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A B S T R A C T   

This study extends Mandelbrot’s (2008) multifractal model of asset returns to model realized 
variances across different time frequencies. In a comparative manner, various degrees of time 
deformations are explored for implementation of the multiplicative cascade. In doing so, this 
study focuses on two effects: discontinuity measured by the specific power-law exponent and de-
pendency measured by the Hurst exponent. This study shows that the benchmark model, for which 
Mandelbrot’s (2008) “cartoon” is the foundation, has some remarkable properties as it is capable 
of explaining the realized variances for the GBP/USD exchange rate and Bitcoin. Notably, the 
realized variances for crude oil and the S&P 500 require a more extreme time deformation. The 
invariance hypothesis is confirmed for all realized variances because the power-law exponents for 
weekly and monthly data coincide with predictions of the multifractal model. Overall, the novel 
results derived from the proposed multifractal models suggest that some realized variances of 
otherwise unrelated asset markets are driven by the same underlying “driving force”—a common 
multifractal cascade.   

1. Introduction 

Segnon and Lux (2013) highlighted that one of the most important tasks in financial economics is modeling price fluctuations of 
risky assets. The authors pointed out the following: 

For analysts and policy makers volatility is a key variable for understanding market fluctuations. Analysts need accurate 
forecasts of volatility as an indispensable input for tasks such as risk management, portfolio allocation, value-at-risk assessment, 
and option and futures pricing. Asset market volatility also plays an important role in monetary policy. Repercussions from the 
… financial crisis on the global economy show how important it is to take into account financial market volatility in conducting 
effective monetary policy. (Segnon and Lux, 2013, p. 2) 

A well-known and stylized fact of financial markets is volatility clustering—the empirical observation that periods of high and low 
volatility alternate in a persistent manner. An early and often-cited study by Engle (1982) was the first to address this phenomenon by 
introducing the so-called autoregressive conditional heteroscedasticity (ARCH) model, which was generalized to GARCH by Bollerslev 
(1986). As pointed out by Segnon and Lux (2013), these models are designed to capture the dependency structures of the second 
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moment in a phenomenological way by modeling returns as a mixture of normals, with the current variance being driven by a 
deterministic difference equation. Different derivatives of the original GARCH model have been discussed in the literature with the 
objective to better capture the stylized facts.2 Despite the GARCH model framework’s appealing structure prima facie, Mandelbrot 
(2008) argued that 

GARCH is, certainly, a handy abacus now used by many option traders and finance directors trying to model risk. But it begs the 
question of what makes the bell [curve] vibrate. And as you try to work with the model, it becomes increasingly complicated. To 
say much with little: Such is the goal of good science. But most established financial models say little with much. They input 
endless data, require many parameters, take long calculation. When they fail by losing money, they are seldom thrown away as 
a bad start. Rather they are “fixed.” They are amended, qualified, particularized, expanded, and complicated … That people still 
lose money on these models should come as no great surprise. (Mandelbrot, 2008, p. 222) 

In view of Mandelbrot’s (2008) argument, Segnon and Lux (2013) concluded that 

… one might follow Mandelbrot’s frequently voiced methodological premise to model apparently generic features of data by 
similarly generic models rather than using “fixes” (Mandelbrot, 1997a). Introducing amendments to existing models (e.g., 
GARCH, SV) to adapt those to new stylized facts might lead to highly parameterized setups that lack robustness when applied to 
data from different markets, while simple generating mechanisms for multifractal behavior are available that could, in prin-
ciple, capture the whole spectrum of time series properties highlighted above in a more parsimonious way. In addition, if one 
wants to account for multi-scaling proper (rather than as a spurious property) no avenue is known so far for equipping GARCH- 
or SV-type models with this property in a generic way. Hence, adapting in an appropriate way some known generating 
mechanism for multifractal behavior appears the only avenue available so far to come up with models that generically possess 
such features, and jointly reproduce all stylized facts of asset returns. 

Motivated by this literature, this study proposes a model for the second moment of financial assets based on realized variances. 
Following Mandelbrot, we use a multifractal framework for modeling the return processes of financial assets. To deform clock time into 
trading time, we employ binominal bending of time to compound the multiplicative cascade which is the foundation for the multi-
fractal model. The multifractal process is obtained by combining the multifractal cascade and a normally distributed random variable 
in a multiplicative manner. Interpreting the model’s output as an asset return–generating process, we sum the squared returns of 5 and 
20 consecutive, nonoverlapping trading days to compute weekly and monthly realized variances. We simulate 1000 time paths to 
explore the model’s statistical properties. For each simulation, we estimate both the power-law exponent and Hurst exponent to assess 
the tail properties and dependency structure, respectively. This allows us to assess whether the model can capture stylized facts of 
financial market fluctuations in a parsimonious model framework. As Mandelbrot pointed out that the multiplicative cascade is of 
fundamental importance for generating multifractality, we explore various types of binominal bending and reassess the model 
properties. 

Moreover, we assess whether the models generate multifractality across time dimensions by studying the weekly and monthly 
models in a comparative manner. We hypothesize that a correctly specified model should generate tail properties and dependency 
structures that are stable across time dimensions. Another novelty of this study is that it investigates in more detail the dependency 
structure for observations governed by a power-law process. Specifically, the power-law null hypothesis per se only suggests that 
observations exceeding a certain threshold are governed by a power law, but it does not provide any answer concerning how those 
observations are distributed across the simulated time-series data. Therefore, to investigate the dependency structure of the Paretian 
tail, we record for all simulated data series the maximum time length of consecutive observations governed by a power-law process and 
propose a test that assumes independency under the null hypothesis. A rejection of the null hypothesis would suggest a clustering of 
power-law observations, which would be in line with the stylized, empirical fact of volatility clustering in financial data. 

This study contributes to the existing literature in some important ways. First of all, GARCH models are designed to model the 
variance of assets by parametrizations. However, Segnon and Lux (2013) argued that introducing extensions to existing GARCH-type 
models might lead to highly parameterized setups that lack robustness when applied to data from different markets. Also, Mandelbrot 
(2008) criticized the problem of changing parameters obtained from GARCH-type models, arguing that “… many recent models of 
price variation try to explain the obviously shifting pattern of volatility by inserting parameters that change by the day, hour, and 
second; such are the GARCH family mentioned earlier.” In contrast to GARCH-type models, the multifractal framework works with just 
a set of a few consistent parameters that remain constant over time and place. We contribute to the literature on modeling uncertainty 
in financial markets by proposing a multifractal model for asset variances and test the invariance phenomenon across different time 
scales. 

Moreover, in a recent study, Grobys, Junttila, Kolari, and Sapkota (2021) analyzed the volatility processes of so-called “stable 
cryptocurrencies” or “stablecoins” and their potential stochastic interdependencies with Bitcoin volatility. Using realized volatilities, 

2 Extensions of GARCH with the objective to better capture the stylized facts of financial volatility are, for instance, the exponential GARCH 
(EGARCH) model proposed by Nelson (1991), which accounts for asymmetric behavior of returns, the threshold GARCH (TGARCH) model of 
Rabemananjara and Zakoian (1993) addressing leverage effects, the regime-switching GARCH (RS-GARCH) proposed by Cai (1994), and the in-
tegrated GARCH (IGARCH) introduced by Engle and Bollerslev (1986), which allows for capturing high-volatility persistence. Moreover, the Itô 
diffusion or jump-diffusion processes can be retrieved as a continuous time limit of discrete GARCH sequences [see Nelson (1990) and Drost and 
Werker (1996)]. 
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the authors tested the power-law null hypothesis for both stablecoin and Bitcoin volatilities. The study found strong evidence for 
Paretian tails in the volatility processes of all tested cryptocurrencies. Another study by Grobys (2021) used the realized variances for 
five different asset markets to test the power-law null hypothesis. In line with Grobys et al. (2021), Grobys (2021) found strong ev-
idence for Paretian tails across all asset market variances. The novel aspect of this work is that it models the second moment of financial 
asset markets using a realized-variance approach as opposed to using GARCH-type models. In both studies, the variance of variance did 
not exist in any of those asset markets. Hence, it should not come as a surprise that parameter estimates retrieved from GARCH-type 
models are subject to sample specificity, as pointed out by Grobys (2021). The current study extends this research by proposing a model 
that could generate the underlying process of realized asset market variances. In this regard, Mandelbrot (2008) highlighted that a 

… model must work two ways, forward and backward. Forward means that we should be able to construct artificial price charts 
from the fractal seeds … Backwards means that we should be able to take raw price data, analyze it on our computers, and 
estimate the key parameters that the multifractal model requires. Then using those values, we should be able to tell the 
computer to reconstitute the market – to generate an artificial price series that differs from the real one but follows the same 
statistical pattern. (Mandelbrot, 2008, p. 220) 

While earlier research focused only on revealing the tail properties of the second moment of financial assets (that is, markets), one 
novel aspect of this study is that it takes both perspectives—forward and backward—and in doing so, it focuses on exploring the key 
parameters measuring the exposure to extreme events in the realized-variance processes and the long-term dependency structure. 

Next, in the wake of Mandelbrot, Fisher, and Calvet’s (1997b) study, which laid the foundation for multifractal models, the 
literature on multifractal models is still in an emerging phase. It is surprising to note that Segnon and Lux (2013) documented that 
Mandelbrot et al.’s (1997b) paper has not been published in a journal—despite its impact. Furthermore, Segnon and Lux (2013) 
pointed out that multifractal measures have been adapted to asset-price modeling by employing them as a stochastic clock to transform 
chronological time into trading time, that is, business time. Whereas Mandelbrot et al. (1997b) proposed binominal bending of time to 
deform chronological time into trading time, Calvet and Fisher (2002) discussed time deformations derived from lognormal, Poisson, 
and gamma distributions. Other time transformations have been discussed by Muzy and Bacry (2002), Bacry, Kozhemyak, and Muzy 
(2008), and Calvet, Fisher, and Wu (2018), for instance. An interesting and detailed overview on the relevant literature was provided 
by Segnon and Lux (2013). In view of this literature, the current study is the first to extend the multifractal framework to first (i) model 
realized-variance processes of financial assets, second (ii) to provide simulation-based evidence for some key metrics, and third (iii) to 
evaluate the model’s performance using real-life financial market data. The concept of realized variance or volatility was developed by 
Andersen, Bollerslev, Diebold, and Labys (2001) as an alternative measure of the variability of asset prices and is considered a 
consistent and highly efficient nonparametric estimator. Whereas the literature has derived second-moment implications from mul-
tifractal models for asset returns, there is no study available that explores the properties of a multifractal model for realized asset 
variances derived from a simulation-based setting. In view of the recent literature exploring the power-law properties of realized 
variances/volatilities (Grobys et al., 2021; Grobys, 2021, 2023; Grobys and Kolari, 2022), this is a timely topic that demands further 
investigation. The current study remedies this gap in the literature. 

A minor contribution of this study is that it takes a novel view on the persistence of power laws in variances. The power-law null 
hypothesis only suggests that observations exceeding a certain threshold are governed by a power law, but it is silent on how the 
observations are distributed across the data. The observations governed by a power law can be distributed evenly across the data 
sample observations or they can cluster together. This study derives a test that is valid even in the presence of an infinite variance of 
variance. In a sense, this test can be considered another approach to test for volatility clustering in financial data. An earlier contri-
bution in this field of research is, for instance, the work of Hsiao and Li (2001), who besides provided an interesting literature review. 
This body of research studies, however, is based on asset returns as opposed to realized asset variances, and it does not account for 
documented recent evidence that the variance of variance is infinite (Grobys et al., 2021; Grobys, 2021, 2023; Grobys and Kolari, 
2022), thereby rendering t-statistics derived from regression model–based tests invalid. The proposed test for dependency in this study 
is valid even in research environments where the variance of variance does not exist. 

The results of the study show that realized variances based on the multifractal model are governed by Paretian tails and exhibit 
long-term dependencies that vary with respect to the multiplicative cascade chosen. The simulated benchmark model using binominal 
bending with probabilities p = 0.60 and (1 − p) = 0.40, as proposed by Mandelbrot (2008), produces Paretian tails for the weekly 
variances exhibiting an average tail exponent of α = 2.6112 with standard deviation of 0.3812. Using a more moderate binominal 
bending employing p = 0.55 and (1 − p) = 0.45 produces Paretian tails for the weekly variances exhibiting an average tail exponent of 
α = 3.7216 with a standard deviation of 0.6658, whereas a more extreme binominal bending using p = 0.65 and (1 − p) = 0.35 
produces Paretian tails for the weekly variances exhibiting an average tail exponent of α = 2.1253 with a standard deviation of 0.2863. 
Using monthly variances, we find that the average tail exponents fall into the 95% confidence interval for weekly data, suggesting scale 
invariance, which strongly supports Grobys’ (2021) recent finding of the scale invariance of the S&P 500 realized variances. 

The multifractal models show that Hurst exponents do not appear to relate to the power-law exponent given each multifractal 
cascade. However, taking a coarse-grained perspective, the evidence suggests a strong link between binominal bending and de-
pendency structures: the more extreme the time deformation, the more persistent the realized variance, irrespective of which time 
frequency (viz., weekly or monthly) is considered. Indeed, using weekly data the estimated correlation between average power-law 
exponent and average Hurst exponent across different models is − 0.9781; that is, the more extreme is the bending of time, the 
more extreme is the variance’s discontinuity and the more extreme is the level of persistence. We interpret this as strong evidence for 
different multiplicative cascades indeed producing very distinct stochastic processes as defined in terms of their discontinuities and 
dependency structures. 

