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Abstract: Safety Performance Functions (SPFs) play a key role in identifying hotspots. Most SPFs
were built at the micro-level, such as for road intersections or segments. On the other hand, in
case of regional transportation planning, it may be useful to estimate SPFs at the macro-level (e.g.,
counties, cities, or towns) to determine ad hoc intervention prioritizations. Hence, the final aim of
this study is to develop a predictive framework, supported by macro-level SPFs, to estimate crash
frequencies, and consequently possible priority areas for interventions. At a province-wide level. The
applicability of macro-level SPFs is investigated and tested thanks to the database retrieved in the
context of a province-wide Sustainable Urban Mobility Plan (Bari, Italy). Starting from this database,
the macro-areas of analysis were carved out by clustering cities and towns into census macro-zones,
highlighting the potential need for safety interventions, according to different safety performance
indicators (fatal + injury, fatal, pedestrian and bicycle crashes) and using basic predictors divided
into geographic variables and road network-related factors. Safety performance indicators were
differentiated into rural and urban, thus obtaining a set of 4 × 2 dependent variables. Then they were
linked to the dependent variables by means of Negative Binomial (NB) count data models. The results
show different trends for the urban and rural contexts. In the urban environment, where crashes are
more frequent but less severe according to the available dataset, the increase in both population and
area width leads to increasing crashes, while the increase in both road length and mean elevation
are generally related to a decrease in crash occurrence. In the rural environment, the increase
in population density, which was not considered in the urban context, strongly influences crash
occurrence, especially leading to an increase in pedestrian and bicyclist fatal + injury crashes. The
increase in the rural network length (excluding freeways) is generally related to a greater number of
crashes as well. The application of this framework aims to reveal useful implications for planners and
administrators who must select areas of intervention for safety purposes. Two examples of practical
applications of this framework, related to safety-based infrastructural planning, are provided in
this study.

Keywords: macro-level safety analysis; safety performance functions; regional variables; road crashes

1. Introduction

The use of Safety Performance Functions (SPFs) is critical for different applications,
such as predicting crash frequencies for new road segments or intersections, comparing
different project alternatives and ranking them according to benefit–cost analyses, and
determining the safety potential of a road site in the context of an enhancement project [1].
For this reason, they have been widely used in road safety studies and analysis in order to
determine the most dangerous road sites and to predict the expected crash reduction after
the implementation of given countermeasures.

The SPFs are specific for a family of road sites, and they are calibrated for segments
or intersections, making a distinction between different categories of segments and in-
tersections (e.g., divided/undivided segments, signalized/unsignalized intersections).
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This is since different geometric characteristics imply different parameters which may be
influential in predicting crashes.

The reliability of SPFs in predicting crashes and their wide use, has led researchers to
try extending their applicability not only to single segments and intersections, but also to
some larger areas [2–4]. Under this view, the idea of considering “macro-level SPFs” starts
by aggregating areas with comparable characteristics and allows us to make predictions
for them. This approach is justified by an important aspect of macro-level SPFs, i.e., their
potential practical use, related to the type of application. For example, they may be useful
for highlighting zones where the crash frequency is higher than average. If this concept is
extended to counties, provinces, or regions, they may be used to highlight areas which may
potentially benefit from road safety improvements, if some funds should be allocated to
different local administrations. In the case of regional transport plans, they may be useful
for identifying counties, cities, or towns where interventions should be prioritized with
respect to other contexts [5].

In this study, this latter aspect is particularly investigated. In fact, starting from the
available dataset for the sustainable mobility plan, a province-based SPF was developed
with the aim of highlighting areas with potential for safety improvements, considering
both urban and rural road networks. Hence, the main objective of this study is developing
a predictive framework for crash frequencies at a province-wide level by using, as the
aggregation variable, the macro-zones limit of census, to define the areas of interest, and
discussing its potential practical applicability.

Related Work

In recent years, the concept of SPFs was not limited to specific road segments or
intersections, but it was also taken to a higher level considering macro-level SPFs. In
these macro-level SPFs, safety performances refer to wide areas, such as census blocks [6],
traffic analysis zones, TAZs or districts [7–12], city wards [13], cities, counties [3], regions,
and states.

Choosing the level of spatial aggregation is not straightforward, since it may depend
on data availability, the intended use of results, and local factors. For example, Mon-
tella et al. [4] argued that the use of TAZs may not lead to a homogeneous representation of
a city (Naples, Italy, in this specific case), with several small zones for which zero crashes
were recorded. This problem is generally present in very large cities in which TAZs may
coincide with blocks or even single buildings. Moreover, TAZs are often delimited by urban
arterials, on which crashes may cluster, generating border effects which should be taken
into account while modelling data. More refined techniques, such as the Bayesian Poisson–
lognormal models [14] are, for example, able to explicitly account for spatial correlations
among TAZs, performing better than traditional models.

