evaluating a recommendation system can be based on well-

defined metrics and human judgement. Since the dataset in this research was extracted

from a production control system (MES), the performance of recommendation system

was incapable to be measured by real users in an offline situation. Therefore, only met-

rics-based evaluation is illustrated in the paper, leaving human evaluation to expert or

future A/B online testing once the recommendation system is embedded into MES.

32

To apply classification metrics for further evaluation, the dataset should be labelled with

a target variable for relevant or irrelevant identification. Moreover, the list retrieved by

the recommendation system should be also considered as order-aware or order-una-

ware. For order-aware system, ranking-based metrics give a better insight on order in-

fluence. While for order-unaware system, using decision support metrics ignores the

ranks of the suggested items, just focusing on the numbers of relevant items retrieved.

The ranking-focused metric is more useful for a practical system since users pay more

attention on top recommendations instead of all the items in the list. In order to under-

stand ranking-based metrics better, decision support metrics are firstly introduced.

3.4.1 Decision support metrics

In a binary classifier, precision and recall are classical metrics to quantitively categorize

items into correctly predicted and incorrectly predicted. Expanding to recommendation

system, both top k items suggested and items unsuggested are grouped by relevant or

not, converting the problem into a binary issue. (Table 1)

Table 1. Confusion matrix of recommendation results (Deutschman, 2023)

The list including all recommended items can be trimmed into subsets indexed by k con-

sidering the first k items. Precision @K and Recall @K are the score of precision and recall

calculated for the subsets from rank 1 to k.

33

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @𝑘 =
#𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃)

𝑜𝑓 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑒𝑑 𝑖𝑡𝑒𝑚𝑠 (𝑘)(𝑇𝑃 + 𝐹𝑃)

𝑅𝑒𝑐𝑎𝑙𝑙 @𝑘 =
𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝑠 (𝑇𝑃)

𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 (𝑇𝑃 + 𝐹𝑁)

Table 2. Calculation of precision @k (Deutschman, 2023)

Table 3. Calculation of recall @k (Deutschman, 2023)

Recall @K is easy to interpret with considering all the relevant items in the whole dataset,

however, it can return a deceptive result with a perfect score as increasing k to total

number of items.

34

F1 @K is defined as the harmonic mean of Precision @k and Recall @k, combining those

two metrics into one.

𝐹1@𝑘 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @𝑘 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙 @𝑘

𝑝𝑟𝑒𝑐𝑖𝑠𝑜𝑛 @𝑘 + 𝑟𝑒𝑐𝑎𝑙𝑙 @𝑘

From the formular above, F1@K gives equal weight to Precision @K and Recall @K,

which is designed well for imbalanced dataset.

Precision @K, Recall @K and F1 @K are generally calculated for single item recommen-

dation.

3.4.2 Ranking-based metrics

When a recommendation system returns a descending ordering of items, ranking-based

metrics should be considered.

Unlike Precision @K (P@K) which simply takes account the number of relevant items in

the subset, Average Precision @K (AP@K) rewards the correct retrieved recommenda-

tions on the top of the list.

𝐴𝑃 @𝑘 =
1

𝑚
 ∑ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 @𝑘 ∗ 𝑟𝑒𝑙(𝑘)

𝑁

𝑘=1

𝑟𝑒𝑙(𝑘) = {
0, 𝑖𝑓 𝑖𝑡𝑒𝑚 𝑎𝑡 𝑘𝑡ℎ 𝑟𝑎𝑛𝑘 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

AP@K is the sum of P@K where the item at the kth rank is relevant divided by the total

number of relevant items in the top k recommendation list. (Rink, 2023)

35

Figure 14. Example of relevant items on different ranks (Rink, 2023)

From figure 14, the values of AP@K are different even with the same number of relevant

items, simply due to the ranking difference. AP@6 having relevant items on the first two

places in the list obtain higher AP@K score compared to placing them on the bottom of

the list. AP@K penalizes recommendations for lower relevant ranks, but it is not able to

penalize for including additional irrelevant items into the list. Thus, the model should

aim to retrieve the most relevant items and place them on the very first orders. AP@K is

typically computed for one item from all recommendations by averaging Precision @1

to Precision @K.

Mean Average Precision @K (MAP@K) implies the mean value of AP@K for all items.

