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Abstract: The automatic classification of aluminum profile surface defects is of great significance in
improving the surface quality of aluminum profiles in practical production. This classification is
influenced by the small and unbalanced number of samples and lack of uniformity in the size and
spatial distribution of aluminum profile surface defects. It is difficult to achieve high classification
accuracy by directly using the current advanced classification algorithms. In this paper, digital
image processing methods such as rotation, flipping, contrast, and luminance transformation were
used to augment the number of samples and imitate the complex imaging environment in actual
practice. A RepVGG with CBAM attention mechanism (RepVGG-CBAM) model was proposed and
applied to classify ten types of aluminum profile surface defects. The classification accuracy reached
99.41%, in particular, the proposed method can perfectly classify six types of defects: concave line
(cl), exposed bottom (eb), exposed corner bottom (ecb), mixed color (mc), non-conductivity (nc)
and orange peel (op), with 100% precision, recall, and F1. Compared with the existing advanced
classification algorithms VGG16, VGG19, ResNet34, ResNet50, ShuffleNet_v2, and basic RepVGG,
our model is the best in terms of accuracy, macro precision, macro recall and macro F1, and the
accuracy was improved by 4.85% over basic RepVGG. Finally, an ablation experiment proved that the
classification ability was strongest when the CBAM attention mechanism was added following Stage
1 to Stage 4 of RepVGG. Overall, the method we proposed in this paper has a significant reference
value for classifying aluminum profile surface defects.

Keywords: aluminum profile; surface defect classification; RepVGG; CBAM; attention mechanism

1. Introduction

Aluminum profiles are widely applied in construction, automobiles, and high-end
equipment manufacturing due to their advantages of low density, corrosion resistance,
strong plasticity, and recyclability [1–3]. There are many factors that affect the surface
quality of aluminum alloy materials, such as microscale deformation that affects its surface
roughness [4], and the crystal structure and grain orientation of the material also have
an impact on its roughness [5]. Additionally, due to the complexity of the production
process and many other factors, there will inevitably be ten types of defects on the surface
of aluminum profiles: concave line (cl), dirty spot (ds), exposed bottom (eb), exposed
corner bottom (ecb), graze (gra), mixed color (mc), non-conductivity (nc), orange peel (op),
paint bubble (pb), and spray paint flow (spf). These defects not only affect the aesthetics
of the product but also reduce its life and durability. At present, most aluminum profile
production enterprises still rely on the traditional manual visual inspection method to
classify defects, due to the fact that the surface of the aluminum profile itself contains
patterns and defects that are not well-differentiated. Various types of defects have different
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shapes and sizes, and their distribution is irregular. The manual visual method has a high
labor intensity and low detection efficiency, and it is difficult to ensure the stability and
accuracy of classification [6].

In recent years, there has not been much research on aluminum profile surface defect
classification based on machine vision technology, but it has been widely used in the field
of industrial production quality inspection for steel strips, printed circuit boards (PCBs),
and so on [7–9]. For example, Zaghdoudi R. [10] proposed a defect classification method for
steel strips based on a binary Gabor pattern (BGP) algorithm and a support vector machine
(SVM). The local texture features of the strip steel defect images were first extracted and
then an SVM was used to classify the strip steel defects into six categories. Hu et al. [11]
proposed extracting geometric features, grayscale features, and shape features from steel
strip defect images as well as their binary images, and then used an SVM to classify the
strip surface defects. Chondronasios A. et al. [12] proposed a feature statistical method
based on gradient-only co-occurrence matrices (GOCMs) to classify two types of defects
(blisters and scratches) in extruded aluminum profiles. The essence all of these is the same,
which can be regarded as the problem of defect classification on the workpiece surface.
All the above methods are based on manually designed feature operators and classifiers
to classify surface defects, which have achieved some results in solving the problem of
categorizing workpieces surface defects. However, these methods often fail to obtain high
classification accuracy. In addition, these manually designed feature operators are poorly
adaptable and effective only for specific defects and imaging environments [13], which is
not conducive to solving the task of classifying aluminum profile surface defects.