Moreover, a typical problem of SPFs is their transferability in different contexts, espe-
cially when these functions are transferred to other regions. For example, Farid et al. [15] as-
sessed the transferability of SPFs across different states of the United States; Intini et al. [16]
assessed the transferability of American SPFs to two European countries. In both cases,
it was noted how a simple calibration process may be improved by considering other
influential variables or more refined procedures. While the transferability issue is still gen-
erally scarcely studied for macro-level SPFs, an attempt at investigating the international
transferability of macro-level SPFs between the United States and Italy was made [2]. They
concluded that some similarities can be noted between US counties and Italian provinces,
but also several differences. Hence, choosing the appropriate spatial aggregation is also
driven by geographic factors.

In these macro-level studies, the variables predicting crashes are aggregated as well,
and related to the entire transport system and mobility phenomenon rather than site-
specific, also including socio-economic factors. In the previously cited studies, some of the
most frequently considered variables are total population or population divided into age
or gender classes (demographics is generally used in other types of safety studies such as
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those based on self-reported behaviors, see e.g., [17,18], rather than for crash predictions),
population density, vehicle miles travelled, modal split, total number of trips (generated
or attracted by the zones), some measures of traffic speed and congestion. Supply-related
variables are also used, such as the length of road network or the number of bus stops
served per hour [4], the pavement conditions [9,19], and the density of different urban
road types [6,7]. Other socio-economic variables such as income, unemployment rate [7,20],
private car and driving license ownership, number of registered vehicles [11], instruction
level [3,6], and number of hotels/motels [9,10] were considered as well. In the study by
Wang et al. [12] focused on pedestrian crashes, the number, type, and distance between
intersections and the prevalent land use were considered.

As previously indicated, in most previous studies, the elementary unit of analysis
ranges from narrow/very narrow (such as census blocks or TAZs) to very wide (regions and
countries, especially in studies focused on transferability or geographic variations of safety
outcomes within a country), whereas in this study, an intermediate dimension is explored,
by considering census macro-zones within a province, and focusing on potentially trans-
ferrable models based on easily retrievable geographic and road network-related variables.
This choice may have possible practical implications, as discussed in the following.

2. Methods

The level of spatial aggregation used is defined as follows. The information collected
for each area are further described, followed by the presentation of the statistical methods
used for modelling purposes.

2.1. Data Description

The data collection is articulated in two different steps. The first one is related to the
definition of the macro-areas used for the study, carved out from the Metropolitan City
(Province) of Bari. The zones have been aggregated and then, for each zone, the crashes that
had occurred were recorded. The second step concerns the choice of the safety performance
indicators to be used as dependent variables in the modelling stage, based on the available
data. For this aim, the crashes were differentiated by severity and involved users and then
classified as urban or rural.

2.1.1. Spatial Aggregation in the Context of a Province-Wide Sustainable Urban
Mobility Plan

Sustainable Urban Mobility Plans (SUMPs) are recently introduced by the European
Union as urban mobility plans, which emphasize measures for enhancing and promoting
sustainable mobility, whilst reducing vehicular traffic and emissions [21]. Based on a
study by Kiba-Janiak and Witkowski [22], the most frequently introduced measures in the
SUMPs of European capital cities are access restrictions for passenger and freight transport
(implying both spatial and time restrictions). Within the SUMPs, different targets are set
for the whole mobility system, including road safety targets whose main aim is to reduce
the crash occurrence, especially for Vulnerable Road Users (VRUs).

In Italy, the drafting of the SUMPs is not strictly limited to a specific city; it could
be developed by large cities and by groups of cities, including provinces (considering
provinces as an agglomerate of urban settlements), with a view to optimize transport and
mobility working simultaneously on different cities that are seen as a unique system and
not as separate entities. The starting point for the applicability of macro-level SPFs is the
availability of a crash dataset; in this case, it is the same dataset achieved in the context of
the development of a province-wide SUMP (for the Metropolitan City of Bari MCB, Italy).

In detail, the MCB province (see Figure 1) is 3862 km2 wide and it has a population of
about 1.2 million inhabitants. About 25% of total inhabitants (0.3 million) live in the main
city (Bari). Another three densely populated cities, with a population between 50,000 and
70,000 inhabitants, are Altamura, Molfetta, and Bitonto. Most of the other towns in the
MCB province are significantly less populated.
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Figure 1. Identification of the Metropolitan City of Bari in Italy (on the left) and delimitation of the
41 areas belonging to the cities/towns in the province (on the right), by highlighting the road network
(freeways in red, highways in orange, secondary/minor rural roads represented by blue dotted lines,
urban roads in yellow).

