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Abstract: The distance between two vertices of a simple connected graph G, denoted as d(u, v),
is the length of the shortest path from u to v and is always symmetrical. An ordered subset
W = {w1, w2, w3, · · · , wk} of V(G) is a resolving set for G, if for ∀ u, v ∈ V(G), there exists
wi ∈W 3 d(u, wi) 6= d(v, wi). A resolving set with minimal cardinality is called the metric basis.
The metric dimension of G is the cardinality of metric basis of G and is denoted as dim(G). For the
graph G1 = (V1, E1,) and G2 = (V2, E2), their join is denoted by G1 + G2. The vertex set of G1 + G2

is V1 ∪ V2 and the edge set is E = E1 ∪ E2 ∪ {uv, u ∈ V1, v ∈ V2}. In this article, we show that the
metric dimension of the join of two path graphs is unbounded because of its dependence on the size
of the paths. We also provide a general formula to determine this metric dimension. We also develop
algorithms to obtain metric dimensions and a metric basis for the join of path graphs, with respect to
its symmetries.

Keywords: metric dimension; metric basis; path graphs; join of graphs

MSC: 05C35; 05C12; 05C99

1. Introduction

The study of metric dimension, dim(G), was first initiated by Slater and Peter [1,2].
They were studying the problem of determining the exact location of an intruder in a
network. They used the terms “locating set" and “location number" to define their concepts.
Independently, Hararay and Melter [3] studied the same concepts and used the term “metric
dimension". They calculated the metric dimensions of trees and grid graphs and gave a
characterization of graphs with small metric dimensions.

In this article, we use the terminology developed by Hararay and Melter. The
metric dimension is defined to be the cardinality of the smallest “resolving set" [3].
Chartrand et al. [4] used the term “metric basis" for the smallest resolving set. An ordered
subset W = {w1, w2, · · · , wk} ⊂ V(G) is a metric basis for a simple graph G, and then the
k-vector,

(
d(v, w1), d(v, w2), · · · , d(v, wk)

)
, is termed as the representation of the vertex v

with respect to the ordered subset W and is denoted as r(v|W).
The concept of metric dimension in graphs has drawn a lot of interest from researchers.

Chartrand et al. [4] calculated the metric dimensions of trees and unicyclic graphs. They
also gave the characterization of graphs with metric dimensions 1, n− 2 and n− 1. Klien
and Yi [5] studied the metric dimensions of para-line graphs. They also compared the
metric dimensions of graphs, line graphs and para-line graphs. Ahmed et al. [6] cal-
culated the exact values for the metric dimensions of the kayak paddles graph. They
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also calculated the metric dimensions of cycles with a chord. Sedlar and Skrekovski [7]
showed that the vertex and edge metric dimensions of unicyclic graphs obtain values
from two particular consecutive integers, which can be determined from the structure of
the graph. Abrishami et al. [8] calculated the local metric dimensions for graphs having
small clique numbers. Hayat et al. [9] determined the exact values of metric dimensions of
multi-partite graphs, effectively generalizing the already established results of bipartite
graphs. For further studies on metric dimensions, we refer the reader to [10–18] and the
references therein.

The metric basis and metric dimensions have also been studied under numerous
graph operations. Cáceres et al. [19] studied the metric dimensions of the Cartesian
product of graphs. They established that there is a family of graphs G with bounded
metric dimensions such that the metric dimension of G × G is unbounded. Jiang and
Polyanskii [20] showed that the metric dimensions of the Cartesian product of n copies
of G of order q, is (2 + o(1))n/logqn. Fehr et al. [21] studied the metric dimensions of
Cayley digraphs. Nazeer et al. [22] calculated the metric dimensions of path-related graphs
for applications in network optimization. Eroh et al. [23] studied the effect on metric
dimensions of a graph G when a vertex and/or edge is deleted from G. Sebő et al. [24]
used the concept of metric dimensions, strong metric generators and isometric embedding
to show that the existence of connected joins of graphs can be solved in polynomial time.

Metric dimensions of graphs have applications in robot navigation and drug
discovery [4], combinatorial optimization [24] and strategies for the mastermind game [25].
It was observed by Khuller et al. in [26] that the metric dimension of an arbitrary n-vertex
graph may be approximated in polynomial time. An obvious question is, can we reduce
this calculation time for some special types of graphs? In this article, we try to answer this
for the join of two path graphs.

1.1. Motivation

Metric dimension of the join of two graphs was studied by Shahida and Sunitha [27].
They considered two paths of lengths m and n and showed that

dim(Pm + Pn) =





1 m = n = 1
2 2 ≤ m ≤ 3⌊m

2
⌋
+ n− 1 1 ≤ n, 4 ≤ m

(1)

If we consider m = 6 and n = 4, then by Equation (1), dim(P6 + P4) = 6. Let us assume
that the vertices are labelled as {v1, v2, · · · , vm+n}; then it is an easy exercise to show that
the set {v2, v4, v7, v8} is a resolving set for P6 + P4, implying that dim(P6 + P4) 6= 6.

Rawat and Pradhan [28] improved the results of Shahida and Sunitha and calculated that

dim(Pm + Pn) =





3; 2 ≤ m ≤ 5 and 2 ≤ n ≤ 3,
4; 2 ≤ m ≤ 5 and n = 6 or 4 ≤ m ≤ 6 and n = 4, 5
5; m = n = 6⌈ n

2
⌉
; 2 ≤ m ≤ 3 and 7 ≤ n⌈ n

2
⌉
+ 1; 4 ≤ m ≤ 6 and 7 ≤ n⌈m

2
⌉
+
⌈ n

2
⌉
− 2 7 ≤ n and 7 ≤ m

(2)

Let us now consider m = 11 and n = 11. Then, by Equation (2), dim(P11 + P11) = 10.
Again, assuming that the vertices are labeled as {v1, v2, · · · , vm+n}, one can easily see that
the set {v2, v4, v7, v9, v13, v15, v18, v20} is a resolving set for P11 + P11. One can also verify
that the above result does not hold whenever m ≥ 11 or n ≥ 11.

The above discussion shows that there is an obvious vacuum in the literature for the
calculation of metric dimension of join of two path graphs. Haryanto et al. [29] tried to fill
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this gap and calculated the metric dimensions of P2 + Pt. The question of dim(Ps + Pt) is
still open when s > 2.