K. Grobys                                                                                                                                                                                                                



Journal of International Financial Markets, Institutions & Money 85 (2023) 101767

4

This strongly supports Mandelbrot’s (2008) argument that the power-law exponent and the Hurst exponent are in a dual rela-
tionship manifested in a negative correlation between Hurst exponent and power-law exponent. Persistence is also measured by the 
maximum number of consecutive observations in which a variance process remains in a power-law regime. The findings indicate that 
there is a clear link between power-law exponent and this measure for persistence: the lower the economic magnitude of the power-law 
exponent, the longer the observed maximum time length in which some process remains in the power-law regime. This result holds for 
both within each multifractal model itself and across different analyzed multifractal models. 

Comparing the multifractal models with weekly and monthly realized variances for the GBP/USD exchange rate, Bitcoin, crude oil, 
and the S&P 500 indicates that the benchmark model used in this study—which is based on a multiplicative cascade proposed by 
Mandelbrot (2008) using binominal bending with p = 0.60 and (1 − p) = 0.40—is capable of explaining the asset market variances for 
the GBP/USD exchange rate and Bitcoin in terms of their tail characteristics and dependency structures as measured by the individual 
power-law exponent and Hurst exponent, respectively. It also predicts that the variances of variances do not exist for weekly data. 
Notably, using daily data, the nonexistence of the variance of variance for key financial markets was documented in a recent study 
(Grobys, 2021). Also, Grobys et al. (2021) found that the variances of daily Bitcoin and stablecoin volatilities are undefined, whereas 
Grobys (2023) and Grobys and Kolari (2022) found that that variances of variances do not exist for the vast majority of realized G10 
currencies, irrespective of the time frequency considered. Further evidence suggests that the asset market variances for crude oil and 
the S&P 500 are rather explained by a common multifractal model based on a multiplicative cascade derived from binominal bending 
with p ≈ 0.70 and (1 − p) ≈ 0.30 due to their unbounded behavior manifested in Hurst exponents > 1. This result supports Sun and 
Zhou (2014) who documented that fitted GARCH models to S&P 500 data are Near-IGARCH. 

A remarkable commonality of the multifractal variance models explored here is that the average power-law exponents for monthly 
variances are higher in their economic magnitude than the corresponding figures for weekly data. Still, the average power-law ex-
ponents for monthly variances remain clearly in the 95% confidence interval for the power-law exponents based on weekly data. This 
result lines up with those of Mandelbrot (2008, p. 218), who argued that “the Noah effect is fading, that is, price variability settles 
down as lower time frequencies are employed.” We show that the same patterns are observed for both synthetic and real-life data. 
Therefore, our multifractal model framework offers a possibility for testing the invariance hypothesis, an important implication being 
that even though variances appear to be “less wild” at lower time frequencies, the invariance hypothesis cannot necessarily be rejected. 
Indeed, the results documented in this study provide strong evidence for invariance across asset market variances’ time frequencies. 

This study is organized as follows: the next section provides a literature review and the third section describes the methodology. 
The fourth section presents the results, the fifth section presents a discussion, and the last section concludes the study. 

2. Literature review 

In his seminal paper published in 1982 in the well-recognized journal Econometrica, Robert Engle proposed autoregressive con-
ditional heteroscedasticity (ARCH) models to model the time-varying variance process of inflation in the U.K. A simple ARCH-type 
model is given by, 

RETi,t = ci + ui,t  

ui,t = σi,t∊i,t  

σi,t =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ0 + δ1u2
i,t− 1 + ⋯δpu2

i,t− p

√

∊i,t N(0, 1)

where RETi,t denotes the return of asset i at time t, σi,t denotes the asset’s conditional volatility, ci, δ0, δ1, …, δp are model parameters, 
and the innovation process ∊i,t is typically assumed to be normally distributed.3 This ARCH model accounts for a lag-order of p. 
Generally speaking, a higher lag-order implies a higher level of persistence in the conditional variance process. The ARCH model has 
been generalized (e.g., GARCH) in a study of Bollerslev (1986) by incorporating a moving average component together with the 
autoregressive component. As of now, the studies of Engle (1982) and Bollerslev (1986) have been cited more than 32,000 times. In 
fact, Sornette (2017) and Sun and Zhou (2014, p. 287) argue that the plain GARCH(1,1) model has become the industry standard, 
respectively “workhorse in both academic and practice due to its simplicity and intuitive interpretation.” The original models have 
been extended in several ways. For instance, an important and often-used extension of the plain GARCH model is the threshold GARCH 
(e.g., TGARCH) model proposed by Glosten, Jagannathan, and Runkle (1993). Unlike the original GARCH model, the TGARCH model 
is capable of addressing the empirical fact that bad news has a greater impact on the uncertainty than good news by adding an 
additional regressor to the variance equation. Similarly, using the exponential GARCH (e.g., EGARCH) model, as proposed by Nelson 
(1991), one is able to test whether bad news has a greater impact on the conditional variance than good news. Unlike GARCH or 
TGARCH models, EGARCH models have the advantage that the variance will be positive even if some model parameters were negative. 
A recent study from Chalissery, Anagreh, Nishad, and Tabash (2022) conducts a comprehensive review on the relevant GARCH model 

3 For instance, Sun and Zhou (2014, p. 288) highlight that “the most often applied GARCH(1,1) model assumes that the innovation term follows a 
standard normal distribution.” 
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literature using bibliometric analysis to identify the models’ key foundations and evolution. 
Unsurprisingly, Mandelbrot (2008, p. 222) terms GARCH model extensions “fixes” and argues that these fixes become “increasingly 

complicated” and “say little with much.” Perhaps, the main problem with GARCH-type models is sample-specificity. Depending on the 
chosen sample period, parameter estimates can vary by a substantial margin. For instance, in an early paper, Chu (1995) tested for 
parameter constancy in the variance equations of GARCH models. Using S&P 500 data the study’s findings indicated that the hy-
pothesis of stable conditional variance parameters could be rejected. The sample-specificity could be a manifestation of non-normality 
in the innovation process. As pointed out from Lundbergh and Teräsvirta (2002, p. 418), “Very often in applications, the assumption of 
a normal error distribution of a GARCH process is too restrictive.” In this regard, Sun and Zhou (2014) highlight that a well-established 
stylized fact, documented in the empirical literature on risk management, is that the conditional normality assumption performs poorly 
in evaluating the downside risk of financial time series. 

The establishment and subsequent evolution of econometric models derived under the assumption of normally distributed data is 
indeed a surprising issue–especially given the well-known empirical fact that financial markets are subject to reoccurring extreme 
events. Already in his 1963 paper entitled “New methods in statistical economics” published in the Journal of Political Economy, Benoit 
Mandelbrot introduced power laws in an effort to address the problem of extreme events in economic data.4 Power laws are essentially 
Pareto type distributions which make large standard deviations from the mean possible though rare. Surprisingly, Vilfredo Pareto 
formalized his distributional law governing wealth distribution–often referred to as the “Pareto Law” or “80/20 rule”–much earlier in 
1897 in the same journal.5 In a second 1963 paper, Mandelbrot showed that cotton price changes are governed by a power-law 
process.6 The evidence strongly suggested that the theoretical variance of cotton price changes is undefined, respectively, infinite. 
West (2017, p. 142) highlights that Mandelbrot’s findings have “stimulated the development of a new transdisciplinary subfield of 
finance called econphysics and motivated investment companies to hire physicists, mathematicians, and computer scientists to use 
these sorts of ideas to develop novel investment strategies.” It is interesting to note that Fama (1963) reviewed Mandelbrot’s prop-
osition and commented that: 

… the infinite variance assumption of the stable Paretian model has extreme implications. From a purely statistical standpoint, 
if the population variance of the distribution of first differences is infinite, the sample variance is probably a meaningless 
measure of dispersion. Moreover, if the variance is infinite, other statistical tools (e.g., least-squares regression) which are based 
on the assumption of finite variance will, at best, be considerably weakened and may in fact give very misleading answers. 
(Fama, 1963, p. 421) 

Despite knowing about the problems associated with financial analysis based on Gaussian frameworks, most finance researchers 
(including Fama who was Mandelbrot’s doctoral student) continue to use and propose statistical techniques (including GARCH-type 
models) based on the assumption that the variance is finite. 

On the other hand, and as pointed out by West (2017), another branch of literature emerged consistent with Mandelbrot’s ideas 
that incorporated power laws in financial research. Important contributions are, for instance, Gopikrishnan et al. (1999), Jansen and 
de Vries (1991), Mantegna and Stanley (1995) and Lux (1996). Because power laws are typically one-sided distributions, most studies 
employed the absolute amount of financial returns (or |ret|) to model power law functions.7 Using the notation Pr(|ret|〉x ) ≈ x− α, where 
ret describes a financial return, Lux and Alfarano (2016) inferred from studies on power laws in financial market data over 30 years 
that researchers gradually converged on an exponent greater than 2 and close to 3. They concluded that the long-standing Levy hy-
pothesis should be rejected due to the more precipitous decay of the outer part of the distribution than allowed by this family of 
distributions. 

Whereas this strand of literature provided strong evidence for power-law behavior across various types of financial market data, 
Mandelbrot et al.’s (1997b) study was the first addressing the issue that a model must work two ways, forward and backward, as 
highlighted in Mandelbrot (2008). Indeed, Mandelbrot et al.’s (1997b) proposed MMAR can be used to construct artificial price charts 
from some fractal seeds and raw price data can be subsequently analyzed by estimating the key parameters that the multifractal model 
requires. Employing those values, the market behavior can be reconstituted, that is, artificial price series can be generated that differ 
from the real data but follow the same stochastic pattern. As mentioned earlier, the literature on multifractal models is still in an 
emerging phase. As pointed out in Mandelbrot (2008), the multiplicative cascade is of fundamental importance for constructing 
multifractal models. Whereas Mandelbrot et al. (1997b) and Mandelbrot (2008) employed binominal bending of time for time 
deformation, other approaches to deform time have been intensively discussed in the literature (Calvet and Fisher, 2002; Muzy and 
Bacry, 2002; Bacry, Kozhemyak, and Muzy, 2008; Calvet, Fisher, and Wu, 2018). However, this study follows Mandelbrot et al. 
(1997b) and Mandelbrot (2008) in constructing a multiplicative cascade derived from binominal bending. Considering the distribution 
of commodities, and using gold as an example, the intuition of making use of binominal bending is described in Mandelbrot (2008) as 
follows: 

Fractals are not about the “things” themselves but about their common property of roughness. This is not a farfetched but an apt 
idea, because, obviously, gold is not distributed evenly around the world. It clusters here and there–just the way the action in 

4 Mandelbrot (1963a).  
5 Pareto (1897).  
6 Mandelbrot (1963b).  
7 Studies by Gabaix (2009) and Lux and Alfarano (2016) provide excellent surveys of this literature. 
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financial markets clusters into different stretches of time. We can mimic that effect mathematically. Pull out a map of gold-rich 
South Africa, specifically, a cross-section of the earth there along the west-to-east line. Start with a low-resolution map that 
divides the country into two pieces, one east and one west. About 60 percent of the gold ore lies in the western half, and about 40 
percent in the east. Look more closely: Cut each half into halves again. Finer processes concentrated 60 percent of the western 
gold into the westernmost quarter–or 36 percent of the total gold deposits […] (Mandelbrot, 2008, p. 216) 

It becomes evident that the distribution of important natural resources is based on some binominal bending. Here, the multipli-
cative cascade proposed in Mandelbrot (2008) is extended by accounting for various types of time deformation allowing for either less 
time concentration or more time concentration because the way how extreme time stretches may deviate across different financial asset 
markets. 

3. Methodology 

The early study by Mandelbrot et al. (1997b) was the first to introduce the multifractal model of asset returns (MMAR). Mandelbrot 
(2008) discussed a simplified version of the MMAR that uses binominal bending of time to compute the multiplicative cascade serving 
as multifractal time, or the “multifractal father,” and a Brownian motion serving as the “multifractal mother.” The “baby theorem” 
describes the derivation of the “multifractal baby” as the product of the multifractal mother and multifractal father as follows: 

y(t) = c(t)x(t) (1)  

where c(t) is the multiplicative cascade at time t and x(t) ∼ IIDN(0, 1). Advocating binominal bending of time, we follow Mandelbrot 
(2008) and use probability p = 0.60 and (1 − p) = 0.40 for deriving deformed time. Fig. A.1 in the appendix shows the first three it-
erations of the binominal tree used in the first step. As shown in Fig. A.1, in each iteration, each figure is multiplied with p = 0.60 and 
(1 − p) = 0.40. Fig. A.2 in the appendix illustrates how the binominal tree illustrated in Fig. A.1 is transformed into trading time by 
multiplying each figure by the number of elements in each iteration. For instance, considering the second iteration, the vector for the 
deformed trading time (1.44, 0.96, 0.96, 0.64) is retrieved by multiplying (0.36, 0.24, 0.24, 0.16) with 4. In this study, we use k = 13 
iterations, giving us 213 = 8192 observations for vector c. Note that for the number of generated observations, N ∈ (2k|k ∈ N) must 
hold.8 We use the first 5120 observations of vector c and construct 1000 5120 × 1 vectors of multifractal asset returns by multiplying 
elements c(1), c(2), …,c(5120) with drawings from the standard normal distribution. This procedure gives us, in turn, 1000 vectors for 
y, each with the dimension 5120 × 1. We store the drawings for vectors x1, x2, …,x1000 and y1, y2, …,y1000 in matrices X and Y, defined 
as X = (x1, x2, …, x1000) and Y = (y1, y2, …, y1000). Note again that all vectors y1, y2, …,y1000 use the same multiplicative cascade c. 