According to the Italian National Institute of Statistics (ISTAT), Italian cities and towns
are divided into census zones [23]. Moreover, census zones are further aggregated into
“macro” census zones of greater dimensions (and more inhabitants). In detail, most small
towns in the province are aggregated into a single census macro-zone; medium- and large-
sized towns are aggregated into two or more census macro-zones (a rural zone surrounding
the urban area and one, or more, census macro-zones covering the urban area); cities are
aggregated into several census macro-zones.

This study uses the census macro-zones as the unit of spatial aggregation for the macro
SPF, which are a trade-off between census zones and large areas such as towns/cities or
counties. Hence, in this case, the macro SPF development is aimed at highlighting which
areas may evidently need safety interventions, at a reasonable level of detail. In fact, in
this way, small road networks belonging to census macro-zones are highlighted as areas
requiring safety interventions, which may be planned and prioritized at the provincial level,
by overcoming the previously mentioned issues of using census zones and the potentially
dispersive information provided by a model developed using large areas (e.g., towns or
counties) as the unit of aggregation.

Moreover, the definition of census macro-zones is useful as well, making a distinction
between safety performances of urban road networks and safety performances of rural road
networks, since, as previously indicated, most rural areas are separated by the urban census
macro-zones, apart from the case of small towns (represented by single zones). This issue
related to small towns was overcome by separating urban and rural safety performances,
thanks to an artificially recreated urban macro-zone. It was obtained by using boundaries
of urban agglomerates as the zone limit. Following this procedure, each town/city in the
province is divided into a rural zone and one or more urban macro-zones. This led to an
urban dataset composed of 81 macro-zones and a rural dataset composed of 43 macro-zones
(see Figure 2).
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Figure 2. Example of disaggregation of each town/city area into macro-zones (town/city area
boundaries are in dark grey, while the delimitation of macro-zones is represented by thin black lines,
urban areas of major towns/cities are divided into more macro-zones).

2.1.2. Safety Performance Indicators and Predictor Variables

As mentioned above, the Safety Performance Functions (SPFs) require the use of safety
performance indicators, which are used as dependent variables in the modelling stage. The
selected safety performance indicators (see Table 1) are the following:

• fatal + injury (FI) crash frequency (crashes/year);
• fatal (F) crash frequency (crashes/year);
• pedestrian crash frequency (crashes/year);
• bicyclist crash frequency (crashes/year).

Table 1. Safety performance indicators for the MCB province.

Safety Performance
Indicator

Total (Rural + Urban)
(Crashes/Year)

Rural
(Crashes/Year)

Urban
(Crashes/Year)

Total crash frequency 3418.6 1112.4 2306.2

Fatal crash frequency 51.0 34.4 16.6

Pedestrian crash frequency 399.2 14.6 384.6

Bicyclist crash frequency 171.0 26.2 144.8

These four main indicators were further differentiated into rural crashes and urban
crashes, thus obtaining a set of eight (4 × 2) dependent variables. All these crash-related
indicators were calculated based on the ASSET (Puglia Regional Agency)–ISTAT (Italian
National Institute of Statistics) database. This database contains the exact location, thanks
to the geographic coordinates of crashes that have occurred and been recorded in the
province, for the 5-year observation period 2015–2019. It should be pointed out that
this dataset includes fatal + injury (FI) crashes only. Hence, the pedestrian and bicyclist
crash frequencies should be intended as the frequency of FI crashes in which at least one
pedestrian and one bicyclist was involved.



Sustainability 2022, 14, 9245 6 of 16

The modeling stage also requires the definition of independent variables. Based
on previous research, a wide list of potential independent variables could be used for
modelling. However, in this study, the aim is to develop a methodological framework
to highlight safety issues at the planning level, potentially transferrable to other contexts
and thus also based on simple variables to be collected, in order to be practically applied.
Moreover, the number of census macro-zones in a province is evidently limited and then the
use of an excessive number of predictors may lead to possible overfitting issues. Hence, the
choice of predictors was limited to those variables which can be easily retrieved from main
local database to foster applicability and transferability, divided into geographic variables
and road network variables (see Table 2). Those variables are collected for each identified
macro-zone in the province. The selection of potential predictors in safety analyses is
always related to their possible relationships with crash occurrence and severity, and, in
case of macro-level SPFs, they might represent wide areas.. The final purpose of estimating
a province-based SPF implies relying on geographic variables which may have an impact on
the driver behavior and safety perception, but also selecting road network-related variables,
which may have a direct impact on crash frequency.

Table 2. Dependent variables considered.