(Rink, 2023)(Figure 15)

𝑀𝐴𝑃@𝐾 =
1

𝑀
∑ 𝐴𝑃@𝐾

𝑀

𝑗=1

36

Figure 15. Example of MAP@K (Rink, 2023)

MAP@K is a popular evaluation metric for information retrieval applications, considering

returned items as order-aware list. There are other ranking-based metrics which are use-

ful for collaborative-filter recommendation system, such as Normalized Discounted Cu-

mulative Gain (NDCG@K) and Average Reciprocal Hit Rank (ARHR). Since this research

only concentrates on building a content-based recommendation system, other ranking-

based metrics will not be further explained.

3.4.3 Other metrics

Recommendation does not mean prediction, thus other metrics besides of accuracy re-

lated should be studied.

Coverage, one of recommendation-centric metrics, represents the percentage of recom-

mended items in the whole dataset. The result can be close to 100%, proving that the

system can suggest every single item. However, for the popularity-focused system, cov-

erage value is nearly 0% by only retrieving top k out of all items. (Deutschman, 2023)

From the perspective of business, metrics for cold-start problem are not sufficient be-

cause of lacking the reaction and feedback from real users. A/B testing is a reliable

37

method, statistically measuring the recommendation impact on business. (Deutschman,

2023)

38

4 Case Study

A manufacturing company has operated on a production control system (MES) to record

daily work activity. Employees have reported production issues into system for further

investigation. With the amount of issue cases increasing, the owner of the system was

curious about the possibility to utilize history data for predicting some attributes of new

production issue. The preliminary idea was to build a recommendation system focusing

on issue description text. If the result satisfies, the recommending function might be

added to new version of MES.

4.1 Data collection and introduction

The data from production control system (MES) was recorded and managed by around

60 different people and it could be extracted and saved in an excel csv file. This research

only focused on the data released from 17/11/2016 to 10/06/2022. The rows standing

for cases of the production issue were created by factory employees from their daily

working activity. The columns represent different attributes for each case. Read from

python, the data contains 30,751 instances and 65 features. Luckily, not all the variables

match the interest for a recommendation system, meaning that the data could be re-

duced in terms of feature selection.

 “COMMENT_TEXT” is the key variable referring to the issue description with a human

free-text in a digital style. One example sentence from “COMMENT_TEXT” is like

“Sumpun putkien päiden suojaus toteutettu monella erilaisella tulpalla ja 3 eri väriä.

tulpat pieniä ja jää putken sisään ja niitä ei meinaa huomata. (allas oli myös tosi likainen

vaikka suojattu) Voisiko suojatulpat muuttaa näkyvämmäksi ja isommalla ulostulevalla

kauluksella?” To track cases easily, “DEVIATION_NO” has been chosen due to its unique

values for every single case. A feature should be selected as a target variable for perfor-

mance evaluation, such as a categorical variable called “REASON_CLASS”. “DEVIA-

TION_REASON_CODE_ID” and “ROOTCAUSE_REASON_CODE_ID” are two subclass vari-

ables out from “REASON_CLASS”, which are also included in the subset on the purpose

39

of further display of “REASON_CLASS” in a recommendation system. The last chosen var-

iable is “MATERIAL_DESCRIPTION” due to the interest of correlation between descrip-

tion of material and production issue. After feature selection and duplicates removing,

the data is in the shape of 30,748 instances and 6 features.

The unique number for those 6 variables is checked, especially on those potential cate-

gorical variables for performance evaluation. There are 12 classes for “REASON_CLASS”,

72 for “DEVIATION_REASON_CODE_ID”, and 259 for “ROOTCAUSE_REASON_CODE_ID”,

inferring that employees have many options to choose category and misclassification

might easily take place as large number of subclasses available. Therefore, it is better to

use “REASON_CLASS” with a smaller number of classes for measuring the accuracy of

recommendation system.

It is not necessary to analyse missing values in the dataset, which can be handled by

deleting them. One thumb of rule is to drop entire column if this column has more than

half of the rows as null. Therefore, “MATERIAL_DESCRIPTION” is removed due to con-

taining 16,341 missing values. There is no point to put effort on analysing “NaN” values

from “COMMENT_TEXT”, so 6,692 instances are also removed. The data is finally pre-

sented with 24,056 instances and 5 features left.