The present study was aimed at calculating the metric dimensions of Pm + Pn for all
values of m and n. This enabled the calculation of dim(Pm + Pn) in constant time. We also
provide an algorithm of complexity O(n) to calculate the metric bases for Pm + Pn. Since
the joining of graphs is a symmetric operation, we can see that Pm + Pn is siomorphic to
Pn + Pm.

1.2. Preliminaries

Let G = (V(G), E(G)) be a simple, connected and undirected graph. The number of
vertices in a graph is said to be the order of the graph. The distance between two vertices
u, v of a graph G, denoted by d(u, v), is the length of the shortest path between them. It is
clear that d(u, v) = d(v, u), since the distance is always symmetrical. The representation
of a vertex u ∈ V(G) with respect to an ordered set W = {w1, w2, w3, · · · , wk} ⊆ V(G),
denoted by r(u|W), is the k-tuple (d(u, w1), d(u, w2), · · · , d(u, wk)). We say that W ⊆ V(G)
resolves the graph G, if for any two vertices u, v ∈ G, there exists at least one wi ∈W such
that d(u, wi) 6= d(v, wi); equivalently, W resolves G if for any two vertices u, v ∈ G, we
have, r(u|W) 6= r(v|W). A resolving set W of minimum cardinality is called the metric
basis for the graph G, and |W| is the metric dimension of G.

Let G = (V1, E1) and H = (V2, E2) be simple, connected and non-trivial graphs. The
join of these graphs, G + H, is a graph with V(G + H) = {V1 ∪ V2} and
E(G + H) = {E1 ∪ E2 ∪ {e = uv, u ∈ V1, v ∈ V2}}. From the definition of a join of
graphs, we see that the join operation is a symmetric operation. We can also easily conclude
that d(u, v) = 1 whenever u ∈ V1, v ∈ V2.

Two graphs G and H are said to be isomorphic, denoted as G ∼= H, if there exists a
bijection, θ : V(G)→ V(H), such that u ∼ v in G if and only if θ(u) ∼ θ(v) in H.

In what follows, for simplicity we will write W ∪ w to represent the union of a set and
a single vertex.

2. Metric Dimension of the Join of Two Path Graphs

In this section we study the resolving set of the join of two path graphs. Let Ps and Pt
be paths of order s and t respectively; then, the join of these two paths Ps + Pt is as given in
the following.

V(Ps + Pt) = V(Ps) ∪V(Pt) = {vi : 1 ≤ i ≤ s} ∪ {vj : s + 1 ≤ j ≤ s + t} (3)

E(Ps + Pt) = E(Ps) ∪ E(Pt) ∪ {vivj, 1 ≤ i ≤ s, s + 1 ≤ j ≤ s + t} (4)

Note that for vi, vj ∈ Ps, d(vi, vj) = 1 if i = j + 1 or i = j− 1 (equivalently vi ∼ vj), and
d(vi, vj) = 2 otherwise. On the other hand, ∀vi ∈ Ps, ∀vj ∈ Pt, we have d(vi, vj) = 1. We
also consider s + t = n, whenever n is considered as an order of this graph. These concepts
can be clarified from Figure 1. The join operation for graphs is a symmetric operation since
V(Ps) ∪V(Pt) = V(Pt) ∪V(Ps), and

E(Pt + Ps) = E(Pt) ∪ E(Ps) ∪ {vjvi, 1 ≤ i ≤ s, s + 1 ≤ j ≤ s + t}.

We provide a concrete short example of the symmetry at work in this operation.
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v1 v2 v3 vs−2 vs−1 us

vs+1 vs+2 vs+3 vs+t−2 vs+t−1 vs+t

Figure 1. Join of Ps and Pt.

We provide a concrete short example of the symmetry at work in this operation.

Example 1. Let us consider the joins Ps + Pt and Pt + Ps when Ps ' P3 and Pt ' P4. Their figure
is provided below.

v1 v2 v3

v4 v5 v6 v7

v1 v2 v3 v4

v5 v6 v7

Ps + Pt Pt + Ps

Let us define a mapping Φ : Ps + Pt → Pt + Ps, where Φ(v1) = v5, Φ(v2) = v6, Φ(v3) =
v7, Φ(v4) = v1, Φ(v5) = v2, Φ(v6) = v3, and Φ(v7) = v4.

It can be easily verified that Ps + Pt ' Pt + Ps under the mapping Φ. This ensures that
Ps + Pt and Pt + Ps are the same graph with respect to their symmetry. It can also be concluded
that if a set W is a resolving set for Ps + Pt, then Φ(W) is a resolving set for Pt + Ps, owing to the
symmetry between them.

We now move on to state and prove our results for this section.

Theorem 1. For s = 1, 2, 3, 6 and t ≤ 6

dim(Ps + Pt) =





1 +
⌊ s

2
⌋
−
⌊ s

5
⌋

t = 1
2 +

⌊ s
2
⌋
−
⌊ s

5
⌋

2 ≤ t ≤ 5
3 +

⌊ s
2
⌋
−
⌊ s

5
⌋

t = 6

(5)

Proof. For this proof, we will discuss all the cases of s and t separately. Note that the
vertices are labeled as v1, v2, · · · , vs, vs+1, vs+2, · · · , vs+t.

Case 1. When s = 1. For t = 1 and 2, the results are obvious, since P1 + P1 = P2 and
P1 + P2 = K3. We discuss the remaining cases of t in the following.

a . t = 3: From Equation (1), dim(P1 + P3) = 2. Let W = {v1, v2}; then, r(v3|W) =
(1, 1) and r(v4|W) = (1, 2),‘ indicating that W = {v1, v2} is a resolving set for
P1 + P3. Let us consider the set W − {v1}. In that case, r(v1|W) = r(v3|W) = (1),
and if we consider the set W − {v2}, we can see that r(v2|W) = r(v3|W) =
r(v4|W) = (1), implying that these two sets do not resolve P1 + P3, and hence
dim(P1 + P3) = 2.

Figure 1. Join of Ps and Pt.