In recent years, with the continuous development of artificial intelligence and im-
provements in computing power, classification methods based on deep learning have
attracted widespread attention, and many scholars have conducted related experiments
and research. For example, Duan et al. [14] proposed a two-stream convolutional neu-
ral network based on gradient images to effectively classify aluminum profile defects.
Abualighah et al. [15] designed a deep neural network classifier and combined it with the
DesneNet201 pre-training model to achieve a classification accuracy of 98.43% for seven
types of strip steel defects. Zhang et al. [16] proposed a novel dual-stream neural network
that was used to generate a large number of defect images to pre-train a classification
network and classify the surface defects of steel strips via transfer learning. Liu et al. [17]
proposed a dual-convolutional neural network by integrating VGG16 and AlexNet, and its
aluminum profile classification accuracy reached 95.1%. The defect classification methods
based on deep learning are highly versatile and transferable and can be adapted to various
classification tasks and achieve satisfactory results. However, the current research still
has shortcomings. On one hand, such methods often require a large amount of data to
train the model but the number of images in most workpiece surface defect datasets is
very small [18–20]. On the other hand, neural networks integrating attention mechanisms
are able to attach more importance to valuable units in the object, which is beneficial to
improving classification accuracy [21]. Still, there is a lack of scientific research in the
classification of aluminum profile surface defects.

However, the number of surface aluminum profile defect images is too small to
support a training model. Augmenting the dataset becomes an urgent problem to be solved.
Additionally, there is a lack of uniformity in the size and spatial distribution of aluminum
profile surface defects, which makes it difficult for the model to adequately extract the
features of the surface defects. These problems pose a great challenge to the deep learning
model, making it unable to obtain high classification accuracy. In this context, this research
was conducted to achieve high classification accuracy by designing a novel method to
classify aluminum profile surface defects.

The main contributions of the current work are as follows. Firstly, more defect images
were obtained for classification training by means of digital image processing, such as
rotation, flip, brightness, and contrast transformation. Secondly, a novel model RepVGG
with a convolutional block attention module (RepVGG-CBAM) was proposed and used
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to classify ten types of aluminum profile surface defects, and the classification accuracy
reached 99.41%. Moreover, the superiority of the proposed method was demonstrated by
comparative experiments and ablation experiments. Our method provides a reference for
solving the problem of classifying aluminum profile surface defects.

The rest of this article is organized as follows. The second section introduces the
methods involved in the experiment. The third section presents the experiment and results.
The proposed method is discussed in the fourth section. The fifth section summarizes
our article.

2. Methodology
2.1. Data Augmentation

It can be seen from Table 1 that although the types of aluminum profile defect images
collected in this dataset are relatively rich, both the number of various defects and the
overall number are significantly smaller compared to large datasets such as ImageNet and
COCO. In addition, the distribution ratio of each type of defect image is shown in Figure 1,
where eb defect images are the most numerous, accounting for 19.38% of the dataset, which
is much higher than the other types of defects. The smallest amount is for the pb defect,
which accounts for only 2.95%. The percentage of other types of defects also varies, which
indicates that there is an uneven distribution of the number of samples with different types
of defects in this dataset.

Table 1. Number of aluminum profile defect images of each type.

Type cl ds eb ecb gra mc nc op pb spf

Number 407 261 538 346 128 365 390 173 82 86

Total 2776
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Figure 1. The distribution ratio of each type of defect image.

In the field of industrial defect classification based on deep learning, it is extremely
easy for the overfitting phenomenon to occur during the training process, influenced by
the lack of samples. Moreover, the unbalanced number of samples will also negatively
contribute to the defect classification results. The most direct and effective way to avoid the
overfitting phenomenon and improve the classification accuracy of the model is to augment
the dataset. In view of the above two problems, we augmented the database based on
the original defect images using several traditional image-processing means as follows.
Figure 2 shows the image before and after transformation.

(1) Rotation: By generating samples of aluminum surface defects at different angles for
the classification model to learn, the sensitivity of the model to defects at arbitrary
angles was improved.

(2) Flip: Changing the position distribution of defects in the image provided image
samples with richer defect position distribution.
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(3) Brightness transformation: Considers environmental factors. We simulated the actual
variation of brightness in an aluminum profile production plant so as to improve the
adaptability of the model to a complex brightness environment.

(4) Contrast transformation: By changing the contrast of defect images, defect samples
with different contrasts were added for classification model training.
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The distribution of the number of defect images of each type after data augmentation
is shown in Table 2. It can be seen that the problem of small and unbalanced numbers of
various types of defect images in the original dataset was solved.

Table 2. The number of defect images in the augmented dataset.

