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Abstract
First-principles study of diamond surfaces

by Hana Pratiwi Kadarisman

To investigate the diamond surfaces, we employed density functional theory
(DFT) simulations (111). We look at how different terminations, such as hy-
droxyl (OH) and hydrogen (H), influence the spin pattern and spin-orbit inter-
action strength of diamond surfaces. Our results obtained the fact that around
the valence band maximum (VBM) area, the band is mostly comprised of OH-
terminated diamond, meanwhile, the band around the conduction band minimum
(CBM) is mostly contributed from H-terminated diamond. The OH-termination
produced coefficient strength of spin-orbit interaction, αPSH of 14.2 meV·Å, which
is significant compared to ZnO(1010) surface and slightly larger compared to var-
ious n-type zinc-blende quantum wells. Additionally, we found that hydrogen ter-
mination (H-terminated) in diamond produces Rashba-like spin splitting with αR

= 3.6 meV·Å. The large αPSH value ensures a long wavelength of PSH (λPSH) and
promises the miniaturization of such as the spin field effect transistors (spintronic
devices).

keyword: surface diamond, spin splitting, density functional theory
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Chapter 1

Introduction

1.1 Motivation

Diamond is stunning and expensive jewelry. In nature, we need to mine the

earth to get the diamond. It may cause destruction and environment issues. In

2019, such lab-grown diamond is starting to bloom. This lab-grown diamond

could overcome the environment and ethical issues. Despite jewelry, diamond

also promising materials for electronic devices because of its high hardness and

thermal conductivity. Diamond is semiconductor material, which has wide band

gap 5.41 eV. The properties of semiconductor material can be influence by defect

and termination treatment.

Due to their dangling bond, semiconductor surfaces are unstable and reactive to

chemicals. Surface termination is required to get around this. A silicon substrate

with a hydrogen-bonded chemically passivated surface was previously believed to

be a semiconductor surface that could be terminated by hydrogen. This is the

first step in chemically altering silicon to create functional devices[2]. Research

about surface termination has also been conducted on other semiconductors such

as germanium (Ge) [3], gallium arsenide (GaAs), indium phosphide (InP),[4] and

diamond surfaces [5].

1



Chapter 1. Introduction 2

The termination of diamond surfaces has a significant impact on its surface

characteristics. Diamond devices can be constructed from surfaces terminated

with hydrogen or oxygen atoms [6–8]. Hydrogenated diamonds are more elec-

trically conductive than non-hydrogenated diamonds [9, 10], whereas diamonds

terminated with oxygen have electrical characteristics that are non-conductive,

possess a positive electron affinity, and have a higher size of Schottky barrier

when interacting with metals [11]. Additionally, the roughness [12] on the sur-

face of oxygen-terminated diamonds (111) makes them more reactive. To address

the issue of roughness on oxygenated diamonds, hydrogen and oxygen compounds

(OH) termination may be a solution. [13]

The surface termination of a material influences its electrical characteristics.

By ending the diamond surface with hydrogen, a strong Rashba SOC is generated,

with its large splitting between 4.6 and 24.5 meV [14] and 9.74 ± 0.1 meV[15],

produced by the asymmetric confinement potential. This makes a diamond surface

with a hydrogen termination the most advantageous for studying and using spin

transport features[15]. Therefore, it is worthwhile to look into how OH termination

affects the electrical properties of diamond surfaces, especially in terms of spin-

orbit coupling.

This study discovered that OH-terminated diamonds have persistent spin he-

lix (PSH), which is one of spin-orbit coupling type, whereas hydrogen-terminated

diamonds have Rashba-type SOC. The one-dimensional orientation of PSH spin

textures leads to an increased spin relaxation time [16]. It was discovered that

the OH-terminated instance had a greater SOC strength, αPSH, than for other

GaAs/AlGaAs [17, 18] which are zinc-blende-type quantum wells (QW), and com-

parable to αPSH of ZnO(1010) [19] surface compounds. αPSH also larger than αR of

H-terminated diamond case. As a result, OH-terminated diamonds are a possible

material for the building of tiny spintronic devices like spin field effect transistors.
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1.2 The Aims of This Study

We would like to observe and analyze the electronic properties of the diamond sur-

face with several terminations using the first-principles study. The following goal

is to look into the spin-orbit coupling properties of OH-terminated diamonds and

H-terminated diamonds. The final step is to determine which method is superior

for miniaturizing spintronic instruments like the Spin Field Effect Transistor.