Example 1. Let us consider the joins Ps + Pt and Pt + Ps when Ps ' P3 and Pt ' P4. Their figure
is provided below.

v1 v2 v3

v4 v5 v6 v7

v1 v2 v3 v4

v5 v6 v7

Ps + Pt Pt + Ps

Let us define a mapping Φ : Ps + Pt → Pt + Ps, where Φ(v1) = v5, Φ(v2) = v6,
Φ(v3) = v7, Φ(v4) = v1, Φ(v5) = v2, Φ(v6) = v3, and Φ(v7) = v4.

It can be easily verified that Ps + Pt ' Pt + Ps under the mapping Φ. This ensures that
Ps + Pt and Pt + Ps are the same graph with respect to their symmetry. It can also be concluded
that if a set W is a resolving set for Ps + Pt, then Φ(W) is a resolving set for Pt + Ps, owing to the
symmetry between them.

We now move on to state and prove our results for this section.

Theorem 1. For s = 1, 2, 3, 6 and t ≤ 6

dim(Ps + Pt) =





1 +
⌊ s

2
⌋
−
⌊ s

5
⌋

t = 1
2 +

⌊ s
2
⌋
−
⌊ s

5
⌋

2 ≤ t ≤ 5
3 +

⌊ s
2
⌋
−
⌊ s

5
⌋

t = 6

(5)

Proof. For this proof, we will discuss all the cases of s and t separately. Note that the
vertices are labeled as v1, v2, · · · , vs, vs+1, vs+2, · · · , vs+t.

Case 1. When s = 1. For t = 1 and 2, the results are obvious, since P1 + P1 = P2 and
P1 + P2 = K3. We discuss the remaining cases of t in the following.

[a.] t = 3: From Equation (1), dim(P1 + P3) = 2. Let W = {v1, v2}; then, r(v3|W) = (1, 1)
and r(v4|W) = (1, 2),‘ indicating that W = {v1, v2} is a resolving set for P1 + P3.
Let us consider the set W − {v1}. In that case, r(v1|W) = r(v3|W) = (1), and if we
consider the set W − {v2}, we can see that r(v2|W) = r(v3|W) = r(v4|W) = (1),
implying that these two sets do not resolve P1 + P3, and hence dim(P1 + P3) = 2.
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In the remaining cases, we only show that a resolving set of stated cardinality exists.
These resolving sets are very small and well structured, and it can be easily shown
that a smaller resolving set does not exist. We will omit this part of the proof from all
other cases.

[b.] t = 4: Equation (1) =⇒ dim(P1 + P4) = 2. Let us take W = {v2, v3} as a resolv-
ing set; then, r(v1|W) = (1, 1), r(v4|W) = (2, 1) and r(v5|W) = (2, 2), giving us
dim(P1 + P4) = 2.

[c.] t = 5: By Equation (1), dim(P1 + P5) = 2. Let W = {v2, v6}; then, r(v1|W) = (1, 1),
r(v3|W) = (1, 2) , r(v4|W) = (2, 2) and r(v5|W) = (2, 1), implying that W = {v2, v6}
is a resolving set.

[d.] t = 6: Again, with the help of Equation (1), dim(P1 + P6) = 3. Let W = {v1, v3, v5};
then, r(v2|W) = (1, 1, 2), r(v4|W) = (1, 1, 1) , r(v6|W) = (1, 2, 1)and r(v7|W) = (1, 2, 2),
giving us, dim(P1 + P6) = 3.

Case 2. When s = 2. For t = 1 and 2, the results are again obvious, since P2 + P1 = K3 and
P2 + P2 = K4. Following the same pattern as above, we discuss the remaining cases of t
as follows.

[a.] t = 3: dim(P2 + P3) = 3 by Equation (1). Let W = {v1, v2, v3}; then, r(v4|W) = (1, 1, 1)
and r(v5|W) = (1, 1, 2) =⇒ dim(P2 + P3) = 3.

[b.] t = 4: From Equation (1), dim(P2 + P4) = 3. Let W = {v1, v3, v4}; then,
r(v2|W) = (1, 1, 1), r(v5|W) = (1, 2, 1) , r(v6|W) = (1, 2, 2); hence, dim(P2 + P4) = 3.

[c.] t = 5: dim(P2 + P5) = 3 by using Equation (1). Let W = {v1, v3, v7}; then,
r(v2|W) = (1, 1, 1), r(v4|W) = (1, 1, 2) , r(v5|W) = (1, 2, 2), r(v6|W) = (1, 2, 1);
hence, dim(P2 + P5) = 3.

[d.] t = 6: Equation (1) =⇒ dim(P2 + P6) = 4. Let W = {v1, v2, v4, v6}; then,
r(v3|W) = (1, 1, 1, 2), r(v5|W) = (1, 1, 1, 1) , r(v7|W) = (1, 1, 2, 1) and
r(v8|W) = (1, 1, 2, 2), giving us the result.

Case 3. When s = 3. When t = 1, we obtain P3 + P1, which is isomophic to P1 + P3, and
the result follows from Case 1.a. Similarly, when t = 2, we have P3 + P2 ∼= P2 + P3, and the
result follows from Case 2.a. The remaining cases for different values of t are given in the
following.

[a.] t = 3: dim(P3 + P3) = 3 by Equation (1). Let W = {v1, v2, v4}; then,
r(v3|W) = (2, 1, 1), r(v5|W) = (1, 1, 1) and r(v6|W) = (1, 1, 2). Hence,
dim(P3 + P3) = 3.

[b.] t = 4: Using Equation (1), we obtain dim(P3 + P4) = 3. Let W = {v1, v4, v5}; then,
r(v2|W) = (1, 1, 1), r(v3|W) = (2, 1, 1), r(v6|W) = (1, 2, 1), r(v7|W) = (1, 2, 2) =⇒
dim(P3 + P4) = 3.

[c.] t = 5: From Equation (1), dim(P3 + P5) = 3. Let W = {v1, v4, v8}; then,
r(v2|W) = (1, 1, 1), r(v3|W) = (2, 1, 1), r(v5|W) = (1, 1, 2), r(v6|W) = (1, 2, 2),
r(v7|W) = (1, 2, 1), and hence dim(P3 + P5) = 3.

[d.] t = 6: By Equation (1), dim(P3 + P6) = 4. Let W = {v1, v2, v5, v7}; then,
r(v3|W) = (2, 1, 1, 1), r(v4|W) = (1, 1, 1, 2), r(v6|W) = (1, 1, 1, 1), r(v8|W) = (1, 1, 2, 1)
and r(v9|W) = (1, 1, 2, 2), implying dim(P3 + P6) = 4.