Type cl ds eb ecb gra mc nc op pb spf

Number 814 783 1076 1038 768 730 780 1038 738 774

Proportion (%) 9 9 13 12 9 9 9 12 9 9

2.2. RepVGG

Before 2015, research on deep learning models focused on single-branch networks,
among which the visual geometry group (VGG) network received the most attention. It
is fast, flexible, and has excellent feature-fitting ability due to the fact that the VGG [22]
network includes only 3 × 3 convolution, the ReLU activation function, and pooling layers.
Since the deep residual network (ResNet) [23] network was proposed, multi-branch models
have shown more powerful characterization capability. Many researchers have shifted
their research interests to designing complex model structures. The class of models with
VGG architecture gradually faded out of the limelight. However, complex multi-branch
structures will slow down inference, reduce memory utilization, and make models difficult
to deploy. In 2021, Ding et al. [24] were inspired by the idea of the residual structure of
ResNet. They designed the RepVGG algorithm by adding 1 × 1 branches and identity
branches to the VGG-style network. The structure of RepVGG is shown in Figure 3. The
network uses two residual structures: RepVGG block A, which contains only conv3 × 3
and conv1 × 1 branches, and RepVGG block B, which contains conv3 × 3, conv1 × 1,
and identity branches. As shown in Figure 3d, the RepVGG training network is obtained
by stacking RepVGG blocks and the ReLU activation function. Benefiting from multiple
branches, the training RepVGG not only mitigates the gradient disappearance problem of
the deep network, but also obtains more robust feature representations. After training, it is
equivalently transformed into a single-branch deployment model, as shown in Figure 3e,
through model re-parameterization, which has a faster inference speed.
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Figure 4 displays the process of re-parameterization of the RepVGG residual block.
The RepVGG block contains batch normalization (BN) layers in each branch, which can
effectively solve gradient disappearance and gradient explosion, but the BN layers occupy
a large amount of memory during forward inference, which increases the model’s inference
time [25,26]. Therefore, to improve inference speed, the convolutional and BN layers are
merged. The formulas for the convolution and BN layers can be written as:

Conv(x) = W(x) + b (1)

BN(x) = γ× (x−mean)
σ

+ β (2)
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Substituting Equation (1) into Equation (2), we have:

BN(Conv(x)) = γ× [(W(x)+b)−mean]
σ + β

= γ×W(x)
σ + γ×µ

σ + β
(3)

where W() denotes the convolution kernel operation, b is the bias, γ is the scaling factor,
β is the bias, σ is the standard deviation, and µ = b − mean is the cumulative mean. As
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shown in Figure 4, after fusing the convolutional and BN layers in each branch into a
convolutional layer with bias, the 1 × 1 branch and the identity branch are converted into
3 × 3 convolutional kernels, respectively. The three 3 × 3 convolutional kernels are then
summed. In this way, each RepVGG block can be converted into a 3× 3 convolutional layer
and the output is exactly the same before and after the conversion. Therefore, the trained
model can be converted to a single-channel model with only 3 × 3 convolutional layers.

From the perspective of parameters, the RepVGG block transformation process can be
described as the following form: when the number of channels and the length and width
of the feature map before and after the convolution operation are equal, we have

Mout = BN(Minput ∗W(3), µ(3), σ(3), γ(3), β(3))

+BN(Minput ∗W(1), µ(1), σ(1), γ(1), β(1))

+BN(Minput ∗W(1), µ(0), σ(0), γ(0), β(0))

(4)

where BN is the inference-time BN function. W(k) ∈ RC2×C1×k×k (k = 3, 1) denotes a
convolution kernel of size k × k with C1 input channel and C2 output channel. µ(k), σ(k),
γ(k), and β(k) (k = 3, 1, 0) denote the cumulative mean, standard deviation, scaling factor,
and bias of the BN layers of each branch, respectively. When k = 3, they are for the conv3× 3
branch, when k = 1, they are for the conv1 × 1 branch, and when k = 0, they are for the
identity branch. M(1) ∈ RN×C1×H1×W1 and M(2) ∈ RN×C2×H2×W2 are the input and output,
respectively, and ∗ is the convolution operator. Particularly, C1 = C2, H1 = H2, and W1 = W2.
Otherwise, we used RepVGG block A, hence Equation (4) only has the first two terms.
Formally, according to Equation (2), when ∀1 ≤ i ≤ C2, Equation (5) can be obtained.