Next, we compute the weekly variance by squaring each element in yi and then summing five consecutive, nonoverlapping ele-
ments, such as 

zW
i =

(
∑5

t=1
y2

t,i,
∑10

t=6
y2

t,i,⋯,
∑5120

t=5116
y2

t,i

)′

(2)  

where zW
i has the dimension 1024 × 1 and i = 1,⋯,1000. In the same manner, the monthly variance is calculated by squaring each 

element in yi and then summing 20 consecutive, nonoverlapping elements, such as 

zM
i =

(
∑20

t=1
y2

t,i,
∑40

t=21
y2

t,i,⋯,
∑5120

t=5101
y2

t,i

)′

(3)  

where zM
i has the dimension 256 × 1 and i = 1,⋯,1000. Obviously, the approach we choose to compute the variances is based on 

realized variances. Using realized variance or volatility to model uncertainty in financial markets has some important advantages. 
Apart from being a highly efficient estimator of the underlying true return variation, as pointed out by Segnon and Lux (2013), Wang 
and Yang (2009, p. 600) documented that “… a realized-volatility-based approach is able to uncover volatility features (asymmetric 
volatility in particular) that the conventional GARCH type models fail to reveal.” 

The realized variances are mainly explored with respect to their two forms of wild variability. As pointed out by Mandelbrot (2008), 
the first wild trait that financial markets have in common is abrupt change or discontinuity. A typical example often referred to is the 
29.2% market collapse of the U.S. equity market occuring on October 1987, which “arrived without warning or convincing reason; and 
at the time, it seemed like the end of the financial world” (Mandelbrot, 2008, p. 200). This effect is manifested in a Paretian tail; that is, 
the tail of financial markets is governed by individual power-law processes measured by the individual power-law exponent. To 
investigate this effect, which Mandelbrot termed the “Noah-effect,” for each vector zW

i and zM
i , we use the following model: 

p(z) = Bz− α (4)  

where B = (α − 1)zα− 1
MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations 

8 The motivation for the choice of 213 will become evident to the reader later. Note that for the number of generated observations, N ∈ (2k|k ∈ N)

must hold. 
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governed by the power law, and α is the magnitude of the tail exponent.9 Moreover, to ensure better readability, we drop indices in the 
notation here, so z can be either zW

i or zM
i . It can be shown that the conditional first moment, or E[Z|Z ≥ zMIN ], is given by 

E[Z|Z ≥ zMIN ] =

∫∞

zMIN

zp(z)dz =
(α − 1)
(α − 2)

zMIN (5)  

whereas the conditional second moment, or E
[
Z2|Z ≥ zMIN

]
, is defined as 

E
[
Z2|Z ≥ zMIN

]
=

∫∞

zMIN

z2p(z)dz =
(α − 1)
(α − 3)

z2
MIN (6)  

and conditional higher moments of order k are analogously defined as 

E
[
Zk|Z ≥ zMIN

]
=

(α − 1)
(α − 1 − k)

zk
MIN (7) 

From Equations (5) or (7), we see that the conditional mean only exists for α > 2, whereas the conditional variance only exists for 
α > 3. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ maximum likelihood estimation (MLE) and 
estimate the tail exponent as 

α̂ = 1+N

(
∑N

i=1
ln
(

zi

zMIN

))− 1

(8)  

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN. As seen from 
Equations (4) to (8), minimum value zMIN is essential for the calculation of the power-law exponent. A question concerns which MLE 
estimator α̂ in association with zMIN is most accurate in describing the data-generating processes for the variances. Following Clauset 
et al. (2009), we estimate lower threshold zMIN by making use of the Kolmogorov-Smirnov (KS) approach. This statistic is simply the 
maximum distance, D, between the data and fitted cumulative density functions (CDFs), given by 

D = MAXz≥zMIN |S(z) − P(z) | (9)  

where S(z) is the CDF of the data for the observation with a value of at least zMIN, and P(z) is the CDF for the power-law model that best 
fits the data in the region of z ≥ zMIN. The estimate of zMIN is the value of ̂zMIN that minimizes D. The question arises, then, whether the 
power-law model is reasonable. 

To investigate this issue, we follow Clauset et al. (2009) in employing the estimated parameter vector (α̂, ẑMIN), which is optimal 
with respect to D in a goodness-of-fit (GoF) test, thereby generating a p-value that quantifies the plausibility of the power-law null 
hypothesis. Specifically, this test compares D from Equation (9) with distance measurements for comparable synthetic data sets drawn 
from the hypothesized model. The p-value is defined to be the fraction of synthetic distances that are longer than the empirical dis-
tance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and 
the model can be attributed to statistical fluctuations alone.10 

Note that Mandelbrot (2008) highlighted that “… economics is different. It lacks unquestioned mathematical laws to rely upon. 
Also, time, not space, is the scaling factor” (Mandelbrot, 2008, p. 169). If asset variances were scaled in time, we would expect weekly 
asset variances and monthly asset variances to exhibit the same scaling factor as measured by power-law exponent α. This phenomenon 
is often referred to as (scale) invariance. Therefore, to explore the invariance phenomenon, we fit the model defined in Equation (4) to 
both data frequencies, weekly and monthly. 

Furthermore, Mandelbrot (2008) argued that the second wild trait that financial markets have in common is “long-range dependence 
in an otherwise random process – or, put another way, a long-term memory through which the past continues to influence the random 
fluctuations of the present” (Mandelbrot, 2008, p. 201). To investigate this effect, termed by Mandelbrot the “Joseph effect,” we 
employ detrended fluctuation analysis (DFA) as proposed first by Peng, Buldyrev, Havlin, Simons, Stanley, and Goldberger (1994) 
which has the principal virtue that, in contrast to many common statistical tests, it makes no assumption about how the original data 
are organized which is a critical point when studying financial data for which evidence abounds that the conventional assumptions are 
flatly wrong. 

The DFA approach to derive the Hurst exponent can be summarized as follows: First, data series zt is converted to the mean- 
centered cumulative sum: 

z̃t =
∑T

t=1
zt (10) 

9 We follow the notations of Clauset et al. (2009).  
10 The GoF test is detailed in Clauset et al. (2009). 

K. Grobys                                                                                                                                                                                                                



Journal of International Financial Markets, Institutions & Money 85 (2023) 101767

8

Then different time scales k are defined, that is, k ∈ {4,8,16,32, 64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64,128}
for monthly data. Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to 
detrend the data. For instance, employing k = 512 means that weekly data for z̃t is split into two non-overlapping epochs. For each 
epoch s, the following regression is employed: 

z̃t = γ0 + γ1t+ et (11)  

where t = 1,⋯, 512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each respective epoch s, the root mean 
squared error (RMSE) is computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
Ts

∑Ts

t
êt

√
√
√
√ (12)  

where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the corresponding 
theory, the following relation holds: 

RMSEk = ckH (13) 

The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. 
If the data were independent, the ratio between numerator and denominator should be, according to the theory, 1:2, corresponding 

to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies long-term dependence, that is, a long memory of the stochastic process in 
which the data are persistent; on the other hand, H < 0.50 implies antipersistence, which is characterized by the tendency to keep back 
on themselves.11 

As in the return process, multifractality implies that the variance process exhibits a Paretian tail. The question arises, however: how 
are those observations for which z ≥ zMIN holds distributed across time? In traditional finance, an often-discussed phenomenon is that 
of volatility clustering, meaning that periods of low and high volatility are persistent. We argue that in a multifractal framework, the 
presence of volatility clustering is manifested in observations governed by a power-law regime; that is, observations for which z ≥ zMIN 
holds occur in clusters. If z ≥ zMIN were independently distributed across the support of z, the observations should be distributed across 
the sample with respect to the percentage of power-law observations. To test this issue, we code vectors of binary variables. Specif-
ically, vector dW

i has a value of 1if z ≥ zMIN holds for observations in zW
i and values of 0 otherwise. Likewise, vector dM

i has a value of 1if 
z ≥ zMIN holds for observations in zM

i and values of 0 otherwise. Summing the values in dW
i and dM

i and dividing the sum by the number 
of observations (e.g., 1024 or 256) gives us the percentage of power-law observations in a given process zW

i or zM
i , respectively. We can 

interpret this figure as empirical probability and denote it as θ. 
Next, we can store the time length of each cluster in vectors dW

i and dM
i . To provide a concrete illustrative example, binary vector 

dW
a = (0,⋯0,1,1, 1, 0,⋯0,1,0,⋯,0, 1, 1,1, 1,1, 0,⋯0,1, 0,⋯0) would give us (3,1,5,1), where the maximum time length is equal to 5. 

Let us define the operator TL(.) that sums consecutive values of 1 in a binary vector and stores them in another vector such as 

TL
(

dW
a

)
= (3, 1, 5, 1). In the same manner, for each vector dW

i or dM
i , we can compute the maximum time lengths of consecutive 

observations (e.g., clusters) that obey a power-law regime. In the illustrative example mentioned above, we then can ask how likely it is 
to observe five consecutive observations in a power-law regime given probability θ. Assuming independence under the null hypothesis, 
we would not reject the null hypothesis if and only if θMAX(TL(dW

i ) ) > 0.05. 12 However, a rejection of the null hypothesis implies 
clustering of power-law observations corresponding to volatility clustering simply because the probability to observe such a long 
cluster of observations governed by different processes (e.g., a power-law process) in a given distribution governed by two distinct 
probability distributions purely by chance would be <5%. 

Finally, Mandelbrot (2008) highlighted the importance of the multiplicative cascade, which has the purpose to transform clock 
time into multifractal trading time by many repeated multiplications. Following Mandelbrot (2008), we use as a benchmark model for 
the binominal bending of time probability p = 0.60 and (1 − p) = 0.40 in association with 13 iterations for deriving deformed time. 
Mandelbrot (2008) noted the following: 

In fractal analysis, time is flexible. The multifractal model describes markets as deforming time – expanding it here, contracting 
it there. The more dramatic the time changes, the more the trading time-scale expands. The duller the price chart, the slower 
runs the market clock. Some researchers have tried linking this concept to trading volume: High volume equals fast trading time. 

11 It becomes evident that k ∈ (2r |r ∈ N) must hold. If we require 1024 weekly observations for the estimation, we would need 5120 daily ob-
servations, and hence, the multiplicative cascade used must exhibit ≥ 5120 observations. Therefore, earlier, we require 13 iterations for con-
structing the multiplicative cascade because 213 = 8192 > 5120 as opposed to 212 = 4096 < 5120, which wouldn’t provide us with a sufficient 
number of observations.  
12 As an illustrative example, let us assume that 30% of the overall sample observations are governed by some power-law process. Assuming 

independence, odds to observe two consecutive observations in the power-law regime are 0.3⋅0.3=0.09 or 9%, whereas odds to observe three 
consecutive observations in the power-law regime are 0.33=0.027 or 2.7%. Hence, observing more than two consecutive observations in the power- 
law regime is an indication for some dependency. 
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Fig. 1. Binominal multiplicative cascade with p = 0.60. This Figure plots the multiplicative cascade using binominal bending of time with prob-
abilities p = 0.60 and (1 − p) = 0.40 as proposed by Mandelbrot (2008). We employ 13 iterations, giving us 213 = 8192 observations. 

Fig. 2. Binominal multiplicative cascade with p = 0.55. This Figure plots the multiplicative cascade using binominal bending of time with prob-
abilities p = 0.55 and (1 − p) = 0.45. We employ 13 iterations, giving us 213 = 8192 observations. 
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Fig. 3. Binominal multiplicative cascade with p = 0.65. This Figure plots the multiplicative cascade using binominal bending of time with prob-
abilities p = 0.65 and (1 − p) = 0.35. We employ 13 iterations, giving us 213 = 8192 observations. 