Case 4. When s = 6. When t = 1, we obtain P6 + P1, which is isomophic to P1 + P6, and the
result follows from Case 1.d. Similarly when t = 2, we have P6 + P2 ∼= P2 + P6 (Case 2.d),
and when t = 3, we have P6 + P3 ∼= P3 + P6, and dim(P6 + P3) is the same as in Case 3.d.

[a.] t = 4: Equation (1) =⇒ dim(P6 + P4) = 4. Let W = {v2, v4, v7, v8}; then,
r(v1|W) = (1, 2, 1, 1), r(v3|W) = (1, 1, 1, 1), r(v5|W) = (2, 1, 1, 1), r(v6|W) = (2, 2, 1, 1),
r(v9|W) = (1, 1, 2, 1), r(v10|W) = (1, 1, 2, 2), and hence dim(Ps + Pt) = 4.

[b.] t = 5: By Equation (1), dim(P6 + P5) = 4. Let W = {v2, v4, v7, v11}; then,
r(v1|W) = (1, 2, 1, 1), r(v3|W) = (1, 1, 1, 1), r(v5|W) = (2, 1, 1, 1), r(v6|W) = (2, 2, 1, 1),
r(v8|W) = (1, 1, 1, 2), r(v9|W) = (1, 1, 2, 2), r(v10|W) = (1, 1, 2, 1); hence,
dim(P6 + P4) = 4.
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[c.] t = 6: From Equation (1), dim(P6 + P6) = 5. Let W = {v1, v2, v4, v8, v10}; then,
r(v3|W) = (2, 1, 1, 1, 1), r(v5|W) = (2, 2, 1, 1, 1), r(v6|W) = (2, 2, 2, 1, 1),
r(v7|W) = (1, 1, 1, 1, 2), r(v9|W) = (1, 1, 1, 1, 1), r(v11|W) = (1, 1, 1, 2, 1) and
r(v12|W) = (1, 1, 1, 2, 2), and hence, dim(P6 + P6) = 5.

Theorem 2. When s = 4, 5 and t ≤ 6; then,

dim(Ps + Pt) =





2 t = 1
3 2 ≤ t ≤ 3
4 4 ≤ t ≤ 6

(6)

Proof. We again discuss this for all cases of s and t seperately.

Case 1. When s = 4. When t = 1, we obtain P4 + P1, which is isomophic to P1 + P4, and the
result follows from Theorem 3.1 Case 1.b. Similarly, when t = 2, we have P4 + P2 ∼= P2 + P4
(Theorem 1, Case 2.b), and t = 3 gives P4 + P3 ∼= P3 + P4 (Theorem 1, Case 3.b).

[a.] t = 4. From Equation (6), dim(P4 + P4) = 4. Let W = {v1, v2, v5, v6}; then,
r(v3|W) = (2, 1, 1, 1), r(v4|W) = (2, 2, 1, 1), r(v7|W) = (1, 1, 2, 1) and
r(v8|W) = (1, 1, 2, 2), giving us dim(P4 + P4) = 4.

[b.] t = 5. By Equation (6), dim(P4 + P5) = 4. Let W = {v1, v2, v5, v7}; then,
r(v3|W) = (2, 1, 1, 1), r(v4|W) = (2, 2, 1, 1), r(v6|W) = (1, 1, 1, 1), r(v8|W) = (1, 1, 2, 1)
and r(v9|W) = (1, 1, 2, 2). Hence dim(P4 + P5) = 4.

[c.] t = 6, Equation (6) =⇒ dim(P4 + P6) = 4. Let W = {v1, v2, v6, v8}; then,
r(v3|W) = (2, 1, 1, 1), r(v4|W) = (2, 2, 1, 1), r(v5|W) = (1, 1, 1, 2), r(v7|W) = (1, 1, 1, 1),
r(v9|W) = (1, 1, 2, 1) and r(v10|W) = (1, 1, 2, 2), and hence dim(P4 + P6) = 4.

Case 2. When s = 5. When t = 1, we obtain P5 + P1, which is isomophic to P1 + P5, and the
result follows from Theorem 1, Case 1.c. Similarly, when t = 2, we have P5 + P2 ∼= P2 + P5
(Theorem 1, Case 2.c); when t = 3, we have P5 + P3 ∼= P3 + P5 (Theorem 1, Case 3.c); when
t = 4, we obtain P5 + P4

∼= P4 + P5 (Same Theorem, Case 1.b); and when t = 6, we have
P5 + P6 ∼= P6 + P5 (Theorem 1, Case 4.b).

[a.] t = 5, by Equation (6), dim(P5 + P5) = 4. Let W = {v1, v3, v6, v10}; then,
r(v2|W) = (1, 1, 1, 1), r(v4|W) = (2, 1, 1, 1), r(v5|W) = (2, 2, 1, 1), r(v7|W) = (1, 1, 1, 2),
r(v8|W) = (1, 1, 2, 2) and r(v9|W) = (1, 1, 2, 1), implying dim(P5 + P5) = 4.

We now move on to Ps + Pt when s ≥ 1 and t ≥ 7. Before proceeding further, we
define some new notation and concepts which will be used later on.

Let βx = (x− 1) and αx = βx mod 5, where x ∈ Z+ ∪ {0}. The term βx mod 5 is
used for the remainder, when βx is divided by 5. Using these concepts, we partition the
vertex set of Ps from Figure 1 as follows:

S1 =
{

v2i−1 : i ∈
{

1, · · · ,
⌈αs

2

⌉}}
S2 =

{
v2i : i ∈

{
1, · · · ,

⌊αs

2

⌋}}

S3 =

{
v5i+αs : i ∈

{
1, · · · ,

⌊
βs

5

⌋}}
S4 =

{
v5i+αs−1 : i ∈

{
1, · · · ,

⌊
βs

5

⌋}}

S5 =

{
v5i+αs−2 : i ∈

{
1, · · · ,

⌊
βs

5

⌋}}
S6 =

{
v5i+αs−3 : i ∈

{
1, · · · ,

⌊
βs

5

⌋}}

S7 =

{
v5i+αs−4 : i ∈

{
1, · · · ,

⌊
βs

5

⌋
+ 1
}}

We also partition the vertex set of Pt from Figure 1 along the same lines. This partition is
given in the following:

T1 =
{

v2i+βs : i ∈
{

1, · · · ,
⌈αt

2

⌉}}
T2 =

{
v2i+s : i ∈

{
1, · · · ,

⌊αt

2

⌋}}
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T3 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋ : i ∈
{

1, · · · ,
⌊

βt

5

⌋}}

T4 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋
−1

: i ∈
{

1, · · · ,
⌊

βt

5

⌋}}

T5 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋
−2

: i ∈
{

1, · · · ,
⌊

βt

5

⌋}}

T6 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋
−3

: i ∈
{

1, · · · ,
⌊

βt

5

⌋
+ 1
}}

T7 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋
+1

: i ∈
{

1, · · · ,
⌊

βt

5

⌋}}

From the definition of Si, we can easily deduce certain properties which will be helpful
later on. We provide them in the following.