4.2 Data Pre-processing

The raw text recorded by different people can be ambiguity and inconsistent. Text pre-

processing is an essential step to clean up the sentences from key variables, “COM-

MENT_TEXT” in this thesis. There are some common text pre-processing steps, such as

lowercasing, removing stopwords, removing punctuations, tokenization, stemming, lem-

matization, etc.

Imported NLTK library, several packages for text pre-processing can be downloaded. All

the words in the sentences are lowercased, which is helpful for TF-IDF, avoiding token

duplication with different casings.

40

Non-alphanumeric character and punctuation using regular expression patterns

(A.M.Kuchling, ei pvm) are removed. The length of sentences is limited between 4 words

and 200 words and sentences out of such limit range are dropped as well.

Stopwords are frequent words with less valuable information, which are always removed

from the corpus. Different libraries like spaCy, gensim, Scikit-learn, contain different

amount of stopwords. In this research, 179 stopwords from NLTK library are detected

and removed. (Figure 16)

Figure 16. Finnish Stopwords with NLTK library

Tokenization is the process transforming a text into a list of sentences, words or even

characters called tokens. The sentences from “COMMENT_TEXT” are split into words.

Lemmatization is to convert the word to a generic form, such as inflected words of “run-

ning, ran, runs” to generic word of “run”. Stemming reduced the words to their root

forms, but the root word might not be a valid one compared with lemmatization. Both

ways of changing words are durable. Voikko, a linguistic tool works effectively on Finnish

lemmatization. However, installing and implementing it in Windows system is compli-

cated. Thanks that stemming with “SnowballStemmer” performs good enough in Finnish

language. Therefore, stemming is done for text pre-processing instead of lemmatization.

41

After all the pre-processing mentioned above, three new columns are added to the da-

taset. They are “clean_COMMENT_TEXT” that the sentence is mainly alphanumerical

text, “tok_stem_COMMENT_TEXT” with lists of stemming and tokenized data, and

“clean_tok_stem_COMMENT_TEXT” that combines tokens into new sentences.

4.3 Data Analysis and Visualization

Data visualization is a trivial strategy in exploratory data analysis, especially for big data.

People can quickly understand the trend of data, detect abnormalities, and make general

summarizes from data graphics, such as charts, plots, histograms, etc.

The distribution of “REASON_CLASS” is visualized as histogram. (Figure 17) There are big

differences among 12 reason classes with some classes like “Tuotteen laaduttomuus”

containing up to 8811 instances and some classes like “Automatic Deviation For Missing

Part” having less than 10 instances. The data is apparently imbalanced in terms of clas-

sification. However, the recommendation system is built solely based on “COM-

MENT_TEXT” without any target variable involved for model training. “REASON_CLASS”

works simply as the role of evaluation reference variable. In this case, it is not necessary

to balance dataset since the Mean Average Precision @K (MAP@K) are calculated for

every single instance. Even though by removing some minor classes could slightly in-

crease the MAP@K score, (Figure 18) it does not make sense to intentionally delete that

information with the potential risks of more instances adding to minor classes in MES

later on.

42

Figure 17. Distribution of 12 reason classes

Figure 18. Distribution of 9 reason classes after removing minor ones

Wordclouds is a common example of quantities visualization, representing word fre-

quency. The larger the words are, the more often the words are appeared in the texts.

The figures of wordclouds for every reason class are shown in Appendix 1. (Appendix 1)

N-grams analysis is a straightforward method for text mining by analysing the neighbour-

ing sequences of tokens in a document. N is a positive integer, standing for the number

of words in a sequence. For example, in the sentence “The girl walks through the corri-

dor.” When N=1 (known as unigram), the N-grams is “the”, “girl” “walks” “through”, “the”,

43

“corridor”; when N=2 (known as bigram), the N-grams is “the girl”, “girl walks”, “walks

through”, “through the”, “the corridor”; when N=3 (known as trigram”), the N-grams is

“the girl walks”, “girl walks through”, “walks through the”, “through the corridor”. In this

research, N-grams are developed as unigram, bigrams, and trigrams for production issue

descriptions. From figures below, bigrams and trigrams are effective for extracting issue

information. (Figure 19) (Figure 20) (Figure 21) “Puutu” is the most common word de-

rived from different N-grams models. This makes sense in a way because “Puutu” is

“missing” related and missing can be covered over a couple of reasons, such as missing

instruction (ohje puuttuu), missing part (osa puuttuu), missing from shelf (puuttuu

hyllystä), missing from collection (puuttuu keräyksestä). (Kangas, 2021) More useful in-

formation can be read by listing frequent words, such as “ei voi asent”, “ei ole”, “ei sovi

paika”. It is normal with many occurrence of negative words due to the “COM-

MENT_TEXT” standing for the issue taken place in the production line.