Fig. 4. Binominal multiplicative cascade with p = 0.70. This Figure plots the multiplicative cascade using binominal bending of time with prob-
abilities p = 0.70 and (1 − p) = 0.30. We employ 13 iterations, giving us 213 = 8192 observations. 
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That is a connection not yet established, and it need not be. Time deformation is a mathematical convenience, handy for 
analyzing the market; and it happens to fit our subjective experience. Time does not run in a straight line … (Mandelbrot, 2008, 
p. 240) 

Segnon and Lux (2013) provided an overview on various other options to transform clock time into trading time that have been 

Table 1 
Multifractal model of realized weekly asset variances using binominal bending with p = 0.60.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst MAX time units in PL 

<5%  190.6965  0.0129  10.4257  332.4624  2.0965  7.8201  0.0420  0.0000  0.8503 3 
Median  323.7946  0.0373  11.1723  500.0409  2.5578  20.4811  0.1416  0.2000  0.8824 9 
>95%  699.3533  0.0760  12.0723  960.6080  3.2911  50.5673  0.3447  0.8900  0.9142 21 
Min  135.1928  0.0013  9.7694  244.1521  1.9186  4.4336  0.0156  0.0000  0.8241 2 
Max  1761.5106  0.1160  12.8682  3345.2243  4.7167  87.7050  0.5020  1.0000  0.9436 46 
Mean  366.2736  0.0401  11.1980  553.8809  2.6112  23.7350  0.1613  0.3008  0.8827 9.8140 
Std.Dev  173.3615  0.0193  0.4948  236.6526  0.3812  13.5728  0.0955  0.3066  0.0192 5.5707 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.60 and (1 − p) = 0.40 for 
deriving deformed time. Weekly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 

zW
i =

(∑5
t=1y2

t,i,
∑10

t=6y2
t,i,⋯,

∑5120
t=5116y2

t,i

)′
, 

where zW
i has the dimension 1024 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zW

i we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined as the fraction of synthetic distances that are longer than the empirical 
distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and the model 
can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first convert the 
data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Ts

∑Ts

t
êt

√

, 

where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dW

i has a value of 1if z ≥ zMIN holds for observations in zW
i and values of 0 otherwise. Summing the values of dW

i 

and dividing the sums by the number of observations (e.g., 1024) gives us the percentage of power-law observations in given processes zW
i which we 

can interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-
pothesis if and only if θMAX(TL(dW

i ) ) > 0.05.
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discussed in the literature. Here, however, we follow Mandelbrot et al. (1997b) and Mandelbrot (2008) by using binominal bending of 
time. The difference between the works of Mandelbrot et al. (1997b) and Mandelbrot (2008) and the current research is first (i) that we 
extend the multifractal model of asset returns (MMAR) to derive realized variances as opposed to asset returns, and second (ii) that we 
provide simulation-based evidence on the distribution of key metrics. 

To explore the impact of the multiplicative cascade on the derived variance processes, we also explore multifractal models using 
binominal bending of time with probability p = 0.55 and (1 − p) = 0.45 to study a more moderate time deformation relative to the 
benchmark model and a multifractal model using p = 0.65 and (1 − p) = 0.35 as well as p = 0.70 and (1 − p) = 0.30 to study more 
accelerated time deformations. In doing so, we perform the same analysis as for the benchmark model and use the same matrix X, and 
by controlling for randomness in X, any deviation from the benchmark model must be an artifact of its underlying multiplicative 
cascade. 

4. Results 

4.1. Multifractal modeling of realized variances: Simulation-based evidence. 

As pointed out by Mandelbrot (2008), the multiplicative cascade used for deforming trading time is of fundamental importance for 
the multifractal model. In Figs. 1 to 4, we plot the multiplicative cascades for using binominal bending of time. In Fig. 1, we use the 
binominal bending of time with probabilities p = 0.60 and (1 − p) = 0.40 as proposed by Mandelbrot (2008). We employ 13 iterations, 
giving us 213 = 8192 observations. In Figs. 2, 3 and 4, we use the binominal bending of time with probabilities (i) p = 0.55 and 
(1 − p) = 0.45, (ii) p = 0.65 and (1 − p) = 0.35, and (iii) p = 0.70 and (1 − p) = 0.30, respectively. We observe from Figs. 1 to 4 that the 
higher the probability (p) chosen, the more extreme the time deformation. 

Next, we simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. Multiplying the multiplicative 
cascade with each drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. In conducting the 
simulated time-series of asset returns, we use the same set of 1000 simulated vectors from random drawings from the standard normal 
distribution so that the constructed randomness is determined by the multiplicative cascade only. 

We use the first 5120 elements in each simulated time-series of asset returns to compute the weekly realized variance by summing 
five successive elements in each vector in a nonoverlapping manner. This procedure gives us 1000 data vectors, each having 1024 
weekly variance observations for each multiplicative cascade. For illustrative purposes, we plot in Figs. A.3 to A.6 in the appendix the 
first time-series vector for the simulated asset variances using multiplicative cascades with p = 0.60, p = 0.55, p = 0.65, and p = 0.70 
respectively. We observe from Figs. A.3 to A.6 that the higher the chosen p, the more extreme events are generated. 

In the same manner, we use the first 5120 elements in each simulated time-series of asset returns to compute the monthly realized 
variance by summing 20 successive elements in each vector in a nonoverlapping manner. This procedure gives us 1000 vectors, each 
having 256 monthly variance observations for each multiplicative cascade. Again, we plot in Figs. A.7 to A.10 in the appendix the first 

Fig. 5. Power law exponent and Hurst exponent for a model with binominal multiplicative cascade with p = 0.60 and weekly data. We construct the 
multiplicative cascade using binominal bending of time with probabilities p = 0.60 and (1 − p) = 0.40 as proposed by Mandelbrot (2008). Then we 
simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. Multiplying the multiplicative cascade with each 
drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. We use the first 5120 elements in each simulated time- 
series of asset returns to compute the weekly realized variance by summing five successive elements in each vector in a nonoverlapping manner. 
This procedure gives us 1000 data vectors, each having 1024 weekly variance observations. For each simulated time series, we estimate the power- 
law exponent and Hurst exponent as described in section 2. This Figure plots across the simulated data the estimated power-law exponents against 
the estimated Hurst exponents. 
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time-series vector for the simulated asset variances using multiplicative cascades with p = 0.60, p = 0.55, p = 0.65, and p = 0.70, 
respectively. For comparison reasons, we also plot the monthly realized variance for the S&P 500 over the period of March 1957 to 
March 2021 in Fig. A.11. Visual inspection shows that the simulated monthly variance using a multiplicative cascade with p = 0.60 
closely resembles the monthly realized variance for the S&P 500. To highlight this issue, we mirror-invert the last 256 observations of 
the monthly realized variance for the S&P 500 and plot in Fig. A.12 those data series against the data series of Fig. A.7. It becomes 
evident that the simulated data resemble the factual data so closely that without any table descriptions, the real-life and synthetic data 
are indistinguishable. 

4.2. Commonalities and differences across multifractal models depending on multifractal cascade. 

We continue to evaluate potential commonalities among those 1000 simulated realized-variance data series using this multifractal 
model framework. We start with the weekly realized variance using the binominal multiplicative cascade with p = 0.60, as proposed 
by Mandelbrot (2008). In evaluating the model, we differentiate the results with respect to the estimated power-law exponents. The 
results are summarized in Table 1. Based on the simulation experiment, we observe from Table 1 that the expected mean of the power- 
law exponents across those 1000 simulations is E[α] = α̂ = 2.6112 with a standard deviation of σα̂ = 0.3812. The average, respectively, 

expected Hurst exponent across the 1000 simulated multifractal time-series is E[H] = Ĥ = 0.8827 with an average standard deviation 
of σ

Ĥ
= 0.0192. Fig. 5 plots the estimated power-law exponents against the estimated Hurst exponents. Fig. 5 does not show any 

evidence for linear dependency. In fact, the correlation between those two exponents is as low as –0.0677. 
Next, the GoF test suggests that the average p-value across our 1000 simulated time-series is 30.08%. Moreover, in 671 out of 1000 

simulated series, we cannot reject the power-law null hypothesis because the p-values exceed 0.05. 13 The maximum time length of the 
processes being in power-law regimes is, on average, 9.81 time units, suggesting a high level of persistence. Assuming that the power- 

Fig. 6. Power law exponent and maximum length of consecutive time units in power law regime for a model with binominal multiplicative cascade 
with p = 0.60 and weekly data. We construct the multiplicative cascade using binominal bending of time with probabilities p = 0.60 and (1 − p) =
0.40 as proposed by Mandelbrot (2008). Then we simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. 
Multiplying the multiplicative cascade with each drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. We use 
the first 5120 elements in each simulated time-series of asset returns to compute the weekly realized variance by summing five successive elements 
in each vector in a nonoverlapping manner. This procedure gives us 1000 data vectors, each having 1024 weekly variance observations. For each 
simulated time series, we estimate the power-law exponent and the maximum time length of subsequent observations that a process is in power-law 
regime as detailed in section 2. This Figure plots across the simulated data the estimated power-law exponents against the estimated maximum time 
lengths of observations being in a power-law regime. 

13 Unreported results indicate no clear evidence for any linear dependency between the power-law exponent and the p-value of the GoF test. 
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law regimes are evenly distributed across each data series, the probability of that happening is virtually zero. In Fig. 6, we plot the 
estimated power-law exponent against the maximum length of consecutive time units in a power-law regime. From the results, the 
model suggests that the lower the absolute value of the power-law exponent, the higher the maximum value of consecutive time units 
that a process remains in the power-law regime. 

Further, we find that, on average, 16.13% of sample observations are governed by a power-law process and that the zmin is, on 
average, 23.7350, implying that, on average, weekly variances exceeding 23.7350 are governed by a power-law process. In Figs. 7 and 
8, we plot the estimated power-law exponents against the percentage of sample observations governed by a power-law process and the 
estimated power-law exponents against zmin. From Figs. 7 and 8, it becomes evident that the model suggests a negative link for the 
former and a positive link for the latter; that is, the lower the economic magnitude of the power-law exponent, the more observations 
governed by a power-law process. Moreover, the higher the economic magnitude of the power-law exponent, the higher the zmin. 

The mean of sample means across the 1000 simulated models is 11.1980 with a standard deviation of 0.4948, and the mean of 
sample variances across the 1000 simulated models is 553.8809 with a standard deviation of 236.6526. In Figs. 9 and 10, we plot the 
estimated power-law exponents against the sample means and sample variances. We see no strong evidence for any linear dependency 
between either of them. Moreover, no strong evidence exists for linear dependency between the power-law exponent and the minimum 
or maximum value.14 Overall, the multifractal model suggests three links between the power-law exponent and other metrics: a higher 
absolute economic magnitude of the power-law exponent is associated with (i) a lower maximum number of consecutive units of time 
spent in the power-law regime (negative association), (ii) a lower percentage of observations governed by the power-law process 
(negative association), and (iii) a higher value for zmin (positive association). Applying multifractal models using a binominal mul-
tiplicative cascade with p = 0.55, p = 0.65, or p = 0.70 shows very similar commonalities.15 However, there are also some differences. 
Tables 2–4 report the results for the multifractal models using binominal multiplicative cascades with p = 0.55, p = 0.65, and p =

Fig. 7. Power law exponent and percentage of observations governed by a power law for a model with binominal multiplicative cascade with p =

0.60 and weekly data, We construct the multiplicative cascade using binominal bending of time with probabilities p = 0.60 and (1 − p) = 0.40 as 
proposed by Mandelbrot (2008). Then we simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. Multiplying 
the multiplicative cascade with each drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. We use the first 
5120 elements in each simulated time-series of asset returns to compute the weekly realized variance by summing five successive elements in each 
vector in a nonoverlapping manner. This procedure gives us 1000 data vectors, each having 1024 weekly variance observations. For each simulated 
time series, we estimate the power-law exponent and the percentage of observations that a process is in power-law regime as detailed in section 2. 
This Figure plots across the simulated data the estimated power-law exponents against the estimated percentage of observations that a process is in a 
power-law regime. 

14 The scatterplots look very similar to those in Fig. 10 and are available upon request.  
15 The corresponding figures look similar to those reported here and are available upon request. 
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0.70, respectively. 
A key finding from Table 2 is that that the 1000 simulated weekly variance series using a binominal multiplicative cascade with p =

0.55 generate an average power-law exponent of α̂ = 3.7216 with a standard deviation of σα̂ = 0.6658. From Table 1, we see that in 
95% of the estimated exponents for variance processes based on a binominal multiplicative cascade with p = 0.60, α̂ < 3.2911. 
Therefore, we can reject on a 5% level the hypothesis that those two models would produce, on average, the same stochastic tail 
properties. Comparing the results from Table 1 with those of Table 2, another interesting finding is that the average Hurst exponent 
from variance processes based on a binominal multiplicative cascade with p = 0.55 has a lower economic magnitude compared to the 
average Hurst exponent from variance processes based on a binominal multiplicative cascade with p = 0.60. In fact, point estimate 

Ĥ = 0.7979 is almost four standard deviations lower as Ĥ = 0.8827. As a result, the multifractal model using variance processes based 
on a binominal multiplicative cascade with p = 0.55 produces, on average, variance processes that exhibit less persistence as opposed 
to those based on a binominal multiplicative cascade with p = 0.60. This issue is also manifested in the maximum time lengths of the 
processes being in power-law regimes. Specifically, the multifractal model using variance processes based on a binominal multipli-
cative cascade with p = 0.55 is, on average, 6.2520 consecutive time units in a power-law regime, whereas the corresponding figure is 
9.8140 for the benchmark model. Again, the hypothesis that the power-law regimes are, on average, evenly distributed across time is 
rejected on any level, suggesting that the part of the distributions governed by power laws occurs in clusters. The fact that the average 
maximum time length of the processes being in power-law regimes is shorter for the multifractal model of variance processes based on 
a binominal multiplicative cascade with p = 0.55 nicely coincides with the results discussed earlier for the multifractal model of 
variance processes based on a binominal multiplicative cascade with p = 0.60 because that model evidences a negative association 
between the power-law exponent and maximum time length of the processes being in power-law regimes (see Fig. 6). That is, the 
within-model result holds in an across-model comparison as well. 