(I) When 1 ≤ s ≤ 5, we obtain 0 ≤ βs ≤ 4. This gives
⌊

βs
5

⌋
= 0, implying, Si = φ for

i ∈ {3, 4, 5, 6}.
(II) For s > 5, Si 6= φ for i ∈ {3, 4, 5, 6, 7}.
(III) When s mod 5 = 1, we obtain αs = βs mod 5 = 0 =⇒ S1 = S2 = φ.
(IV) When s mod 5 = 2, S1 6= φ and S2 = φ.
(V) When s mod 5 = 0, 3, 4, S1 6= φ and S2 6= φ.

Similarly, for the partitions Ti, we list the following properties.

(VI) Since t ≥ 7, Ti 6= φ for i ∈ {3, 4, 5, 6, 7}.
(VII) When t mod 5 = 1, T1 = T2 = φ.
(VIII) When t mod 5 = 2, T1 6= φ and T2 = φ.
(IX) When t mod 5 = 0, 3, 4, T1 6= φ and T2 6= φ.

We also claim that vs ∈ S7. To realize this, we proceed as follows.
Since s ∈ Z+, βs ∈ Z+ ∪ {0}. Now





βs mod 5 = r where 0 ≤ r ≤ 4
=⇒ (s− 1) mod 5 = r : 0 ≤ r ≤ 4
=⇒ s− 1 = 5q + r : 0 ≤ r ≤ 4 and q ∈ Z+ ∪ {0}
=⇒

⌊
s−1

5

⌋
=
⌊
q + r

5
⌋

: 0 ≤ r ≤ 4 and q ∈ Z+ ∪ {0}
=⇒

⌊
s−1

5

⌋
= q : q ∈ Z+ ∪ {0}

(7)

Next, we investigate the last vertex of S7, i.e., v5i+αs−4, when i =
⌊

βs
5

⌋
+ 1. Now,





5i + αs − 4 = 5
((⌊

s−1
5

⌋)
+ 1
)
+ (s− 1) mod 5− 4

= 5(q + 1) + r− 4 since
⌊

s−1
5

⌋
= q and (s− 1) mod 5 = r

= 5q + r + 1
= s since 5q + r = s− 1.

Hence, vs ∈ S7 =
{

v5i+αs−4 : i ∈
{

1, · · · ,
⌊

βs
5

⌋
+ 1
}}

.
It is worthwhile to mention here that, at the end of this article, we provide an algorithm

based on our results. The loops counters in the algorithm work in such a way that the
above-stated properties of Si and Ti are handled inherently, and the end user does not need
to worry about these finer points of mathematics.

Armed with this knowledge, we now proceed to state and prove the main result of
this article.
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Theorem 3. For s ≥ 1 and t ≥ 7 (or vice versa), the metric dimension of Ps + Pt is

dim(Ps + Pt) = 2
(⌊

βs

5

⌋
+

⌊
βt

5

⌋)
+
⌈αs

2

⌉
+
⌈αt

2

⌉
(8)

Proof. This proof is completed in two parts. In part 1, we establish that we can in fact
generate a resolving set W of Ps + Pt of the above cardinality. In part 2, we show that there
does not exist any resolving set of Ps + Pt having fewer vertices than W.

Part I

Let W = Ws ∪Wt. Here, Ws ⊆ V(Ps) and Wt ⊆ V(Pt) and Ws = Ws1 ∪Ws2 ∪Ws3 and
Wt = Wt1 ∪Wt2 ∪Wt3 , where Wsi and Wti are defined as:

Ws1 = S1 =
{

v2i−1 : i ∈
{

1, · · · ,
⌈αs

2

⌉}}

Ws2 = S6 =

{
v5i+αs−3 : i ∈

{
1, · · · ,

⌊
βs

5

⌋}}

Ws3 = S4 =

{
v5i+αs−1 : i ∈

{
1, · · · ,

⌊
βs

5

⌋}}

Wt1 = T1 =
{

v2i+βs : i ∈
{

1, · · · ,
⌈αt

2

⌉}}

Wt2 = T5 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋
−2

: i ∈
{

1, · · · ,
⌊

βt

5

⌋}}

Wt3 = T3 =

{
v

5i+αs+αt+5
⌊

βs
5

⌋ : i ∈
{

1, · · · ,
⌊

βt

5

⌋}}

It is easy to calculate that |W| = 2
(⌊

βs
5

⌋
+
⌊

βt
5

⌋)
+
⌈ αs

2
⌉
+
⌈ αt

2
⌉
. We will prove

that the set W, generated above, is indeed a resolving set for Ps + Pt. For this, we will
show that, for any pair of distinct vertices va, vb ∈ V(G), there exists vw ∈ W, such that
d(va, vw) 6= d(vb, vw).