Figure 19. Unigram of cleaned “COMMENT_TEXT” sentence

44

Figure 20. Bigrams of cleaned “COMMENT_TEXT” sentence

Figure 21. Trigrams of cleaned “COMMENT_TEXT” sentence

4.4 Model Training and Recommendation

The recommendation system has used sentences from “COMMENT_TEXT” and applied

NLP-based machine learning model to represent each description text as a numerical

45

feature vector with the size of 21,117. An embedded matrix generated from those fea-

ture vectors covers all the information of product issue description in the shape of

(24,056, 21,117). Each row vector from embedded matrix stands for one issue case, that

new query sentence vector can be computed with, to get a cosine distance. (Figure 22)

This research has experimented with TF-IDF, Word2Vec, spaCy, sentence transformers

and SBERT, to build recommendation system.

Figure 22. Process of building recommendation system (LD, 2021)

4.4.1 TF-IDF

The first model has used TF-IDF to measure similarity between query text and issue de-

scriptions for the whole dataset. After fitting “clean_tok_stem_COMMENT_TEXT” to the

TF-IDF model, an embedding vector with 21,117 dimensions is generated for each issue

description. A feature matrix with the shape of (24,056, 21,117) contains the issue de-

scription information of the whole dataset. The recommendation system retrieves the

first 10 instances in the descending order of average cosine distance between query text

vector and each row vector in embedded feature matrix. TD-IDF model is simple to un-

derstand and fast to train.

Let’s take an issue description to suggest relevant issue cases with TF-IDF-based model.

The query sentence is “sentryläpiviennit puuttu keräyksestä” randomly chosen from

“COMMENT_TEXT”, and the top 10 recommendations are shown as below. (Table 4)

46

Table 4. Display of Recommendation system based on TF-IDF model

If “REASON_CLASS” variable is utilized for calculating quantity evaluation result, Preci-

sion @10 (P@10) is 0.60 and Average Precision @10 (AP@10) in TF-IDF-based recom-

mendation system is 0.85.

4.4.2 Word2Vec

Word2Vec is a simple neural network with two layers. The model trains in a Continuous

Bag of Words (CBOW) architecture on a few epochs with token list fitted. Word2Vec

model is not able to produce vectors for the words that were not in the corpus token list,

hence those words in the query document should be removed. Different from other ap-

proaches, Word2Vec is worse to process stemming words which are not valid root ones

in a corpus. Therefore, only tokenized word lists are fitted in the training model for word

embedding extraction.

Word2Vec gives the following recommendations for the query sentence “sentryläpivien-

nit puuttu keräyksestä”. (Table 5)

47

Table 5. Display of Recommendation system based on Word2Vec model

P@10 and AP@10 are 1 by suggesting the top10 relevant issue cases all belonging to

correct reason class.

4.4.3 SpaCy

SpaCy contains multiple trained pipelines for various languages, including the processing

of tokenization, lemmatization, and word-level vectorization. By loading a Finnish pipe-

line optimized for CPU, it is adequate simply providing sentences from “COMMENT_TEXT”

without pre-processing. Pre-trained weights from “fi_core_web_lg” pipeline contains

200k floret vectors in 300 dimensions trained on Finnish webpages corpus.

With the same query sentence “sentryläpiviennit puuttu keräyksestä”, spaCy suggests

the following instances. (Table 6)

48

Table 6. Display of Recommendation system based on spaCy model

Even though spaCy is expected to be more powerful than TF-IDF, for this sentence both

P@10 and AP@10 are lower than TD-IDF with 0.80 and 0.73 respectively.

4.4.4 Sentence Transformers

Sentence Transformers provide high-level pretrained models, achieving more robust and

accurate result. Two models are tested to find semantically similar sentences within one

language or across languages. They are “paraphrase-multilingual-MiniLM-L12-v2”

trained on parallel data for over 50 languages and “TurkuNLP/sbert-cased-finnish-para-

phrase” mainly focus on Finnish.