Variable
Type Independent Variable Source

Rural Environment Urban Environment

Mean St. dev. Max. Min. Mean St. dev. Max. Min.

Geographic

Population (inhabitants) ISTAT 7945.1 6760.3 19,340.0 196.0 14,446.6 3804.4 22,661.0 1418.0

Total area (m2) GIS 85.4·106 88.3·106 419.7·106 5.4·106 1.9·106 1.3·106 7.9·106 0.2·106

Density
(inhabitants/m2)

ISTAT/
GIS 0.3 0.4 2.1 0.0 10.1 5.5 35.4 2.2

Mean elevation (m) ISTAT 199.3 144.2 489.0 5.0 162.3 161.0 489.0 5.0

Road
network

Secondary network
length (m)

OSM/
GIS 38.8·103 34.7·103 163.2·103 1.3·103 1.0·103 1.5·103 9.1·103 0.0

Primary network
length (m)

OSM/
GIS 5.2·103 6.6·103 29.7·103 0.0 0.3·103 0.8·103 4.3·103 0.0

Freeway network
length (m)

OSM/
GIS 1.6·103 3.7·103 15.6·103 0.0

Urban network
length (m)

OSM/
GIS 30.2·103 13.8·103 74.2·103 4.3·103

Notes: ISTAT data refer to the year 2019. OSM means Open Street Map, used as a reference for the road layouts;
their length is after calculated in a GIS environment.

The geographic variables considered are the following (see also [24]):

• population,
• population density,
• area width,
• mean elevation of the area above sea level (see, e.g., [25]).

Population and area variables can be considered as surrogate risk exposure variables,
since the increase in population may lead to an increase in road users and, then, in car
traffic, cyclist, and pedestrian volumes; the increase in density can also be related to
higher volumes and possible congestion in the area. The increase in the area width can
be potentially indirectly related to the increase in road users on the network too. In fact,
a larger area means a greater number of kilometers to be covered by users, hence greater
exposure. Moreover, elevation is considered, since it may affect the driving behavior (lower
speeds and more cautious attitude) and be related to a greater complexity in road geometry,
which may be strictly connected to safety issues [26,27], especially in the rural environment
(i.e., for higher elevations).

The variables related to the road network are length of the secondary road network
(i.e., in this case, mainly roads managed by the province), length of the primary road
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net-work (i.e., in this case, roads managed at a national level), length of the freeway road
net-work, and length of the urban road network. The length of the road network is clearly
a surrogate risk exposure variable as well, as previously explained. To differentiate the
possible impact of different categories of roads, the separated effect of different types of
road networks is considered here, since the exposure to the total road network could have
already been considered through the effect of area and population. In fact, the exposure to
risk on a freeway network segment could be completely different than the exposure on a
secondary network segment.

The length of the road network was considered (such as in previous safety studies,
e.g., [24,28] rather than the percentage of road network falling under a given category
with respect to the entire road network, for two different reasons (however, assuming that
the two variables are mathematically related). The first reason is related to the practical
implications of the framework; in fact, finding out the length of a road is easier and
faster, thanks to GIS-based applications. Moreover, road agencies may already have stored
official information about length of different road segments divided by categories and
municipalities. The second reason is related to possible errors in estimating these data,
since the length is an absolute value, while the percentage is relative. Hence, relying
on the percentage would imply considering all the roads belonging to the network in
the calculation, even those without any traffic or too short to be considered significant
(which are usually not recorded in any official database of road agencies). Hence, not
considering those roads could possibly lead to altering the percentage calculation. This
issue is negligible when considering the length of the investigated roads instead.

While all the geographic variables are considered as predictors of road crashes, either in
the urban or in the rural environment, road network variables are considered as predictors
of road crashes in the urban or rural case. In fact, the secondary and primary network
lengths are predictors of both urban and rural crashes, since secondary and primary roads
can also enter urban areas. On the other hand, the freeway network length is a predictor
of rural crashes only (freeways do not enter urban areas) and the urban network length is
clearly only a predictor of urban crashes.

2.2. Statistical Methods

Safety performance indicators were linked to the selected dependent variables by
means of Negative Binomial (NB) count data models, which can account for the phe-
nomenon of crash data over-dispersion [29]. NB models have already been used for
developing macro-level SPFs in previous research [2,4,11].

NB models were estimated in the R environment [30]. The model structure used is
reported in the following equation:

SPI = e∑n
i=1 β0+βi Xi (1)

where:

SPI = safety performance indicator (Table 1);
β0,1,n = coefficient estimates;
Xi = dependent variables (Table 2).