Let va, vb ∈ V(Ps + Pt), va 6= vb; then, without loss of generality, 1 ≤ a < b ≤ s + t,
since otherwise, we can just rename the indices to obtain the same. We only consider the
case when va, vb /∈W. From the fact that va /∈W, it is obvious that va enjoys any one of the
following forms:

(1) va ∈ S2; equivalently; va ∼= v2i : i ∈
{

1, · · · ,
⌊ αs

2
⌋}

(2) va ∈ S7; equivalently; va ∼= v5i+αs−4 : i ∈
{

1, · · · ,
⌊

βs
5

⌋
+ 1
}

(3) va ∈ S5; equivalently; va ∼= v5i+αs−2 : i ∈
{

1, · · · ,
⌊

βs
5

⌋}

(4) va ∈ S3; equivalently; va ∼= v5i+αs : i ∈
{

1, · · · ,
⌊

βs
5

⌋}

(5) va ∈ T2; equivalently; va ∼= vs+2i : i ∈
{

1, · · · ,
⌊ αt

2
⌋}

(6) va ∈ T6; equivalently; va ∼= v
5i+αs+αt+5

⌊
βs
5

⌋
−3

: i ∈
{

1, · · · ,
⌊

βt
5

⌋
+ 1
}

(7) va ∈ T4; equivalently; va ∼= v
5i+αs+αt+5

⌊
βs
5

⌋
−1

: i ∈
{

1, · · · ,
⌊

βt
5

⌋}

(8) va ∈ T7; equivalently; va ∼= v
5i+αs+αt+5

⌊
βs
5

⌋
+1

: i ∈
{

1, · · · ,
⌊

βt
5

⌋}

It should be noted that vb /∈W ensures that vb also adheres to the above given forms,
and since b > a, we will use the index j > i to denote different forms of vb.

The proof is divided into different cases. The proof for every case follows a set pattern,
wherein for every va, vb /∈W, we find vw ∈W, such that d(va, vw) 6= d(vb, vw). This ensures
that the representations r(va|W) 6= r(vb|W).
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Case 1. When va, vb ∈ Ps, since va ∈ Ps, va can assume any one of the forms (1) to (4). We
discuss all these cases separately.

[a.] Suppose that va is of the form as given in (1); then, va ∼= v2i =⇒ a = 2i : i ∈
{

1, · · · ,
⌊ αs

2
⌋}

.
Let us take w = a− 1 = 2i− 1 =⇒ vw ∼= v2i−1; then, d(va, vw) = d(v2i, v2i−1) = 1.
Given that vb ∈ Ps, it can assume any of the forms (1) to (4). For all of them, it is given
that a < b, and we will be using this information to solve all four cases of vb in one
go. We will not be repeating this information in all the other cases, but it is inherently
present in there.
Now b > a > a − 1 =⇒ vb � va−1 = vw, and since vb, vw ∈ Ps, we obtain
d(vb, vw) = 2.

[b.] Let va be of the form given in (2); then, va ∼= v5i+αs−4 =⇒ a = 5i + αs − 4 :

i ∈
{

1, · · · ,
⌊

βs
5

⌋
+ 1
}

.

Now, if vb � v5i+αs−2, then by letting w = a+ 1 = 5i+ αs− 3, we obtain vw = v5i+αs−3.
Since b 6= 5i + αs − 4 (b 6= a) and b 6= 5i + αs − 2, we obtain vb � vw. Again,
vb, vw ∈ V(Ps) =⇒ d(vb, vw) = 2, while d(va, vw) = 1.
If vb

∼= v5i+αs−2, then defining w as above gives us vb ∼ vw. For this case, let
w = a + 3 = 5i + αs − 1 =⇒ vw = v5i+αs−1. From the structure of va, vb, vw ∈ Ps, it
is clear that va � vw, while vb ∼ vw. Hence, d(vb, vw) = 1, while d(va, vw) = 2.

[c.] If va is of the form given in (3), then va ∼= v5i+αs−2 =⇒ a = 5i+ αs− 2 : i ∈
{

1, · · · ,
⌊

βs
5

⌋}
.

Let w = a− 1 = 5i + αs − 3 =⇒ vw ∼= v5i+αs−3. Now va ∼ vw =⇒ d(va, vw) = 1.
Again, since w = a − 1 < a < b and vw, vb ∈ Ps, we obtain vb � vw, giving us
d(vb, vw) = 2.

[d.] If va is of the form given in (4), then va ∼= v5i+αs =⇒ a = 5i + αs : i ∈
{

1, · · · ,
⌊

βs
5

⌋}
.

Let w = a− 1 = 5i + αs − 1 =⇒ vw ∼= v5i+αs−1. We obtain d(va, vw) = 1. It is again
an easy task to show that d(vb, vw) = 2 for all vb /∈W and vb ∈ Ps.

Case 2. When va, vb ∈ Pt, following the same proof techniques as in Case 1, it can be easily
shown that there always exists a vw ∈W, belonging to Pt, such that d(va, vw) 6= d(vb, vw).
Case 3. When va ∈ Ps and vb ∈ Pt:

[a.] Let va be of the form as given in (1); then, va ∼= v2i =⇒ a = 2i : i ∈
{

1, · · · ,
⌊ αs

2
⌋}

.
From here, we obtain that a ≤ 2

⌊ αs
2
⌋
.

When s is odd, a ≤ 2
⌊ αs

2
⌋

=⇒ a ≤ ((s− 1) mod 5) = αs.
When s is even, a ≤ 2

⌊ αs
2
⌋

=⇒ a ≤ ((s− 1) mod 5− 1) = αs − 1.

Let us consider the set Ws2 =
{

v5j+αs−3 : j ∈
{

1, · · · ,
⌊

βs
5

⌋}}
; then,

Ws2 3 vαs+2 = v5+αs−3 ≤ v5j+αs−3 : j ∈
{

1, · · · ,
⌊

βs
5

⌋}
. The above argument ensures

that the smallest element of the set Ws2 is vαs+2. Let vw = vαs+2; then, d(va, vw) = 2,
since a ≤ αs if s is odd, and a ≤ αs − 1 if s is even.
On the other hand, since vb ∈ Pt, d(vb, vw) = 1, since vw ∈ Ps.

[b.] Let va be of the form given in (2); then, va ∼= v5i+αs−4 =⇒ a = 5i + αs − 4 :

i ∈
{

1, · · · ,
⌊

βs
5

⌋
+ 1
}

. Let w = a + 3 = 5i + αs − 1; then, by construction of vw, we
obtain d(va, vw) = 2 and d(vb, vw) = 1 for all vb ∈ Pt.

[c.] If va is of the form given in (3); then, va ∼= v5i+αs−2 =⇒ a = 5i+ αs− 2 : i ∈
{

1, · · · ,
⌊

βs
5

⌋}
.