A key finding from Table 3 is that that the 1000 simulated weekly variance series using a binominal multiplicative cascade with p =

0.65 generate an average power-law exponent of α̂ = 2.1253 with a standard deviation of σα̂ = 0.2863. From Table 1, we see that in 
95% of the estimated exponents for variance processes based on a binominal multiplicative cascade with p = 0.60, α̂ > 2.0965. On a 
5% significance level, the hypothesis that those two models would produce, on average, the same stochastic tail properties cannot be 
rejected with respect to the alpha. Next, comparing the results from Table 1 with those of Table 3, another key finding is that the 
average Hurst exponent from variance processes based on a binominal multiplicative cascade with p = 0.65 is higher in its economic 

Fig. 8. Power law exponent and corresponding cutoffs derived from a model with binominal multiplicative cascade with p = 0.60 and weekly data, 
We construct the multiplicative cascade using binominal bending of time with probabilities p = 0.60 and (1 − p) = 0.40 as proposed by Mandelbrot 
(2008). Then we simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. Multiplying the multiplicative cascade 
with each drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. We use the first 5120 elements in each 
simulated time-series of asset returns to compute the weekly realized variance by summing five successive elements in each vector in a nonover-
lapping manner. This procedure gives us 1000 data vectors, each having 1024 weekly variance observations. For each simulated time series, we 
estimate the power-law exponent and the corresponding cutoff (zmin) as detailed in section 2. This Figure plots across the simulated data the 
estimated power-law exponents against the estimated cutoffs. 
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magnitude compared to the average Hurst exponent from variance processes based on a binominal multiplicative cascade with p =

0.60. Point estimate Ĥ = 0.9044 is more than one standard deviation higher than Ĥ = 0.8827. As a result, the multifractal model 
using variance processes based on a binominal multiplicative cascade with p = 0.65 produces variance processes exhibiting a slightly 
higher level of persistence as opposed to those based on a binominal multiplicative cascade with p = 0.60. Furthermore, the maximum 
time length of the processes being in power-law regimes is, on average, 11.64 time units, confirming the evidence derived from the 
Hurst exponents. 

Furthermore, and again, the hypothesis that the power-law regimes are, on average, evenly distributed across time is rejected on 
any level, suggesting that the part of the distributions governed by power laws occurs in clusters. The fact that the average maximum 
time length of the processes being in power-law regimes is higher for the multifractal model of variance processes using a binominal 
multiplicative cascade with p = 0.65, again, nicely coincides with the results discussed earlier for the multifractal model of variance 
processes employing a binominal multiplicative cascade with p = 0.60 because it predicts that processes with lower power-law ex-
ponents are associated with longer maximum time units of the processes being in power-law regimes (see Fig. 6). 

In Fig. 4 we report the results derived from a model employing 1000 simulated weekly variance series using a binominal multi-
plicative cascade with p = 0.70. A key finding from Table 4 is that that the 1000 simulated weekly variance series using a binominal 
multiplicative cascade with p = 0.70 generate an average power-law exponent of α̂ = 1.8362 with a standard deviation of σα̂ =

0.2121. This implies that the processes are expected to exhibit no defined first moment. From Table 3, we observe that in 95% of the 
estimated exponents for variance processes based on a binominal multiplicative cascade with p = 0.65, α̂ > 1.7809. Hence, on a 5% 
significance level, the hypothesis that those two models would produce, on average, the same stochastic tail properties cannot be 
rejected with respect to the tail exponent. Comparing the multifractal model of variance processes using a binominal multiplicative 
cascade with p = 0.65 with the counterpart model (e.g., the model using a binominal multiplicative cascade with p = 0.70), it be-
comes evident that the averages are very close to each other (viz., 0.9044 and 0.9056). Like evidenced in earlier model comparisons, 
the slightly higher level of persistence for the multifractal model of variance processes using a binominal multiplicative cascade with 
p = 0.70 is also manifested in the maximum length of time units spent in the power-law regime which is higher for that model than for 
the model using a binominal multiplicative cascade with p = 0.65. 

Overall, the key findings are that the more extreme trading time is deformed, the lower is the expected power-law exponent and the 
higher is the expected Hurst exponent. This simulation-based evidence lines up nicely with the dual relationship between power-law 
exponent and Hurst exponent: 

Fig. 9. Power law exponent and sample mean for a model with binominal multiplicative cascade with p = 0.60 and weekly data, We construct the 
multiplicative cascade using binominal bending of time with probabilities p = 0.60 and (1 − p) = 0.40 as proposed by Mandelbrot (2008). Then we 
simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. Multiplying the multiplicative cascade with each 
drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. We use the first 5120 elements in each simulated time- 
series of asset returns to compute the weekly realized variance by summing five successive elements in each vector in a nonoverlapping manner. 
This procedure gives us 1000 data vectors, each having 1024 weekly variance observations. For each simulated time series, we estimate the power- 
law exponent and the sample means as detailed in section 2. This Figure plots across the simulated data the estimated power-law exponents against 
the estimated sample means. 
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Specifically, Mandelbrot (2008) argues that power-law exponent and Hurst exponent are in a dual relationship manifested in a 
negative correlation between Hurst exponent and power-law exponent.16 To illustrate this issue, in Fig. 11, we plot the power-law 
exponents and the corresponding Hurst exponents for all multifractal models investigated here. Strikingly, we observe four clear 
clusters. We also see from Fig. 11 that the distributions of power-law exponents are clearly concentrated around different means. Note 
that the turquoise, red, green, and blue clusters of estimated power-law and Hurst exponents correspond to the estimates derived from 
various multifractal models based on binominal multiplicative cascades with p = 0.70, p = 0.65, p = 0.60, and p = 0.55, respectively. 
Strikingly, the correlation between average power-law exponents and average Hurst exponents is − 0.9781. We interpret this as strong 
evidence for different multiplicative cascades indeed producing very distinct stochastic processes as defined in terms of their dis-
continuities and dependency structures. 

Next, we explore the characteristics of the model using simulated monthly variance data. The results are reported in Tables 5 to 8. 
Comparing the results of Table 5 with those of Table 1 where the binominal multiplicative cascade with p = 0.60 is used to generate the 
monthly and weekly, respectively, variance data, we observe that the average power-law exponent is slightly higher in its economic 
magnitude for monthly as opposed to weekly data. However, 95% of the weekly estimates for α̂ are below 3.2911 in economic 
magnitude, implying that on a 5% significance level, we cannot reject the null hypothesis that the α̂ for monthly and weekly data are 
statistically the same. We consider this result a strong indication for (scale) invariance across different time frequencies. Similar ev-
idence can be documented for the binominal multiplicative cascades with p = 0.55, p = 0.65, and p = 0.70; that is, we cannot reject 
the null hypothesis that monthly data exhibit statistically the same tail characteristics as the corresponding weekly data. Also, the 
estimated average Hurst exponents based on monthly data are very close to corresponding estimates for weekly data, indicating that 

the memory of the processes does not change across time scales. As an example, the point estimate for the average Hurst exponent Ĥ 
derived from a model employing 1000 simulated monthly variance series using a binominal multiplicative cascade with p = 0.60 is 
0.9106 which is less than one standard deviation higher than 0.8827 which is the corresponding figure for the counterpart model based 
on weekly data. 

Fig. 10. Power law exponent and sample variance for a model with binominal multiplicative cascade with p = 0.60 and weekly data, We construct 
the multiplicative cascade using binominal bending of time with probabilities p = 0.60 and (1 − p) = 0.40 as proposed by Mandelbrot (2008). Then 
we simulate 1000 vectors, each containing 8192 drawings of the standard normal distribution. Multiplying the multiplicative cascade with each 
drawing in a vector array by array, we retrieve 1000 simulated time-series of asset returns. We use the first 5120 elements in each simulated time- 
series of asset returns to compute the weekly realized variance by summing five successive elements in each vector in a nonoverlapping manner. 
This procedure gives us 1000 data vectors, each having 1024 weekly variance observations. For each simulated time series, we estimate the power- 
law exponent and the sample variance as detailed in section 2. This Figure plots across the simulated data the estimated power-law exponents 
against the estimated sample variances. 

16 The dual relationship between power-law exponent and Hurst exponent is detailed in Mandelbrot (2008, p. 200− 206). 
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4.3. How well does the model explain realized asset variances in real life? 

To explore how well the multifractal models explain real-life data, we download daily price data on the GBP/USD exchange rate, 
Bitcoin, crude oil, and the S&P 500. To have some degree of comparability, all data series end on the same day—April 19, 2022. 

Table 2 
Multifractal model of realized weekly asset variances using binominal bending with p = 0.55.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst MAX time units in PL 

<5%  45.4955  0.0452  6.4951  37.5460  2.8678  7.4141  0.0410  0.0000  0.7616 3 
Median  63.7457  0.1314  6.7682  45.1255  3.6315  12.7490  0.1328  0.2000  0.7977 5 
>95%  104.2574  0.2506  7.0551  57.1513  4.9739  21.7829  0.3086  0.8800  0.8333 12 
Min  36.6981  0.0065  6.3297  32.7363  2.5070  4.8053  0.0156  0.0000  0.7350 1 
Max  214.5671  0.4050  7.2668  81.5879  6.9149  30.2283  0.5059  1.0000  0.8593 24 
Mean  67.7768  0.1377  6.7715  45.9518  3.7216  13.3932  0.1509  0.3066  0.7979 6.2520 
Std.Dev  19.0406  0.0632  0.1661  6.2397  0.6658  4.4436  0.0872  0.3065  0.0218 3.2381 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.55 and (1 − p) = 0.45 for 
deriving deformed time. Weekly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 

zW
i =

(∑5
t=1y2

t,i,
∑10

t=6y2
t,i,⋯,

∑5120
t=5116y2

t,i

)′
, 

where zW
i has the dimension 1024 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zW

i we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined as the fraction of synthetic distances that are longer than the empirical 
distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and the model 
can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first convert the 
data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Ts

∑Ts

t
êt

√

, 

where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dW

i has a value of 1if z ≥ zMIN holds for observations in zW
i and values of 0 otherwise. Summing the values of dW

i 

and dividing the sums by the number of observations (e.g., 1024) gives us the percentage of power-law observations in given processes zW
i which we 

can interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-

pothesis if and only if θMAX(TL(dW
i ) ) > 0.05.
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Retrieving 2561 daily observations, the starting dates for the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500 are April 17, 
2015, June 27, 2012, February 17, 2012, and February 15, 2012, respectively. Computing the daily returns for each data set gives us 
2560 daily returns, and using the sum of 5 and 20 consecutive and squared daily observations provides us with 512 weekly and 128 
monthly realized-variance observations. For both weekly and monthly realized variances and each data set, we compute the power-law 

Table 3 
Multifractal model of realized weekly asset variances using binominal bending with p = 0.65.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst MAX time units in PL 

<5%  799.5418  0.0016  19.3973  3557.7144  1.7809  8.5514  0.0381  0.0000  0.8659 4 
Median  1685.7156  0.0051  22.0847  7363.0592  2.0601  29.0518  0.1475  0.1700  0.9045 11 
>95%  4475.0750  0.0112  26.2533  24991.1179  2.6639  121.2373  0.3262  0.8900  0.9407 23 
Min  522.8358  0.0002  17.2574  1921.0971  1.6258  3.0708  0.0127  0.0000  0.8355 2 
Max  12554.5332  0.0159  31.8135  157086.4876  4.3895  268.4269  0.5166  1.0000  0.9745 47 
Mean  2034.6503  0.0056  22.3433  10152.9781  2.1253  42.7085  0.1603  0.2956  0.9044 11.6410 
Std.Dev  1310.8141  0.0030  2.1237  10821.7698  0.2863  38.3628  0.0920  0.3095  0.0226 6.4848 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.65 and (1 − p) = 0.35 for 
deriving deformed time. Weekly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 

zW
i =

(∑5
t=1y2

t,i,
∑10

t=6y2
t,i,⋯,

∑5120
t=5116y2

t,i

)′
, 

where zW
i has the dimension 1024 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zW

i we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined as the fraction of synthetic distances that are longer than the empirical 
distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and the model 
can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first convert the 
data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Ts

∑Ts

t
êt

√
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where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dW

i has a value of 1if z ≥ zMIN holds for observations in zW
i and values of 0 otherwise. Summing the values of dW

i 

and dividing the sums by the number of observations (e.g., 1024) gives us the percentage of power-law observations in given processes zW
i which we 

can interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-

pothesis if and only if θMAX(TL(dW
i ) ) > 0.05.
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exponent and Hurst exponent and test the power-law null hypothesis using Clauset et al.’s (2009) GoF test. The results are reported in 
Tables 9 and 10. 