Preliminary models were firstly estimated by considering all the dependent variables
together in predicting the safety performance indicators listed in Table 1: fatal (F), injury
(I), pedestrian, and bicyclist crash frequencies for both urban and rural environment. The
indicator related to injury crashes was not considered as an independent variable, since it
almost coincides with the fatal + injury crash indicator (fatal crashes account for less than
3% of FI crashes). Hence, eight preliminary models were obtained in the first instance.

Afterward, stepwise regression algorithms, together with model comparisons based
on likelihood ratio tests, were used to select the optimal combination of variables in terms
of model fit. In particular, the Akaike Information Criterion (AIC) was used as a baseline
metric for the stepwise regression. The Nagelkerke R2 was used as a goodness-of-fit
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measure. The final selected models were compared to the corresponding null and full
models through likelihood ratio tests. The chosen level of significance for all statistical tests
was set to p = 0.05.

3. Results

The models obtained from the statistical analyses are reported as follows, divided into
models for the rural and for the urban environment.

3.1. Models for the Rural Environment

The selected models obtained for the rural environment are reported in the next
Table 3.

Table 3. Models estimated for the rural environment.

Independent
Variables

Coefficient Estimates (Standard Errors in Parenthesis)

Total (F + I) Crashes Fatal
Crashes

Pedestrian (F + I)
Crashes

Bicyclist (F + I)
Crashes

(Intercept) 2.980
(9.145·10−2)

−5.309·10−1

(1.579·10−1)
−1.456

(3.424·10−1)
−6.764·10−1

(1.957·10−1)

Population density - - 8.741·10−1

(3.219·10−1)
4.760·10−1

(2.141·10−1)

Mean elevation −2.492·10−3

(3.949·10−4)
−1.681·10−3

(7.111·10−4)
−3.985·10−3

(1.238·10−3)
−3.339·10−3

(7.973·10−4)
Length of the

secondary road
network

8.963·10−6

(1.872·10−6)
1.376·10−5

(2.428·10−6)
- 1.492·10−5

(2.835·10−6)

Length of the primary
road network

4.832·10−5

(8.926·10−6)
- 9.222·10−5

(2.402·10−5)
-

Goodness of fit measures

Nagelkerke R2 0.494 0.151 0.212 0.162
Mean square error

(MSE) 231.61 0.25 0.28 0.18

Note: all coefficient estimates associated to the independent variables are statistically significant at the 5% level.

It is possible to note that the mean elevation is included in all models developed for
the rural environment presented in Table 3. In particular, an increase in the mean elevation
consistently leads to a decrease in all the types of investigated F + I crashes. On the other
hand, an increase in the length of the secondary network consistently leads to an increase
in all types of investigated F + I crashes (other than pedestrian crashes). The length of
the primary network is related to an increase in F + I crashes and in pedestrian F + I
crashes. Population density is influential on both pedestrian and bicyclist F + I crashes:
more densely populated areas exhibit more pedestrian and bicyclist crashes.

3.2. Models for the Urban Environment

The selected models obtained for the urban environment are reported in the next table
(Table 4).

In this case, area, population, and the length of the urban road network are included
in all models developed for the urban environment. The relationship between area, popula-
tion, and crashes is consistent for all crash types: the increase in both area and population
leads to an increase in all the F + I crash types considered. Conversely, the increase in the
length of the urban road network is related to a decrease in all the F + I crash types consid-
ered. The increase in the length of the secondary road network is related to a decrease in all
crash types considered as well, other than urban fatal crashes, for which it is irrelevant. The
increase in elevation leads to a decrease in all types of F + I crash other than fatal crashes.
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Table 4. Models estimated for the urban environment.

Independent
Variables

Coefficient Estimates (Standard Errors in Parenthesis)

Total (F + I) Crashes Fatal
Crashes

Pedestrian (F + I)
Crashes

Bicyclist (F + I)
Crashes

(Intercept) 1.823
(1.350·10−1)

−2.596
(5.450·10−1)

3.657·10−1

(2.008·10−1)
−7.611·10−1

(2.563·10−1)

Area 3.421·10−7

(3.839·10−8)
4.403·10−7

(1.23·10−7)
2.264·10−7

(5.484·10−8)
1.858·10−7

(6.127·10−8)

Population 1.267·10−4

(1.029·10−5)
8.142·10−5

(4.039·10−5)
1.360·10−4

(1.527·10−5)
1.268·10−4

(1.925·10−5)

Mean elevation −2.273·10−3

(2.093·10−4)
- −1.441·10−3

(3.043·10−4)
−2.521·10−3

(4.002·10−4)
Length of the urban

road network
−2.123·10−5

(3.925·10−6)
−3.625·10−5

(1.500·10−5)
−3.194·10−5

(5.718·10−6)
−1.599·10−5

(6.680·10−6)
Length of the

secondary road
network

−1.459·10−4

(2.221·10−5)
- −1.544·10−4

(3.440·10−5)
−1.571·10−4

(4.323·10−5)

Goodness of fit measures

Nagelkerke R2 0.714 0.059 0.361 0.345
Mean square error

(MSE) 564.13 0.05 22.69 2.28

Note: all coefficient estimates associated to the independent variables are statistically significant at the 5% level.