Query sentence like “sentryläpiviennit puuttu keräyksestä” obtains following top 10 rec-

ommendations. (Table 7) (Table 8)

49

Table 7. Display of Recommendation system based on Turku-NLP transformers model

Table 8. Display of Recommendation system based on multilingual transformers

model

There is an obvious improvement employing sentence transformers-based models, es-

pecially on Turku-NLP sentence transformers. P@10 and AP@10 are 0.90 and 1.00 using

Turku-NLP pretrained models. And P@10 and AP@10 are 0.70 and 0.73 using multilin-

gual pretrained models. Compared to the previous methods, the result of this query sen-

tence with Turku-NLP transformers model is very good mainly due to the reason that the

most relevant items are ranked on the top of the list. However, encoding sentences for

corpus embeddings with sentence transformers cost longer time, especially Turku-NLP

transformers model with 1h 23 min CPU time.

50

4.4.5 SBERT

Sentence transformers with Hugging Face architecture add mean pooling on the final

output layer to infer a vector for each word and average them for each sentence. For

avoiding loading out of memory, the model generates embed matrix with a batch of data.

Compared to the implementation with sentence transformers, the code for SBERT is

longer by customizing an additional class bundling a series of functions, such as tokeni-

zation with AutoTokenizer, loading pretrained model with AutoModel, creating embed-

ded matrix, adding mean_pooling layer, etc. SBERT seems to be more complex but also

flexible for self-design model structure available.

The SBERT-based recommendation system retrieves the first 10 relevant items for the

same query test sentence “sentryläpiviennit puuttu keräyksestä “as below. (Table 9) (Ta-

ble 10)

Table 9. Display of Recommendation system based on Turku-NLP SBERT model

51

Table 10. Display of Recommendation system based on multilingual SBERT model

For Turku-NLP SBERT model, P@10 is 0.90 and AP@10 is 0.95. while for multilingual

SBERT model, P@10 and AP@10 are 0.7. Apparently, Turku-NLP SBERT performs better

than multilingual model, however, training Turku-NLP model takes 2h 23min CPU times

compared with 1h 5min for multilingual one. Normally, running time can be shortened

much with the same training configuration if GPU is accessible.

4.5 Results

As for the query sentence “sentryläpiviennit puuttu keräyksestä”, Word2Vec achieves the

best result, recommending the first ten relevant issue cases sharing the same reason

class as the query sentence. However, we cannot guarantee that Word2Vec always per-

forms the best on other issue cases. To check AP@10 for other production issues, a few

query sentences from different reason classes were tested. (Table 11)

52

Table 11. Average Precision @10 for more test sentences

TF-IDF Word2Vec spaCy Multilingual

Sentence

Transform-

ers

Turku-NLP

Sentence

Transform-

ers

Multilingual

SBERT

Turku-NLP

SBERT

kiertokangenalaosien vaarnanreiissä ruostetta.

1 1 1 1 1 1 1

Vaiheensiirto asennetaan kun moottori on siirretty pois asennuspetiltä.

1 0.5 0.74 0.81 1 0.81 1

linja 2 vaihe 5 rehobot pumppu lähetetty korjattavaksi 4-5 kk sitten ei oo sen jälkeen näkyny

0 0.26 0.29 0.33 0.33 0.33 0.33

puuttuu keräyksestä

0.16 0.35 0 0.40 0.29 0 0

From the table above, there are relatively big differences on AP@10 with those NLP

methods based on test sentences. “kiertokangenalaosien vaarnanreiissä ruostetta.”

achieves perfect result, while “puuttuu keräyksestä” from reason class of “Menetelä”

obtains poor AP@10. Word2Vec cannot perform best on all the other test sentences,

therefore the metric working on all the production issue cases should be computed to

evaluate NLP-based models.

Mean Average @K (MAP@K) can measure the general precision for the whole dataset,

taking order importance into consideration. The result is shown in the Table 12.