Let a = 5j + αs − 2 for some specific j ∈
{

1, · · · ,
⌊

βs
5

⌋}
. Let k ∈

{
1, · · · ,

⌊
βs
5

⌋}
such

that k 6= j. Consider the vertex vw = v5k+αs−3 ∈Ws2 . Since k 6= j, v5k+αs−3 � v5j+αs−2,
giving us d(va, vw) = 2 and d(vb, vw) = 1 for all vb ∈ Pt.

[d.] If va is of the form given in (4), then va ∼= v5i+αs =⇒ a = 5i + αs : i ∈
{

1, · · · ,
⌊

βs
5

⌋}
.

Let w = a− 3 = 5i + αs − 3; then, by construction of vw, we obtain d(va, vw) = 2 and
d(vb, vw) = 1 for all vb ∈ Pt.

We have completed our argument to establish that W, as defined above, is indeed a
resolving set for Ps + Pt. In the next part, we will show that W − {vw : vw ∈ W} is not a
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resolving set. This will ensure that there does not exist a resolving set smaller than W and
|W| is the metric dimension for Ps + Pt.

Part II

Since vs ∈ V7, we obtain vs /∈ Ws. We now calculate the distance d(vs, vw) for all
vw ∈Ws. Different cases arise for such a vw.
Case I. When vw ∈ Ws1 , depending on the value of s, Ws1 changes. We discuss these
different cases in the following.

[a.] When s mod 5 = 1, we obtain Ws1 = ∅, and there is no distance to calculate.
[b.] When s mod 5 = 2, then Ws1 = {v1}, i.e., vw = v1. If s = 2, then d(vw, vs) = 1;

otherwise, d(vw, vs) = 2.
[c.] When s mod 5 = 3, again Ws1 = {v1}; i.e., vw = v1 and d(vw, vs) = 2.
[d.] When s mod 5 = 4, we obtain, Ws1 = {v1, v3}; i.e., vw = v1 or vw = v3. If s = 4, we

obtain d(v1, vs) = 2 and d(v3, vs) = 1, and d(vw, vs) = 2 for all other such values of s.
[e.] When s mod 5 = 0, we again see that Ws1 = {v1, v3}—i.e., vw = v1 or vw = v3 and

d(vw, vs) = 2—for all such values of s.

Case II. When vw ∈ Ws2 . Then, vw ∈
{

v5i+αs−3 : i ∈
{

1, · · · ,
⌊

βs
5

⌋}}
. We claim that

vs � vw for all vw ∈Ws2 . Contrarily, let us suppose that vs ∼ vw. Since vs is the last vertex
of path Ps and vw ∈ Ps, we only have the possibility that the vertex with the largest index
in Ws2 is adjacent to vs, implying

5
⌊

βs

5

⌋
+ αs − 3 + 1 = s

=⇒ 5
⌊

s− 1
5

⌋
+ ((s− 1) mod 5)− 2 = s

Using the values from the equation set 7, we obtain s− 3 = s, which is a contradiction.
Hence, vs � v

5
⌊

βs
5

⌋
+αs−3

, implying vs � vw for all vw ∈Ws2 , giving us d(vs, vw) = 2 for all

vw ∈Ws2 .

Case III. When vw ∈ Ws3 . Then, vw ∈
{

v5i+αs−1 : i ∈
{

1, · · · ,
⌊

βs
5

⌋}}
. We claim that

vs � vw for all vw ∈ Ws3 . On the contrary, let us suppose that vs ∼ vw. Since vs is the last
vertex of path Ps and vw ∈ Ps, we only have the possibility that the vertex with the largest
index in Ws3 is adjacent to vs, implying

5
⌊

βs

5

⌋
+ αs − 1 + 1 = s

=⇒ 5
⌊

s− 1
5

⌋
+ ((s− 1) mod 5) = s

Again, using the values from equation set 7, we obtain s− 1 = s, which is a contradiction.
Hence, vs � v

5
⌊

βs
5

⌋
+αs−1

, implying vs � vw for all vw ∈Ws3 , giving us d(vs, vw) = 2 for all

vw ∈Ws3 .
It is our aim to show that whenever we formulate the set W ′ = W − {vw : vw ∈ W},

there exists a vertex, say va /∈ W ′, such that r(vs|W ′) = r(va|W ′). Again, different cases
arise depending on vw.
Case A. When vw ∈ Ws1 , depending on the value of s, Ws1 changes. We discuss these
different cases in the following.

[a.] When s mod 5 = 1, we obtain Ws1 = ∅, and there is nothing to discuss.
[b.] When s mod 5 = 2, Ws1 = {v1}; i.e., vw = v1.

If s = 2, then r(vs = v2|W ′) = (1, 1, · · · , 1), since all elements of W ′ are in Wt. Since
vw /∈ W ′, by letting va = vw = v1, we see that r(va = vw|W ′) = (1, 1, · · · , 1), since
again, all elements of W ′ are in Wt. Hence, W ′ is not a resolving set.
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On the other hand, if s 6= 2 and s mod 5 = 2, we again see that Ws1 = {v1}.
Let W ′ = W − v1. Then, by the argument in Cases II and III and by the fact that
d(vs, vb) = 1 for all vb ∈ Pt, we obtain

r(vs|W ′) = (

Ws−vw︷ ︸︸ ︷
2, 2, · · · , 2,

Wt︷ ︸︸ ︷
1, 1, · · · , 1).

Considering the vertex va = vw = v1, since v2 /∈W, all elements of W occur after v2;
i.e., all elements of W − v1 occur after v2; hence,

r(v1|W ′) = (

Ws−vw︷ ︸︸ ︷
2, 2, · · · , 2,

Wt︷ ︸︸ ︷
1, 1, · · · , 1).

Hence, W ′ is not a resolving set.
[c.] When s mod 5 = 3, again Ws1 = {v1}. Considering the vertex va = v1 and proceed-

ing in the same way as above, we see that, r(vs|W ′) = r(v1|W ′).
[d.] When s mod 5 = 4, Ws1 = {v1, v3}; i.e., vw = v1 or vw = v3.

If s = 4, we can formulate W ′ in two ways; i.e., W ′ = W − v1 or W ′ = W − v3. If
W ′ = W − v1, by comparing r(v2|W ′) and r(v4|W ′), we see that W ′ is not a resolving
set. On the other hand, if W ′ = W − v3, comparing r(v3|W ′) and r(v4|W ′) gives us
that W ′ is not a resolving set.
If s 6= 4 but s mod 5 = 4, letting va = vw and comparing r(vw|W ′) and r(vs|W ′)
gives us that W ′ is not a resolving set.