4. Discussion

In this section, the results in terms of influential factors on crash frequency are dis-
cussed in light of previous research. Afterward, some practical implications of this approach
are described.

4.1. Influential Factors on Crash Frequency

The influential factors on rural and urban crash frequency (at the macro-zone level) are
summarized in the next table (Table 5), according to the models presented in Tables 3 and 4.
It is possible to note that all predictors are included in at least one model for estimating
crash frequencies, except the freeway network length, which is not influential.

Table 5. Summary of the influential factors on crash frequency (+ = crash frequency increases as the
predictor increases, − = crash frequency decreases as the predictor increases).

Variable
Type Predictors

Rural Urban

F + I F Ped.
(F + I)

Bic.
(F + I) F + I F Ped.

(F + I)
Bic.

(F + I)

Geographic

Population + + + +

Total area + + + +

Population density + +

Mean elevation − − − − − − −

Road
network

Urban road network length − − − −
Secondary road network length + + + − − −

Primary road network length + +

Freeway road network length

As far as the geographic predictors are concerned, the increase in both population
and total area of the macro-zones are consistently related to an increase in all the urban
crash frequencies. This could be explained by the fact that, as expected, as the area and
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the population increase, the number of road users increases. Hence, these variables can be
considered proxies of risk exposure measures (i.e., traffic, cycling, and pedestrian volumes).
Population was found to be a consistent predictor of crashes in other studies as well, such
as [2], which considers total, bicyclist, and pedestrian crashes at both at the country level
in the United States and the province level in Italy, or that by Wang et al. [12] concerning
pedestrian crashes. Moreover, other studies have found that the effect of population
may depend on age classes: Montella et al. [4] and Saha et al. [6] have found that crash
frequency can increase for both young (less than 25 years) and old (more than 65 years).
Area variables are less frequently used, by preferring population, density or infrastructure-
based exposure variables. For instance, Wei and Lovegrove [31] include areal zones as
independent variables to predict bicyclist crashes at the TAZ aggregation level, but area
predictors were not included in the final models (while cycling network lengths were
selected). However, area width emerges in this study (based on census macro-zones) as
an important exposure variable to be considered in the urban environment, together with
population: urban crashes increase with both macro-zone area and population, while they
are evidently not dependent on population density in this case.

However, it is worth noting that in the rural environment, area and population are not
included in the predictors. In fact, in the rural case, population is low and scarcely variable
among the rural macro-zones, and the area width does not seem relevant if information
about the road network length is omitted. On the other hand, population density emerges
as influential for predicting rural pedestrian and bicycle crashes. This can be clearly
explained by the fact that, in the rural environment, cycling and pedestrian volumes are
notably low, other than in the case of higher population density (e.g., presence in the rural
macro-zone of very small villages far from the main town/city), which can be considered
as a risk exposure measure for bicyclist and pedestrian crashes in the rural environment.
The decrease in region population density was often related to higher mortality rates after
traffic crashes in previous research [32,33]. However, in this case, where urban and rural
areas were separated, this overall effect was not identified, other than the case of pedestrian
and bicyclists, for which an opposite tendency was noted, as previously explained.

Mean elevation can be instead consistently highlighted as a predictor of crashes in
both the urban and rural environments. In particular, the higher the elevation, the lower are
all types of considered crash frequencies (with the only exception of fatal urban crashes).
There are few studies in previous research which specifically assess the influence of terrain
elevation. Choi et al. [34] identify the terrain factor as an important variable to consider
while investigating major rural road crashes, flat terrain resulting in being significantly
safer than mountainous terrain. In this study, a single province is investigated, with a
mean elevation varying between about sea level and almost 500 m (thus not including
“mountainous” terrains) and, as can be noted from Figure 1, most large urban areas are
concentrated along the coastal strip. Thus, in the rural environment, the inverse elevation–
crashes relationship could be explained by road infrastructures (mostly secondary roads, in
opposition to [34], which are more adherent to the ground, e.g., with steeper grades and
shorter curvature radii, with drivers being more prudent on them, see also [35]). In the
urban environment, the interpretation related to the geometric design can be less relevant,
while it is possible that the effect of elevation may be a proxy for other variables not
controlled in this study (e.g., different driving populations in small rural towns with higher
elevations than large coastal towns). In any case, elevation emerges as an aspect to be
considered in further detail in future studies.