53

Table 12. Mean Average Precision @10 for five models

NLP methods MAP@10

TF-IDF 0.58

Word2Vec 0.56

spaCy 0.60

Multilingual Sentence Transformers 0.64

Turku-NLP Sentence Transformers 0.67

Multilingual SBERT 0.62

Turku-NLP SBERT 0.64

Deep learning models (Sentence Transformers and SBERT) perform better than other

models. And Turku-NLP pretrained models achieve slightly better MAP@10 score com-

pared to Multilingual models. The outperformance of deep learning methods implies

that the dataset used for this research is relatively large enough for model training with

deep learning algorithms. The results obtained from machine learning and deep learning

models can be compared with dummy classifier by assigning all samples to the biggest

reason class. The precision of dummy classifier is 0.34, indicating that all those methods

applied in this research are more reliable.

AP@10 for every single model has been demonstrated by histograms shown in Appendix

2. The distribution of AP@10 proves the outperformance of sentence transformers using

Turku-NLP pretrained model, with the highest proportion of forever-correct recommen-

dation (AP@10=1) and the lowest proportion of never-correct recommendation

(AP@10=0). Word2Vec provides quite clearly the worst result with almost equal propor-

tion of forever-correct (AP@10=1) and never-correct (AP@10=0) recommendations.

It would be also interesting to investigate MAP@10 for every reason class. (Appendix 3)

Seen from the distribution plots, MAP@10 score is highly depended on the number of

instances for each class. The larger reason class is, the higher MAP@10 would achieve.

Assuming of increasing MAP@10 by including larger reason classes, the last three reason

54

classes “MES”, “Koneet ja laitteet” and “Automatic Deviation For Missing Part” have

been removed as a test. However, there is no further improvements as expected. (Table

13) Therefore, it is not necessary to spare effort on data reduction.

Table 13. Mean Average Precision @10 for five models with three minor reason clas-

ses removed

NLP methods MAP@10

TF-IDF 0.58

Word2Vec 0.56

spaCy 0.60

Multilingual Sentence Transformers 0.64

Turku-NLP Sentence Transformers 0.67

Multilingual SBERT 0.62

Turku-NLP SBERT 0.65

Time cost is another factor that people consider for picking up models. Even though

Turku-NLP-based sentence transformer performs the best, the training time takes longer

than other deep learning models. (Table 14) Model selection should be according to

trade-off strategy case by case.

Table 14. Time consumption on deep learning model training

Model CPU Times

Multilingual Sentence

Transformers

31min 27s

Turku-NLP-based Sentence

Transformers

1h 20min 36s

Multilingual SBERT 1h 5min 47s

Turku-NLP-based SBERT 2h 23min 26s

55

5 Conclusions, Discussions and Future Works

The main purpose of this research is developing a recommendation system providing

machine learning NLP-based models that would upon by feeding production issue de-

scriptions, to retrieve relevant history production issue cases, which could potentially

add values to the manufacturing process as a new feature. The data was collected from

MES and fitted into several models either as the original form or as the converted format,

such as token list. Five different NLP-methods have been applied into modelling, which

are TD-IDF, Word2Vec, spaCy, Sentence Transformers and SBERT. Multilingual and Turku-

NLP pretrained models were utilized for deep learning techniques. Relevant items have

been extracted based on the similarity distance between query sentence and issue de-

scriptions of the whole dataset. The quality of recommendation system was obtained

through the usage of evaluation metrics, such as Precision @10 (P@10), Average Preci-

sion @10 (AP@10) and Mean Average Precision @10 (MAP@10). The highest MAP@10

score was 0.67 with Turku-NLP-based sentence transformer model on the basis of exper-

imenting reason class as target variable to compute with. Applying the best model on

MES might save much time and resources, avoiding solving the manufacturing problem

from the very beginning without any reference. As the information retrieved are listed

in a similarity descending order, people might easily draw some conclusions by simply

looking into top recommendations instead of reading through all the items in the list.

The scope of the research covers data collection, data pre-processing, exploratory data

analysis, model training, model testing and performance evaluation. The user-interface

of recommendation system in MES is not included in the research task.

Previous research analyzing on similar dataset was done by Mrs. Kangas, to categorize

issue descriptions into different deviation groups. (Kangas, 2021) Since her thesis was to

solve a classification problem, it is necessary to consider balancing dataset. However, in

my research, I would not define it as classification because the recommendation system

extracted relevant information simply based on production issue description. Even

56

though “REASON_CLASS” was selected as a target variable to compute performance re-

sult, it can be changed to other variables in terms of different evaluation interests. For

example, if people are concerned about further detailed class than “REASON_CLASS”,

P@K, AP@K, and MAP@K can be calculated based on “DEVIATION_REASON_CODE_ID”

or “ROOTCAUSE_REASON_CODE_ID”.