BN(M, µ, σ, γ, β):,i,:,: = (M:,i,:,: − µi)
γi
σi
+ βi

= γi
σi

M:,i,:,: + (βi −
µiγi

σi
)

(5)

In this way, the convolutional and BN layers on each branch are first converted into
a convolution with bias vector. Let W ′ denote the convolution kernel and b′ be the bias
vector. They can be formulated as:

W ′ i,:,:,: =
γi
σi

Mi,:,:,: (6)

b′ i = βi −
µiγi
σi

(7)

Then, it is easy to verify that when ∀1 ≤ i ≤ C2, we can get Equation (8):

BN(M, µ, σ, γ, β):,i,:,: = (M ∗W ′):,i,:,: + b′ i (8)

Essentially, the identity branch can be regarded as a special 1 × 1 convolution kernel
with the weights of different channels fixed to 1. The 1 × 1 convolution kernel can be
regarded as a special 3× 3 convolution kernel. By means of padding, two 1× 1 convolution
kernels can be converted into 3 × 3 convolution kernels with the middle element being 1
and the other elements being 0. Therefore, the final convolution kernel can be obtained by
adding the three 3 × 3 convolution kernels in the three branches, and the final bias is equal
to the sum of the three biases.

In reference [24], the authors proposed a series of RepVGG networks. We selected the
RepVGGB3g4 network in our study, whose feature extraction structure is shown in Table 3.
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Table 3. Structure of RepVGGB3g4 network.

Stage Output Size Layers of Each Stage Number of Channels

1 112 × 112 1 64
2 56 × 56 4 192
3 28 × 28 6 384
4 14 × 14 16 768
5 7 × 7 1 2560

2.3. CBAM Attention Mechanism

An attention mechanism is a way to achieve adaptive attention in the network. Gener-
ally speaking, it lets the network attach more importance to effective units and suppress
invalid units during feature extraction. Common attention mechanisms include squeeze
and excitation networks (SENets) [27], convolutional block attention modules (CBAMs) [28],
efficient channel attention modules (ECAs) [29], etc. The structure of a CBAM is shown
in Figure 5. It consists of two parts, the channel attention module (CAM) and the spatial
attention module (SAM), which means that it can pay attention to the channel information
and the location information of the object. From our perspective, it will contribute to
addressing the problem of lack of uniformity in size and spatial distribution that exist in
the aluminum profile surface defects. Therefore, the attention mechanism used in our study
was CBAM. For the input feature map F, it can perform attention operations in the channel
and spatial dimensions successively.
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Let Mc be the attention mapping operation in the channel dimension and Ms be the
attention mapping operation in the spatial dimension. Then the attention channel operation
can be formulated as:

Mc(F) = σ(MLP(AvgPool(F))) + σ(MLP(MaxPool(F)))
= σ(W1(W0(Fc

avg))) + σ(W1(W0(Fc
max)))

(9)

where F denotes the input, σ is the sigmoid function, and MLP denotes the multi-layer
perceptron model, W0 ∈ RC/r×C and W1 ∈ RC×C/r. The CAM compresses the spatial
information of a feature map by using both global max pooling and global average pooling
to obtain two different spatial context descriptors: Fc

avg and Fc
max. Then, they are computed

using a shared network composed of the shared MLP. The feature vectors of the MLP
output are summed element by element. In addition, the channel attention feature map
is produced by the sigmoid function. Finally, the output of the CAM is obtained by
multiplying the original feature map with the channel attention feature map, as shown
in Equation (10).

F′ = Mc(F)⊗ F (10)

where ⊗ denotes element-wise multiplication.
The SAM takes the CAM output feature map F′ as input, and its calculation process

can be written as

Ms(F′) = σ( f 7×7([AvgPool(F′)); MaxPool(F′)]))
= σ( f 7×7([F′savg; F′smax]))

(11)
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where f 7×7 denotes a convolution operation with a filter size of 7 × 7. Firstly, global max
pooling and global average pooling are performed on the feature maps F′ across the channel
to obtain two 2D feature maps, F′savg and F′smax. Then, they are concatenated and convolved
by a 7 × 7 convolution kernel. Furthermore, the sigmoid function is used for normalization
to obtain the spatial attention feature map. Finally, as shown in Equation (12), the feature
map of the CBAM is obtained by element-wise multiplying Ms(F′) with F′.