As far as the road network predictors are concerned, there is a clear difference between
the urban and the rural environment. In the rural environment, as the secondary and
primary road network length increase, crashes generally increase. Hence, in the rural
environment, these lengths work as risk exposure measures, as expected. However, some
important differences must be noted: while both secondary and primary network lengths
predict F + I rural crashes, the secondary length is a predictor of fatal and bicyclist crashes
and the primary length is a predictor of pedestrian crashes. Generally, on rural roads, the
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pedestrian and bicyclist volumes are very low. Hence, this specific result highlights that
the few pedestrians are particularly endangered on primary roads (i.e., generally roads
managed by the main national road agency, which have higher road standards and which
are often divided, multi-lane roads, in agreement with [36], who, however, take into account
the densely populated New York City area) and the few cyclists on secondary roads (i.e.,
generally roads managed by the province, which have lower road standards and are mostly
two-way, two-lane roads). This was expected, since the low volume of rural bicyclists can
be concentrated on secondary roads and the possible conflicts with pedestrians are surely
more critical on primary than on secondary roads. At the same time, fatal crashes seem
unaffected by the primary network length, but rather dependent on the secondary network
length, thus leading to the argument that fatal crashes may be clustered on secondary roads,
as expected. Moreover, the freeway network is uninfluential for predicting crashes at this
aggregation level, given its limited extension in the investigated province and its relatively
low crash rate with respect to other road types (see e.g., [37]).

In the urban environment, crash frequencies generally decrease with the urban and
secondary network lengths, but they are not influenced by the primary network length
(as expected, since the exposure to primary roads which cross the urban environment is
clearly limited). The inverse relationship between urban crash frequencies and network
length could seem counterintuitive. In the urban environment, it was already noted how
population and area width act as risk exposure measures. Hence, it can be argued that
area and population being equal, as the road network increases (i.e., as the road network
“density”, computed in respect to the area), urban crash frequencies decrease. More
dense urban road networks may in fact imply short road segments, relatively low speeds,
and congested flows with respect to less dense networks. This agrees with results from
Marshall and Garrick [38], who argue that the risk of fatal or severe crashes may increase
as the street network density (or intersection density) decreases, based on the analysis
of Californian cities. Similar results were found by Guerra et al. [39], but with specific
regard to population density, which in this study was found to be an insignificant predictor
in the urban environment. It is worth noting that the secondary (urban) network length
does not predict fatal crashes, possibly because the risk exposure to secondary roads in the
urban environment is limited and the role of secondary roads is not a determinant for the
occurrence of fatal crashes.

4.2. Practical Implications

The SPFs have been widely used by practitioners, given their capability of finding
hotspots and determining the potential reduction in crashes in a quantitative way. There are
several practical implications, such as implementing ad hoc strategies for pedestrians [40],
or modifying the layout of an intersection [41]. The use of macro-level SPFs extends
the importance of this practice from the identification of specific segment/intersection
hotspots to hotspot areas at a higher level. At the planning stage in a wide area (e.g.,
province, region, state), where the granularity of the safety analyses cannot be obtained
at the level of the single segment or intersection, this aspect becomes crucial because it
may help practitioners, administrations, and so forth, to be aware of the areas in which
road networks may be prioritized for safety interventions and to allocate money effectively
and in a timely manner. Thus, the use of public funds to make safety interventions, as
well as the time window to decide which sites require interventions before than others,
could be optimized by analyzing the specific targeted area. Afterward, according to safety
performance targets, specific plan and policy objectives can be different, i.e., prioritizing
the reduction of fatal crashes and/or the reduction of crashes to vulnerable road users
in the urban environment. The latter targets are typical of SUMPs [21]. In the case of
a province-wide SUMP, interventions may be differentiated according to the different
urban or rural environments, and then specific targets can be evaluated. Two examples of
uses of the developed models are provided below to show their practical implications in
different cases.
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In this sense, the developed models are here applied to the same dataset referring
to the MCB (Metropolitan City of Bari), to show how they can potentially be used to
highlight hotspot areas, with respect to each of the considered crash frequencies (fatal +
injury, fatal, pedestrian, bicyclist) in both the urban and rural environment. Hotspot areas
can be identified through different possible techniques and by using different possible
safety performance indicators (crude or particularly refined). In this example, made to
immediately show practical implications, the predicted crash frequency obtained by each
model is compared to observed data for each of the i-esim census macro-zone (“i” in the
Equation (2)) and percentage residuals r(%) are computed accordingly:

r(%).i =

(
Nobs − Npred

Npred

)
.i ∗ 100 (2)

where:

• Nobs is the annual average observed crash frequency;
• Npred is the annual average predicted crash frequency.