Considering weekly data, we observe from Table 9 that the estimated power-law exponents vary between α̂ = 2.1746 for the S&P 
500 and α̂ = 2.9474 for Bitcoin, implying that the weekly realized variance for Bitcoin is less exposed to extreme events than the 

Table 4 
Multifractal model of realized weekly asset variances using binominal bending with p = 0.70.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst MAX time units in PL 

<5%  3210.1842  0.0001  39.8463  37991.6864  1.5796  6.1489  0.0420  0.0000  0.9277 4 
Median  7898.9031  0.0004  50.4720  119270.3981  1.7841  32.5899  0.1563  0.1500  0.9068 11 
>95%  27627.5740  0.0009  71.2348  807832.9982  2.2343  211.3543  0.3408  0.8900  0.9269 24 
Min  1704.4902  0.0000  32.5517  17784.8228  1.5047  2.8381  0.0117  0.0000  0.8056 2 
Max  79049.4142  0.0016  116.6765  6135148.2228  3.5754  775.8109  0.4600  1.0000  0.9819 49 
Mean  10592.7700  0.0004  52.5146  234990.8534  1.8362  67.6387  0.1644  0.2901  0.9056 13.1760 
Std.Dev  8703.1464  0.0003  10.6116  434933.8487  0.2121  87.1992  0.0945  0.3126  0.0281 7.5437 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.70 and (1 − p) = 0.30 for 
deriving deformed time. Weekly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 

zW
i =

(∑5
t=1y2

t,i,
∑10

t=6y2
t,i,⋯,

∑5120
t=5116y2

t,i

)′
, 

where zW
i has the dimension 1024 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zW

i we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined as the fraction of synthetic distances that are longer than the empirical 
distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and the model 
can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first convert the 
data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Ts

∑Ts

t
êt

√

, 

where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dW

i has a value of 1if z ≥ zMIN holds for observations in zW
i and values of 0 otherwise. Summing the values of dW

i 

and dividing the sums by the number of observations (e.g., 1024) gives us the percentage of power-law observations in given processes zW
i which we 

can interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-

pothesis if and only if θMAX(TL(dW
i ) ) > 0.05.
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weekly realized variance for the S&P 500. This result is in line with the work of Grobys (2021), who used daily data to compute realized 
variances and documented power-law exponents for the S&P 500 and Bitcoin corresponding to α̂ = 2.58 and α̂ = 3.02, respectively. 
The Hurst exponents vary between 0.8394 for the weekly realized GBP/USD exchange rate variance and 1.1777 for the weekly realized 
crude oil variance. The null hypothesis that H = 0.50 is clearly rejected for all weekly realized variances. It is noteworthy that because 
Ĥ > 1 for crude oil and the S&P 500 weekly realized variances, the uncertainty in those asset markets is non-stationary, respectively, 
unbounded. This is in line with Sun and Zhou (2014) who fitted GARCH models to S&P 500 data. Their estimated models’ coefficients 
indicated that the fitted GARCH models are Near-IGARCH. 

Next, using Tables 1, we can test the weekly realized GBP/USD exchange-rate and Bitcoin variances for whether the estimated 
power-law exponents are statistically significantly larger than α = 2.6112, which is the implied value for E[α] for the corresponding 
multifractal model used as benchmark model here. Because for 95% of the simulated values for α the model predicts α < 3.2911, we 
cannot reject the model with respect to the power-law exponent. Further, as the estimated power-law exponents for the weekly realized 
variances for crude oil and the S&P 500 are below the implied value for E[α] = 2.6112 generated by the multifractal benchmark model, 
we can test whether the estimated power-law exponents for crude oil and the S&P 500 are significantly lower than E[α] = 2.6112. 
From Table 1, we observe that 95% of simulated values for α by the multifractal model exceed α = 2.0965. Again, we cannot reject our 
multifractal benchmark model with respect to the generated implied discontinuities. 

We can test the Hurst exponents in the same manner. The benchmark model implies that 95% of the Hurst exponents are either 
above Ĥ = 0.8503 or below Ĥ = 0.9142. Whereas the estimated Hurst exponents for the weekly realized Bitcoin variance is clearly 
within the boundaries, we observe from Table 1 that the estimated Hurst exponents for the weekly realized crude oil variance is still in 
the range of possible outcomes because the minimum value for Hurst exponents produced from the multifractal model is Ĥ = 0.8241 
which is clearly lower than the estimated Hurst exponent for weekly realized crude oil variance (viz., Ĥ = 0.8394). Moreover, it is 
worth noting that the estimated lower and upper bounds for the multifractal model reported in Tables 1–4 are based on 1024 ob-
servations, whereas the estimates for weekly realized variances for the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500 
incorporate only 512 observations. Accounting for less observations will widen the range of discontinuities and dependencies allowed 
for by the multifractal models. Overall, the evidence suggests that the multifractal benchmark model is indeed capable of describing 
the discontinuity and dependency structure we observe for weekly realized variances for the GBP/USD exchange rate and Bitcoin. 

However, the estimated Hurst exponents for both crude oil’s weekly realized variance and the S&P 500’s weekly realized variance 
(viz., Ĥ = 1.1777 and Ĥ = 1.1165) are clearly outside the range of possible Hurst exponents produced from the benchmark model. 

Fig. 11. Clusters of Power law exponents and Hurst exponents. This Figure plots the estimated power-law exponents against the corresponding 
estimated Hurst exponents for all multifractal models. Each model builds one of the four clusters. The turquoise, red, green, and blue clusters of 
estimated power-law and Hurst exponents correspond to the multifractal models derived from binominal multiplicative cascades with p = 0.70, 
p = 0.65, p = 0.60, and p = 0.55, respectively. The correlation between average power-law exponents and average Hurst exponents is − 0.9781. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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From Table 1 we see that Ĥ = 0.9436 is the maximum for estimated Hurst exponents produced from the benchmark model. Noting 
moreover that the estimated power-law exponents for the weekly realized variances for crude oil and the S&P 500 are considerably 
lower than the estimates for weekly realized variances for the GBP/USD exchange or Bitcoin, it may be obvious that the underlying 
multifractal model is required to produce both a higher level of discontinuity and a higher level of persistence. From Tables 1–4 it 

Table 5 
Multifractal model of realized monthly asset variances using binominal bending with p = 0.60.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst MAX time units in PL 

<5%  343.9031  0.7249  41.7545  2659.9105  2.1465  23.5203  0.0703  0.0000  0.8539 1 
Median  573.5962  1.2296  44.6836  3897.9596  2.7364  58.5107  0.2383  0.3100  0.9097 3 
>95%  1060.2399  1.8406  48.2892  7160.7704  3.9909  136.4062  0.5352  0.9500  0.9657 9 
Min  244.8299  0.4736  39.0774  1926.0629  1.9008  14.1641  0.0313  0.0000  0.8071 0 
Max  2116.5679  2.4709  51.4730  19010.4331  7.9932  219.1731  0.7188  1.0000  1.0076 22 
Mean  622.1480  1.2563  44.7919  4262.7881  2.8697  66.6449  0.2615  0.3824  0.9106 3.9300 
Std.Dev  233.8105  0.3337  1.9793  1579.0514  0.6232  35.2948  0.1460  0.3266  0.0341 2.5277 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.60 and (1 − p) = 0.40 for 
deriving deformed time. Monthly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 

zM
i =

(∑20
t=1y2

t,i,
∑40

t=21y2
t,i,⋯,

∑5120
t=5101y2

t,i

)′
, 

where zM
i has the dimension 256 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zM

i , we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined to be the fraction of synthetic distances that are longer than the 
empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and 
the model can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first 
convert the data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Ts

∑Ts

t
êt

√
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where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dM

i has a value of 1if z ≥ zMIN holds for observations in zM
i and values of 0 otherwise. Summing the values of dM

i , 
and dividing the sum by the number of observations (e.g., 256) gives us the percentage of power-law observations in given processes zM

i which we can 
interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-
pothesis if and only if θMAX(TL(dW

i ) ) > 0.05.
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becomes evident that the model derived from a multiplicative cascade with p = 0.70 could be a potential candidate. We observe from 
Table 4 that this model predicts that 95% of the simulated values for α, it holds that α < 2.2343. Since α̂ for the weekly realized 
variances for crude oil and the S&P 500 (viz., α̂ = 2.1959 and α̂ = 2.1746) α̂ < 2.2343 holds, we cannot reject the model with respect 
to the power-law exponent. On the other hand, even though this model produces the highest level of persistence in weekly realized 

Table 6 
Multifractal model of realized monthly asset variances using binominal bending with p = 0.55.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst Time units in PL 

<5%  91.3696  2.6447  25.9803  250.9106  3.0603  21.7855  0.0820  0.0000  0.7847 1 
Median  120.6268  4.1031  27.0728  314.7829  4.1067  34.9599  0.2539  0.3400  0.8490 1 
>95%  189.4988  5.4393  28.2205  407.2549  6.1781  54.6598  0.5352  0.9400  0.9083 3 
Min  73.7550  1.6406  25.3189  202.2815  2.5043  14.7438  0.0391  0.0000  0.7404 0 
Max  293.4821  6.6686  29.0673  584.3071  8.7385  68.8414  0.8008  1.0000  0.9462 8 
Mean  128.0125  4.0820  27.0859  319.1622  4.3002  36.4299  0.2728  0.3916  0.8480 1.6150 
Std.Dev  30.7539  0.8466  0.6644  49.4064  1.0090  10.2067  0.1413  0.3238  0.0365 0.9443 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.55 and (1 − p) = 0.45 for 
deriving deformed time. Monthly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 
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where zM
i has the dimension 256 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zM

i , we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined to be the fraction of synthetic distances that are longer than the 
empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and 
the model can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first 
convert the data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =
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1
Ts

∑Ts

t
êt

√

, 

where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dM

i has a value of 1if z ≥ zMIN holds for observations in zM
i and values of 0 otherwise. Summing the values of dM

i , 
and dividing the sum by the number of observations (e.g., 256) gives us the percentage of power-law observations in given processes zM

i which we can 
interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-
pothesis if and only if θMAX(TL(dW

i ) ) > 0.05.
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variances, we see that 95% of the simulated values for H, it holds that H < 0.9269. These results imply apparently that this model is not 
either capable of describing the dependency structures we observe for weekly realized variances for the crude oil and the S&P 500. In 
Fig. 12, we extend Fig. 11 by identifying the locations for (Ĥ, α̂) for the weekly realized variance for the GBP/USD exchange rate, 
Bitcoin, crude oil, and the S&P 500. Whereas (Ĥ, α̂) for the weekly realized variances for the GBP/USD exchange rate and Bitcoin are 

Table 7 
Multifractal model of realized monthly asset variances using binominal bending with p = 0.65.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value (GoF) Hurst MAX time units in PL 

<5%  1377.2700  0.1492  77.5893  26650.5987  1.7571  21.4816  0.0625  0.0000  0.8526 3 
Median  2686.8215  0.2782  88.3389  53639.4745  2.1902  96.3357  0.2188  0.3300  0.9184 10 
>95%  5766.3069  0.4604  105.0133  154094.2047  3.0244  329.2078  0.5469  0.9500  0.9901 23 
Min  818.0499  0.0692  69.0296  15397.5732  1.6168  11.4208  0.0352  0.0000  0.7891 2 
Max  13966.4253  0.6734  127.2540  771240.3391  4.3112  520.5462  0.6836  1.0000  1.0271 47 
Mean  3020.7764  0.2871  89.3733  68991.7444  2.2684  125.2794  0.2533  0.4000  0.9197 11.9840 
Std.Dev  1523.7510  0.0943  8.4947  57880.0493  0.4125  97.9644  0.1498  0.3400  0.0426 7.1031 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.65 and (1 − p) = 0.35 for 
deriving deformed time. Monthly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 
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where zM
i has the dimension 256 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zM

i , we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined to be the fraction of synthetic distances that are longer than the 
empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and 
the model can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first 
convert the data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
Ts

∑Ts

t
êt

√

, 

where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dM

i has a value of 1if z ≥ zMIN holds for observations in zM
i and values of 0 otherwise. Summing the values of dM

i , 
and dividing the sum by the number of observations (e.g., 256) gives us the percentage of power-law observations in given processes zM

i which we can 
interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-
pothesis if and only if θMAX(TL(dW

i ) ) > 0.05.
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well-located in the scatter of estimates produced from the benchmark model, the estimates for Ĥ for the weekly realized variances for 
crude oil and the S&P 500 are outside the range of estimates produced from the multifractal model based on a multiplicative cascade 
with p = 0.70. 

Table 8 
Multifractal model of realized monthly asset variances using binominal bending with p = 0.70.  