F′′ = Ms(F′)⊗ F′ (12)

2.4. Our Proposed Method (RepVGG-CBAM)

At the time of its presentation, the RepVGG network demonstrated a strong classifica-
tion capability on the ImageNet dataset. In a subsequent study, Feng et al. [30] proposed
RepVGG_B3g4 + SA by combining RepVGG with a spatial attention module. The model
was successfully applied to the strip steel surface defect classification task and obtained
a classification accuracy of 95.10%, which was higher than that of the basic RepVGG net-
work. According to current experience, adding an attention mechanism to the network can
improve network performance. The CBAM attention module focuses on the channel and
location information of the object, which is suitable for solving the problem of large size
variation and irregular location distribution of aluminum profile surface defects. Based on
this idea, we combined RepVGGB3g4 with CBAM to propose the RepVGG-CBAM model.
Its structure is shown in Figure 6. The CBAM module is added following Stage 1 through
Stage 4 of the basic RepVGGB3g4. From our perspective, the performance of the RepVGG-
CBAM will be greatly improved over the basic network. In the later parts of this paper, we
will provide experiments to verify this conjecture and compare it with other networks to
demonstrate the superiority of our proposed method.
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The overall process of our method is as follows: firstly, the dataset is augmented by
using digital image-processing methods (PyCharm Community Edition 2021.2.2, JstBrains
s.r.o., Prague, Czech Republic). Then, the augmented dataset is divided into a training set,
a validation set, and a testing set. Finally, the test set is responsible for evaluating model
performance and the output of classification results.

3. Experiment and Results
3.1. Dataset

The dataset used in our research is available on the AliCloud platform. As shown
in Figure 7, this dataset contains ten types of aluminum profile surface defects, including
concave line (cl), dirty spot (ds), exposed bottom (eb), exposed corner bottom (ecb), graze
(gra), mixed color (mc), non-conductivity (nc), orange peel (op), paint bubble (pb), and
spray paint flow (spf). To reduce the training time and computational complexity, these
images were scaled down to 224 × 224 pixels and applied to the network training.
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spot (ds); (c) exposed bottom (eb); (d) exposed corner bottom (eb); (e) graze (gra); (f) mixed color
(mc); (g) non-conductive (nc); (h) orange peel(op); (i) paint bubble (pb); (j) spary paint flow (spf).

The augmented dataset contains a total of 8539 defect images. As shown in Table 4,
the dataset was divided into a training set, a validation set, and a testing set; 10% of all
images were randomly selected as the testing set. Among the remaining images, 80% were
randomly selected as the training set and 20% as the validation set to train the model.

Table 4. The division of training set, validation set, and testing set images.

Defect Class Training Set Validation Set Testing Set

cl 587 146 81
ds 564 141 78
eb 776 193 107
ecb 748 187 103
gra 554 138 76
mc 526 131 73
nc 562 140 78
op 748 187 103
pb 532 133 73
spf 558 139 77

total 6155 1535 849

3.2. Experimental Environment and Training Parameters

All experiments were performed on a computer (Lenovo Legion R7000P2021H, Lenovo
(Beijing) Ltd, Beijing, China) with an AMD CPU Ryzen 7-5800H@3.20Ghz, 512 GB DDR4
memory, an NVIDIA GEFORCE RTX3060 graphics processing unit (GPU) with 6 GB
memory, and Windows10 operating system with 16 GB memory. All experiments were
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performed using Python 3.8, NVIDIA CUDA-11.1.1 and cuDNN-11.2, and the compiler
environment was established by PyTorch 1.8 deep learning framework.

The parameters of the model have a great influence on model performance. Suitable
parameters can improve the convergence speed and accuracy of the model. The main
parameters of the network during pre-training were set as shown in Table 5. We chose the
Adam optimizer with a learning rate of 0.0001. We set the batch to 16 and the epoch to 100.

Table 5. Parameters of the training process.