Percentages are calculated considering the predicted crash frequency as a reference,
since using observed frequencies may have led to instances in which the denominator is
equal to zero. In this case, the percentage residual indicator shows how much the model
prediction is exceeded (negatively or positively) by the actual observed value. Aiming at
highlighting crash hotspot areas, different thresholds can be set (also according to objectives
and policies). For instance, it could be decided to plan interventions in areas which exceed
the +100% or the +200% percentage residual, which means that the observed value is more
than two or three-times the predicted value, respectively, as demonstrated in the following
figure (Figure 3).

The analysis of the previous figures is useful to show how it is possible to easily
identify the zones which need area-wide safety interventions, since they exceed the chosen
safety performance indicator based on the developed models. Moreover, different safety
interventions can be planned, depending on which specific indicator is exceeded, i.e.,
that related to fatal + injury, fatal, pedestrian, or bicycle crashes. Clearly, if the latter
two indicators are exceeded, policies and infrastructures for vulnerable road users should
be prioritized.

Another example of the practical use of safety performance functions developed at
a zonal level is that reported by the authors in [42]. In this instance, it is considered the
case that a network of hospitals should be managed at the regional level for improving
accessibility and safety of the road networks in the hospital areas, both for existing hospitals
and in the case of new hospitals to be built. In order to identify which areas surrounding the
several existing hospitals that were considered should be targeted for safety interventions,
a similar approach was used, based on macro-relationships between crash frequencies
and simple geographic variables which can be easily retrieved. In fact, at the planning
level, macro-indicators should be necessarily used to compare different areas in terms of
traffic safety, rather than considering single specific segments and intersections for safety
interventions (see, e.g., [41]).

In the above-defined case, the unit of aggregation is the area (mostly urban) around
the hospital, defined by the 3-min isochrone limit (i.e., from each point within the area
boundary, the hospital can be reached within 3 min, considering peak hours of a working
day). Hence, the relationship between the population in this area and the observed crashes
in the same area can be derived, together with different possible prediction interval ranges.
In fact, it was shown in this study and in previous research that the area population is a
reliable aggregate predictor of traffic crashes at the urban level. Those areas close to the
hospitals which exceed a given percentile of the prediction interval can be highlighted for
policies and interventions dedicated to improving their safety conditions. Clearly, also
in this case, the threshold definition may vary according to local factors and the specific
study objectives.
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5. Conclusions

This study investigated the influential factors on crash frequency for rural and urban
environments at the census macro-zone spatial aggregation level within a province. The
safety performance indicators used as dependent variables in the modeling stage are fatal
+ injury (F + I) crash frequency, fatal (F) crash frequency, pedestrian (Ped, F + I) crash
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frequency, and bicyclist (Bic, F + I) crash frequency. Eight easily retrievable independent
variables were considered, grouped in two categories: geographic and road network
variables. Safety performance indicators were linked to the dependent variables by means
of Negative Binomial (NB) count data models, which can account for the phenomenon of
crash data over-dispersion. The eight models obtained from the regression were divided
into rural and urban models.

This study confirms that the crash-related factors have varying effects depending on
the environment in which crashes occur. In particular:

• the increase in population and area width can be related to an increase in each of
the considered urban traffic crash types, while the same variables were not selected
for rural models, in which the increase in population density is instead related to an
increase in bicycle and pedestrian fatal + injury crashes.

• The mean elevation of the macro-zones is consistently related to a decrease in traffic
crashes in both the urban and rural environment, possibly hiding other factors not
considered in this study.

• The increase in the network length is generally related to an increase in rural crashes
and a decrease in urban crashes (with some exceptions in which it is irrelevant), which
was explained according to previous research and by considering the simultaneous ef-
fect of the other predictors. The freeway network length seems irrelevant for predicting
crashes at this aggregation level.

It was shown how such models may help in identifying areas (in this example case
macro-zones) in which urban/rural crash frequencies are higher than the predicted mean
for given conditions, in order to highlight areas with high potential for safety improvements.
Those areas could be targeted for specific infrastructural interventions and/or transport
policies, to improve the overall safety level, possibly with specific regard to some road users
(i.e., the general driving population or some categories of users, such as vulnerable road
users). Those practical implications were treated in this study, by showing some possible
examples of applications.

Given the importance of the topic in cases of transport planning, which involves the
prioritization of safety interventions according to specific objectives, such as in the case
of mobility plans, the usefulness of similar studies is evident. Clearly, the database and
variables should be enlarged and models which can be easily transferrable to other contexts
should be improved, in order to help practitioners and decision makers to target specific
areas in which safety improvements are more greatly needed.
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