Distribution MAX MIN Mean VAR α zmin % #PL p-value 
(GoF) 

Hurst MAX time units in 
PL 

<5%  5130.8344  0.0213  159.3852  265986.3603  1.5549  17.0792  0.0703  0.0000  0.8339 2 
Median  11305.3606  0.0455  201.8881  772563.1391  1.8752  134.4935  0.2109  0.3100  0.9160 5 
>95%  31969.8684  0.0840  284.9393  4178034.3577  2.4646  645.0536  0.5313  0.9500  1.0110 18 
Min  2667.1790  0.0076  130.2070  126829.9017  1.4697  8.3098  0.0391  0.0000  0.7589 1 
Max  84030.9219  0.1415  466.7060  27626735.0963  3.3163  1305.4364  0.6680  1.0000  1.0987 31 
Mean  13974.2582  0.0482  210.0583  1338032.5012  1.9187  204.9380  0.2533  0.3701  0.9176 7.4640 
Std.Dev  9349.9590  0.0196  42.4462  2029000.8881  0.2916  211.1264  0.1464  0.3277  0.0557 5.0040 

Following Mandelbrot (2008), the multifractal process generating asset returns is given as 
y(t) = c(t)x(t), 
where c(t) is the multiplicative cascade at time t and x(t) IIDN(0,1). We use binominal bending of time with probability p = 0.65 and (1 − p) = 0.35 for 
deriving deformed time. Monthly variance is found by squaring each element in yi and then summing five consecutive, nonoverlapping elements, such 
as 
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t=1y2

t,i,
∑40

t=21y2
t,i,⋯,

∑5120
t=5101y2

t,i

)′
, 

where zM
i has the dimension 256 × 1 and i = 1,⋯,1000. To investigate the tail properties for each vector zM

i , we use the following model: 
p(z) = Bz− α, 
where B = (α − 1)zα− 1

MIN with α ∈ {R+|α > 1 }, z ∈ {ℝ+|zMIN ≤ z < ∞ }, zMIN is the minimum value of realized-variance observations governed by the 
power law, and α is the magnitude of tail exponent. Following White, Enquist, and Green (2008) and Clauset et al. (2009), we employ MLE and 
estimate the tail exponent as 

α̂ = 1 + N
(∑N

i=1ln
( zi

zMIN

))− 1

, 

where α̂ denotes the MLE estimator, and N denotes the number of sample observations exceeding z, that is, zi ≥ zMIN . To estimate lower threshold 
zMIN , we follow Clauset et al. (2009) by applying the KS approach. This statistic is simply the maximum distance, D, between the data and fitted CDFs, 
given by 
D = MAXz≥zMIN |S(z) − P(z) |, 
where S(z) is the CDF of the data for the observation with a value of at least zMIN , and P(z) is the CDF for the power-law model that best fits the data in 
the region of z ≥ zMIN . The estimate of zMIN is the value of ̂zMIN that minimizes D. To test the power-law null hypothesis, we follow Clauset et al. (2009) 
in employing the estimated parameter vector (α̂, ẑMIN) that is optimal with respect to D in a GoF test, thereby generating a p-value that quantifies the 
plausibility of the power-law null hypothesis. Specifically, this test compares D from the equation above with distance measurements for comparable 
synthetic data sets drawn from the hypothesized model. The p-value is defined to be the fraction of synthetic distances that are longer than the 
empirical distance. Given a significance level of 5%, the power-law null hypothesis is not rejected, as the difference between the empirical data and 
the model can be attributed to statistical fluctuations alone. Employing detrended fluctuation analysis (DFA) to derive the Hurst exponent we first 
convert the data series zt to the mean-centered cumulative sum: 
z̃t =

∑T
t=1zt . 

Then different time scales k are defined, that is, k ∈ {4,8, 16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64, 128} for monthly data. 
Depending on the defined time scale, data is split into epochs and for each epoch s, a time series regression is used to detrend the data. For instance, if 
k = 512, weekly data for ̃zt is split into two non-overlapping epochs. For each epoch s, the following regression is employed: 
z̃t = γ0 + γ1t + et , 
where t = 1,⋯,512 for the first epoch and t = 513,⋯,1024 for the second epoch. Then for each epoch s, the root mean squared error (RMSE) is 
computed as: 

RMSES =
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1
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where Ts = 512. Finally, the estimates for RMSES are averaged for each time scale k, giving us RMSEk. According to the theory, the following relation 
holds: 
RMSEk = ckH . 
The Hurst exponent is then estimated by computing a linear fit between log-scales and log-RMSEk. If the data were independent, the ratio between 
numerator and denominator should be, according to the theory, 1:2, corresponding to a Hurst exponent of H = 0.50. Moreover, H > 0.50 implies 
long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on the other hand, H < 0.50 implies anti-
persistence, which is characterized by the tendency to keep back on themselves. To test the dependency in the power-law regime, we code vectors of 
binary variables. Specifically, vector dM

i has a value of 1if z ≥ zMIN holds for observations in zM
i and values of 0 otherwise. Summing the values of dM

i , 
and dividing the sum by the number of observations (e.g., 256) gives us the percentage of power-law observations in given processes zM

i which we can 
interpret as empirical probability and denote it as θ. Assuming independence under the null hypothesis, defining the operator TL(.) that sums 
consecutive values of 1 in a binary vector and stores them in another vector and using a significance level of 5%, we would not reject the null hy-
pothesis if and only if θMAX(TL(dW

i ) ) > 0.05.
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However, as mentioned earlier, the estimates for the models reported in Tables 1–4 are derived from 1024 simulated sample 
observations. If less observations are included, the range for possible values for α̂ and Ĥ will inevitably widen. To illustrate this issue, in 
Fig. A.13 we plot the estimated power-law exponents against the corresponding estimated Hurst exponents for the multifractal model 
derived from a binominal multiplicative cascade with p = 0.70. Whereas the estimates for the Hurst exponents illustrated by the green 
cluster incorporate 1024 simulated sample observations, the estimates for the Hurst exponents illustrated by the blue cluster incor-
porate only 256 simulated sample observations. To make the results comparable, for both clusters, the estimated power-law exponents 

Table 9 
Weekly realized asset market variances.  

Asset market MAX MIN VAR α zmin %#PL p-value (GoF) Hurst (Std.Dev) MAX time units in PL 

GBP/USD  61.3011  0.0302  9.3941  2.8424  1.4554  32.81%  0.7450 0.8394 
(0.0260) 

7 

Bitcoin  1566.5330  0.2240  15470.7900  2.9474  143.3561  15.04%  0.2220 0.8955 
(0.0196) 

10 

Crude oil  833.2175  0.0959  9016.5020  2.1959  23.3077  34.38%  0.8420 1.1777 
(0.0331) 

18 

S&P 500  380.1593  0.0186  380.4374   2.1746  2.8107  48.44%  0.0320 1.1165 
(0.0431) 

23 

We download daily data on the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500. All data series end on the same day—April 19, 2022. 
Retrieving 2561 daily observations, the starting dates for the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500 are April 17, 2015, June 27, 
2012, February 17, 2012, and February 15, 2012, respectively. Computing the daily returns from price data for each data gives us 2560 daily returns, 
and using the sum of five consecutive and squared daily observations provides us with 512 weekly realized-variance observations. This table reports 
the same statistical metrics as for the simulated models. 

Fig. 12. Testing the Multifractal Model using real life data. This Figure plots the estimated power-law exponents against the corresponding esti-
mated Hurst exponents for all multifractal models. Each model builds one of the four clusters. The turquoise, red, green, and blue clusters of 
estimated power-law and Hurst exponents correspond to the multifractal models derived from binominal multiplicative cascades with p = 0.70, 
p = 0.65, p = 0.60, and p = 0.55, respectively. The correlation between average power-law exponents and average Hurst exponents is − 0.9781. 
Additionally, daily data on the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500 is downloaded. All data series end on the same 
day—April 19, 2022. Retrieving 2561 daily observations, the starting dates for the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500 are 
April 17, 2015, June 27, 2012, February 17, 2012, and February 15, 2012, respectively. Computing the daily returns from price data for each data 
gives us 2560 daily returns, and using the sum of five consecutive and squared daily observations provides us with 512 weekly realized-variance 
observations for σ2

GBP/USD, σ2
Bitcoin, σ2

Crudeoil, and σ2
S&P500. Then for each data, the specific power-law exponent (α) and Hurst exponent (H) are estimated. 

The specific locations for σ2
GBP/USD, σ2

Bitcoin, σ2
Crudeoil, and σ2

S&P500 in H/α – diagram are marked via arrows. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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are based on the same model incorporating all simulated sample observations (viz., 1024 observations). We observe from Fig. A.13 that 
as we account for less observations, the estimates for Ĥ for both the weekly variance for crude oil (viz., Ĥ = 1.1777) and the weekly 
variance for the S&P 500 (viz., Ĥ = 1.1165) are clearly covered from the multifractal model derived from a multiplicative cascade 
with p = 0.70. 

Overall, whereas the evidence suggests that the multifractal benchmark model derived from a multiplicative cascade with p = 0.60 
is capable of describing the discontinuity and dependency structure we observe for weekly realized variances for the GBP/USD ex-
change rate and Bitcoin, pricing the weekly realized variances for crude oil and the S&P 500 requires more extreme bending of time 
manifested in a multiplicative cascade with p = 0.70. In the same manner, we can test the properties of the realized asset variances 
based on monthly data as reported in Table A.1 in the appendix. The main results do not change. 

5. Discussion 

5.1. Computation and usage of realized variances in finance research 

This paper uses the MMAR in the spirit of Mandelbrot et al. (1997b) to model realized variance processes. In doing so, we note that 
realized variance or volatility, as proposed first from Andersen et al. (2001), is an alternative measure of the variability of asset prices 
which is considered a consistent and highly efficient nonparametric estimator. We note that the approach in our study requires to 
interpret the output of the MMAR as daily returns of some financial assets. Summing squared daily returns to obtain weekly or monthly 
variances seems to be common practice in the finance literature. For instance, Moreira and Muir (2017) construct asset portfolios that 
scale monthly returns by the inverse of their previous month’s realized variance, decreasing risk exposure when variance was recently 
high and vice versa. They estimate the realized monthly portfolio variance by summing up the squared daily returns over the past 22 
trading days. In the same manner, Grobys, Ruotsalainen and Äijö (2018) and Grobys and Vähämaa (2020) use the exact number of 
trading days for each month varying from 15 to 27 to compute monthly realized variances for industrial momentum strategies, the 
stock price momentum factor and the value factor. Our approach is in line with this literature as we use the sum of 20 (5) consecutive 
nonoverlapping squared observations to compute the monthly (weekly) realized variance. On the one hand, one could argue that using 
intraday data would perhaps result in less noisy estimates for the realized variances. On the other hand, one could have the view that 
high frequency data could be polluted with a substantially higher degree of noise. In this regard, Mandelbrot (2008) points out that 
high frequency data may suffer from microstructure issues. For instance, foreign exchange rate data having a higher frequency than 
two hours or a lower frequency that 180 days are subject to crossovers: points where the mathematical relation takes a hold. In 
addition, Mandelbrot (2008) highlights that crossovers are common for real as opposed to theoretical fractal data. While the current 
research follows this view of the literature, future research could extend our proposed model framework to the usage of higher fre-
quented financial data. 

5.2. Commonalities of realized asset market variances 

Next, a stream of recent literature explores the power-law properties of realized variances/volatilities (Grobys et al., 2021; Grobys, 
2021, 2023; Grobys and Kolari, 2022). The current study proposes that the realized variances for the GBP/USD exchange rate and 
Bitcoin share the same underlying “uncertainty generator.” On the other hand, the realized variances for crude oil and the S&P 500 
share another common “uncertainty generator.” Time deformation in the latter two asset markets appears to be much more extreme 
than in the former two and requires a multiplicative cascade using p = 0.70 as opposed p = 0.60. However, both models share a 
commonality manifested in multiplicative cascade derived from binominal bending of time as proposed first by Mandelbrot et al. 
(1997b). This is indeed a novel finding. There is no other such model available in the literature that would exhibit such properties. 
Future research is still needed to explore whether our proposed model is capable of describing the variance evolutions for single assets 
such as stocks or cryptocurrencies exhibiting lower market capitalizations than Bitcoin which is the market leader and perhaps lacks 
representativeness for the cryptocurrency asset market. 

5.3. Other multifractal model frameworks 

Segnon and Lux (2013) point out that in its original setting, the multifractal set in line with Mandelbrot et al. (1997b) results from 
operations performed on probability measures. The creation of a multifractal cascade is initiated by assigning uniform probability to a 
bounded interval. However, many variations of the above generating mechanism have been discussed in the literature such as the grid- 
free Poisson multifractal measure (Calvet and Fisher, 2001) or Lognormal, Poisson and Gamma distributions (Calvet and Fisher, 2002), 
among others. Interestingly, Segnon and Lux (2013) argue that the MMAR in its original setting has not been pursued further in 
subsequent literature despite the attractiveness of its stochastic properties. The main drawback is according to the authors that its 
practical applicability suffers from the combinatorial nature of the subordinator and its non-stationarity due to the restriction of this 
measure to a bounded interval. While the authors highlight that these potential limitations have been overcome by the analogous 
iterative time series models introduced by Calvet and Fisher (2001, 2004), the current research argues that using modern boot-
strapping techniques such as blocks bootstraps with randomly chosen block lengths, as proposed in Grobys and Junttila (2021), en-
sures stationary of the subordinator as any bounded interval could be arbitrarily extended to any desired sample length without 
altering the original stochastic properties. While the current research extends Mandelbrot’s (2008) proposed multifractal setting, 
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future research is encouraged to compare the performance of our model with multifractal models using other frameworks such as those 
discussed in Calvet and Fisher (2001; 2002; 2004). Since this exceeds the scope of the current study by a substantial margin, this is left 
for future research. 