The recommendation system with better performance relies on comprehensive models

which are specifically effective on Finnish. Since the company owns businesses in multi-

ple countries, the data in MES could be written in different languages. The models also

work on other languages but require some minor modifications in code, such as chang-

ing package of stop words and finding suitable pretrained models to replace with.

The dataset was extracted from MES; hence this research is related to cold-start problem

without online testing available. In reality, user reaction and expert feedback are valua-

ble in terms of reliability and trustworthiness on business. A/B testing is the only way to

measure its business value, but it takes more time and resources. At the current phase,

it is impossible to implement online testing until the model can be built in MES. Once

MES applies the feature of recommendation, the dataset will be expanding to a relatively

good scale for model training in a certain period of data upgrading, so that the system

can probably make suggestions more accurate and robust.

Another benefit of promoting recommendation online is to generate possibility of adopt-

ing collaborative filtering instead of content-based filtering, by engaging user infor-

mation into MES. The system might require adding more data related to employees who

create issue cases, such as their working sections, resolved issue cases and selected ref-

erence cases from content-based recommendation system, to discover the pattern or

the relations between different users.

I have encountered some challenges on the journey of this research. The most vital one

is language understanding, since I am dealing with Finnish that I am not good at. At the

57

beginning, I translated all the dataset into English via a pretrained model called “Helsinki-

NLP/opus-mt-fi-en”. It took many hours and suspensions several times due to excessively

long tokens in some documents. Then I switched the direction to concentrating on mod-

elling for the original language of the dataset. Since Finnish is not as popular as English,

there are limited packages and models for it. I had to apply stemming instead of lemma-

tization because Voikko installation in windows is problematic. Fortunately, deep learn-

ing pretrained models include Finnish lemmatization, ensuring the acceptable perfor-

mance of recommendation system.

I am not able to use GPU model training in Anaconda Jupyter with personal computer,

which is worthy to attempt with less time consumption. I would strongly recommend

people who will oversee MES upgrading to train those models with GPU.

As a summary of discussions, the future works of the recommendation system could be

taken place in the following aspects. Finnish lemmatization could be reached with Linux

system and applied to test the performance of TF-IDF and Word2Vec models. The models

could be optimized with more data available and by being tested online. The recommen-

dation system should be durable to work on other languages with minor changes in

scripts. It can also be transformed into collaborative filtering system instead of content-

based, if data shifts into a new structure with more user information included.

58

6 References

A.M.Kuchling. (n.d.). Regular Expression HOWTO. Retrieved from python:

https://docs.python.org/3/howto/regex.html

A.M.Turing. (1950, Oct). Computing machinery and intelligence. Mind, pp. 433-460.

A.Vashwani, e. a. (n.d.). Attention Is All You Need. NeurIPS.

Chandana, D. (2021, May 4). Wayfair Recommendation System for furniture buyers.

Retrieved from Medium: https://medium.com/web-mining-is688-spring-

2021/wayfair-recommendation-system-for-furniture-buyers-906c3f2d0427

Deutschman, Z. (2023, January 24). Recommender systems: Machine learning metrics

and business metrics. Retrieved from Neptune.ai:

https://neptune.ai/blog/recommender-systems-metrics

Hapke, H. (2019). Understanding, analyzing, and generating text with Python. In H.

Hapke, Natural Language Processing in Action.

Ivens Portugal, P. A. (2018). The use of machine learning algorithms in recommender

systems: A systematic review. Elsevier, 205-227.

Joshi, P. (2022, June 24). Building a Recommendation System using Word2Vec: A Unique

Tutorial with Case Study in Python. Retrieved from Analytics Vidhya:

https://www.analyticsvidhya.com/blog/2019/07/how-to-build-

recommendation-system-word2vec-python/

Jung, A. (2021, 09 09). CS-EJ3311-Deep Learning with Python. Espoo, Finland.

Kangas, K. (2021). Text analysis of handwritten production deviations. Turku: Master of

Science Thesis.