Parameters Setting

Optimizer Adam
Learning rate 0.0001

Batch size 16
Epoch 100

Figure 8 displays the accuracy and loss curves of RepVGG-CBAM for the training
process; train_acc and train_loss represent the accuracy and loss of the training process,
respectively, and val_acc and val_loss represent the accuracy and loss of the validation
process, respectively. It demonstrates that after the network was initialized, the classifi-
cation ability of the model was weak, and the initial training accuracy was only 59.63%.
Moreover, the accuracy values of the training and validation sets increased rapidly until
the first 15 iterations, and then showed a slow increasing trend. Correspondingly, the loss
value decreased rapidly at the initial stage, and gradually converged with the increase of
the number of iterations. After training, the loss was close to zero. During the iteration,
when the epoch was 98, the training accuracy and loss were 99.74% and 0.0066, respectively,
and the validation accuracy and loss were 97.41% and 0.0172, respectively, which were the
best in the whole training process. Therefore, after the training was completed, the weights
of this epoch were adopted for testing.
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3.3. Evaluation Method

The classification results can be divided into four cases: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN). In this paper, Precision, Recall,
and F1 values were used to evaluate the classification performance of the model for various
types of defects. Accuracy, Macro-precision, Macro-recall, and Macro-F1 were used to evaluate
the overall performance of the model. They can be expressed as:

Precision =
TP

TP + FP
(13)



Metals 2022, 12, 1809 11 of 16

Recall =
TP

TP + FN
(14)

F1 =
2PR

P + R
(15)

Accuracy =
TP + TN

TP + FP + FN + TN
(16)

Macro− Precision =
1
N

N

∑
i=1

TPi
TPi + FPi

(17)

Macro− Recall =
1
N

N

∑
i=1

TPi
TPi + FNi

(18)

Macro− F1 =
1
N

N

∑
i=1

2× Precisioni × Recalli
Precisioni i + Recalli

(19)

3.4. Defect Classification Test Results

In order to graphically show the distribution of the prediction results of our method
for each type of defect, Figure 9 displays a confusion matrix of the defect classification
generated by the testing. The columns of the confusion matrix represent the real types of
defects, and the rows represent the types of defects predicted by the model. It can be seen
that two ds defect images were incorrectly classified as gra and three spf defect images
were incorrectly classified as pb. This is mainly because the background area of some ds
defect images had features similar to gra defects, leading the model to recognize the wrong
units. Pb defects are small in size and spf defects are extremely inconspicuous and have
similar color features to the background area. These factors mean the model cannot fully
extract their defect features and the model is prone to misclassification.
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So as to present the classification performance of RepVGG-CBAM more intuitively
for various types of defects, the four indicators shown in Equations (13)–(16) were used
to evaluate the classification results. The specific values are shown in Table 6. As can
be seen, the model can perfectly classify six types of defects: cl, eb, ecb, mc, nc, and op.
The precision, recall, and F1 reached 100% for all of them. In addition, the probability of
misclassification between defects spf and pb was the highest, and the precision for the
spf defect was the lowest, 96.25%. The recall and F1 for the pb defect were the lowest,
95.89% and 97.89%, respectively. However, the classification accuracy of the model reached
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99.41% overall, which indicates that our proposed method has an excellent ability to classify
aluminum profile surface defects.

Table 6. Evaluation of classification performance.

Label Precision (%) Recall (%) F1 (%) Accuracy (%)

cl 100 100 100

99.41

ds 100 97.44 98.70
eb 100 100 100
ecb 100 100 100
gra 97.44 100 98.70
mc 100 100 100
nc 100 100 100
op 100 100 100
pb 100 95.89 97.9
spf 96.25 100 98.09

4. Discussion
4.1. Comparison of Different Defect Classification Algorithms

In order to verify the superior performance of our method, six classification
algorithms—VGG16, VGG19, ResNet34, ResNet50, ShuffleNet_v2, and RepVGGB3g4—were
selected to classify aluminum profile surface defects under the same experimental condi-
tions. The classification results of each model are shown in Table 7. It can be seen that all
four indicators of our proposed method are higher than 99.00%, which is better than other
methods. This also indicates that our proposed method has better feature extraction ability
and robustness. The classification accuracy of our RepVGG-CBAM is 4.85% better than that of
the basic RepVGG algorithm, indicating that the CBAM plays a positive role.

Table 7. Comparison results of different models.