5.4. Detrended fluctuation analysis or rescaled range analysis? 

This study employed detrended fluctuation analysis (DFA) to estimate Hurst exponent, whereas Mandelbrot (2008) suggested using 
rescale range (R/S) analysis. The R/S statistic was derived and detailed by Mandelbrot (1969, 1971, 1972) and Mandelbrot and Wallis 
(1969) and can be, according to Mandelbrot (2008, p. 298–299), summarized as 

R/Sk =
MAX1≤k≤T

∑k
j=1

(
zj − zT

)
− MIN1≤k≤T

∑k
j=1

(
zj − zT

)

[
1
T

∑
j

(
zj − zT

)2
]1/2  

where average variance zT is calculated for each cluster of size k. For each subsample cluster k, the difference between variance zj over 
that period and average variance zT is calculated while keeping a running total of all the differences as the time period lengthens up to 
period k. This has to be done for k ∈ {4,8,16,32,64,128,256,512} for weekly data and k ∈ {4,8, 16,32,64,128} for monthly data 
and then the maximum (MAX) and minimum (MIN) of all those differences are taken. The estimate of the range from peak to through in 
the accumulated deviations is simply computed by the differences between the corresponding maximum and minimum, which is the 
numerator of Equation (10). The denominator is simply the standard deviation of the respective data. If the data were independent, the 
ratio between numerator and denominator should be, according to Mandelbrot, 1:2, corresponding to a Hurst exponent of H = 0.50. 
Moreover, H > 0.50 implies long-term dependence, that is, a long memory of the stochastic process in which the data are persistent; on 
the other hand, H < 0.50 implies antipersistence, which is characterized by the tendency to keep back on themselves. According to the 
theory, 

Fig. A1. Binominal tree. This figure illustrates the binominal tree used for constructing the deformed trading time. Following Mandelbrot (2008), 
the probabilities p = 0.60 and (1 − p) = 0.40 are used. This figure shows the first three iterations of the binominal tree. In each iteration, each figure 
is multiplied with p = 0.60 and (1 − p) = 0.40. 

Fig. A2. Deformed trading time. This figure illustrates how the binominal tree illustrated in Fig. A.1 is transformed into trading time by multiplying 
each figure by the number of elements in each iteration. For instance, considering the second iteration the vector for the deformed trading time 
(1.44, 0.96, 0.96, 0.64) is retrieved by multiplying (0.36, 0.24, 0.24, 0.16) with 4. 
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Fig. A3. Weekly realized variance using a binominal multiplicative cascade with p = 0.60. This Figure plots the first time-series vector for the 
simulated weekly asset variances using a multiplicative cascade with p = 0.60. 

Fig. A4. Weekly realized variance using a binominal multiplicative cascade with p = 0.55. This Figure plots the first time-series vector for the 
simulated weekly asset variances using a multiplicative cascade with p = 0.55. 
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Fig. A5. Weekly realized variance using a binominal multiplicative cascade with p = 0.65. This Figure plots the first time-series vector for the 
simulated weekly asset variances using a multiplicative cascade with p = 0.65. 

Fig. A6. Weekly realized variance using a binominal multiplicative cascade with p = 0.70. This Figure plots the first time-series vector for the 
simulated weekly asset variances using a multiplicative cascade with p = 0.70. 
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Fig. A7. Monthly realized variance using a binominal multiplicative cascade with p = 0.60. This Figure plots the first time-series vector for the 
simulated monthly asset variances using a multiplicative cascade with p = 0.60. 

Fig. A8. Monthly realized variance using a binominal multiplicative cascade with p = 0.55. This Figure plots the first time-series vector for the 
simulated monthly asset variances using a multiplicative cascade with p = 0.55. 
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Fig. A9. Monthly realized variance using a binominal multiplicative cascade with p = 0.65. This Figure plots the first time-series vector for the 
simulated monthly asset variances using a multiplicative cascade with p = 0.65. 

Fig. A10. Monthly realized variance using a binominal multiplicative cascade with p = 0.70. This Figure plots the first time-series vector for the 
simulated monthly asset variances using a multiplicative cascade with p = 0.70. 
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Fig. A11. Monthly realized variance of the S&P 500, Daily data for the S&P 500 are retrieved covering the period from March 4, 1957, when the 
original S&P 500 companies were added to the index, until March 31, 2021. Realized monthly variances are computed as 

∑22
j=1R2

j,t , where Rj,t 

denotes the daily return of the S&P 500 in month t. Assuming 22 trading days per month, the realized monthly variances are computed as 
nonoverlapping observations. Fig. A.1. plots the evolution of 732 realized monthly S&P variance covering the March 1957 to March 2021 period. 

Fig. A12. Comparison between realized variance of the S&P 500 and simulated realized variance, The blue graph in this Figure shows the mirror- 
inverted last 256 observations of the realized monthly S&P variance from Fig. A.11, whereas the green graph shows the evolution of the simulated 
monthly realized variance using a multiplicative cascade with p = 0.60 as shown in Fig. A.7. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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where u IID(0, σu). Hence, the estimated Hurst exponent Ĥ is obtained via log–log regression. The rationale for choosing DFA as 
opposed to R/S analysis is that research has shown that R/S analysis is subject to some bias. For instance, Bassingthwaighte and 
Raymond (1994) document that R/S tends to give biased estimates of the Hurst exponent, too low for H > 0.72, and too high for H <
0.72. On the other hand, a more recent study of Bryce and Sprague (2012) highlights that even though DFA has become the preferred 
option for estimating the Hurst exponent, it introduces (i) uncontrolled bias, (ii) is computationally more expensive than the R/S 
statistic, and (iii) cannot provide generic or useful protection against nonstationaries. 

Hence, to evaluate the association between DFA and R/S analysis, we use weekly data and estimate the Hurst exponents using R/S 
analysis and examine the correlation between Hurst exponents derived from DFA and R/S analysis. The scatter plot shown in Fig. A.14 
in the appendix shows the estimated Hurst exponents derived from R/S analysis against the corresponding estimated Hurst exponents 
derived from detrended fluctuation analysis in four different clouds. The estimates are based on weekly data (e.g., 1024 observations). 
The turquoise, red, green, and blue clusters of estimated Hurst exponent clouds correspond to the multifractal models derived from 
binominal multiplicative cascades with p = 0.70, p = 0.65, p = 0.60, and p = 0.55, respectively. Strikingly, the correlation between the 
estimated Hurst exponents decrease as we move from low level of time deformation (viz., p = 0.55) to a high level of time deformation 
(viz., p = 0.70). Specifically, the estimated correlations for p = 0.55, p = 0.60, p = 0.65, and p = 0.70 are 0.8113, 0.4606, 0.2393, and 
0.0925. The strong correlation between the estimated Hurst exponents derived from DFA and R/S analysis for the multifractal model 
derived from a multiplicative cascade with p = 0.55 is manifested in a linear trend visualized by the blue cloud in Fig. A.14. The more 
the range for estimated Hurst exponents departs from ≈0.80 the less the estimated Hurst exponents retrieved from applying those two 
methodologies are correlated which, in turn, supports the study of Bassingthwaighte and Raymond (1994). Other methodologies to 
estimate the persistence of some data have been proposed in the literature. For instance, Alessio, Carbone, Castelli, and Frappietro 
(2002) propose the detrending moving average analysis (DMA) to measure long-term dependency structures of some data. While the 
current research followed earlier studies in using DFA, future studies are encouraged to evaluate other metrics to measure the 
persistence. 

6. Conclusion 

This study extends the literature on multifractal models in finance for modeling realized asset market variances. In doing so, weekly 
and monthly frequencies of realized variance are considered. The benchmark model used in this study employs binominal bending 
with p = 0.60 and (1 − p) = 0.40 to compute the multifractal cascade. This study also explores the impact of both more moderate and 

Fig. A13. Clusters of Power law exponents and Hurst exponents depending on sample lengths. This Figure plots the estimated power-law exponents 
against the corresponding estimated Hurst exponents for the multifractal model derived from a binominal multiplicative cascade with p = 0.70. 
Whereas the estimates for the Hurst exponents illustrated by the green cluster incorporate 1024 simulated sample observations, the estimates for the 
Hurst exponents illustrated by the blue cluster incorporate only 256 simulated sample observations. For both clusters, the estimated power-law 
exponents are based on the model incorporating all simulated sample observations (viz., 1024 observations). (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of this article.) 
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more extreme time deformations as opposed to the benchmark model. The models are mainly evaluated with respect to their tail 
characteristics and dependency structures as measured by their power-law exponent and Hurst exponent, respectively. The benchmark 

model generates asset variances exhibiting, on average, a power-law exponent and Hurst exponent of α̂ = 2.6112 and Ĥ = 0.8827, 
respectively. Moreover, 90% of the generated power-law exponents and Hurst exponents are between α̂ = 2.0965 and α̂ = 3.2911 and 
Ĥ = 0.8503 and Ĥ = 0.9142, respectively. Given that according to our simulation experiment E[α] = 2.6112, an interesting impli-
cation of the benchmark model is that the variance of variance is undefined as E[α] < 3, which means that we are not in an environment 
allowing us to work with the variance because we do not observe the true value in finite samples; even if an empirically observed 
realized variance exhibits α̂ ≤ 3.2911, one cannot rule out that the variance of variance does not exist. 

Testing realized weekly variances for the GBP/USD exchange rate and Bitcoin shows that the benchmark model is capable of 
explaining their properties as measured by those two key metrics. Testing the benchmark model based on monthly data supports this 
evidence. On the other hand, testing realized weekly variances for crude oil and the S&P 500 shows that the underlying multifractal 
model is required to incorporate more extreme bending of time manifested in a common multiplicative cascade with p = 0.70. Our 

Fig. A14. Hurst exponents derived from detrended fluctuation analysis and rescaled/range analysis. This Figure plots the estimated Hurst exponents 
derived from rescaled/range analysis (R/S analysis) against the corresponding estimated Hurst exponents derived from detrended fluctuation 
analysis (DFA). The estimates are based on weekly data (1024 observations). The turquoise, red, green, and blue clusters of estimated Hurst 
exponent clouds correspond to the multifractal models derived from binominal multiplicative cascades with p = 0.70, p = 0.65, p = 0.60, and p =

0.55, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table A1 
Monthly realized asset market variances.  

Asset market MAX MIN VAR α zmin %#PL p-value (GoF) Hurst (Std.Dev) MAX time units in PL 

GBP/USD  76.1442  0.6302  58.7064  3.5802  6.7974  25.00%  0.1810 0.8227 
(0.0447) 

5 

Bitcoin  2189.5770  7.3561  99079.2000  3.3878  443.1134  24.21%  0.2350 0.9467 
(0.0435) 

7 

Crude oil  932.9301  12.1197  21376.1900  3.0756  144.6281  26.56%  0.7510 1.0935 
(0.0548) 

5 

S&P 500  664.5742  1.2036  3629.0380   2.7229  28.0938  20.31%  0.9550 1.2946 
(0.0679) 

5 

We download daily data on the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500. All data series end on the same day—April 19, 2022. 
Retrieving 2561 daily observations, the starting dates for the GBP/USD exchange rate, Bitcoin, crude oil, and the S&P 500 are April 17, 2015, June 27, 
2012, February 17, 2012, and February 15, 2012, respectively. Computing the daily returns from price data for each data set gives us 2560 daily 
returns, and using the sum of 20 consecutive and squared daily observations provides us with 128 monthly realized-variance observations. This table 
reports the same statistical metrics as for the simulated models. 
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study suggests that some realized variances of otherwise unrelated asset markets are indeed driven by the same underlying “driving 
force,” which is manifested in multifractal-behavior driven by a common multiplicative cascade. The question arises what is the 
underlying mechanism that could explain these findings? First, Grobys et al. (2018) point out that investors in foreign exchange rate 
markets are relatively sophisticated and face no short-selling constraints. Moreover, the authors highlight that foreign exchange rate 
markets are more liquid than equity markets and feature large transaction volumes with relatively low transaction costs. While foreign 
exchange rate markets certainly form one extreme in the spectrum of asset markets market participants (viz., highly sophisticated 
market participants), Bitcoin – as a representative for the market for cryptocurrencies – might form the other extreme in the spectrum 
of asset markets participants: Specifically, recent research shows that the market for cryptocurrencies is driven to a large extent by 
retail investors engaging in speculation (Grobys and Junttila, 2021), or criminals engaging in money laundry (Foley et al., 2019) which 
are here termed less sophisticated market participants. The uncertainty in these two distinct asset markets measured in terms of their 
realized variances exhibits, however, the same fractal-behavior manifested in power-law exponents and Hurst exponents produced by 
the same multifractal model derived from a multiplicative cascade with p = 0.60. 

On the other hand, in commodity markets or equity markets – which form the middle section in the spectrum of asset market 
participants – time is more concentrated as both highly sophisticated and less sophisticated market participants interact with each 
other. Heterogenous market participants’ interactions may, in turn, result in feedback loops manifested in a higher level of discon-
tinuity and a higher level of persistence. Similarly, the uncertainty in these two distinct asset markets measured in terms of their 
realized variances exhibits the same fractal-behavior manifested in power-law exponents and Hurst exponents produced by the same 
multifractal model derived from a multiplicative cascade with p = 0.70 as opposed to p = 0.60. Future research is, however, 
encouraged to elaborate more in this issue. 
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