Kavlakoglu, E. (2020, 11 20). NLP vs. NLU vs. NLG: the differences between three natural

language processing concepts. Retrieved from IBM:

https://www.ibm.com/blogs/watson/2020/11/nlp-vs-nlu-vs-nlg-the-

differences-between-three-natural-language-processing-concepts/

Krasnoshchok, Y. L. (2014). Extended content-boosted matrix factorization algorithm for

recommender systems. Procedia Computer Science, 35:417-426.

59

LD, B. (2021, August 28). Building a Text Recommendation System with Python. Retrieved

from Towards Data Science: https://towardsdatascience.com/build-a-text-

recommendation-system-with-python-e8b95d9f251c

McFarland, A. (2022, June 25). 10 Best Python Libraries for Natural Language Processing.

Retrieved from Unite.AI: https://www.unite.ai/10-best-python-libraries-for-

natural-language-processing/

Mikolov, T. C. (2013). Efficient estimation of word representations in vector space. arXiv

preprint.

Nvidia. (2023). Recommendation System. Retrieved from Nvidia:

https://www.nvidia.com/en-us/glossary/data-science/recommendation-

system/#:~:text=A%20recommendation%20system%20is%20an,demographic%

20information%2C%20and%20other%20factors.

Peng Xu, J. K. (2009). Using a Dependency Parser to Improve SMT for Subject-Object-

Verb Languages. Human Language Technologies. Boulder, Colorado, USA.

PINECORE. (n.d.). Sentence Transformers:Meanings in Disguise. In Natural Language

Processing for Semantic Search.

Rink, K. (2023, January 18). Mean Average Preciosn at K (MAP@K) clearly explained.

Retrieved from Towards Data Science: https://towardsdatascience.com/mean-

average-precision-at-k-map-k-clearly-explained-538d8e032d2

Robin van Meteren, M. v. (2000). Using Content-Based Filtering for Recommendation.

Amsterdam: Computer Science.

Rocca, B. (2019, June 3). Introduction to recommender systems. Retrieved from Towards

Data Science: https://towardsdatascience.com/introduction-to-recommender-

systems-6c66cf15ada

Sanagapati, P. (2020). Knowledge Graph & NLP Tutorial-(BERT, spaCy, NLTK). Retrieved

from Kaggle: https://www.kaggle.com/code/pavansanagapati/knowledge-

graph-nlp-tutorial-bert-spacy-nltk

Scott, W. (2019, Feb 15). TF-IDF from scratch in python on a real-world dataset. Retrieved

from Towards Data Science: https://towardsdatascience.com/tf-idf-for-

60

document-ranking-from-scratch-in-python-on-real-world-dataset-

796d339a4089

sentence-transformers/paraphrase-multilingual-MiniLM-L6-v2. (n.d.). Retrieved from

Hugging Face: https://huggingface.co/sentence-transformers/paraphrase-

multilingual-MiniLM-L12-v2

Wikipedia. (2023, March 17). ChatGPT. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/ChatGPT

Wikipedia. (2023, March 9). Natural language processing. Retrieved from Wikipedia:

https://en.wikipedia.org/wiki/Natural_language_processing

61

Appendices

Appendix 1. Wordcloud for “REASON_CLASS”

Reason class: Tuotteen laaduttomuus

Reason class: Materiaalipuute

62

Reason class: Menetelmä

Reason class: Aktiviteetin siirto

63

Reason class: ATK-järjestelmät

Reason class: Moduulipuute

64

Reason class: Tekniikka: Koneet ja laitteet

Reason class: Toimitusvirhe

65

Reason class: Puute

Reason class: MES

66

Reason class: Koneet ja laitteet

Reason class: Automatic Deviation For Missing Part

67

Appendix 2. Distribution of AP@10 for the models

1. TF-IDF

2. Word2Vec

68

3. spaCy

4. Multilingual Sentence Transformers

69

5. Turku-NLP-based Sentence Transformers

6. Multilingual SBERT

70

7. Turku-NLP-based SBERT

71

Appendix 3. Distribution of MAP@K based on “REASON_CLASS” (K=10)

1. TF-IDF

72

2. Word2Vec

73

3. spaCy

74

4. Multilingual Sentence Transformers

75

5. Turku NLP-based Sentence Transformers

76

6. Multilingual SBERT

77

7. Turku NLP-based SBERT