[e.] When s mod 5 = 0, again, Ws1 = {v1, v3}—i.e., vw = v1 or vw = v3. As in the case,
s 6= 4 and s mod 5 = 4, by letting va = vw and comparing the representations of vw
and vs with respect to W ′ = W − vw, we see that W ′ is not a resolving set.

Case B. When vw ∈Ws2 , it is again an easy task to show that

r(vw|W ′) = (

Ws−vw︷ ︸︸ ︷
2, 2, · · · , 2,

Wt︷ ︸︸ ︷
1, 1, · · · , 1),

where W ′ = W − vw. Similarly,

r(vs|W ′) = (

Ws−vw︷ ︸︸ ︷
2, 2, · · · , 2,

Wt︷ ︸︸ ︷
1, 1, · · · , 1).

This again shows that W ′ is not a resolving set.
Case C. When vw ∈ Ws3 , considering the representations r(vw|W ′) and r(vs|W ′), where
W ′ = W − vw, we see that r(vw|W ′) = r(vs|W ′), and again, W ′ is not a resolving set.

For the part where W − vw is not a resolving set for all vw ∈Wt, the procedure is the
same as for Ws.

This completes the second part of our theorem. Combining these two together, we see
that W is indeed a resolving set with minimal cardinality. Hence, dim(Ps + Pt) = |W|. This
completes our result.

The above results conclude that the metric dimension of Ps + Pt is not an exact
number and increases with the size of both paths—i.e., the metric dimension of Ps + Pt
is unbounded.

3. Algorithms for Metric Bases and Metric Dimensions of Ps + Pt

Theorems 1–3 enable us to calculate the metric dimensions of Ps + Pt in constant time.
An algorithm is developed in the following.
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Algorithm 1 Calculating the metric dimension of Ps + Pt for s ≥ 1 and t ≥ 1.
Input s and t

1: βs ← s− 1
2: αs ← (s− 1) mod 5
3: βt ← t− 1
4: αt ← (t− 1) mod 5
5: dim← 0
6: if t ≤ 6 then
7: if s ∈ {1, 2, 3, 6} then
8: if t = 1 then
9: dim← 1 +

⌊ s
2
⌋
−
⌊ s

5
⌋

10: end if
11: if 2 ≤ t ≤ 5 then
12: dim← 2 +

⌊ s
2
⌋
−
⌊ s

5
⌋

13: end if
14: if t = 6 then
15: dim← 3 +

⌊ s
2
⌋
−
⌊ s

5
⌋

16: end if
17: end if
18: if s ∈ {4, 5} then
19: if t = 1 then
20: dim← 2
21: end if
22: if 2 ≤ t ≤ 3 then
23: dim← 3
24: end if
25: if 4 ≤ t ≤ 6 then
26: dim← 4
27: end if
28: end if
29: else dim← 2

(⌊
βs
5

⌋
+
⌊

βt
5

⌋)
+
⌈ αs

2
⌉
+
⌈ αt

2
⌉

30: end if
Output dim

It can be readily observed that the algorithm uses assignment and if–else statements
only. Each of these steps has a complexity of O(1). Combining their complexities together
gives us a complexity of O(1) for the whole algorithm.

These theorems also provide us a way to calculate the metric bases for Ps + Pt.
Theorems 1 and 2 establish that the metric bases for Ps + Pt can be calculated in con-
stant time for 1 ≤ s, t ≤ 6. Based on Theorem 3, we developed the following algorithm to
calculate the metric bases for Ps + Pt when s ≥ 1 and t ≥ 7.

The first five statements of the above algorithm are assignments, each having a com-
plexity of O(1). Loops in steps 6, 9, 12 and 15 are not nested. The counter ensures that every
loop runs less than n = s + t times, with a maximum complexity of O(n). By adding these
complexities together, we again obtain O(n); i.e., the algorithm runs in linear time.

The metric basis we calculated in the algorithm will work for both Ps + Pt and Pt + Ps
because of isomorphism and symmetry. Let us use this algorithm to solve an example
already mentioned in introduction.
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Algorithm 2 Calculating the metric basis of Ps + Pt for s ≥ 1 and t ≥ 7.
Input s and t

1: βs ← s− 1
2: αs ← (s− 1) mod 5
3: βt ← t− 1
4: αt ← (t− 1) mod 5
5: W ← ∅
6: for 1 ≤ i ≤

⌈ αs
2
⌉

do
7: W ←W ∪ v2i−1
8: end for
9: for 1 ≤ i ≤

⌊
βs
5

⌋
do

10: W ←W ∪ v5i+αs−3 ∪ v5i+αs−1
11: end for
12: for 1 ≤ i ≤

⌈ αt
2
⌉

do
13: W ←W ∪ v2i+βs

14: end for
15: for 1 ≤ i ≤

⌊
βs
5

⌋
do

16: W ←W ∪ v
5i+αs+αt+5

⌊
βs
5

⌋
−2
∪ v

5i+αs+αt+5
⌊

βs
5

⌋

17: end for
Output W

Example 2. Let s = 11 and t = 11; then, βs = βt = 10 and
⌊

βs
5

⌋
=
⌊

βt
5

⌋
= 2. Again,

αs = αt = 0 and
⌈ αs

2
⌉
=
⌈ αt

2
⌉
= 0. Loops in steps 6 and 12 do not satisfy the condition,

and hence will not contribute anything to W. The loop in step 9 will run twice and will give
us W = {v2, v4, v7, v9}. Similarly, the loop in step 15 will run twice, and we will then obtain
W = {v2, v4, v7, v9, v13, v15, v18, v20}.

4. Conclusions

We considered the join of two path graphs Ps and Pt and calculated their metric
dimensions and metric basis.

We also provided algorithms to calculate the metric dimensions and metric basis of
Ps + Pt. We concluded that the metric-dimension algorithm has a complexity of O(1), and
the metric-basis algorithm runs with O(n) complexity.

Since the metric dimension of an arbitrary n-vertex graph can be approximated in
polynomial time [26], we have effectively reduced a lot of computational complexity for
the case of Ps + Pt, and by symmetry, that of Pt + Ps.
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