Methods Accuracy (%) Macro Precision (%) Macro Recall (%) Macro F1 (%)

VGG16 98.35 98.21 98.16 98.18
VGG19 97.53 97.25 97.32 97.28

ResNet34 97.41 97.23 97.18 97.29
ResNet50 97.76 97.84 97.78 97.80

ShuffleNet_v2 97.64 97.48 97.43 97.42
RepVGGB3g4 98.82 98.77 98.71 98.73

RepVGG-CBAM (ours) 99.41 99.37 99.33 99.34

Figure 10 shows the accuracy curves for the training set for each method. It demon-
strates that the curves of each method can be stable after the completion of the iteration.
With the exception of VGG19 and ShuffleNet_v2, the accuracy of all the methods could
reach more than 95%, mainly because VGG19 has a large number of parameters and needs
more samples to train the model and achieve satisfactory accuracy. While ShuffleNet_v2
is a lightweight network, its network layer is shallow, which diminishes its recognition
ability. In terms of convergence speed, VGG19 was the slowest due to the huge number
of parameters, in contrast to RepVGGB3g4 and our method. It is worth noting that com-
pared to RepVGGB3g4, the network structure of our method becomes more complex after
adding multiple CBAM blocks. It nevertheless maintained almost the same convergence
speed as RepVGGB3g4, and our method had the highest accuracy. This indicates that our
enhancement of the RepVGG network was positive.
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Figure 10. Comparison of the accuracy of each method training set.

The loss curves of each method in the validation set are shown in Figure 11. It can
be seen that VGG16, VGG19, ResNet34, and ResNet50 have large fluctuations and are
less stable. The curve of ShuffleNet_v2 is the smoothest. There are minor fluctuations in
the curves of our method, but the loss values are the lowest and show an overall smooth
decreasing trend. Compared with RepVGGB3g4, our method has less fluctuation, which
indicates that the stability of the network has been improved. Overall, our method achieved
a stable training process, the lowest loss values, and the highest accuracy, so it is optimal
for classifying aluminum profile surface defects.
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4.2. Ablation Study

An ablation study was conducted to enable us to better understand how the CBAM
attention mechanism can help improve RepVGG performance. The CBAM attention
module was added following different stages of RepVGG. The results of the ablation study
are shown in Table 8. It can be seen that the classification accuracy was the lowest when the
CBAM was added following all five stages, which was 98.58%, even lower than the basic
RepVGG, which proves that it is not better to add more CBAMs. The highest classification
accuracy of 99.41% was achieved when the CBAMs were added following Stage 1 through
Stage 4, which was 4.85% better than the basic RepVGG. These results show that choosing



Metals 2022, 12, 1809 14 of 16

an appropriate way to integrate the CBAM into the original network can improve network
performance. It also verifies the effectiveness of our proposed method.

Table 8. Results of the ablation study.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Accuracy (%)

X - - - - 98.94
X X - - - 99.29
X X X - - 99.17
X X X X - 99.41
X X X X X 98.58

5. Conclusions

1. To address the problem of small and unbalanced numbers of various types of defect
images in the original dataset, digital image-processing methods such as rotation,
flip, contrast transformation, and brightness transformation were used to augment
our dataset. Not only does this simulate the environment of the actual production
conditions, but it also generates a large number of sample images for model training.

2. A RepVGG-CBAM model was proposed by combining CBAM based on the RepVGGB3g4
algorithm and used to classify ten types of aluminum profile surface defects. The
training process of this model was stable without overfitting. Our RepVGG-CBAM
algorithm achieved promising results. Six types of defects: cl, eb, ecb, mc, nc, and
op, could be perfectly classified, and their precision, recall, and F1 reached 100%. The
classification accuracy of our method was 99.41%. The outstanding performance of
RepVGG-CBAM demonstrated the advantages of our method in classifying surface
defects in aluminum profiles.

3. The classification accuracy of our RepVGG-CBAM was 4.85% better than that of the
basic RepVGG algorithm, indicating that integrating a CBAM had a positive effect.
In addition, the results of comparative experiments confirm that the accuracy, macro
precision, macro recall, and macro F1 of our proposed method were the highest; it
outperformed VGG16, VGG19, ResNet34, ResNet50, ShuffleNet_v2, and RepVGGB3g4.
It indicates that our proposed RepVGG-CBAM is an advanced algorithm for classify-
ing surface defects in aluminum profiles. Moreover, the results of the ablation study
demonstrated that the classification ability was strongest when the CBAM attention
mechanism was added following Stage 1 through Stage 4 of RepVGG. This provides a
certain basis for later related studies.

Although the experimental results demonstrated the effectiveness of the RepVGG-
CBAM algorithm, we found that the algorithm performance was not very good on defects
of small size such as pb. In the future, we will consider integrating CBAM into the residual
blocks of RepVGG to further improve classification accuracy. In addition, we will also
proceed with network lightweighting to try out practical applications in engineering.
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