1.3 Dissertation Outline

There are five chapters in the dissertation. The purpose of researching SOC on

the surface of a diamond is explained in the first chapter, which also discusses how

surface termination affects the properties of materials.

The second chapter discusses SOC fundamentals in addition to introducing

density functional theory and k-spin. It also features a computational technique

to make the calculation process easier.

In chapter three, we calculate the spin orbit coupling strength of OH-terminated

diamond and find that our calculation produced a Persistent Spin Helix splitting

by analyzing the splitting band and spin pattern.

Chapter four presents the results of our calculation for hydrogen and oxygen

terminated diamond.

Chapter five concludes by summarizing the research and outlining its potential

directions.



Chapter 2

Computational Methods and

Fundamental Theory

This chapter presents the core principles and computational tools that we will

be using in our calculations and analysis. It includes an overview of spin-orbit

interaction in materials theory, a brief look at density functional theory methods,

and a discussion of the computational methodology.

2.1 Density Functional Theory

For an understanding of the various material properties in condensed matter

physics, it is crucial to identify the electron-electron interactions.he Schrödinger

equation for complex systems with numerous electrons and nuclei can be expressed

as:

HΨ(r1, r2, ..., R1, R2, ...) = EΨ(r1, r2, ..., R1, R2, ...) (2.1)

the Hamiltonian of the system, represented by H, is described in terms of the wave

function Ψ, and the positions of the ions, represented by ri and Ri. The H can be

4



Chapter 2. Computational Methods and Fundamental Theory 5

expressed as follows:

H = −
∑
i

∇2
i

2
−
∑
i,I

zI
|ri −RI |

+
1

2

∑
i ̸=j

1

|ri − rj|
−
∑
I

∇2
I

2mI

+
1

2

∑
i ̸=j

zIzJ
|Ri −Rj|

(2.2)

with mI representing nucleus mass and and zI represents charge. Additionally,

the constants ℏ, me, e, and 4πϵ0 are equal to 1. The Hamiltonian in Eq. 2.2

can be separated into Telec, Tnuc, Velec−nuc, Velec−elec and Vnuc−nuc terms. Here,

Telec, Tnuc represent the electron and nuclear energy because of their motion oper-

ators, Velec−nuc, the electrons’ potential energy in relation to the atoms; Velec−elec

is electron-electron Coulomb reactions, and Vnuc−nuc represents the Coulomb in-

terplay between nucleis.

The Born-Oppenheimer approximation is applied to simplify the description

of large systems such as solids and molecules in Eq. 2.1. This estimate is founded

on the fact that nuclei move much more slowly than electrons do, due to their

much larger masses, and can thus be ignored. From the perspective of electrons,

the nuclei are effectively fixed in place.

H = Ve−e + Ve−n + Te (2.3)

Next, we get

Hψ =

[
−
∑
i

∇2
i

2
+

1

2

∑
i ̸=j

1

|ri − rj|
+
∑
i,I

zI
|ri −RI |

]
ψ = Eψ (2.4)

where ψ = ψ(r1, r2, ...) is wave function of many electron.

To solve the many-electron system, the Hartree approximation [20] can be used,

a quantum multi-electron system’s wavefunction and energy are approximated

using the Hartree approximation in its stationary state. Wave function can be

represented as Ψ(rn), which is expressed as

ψ(r1, r2, ..., rn) = (ψ(r1)ψ(r2)...ψ(rn). (2.5)
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Adding the Eq. 2.5 to Eq. 2.4, the Hartree equation can be written as[
−
∑
i

∇2
i

2
+

∑
i,I

ZI

|ri −RI |
+ ψ = Eψ +

∑
i ̸=j

∫
d3rj

|ψj(rj)|2

|ri − rj|

]
ψi = ϵiψi(ri) (2.6)

In 1926, Hartree and Fock [21] introduced a modified approximation method that

takes into account individual electrons as distinguishable particles. The wave func-

tion of a system with n electrons is then approximated using a Slater determinant

[22].

ψ(r1, r2, ..., rn) =
1√
n!


ϕ1(r1) ϕ1(r2) ... ϕn(rn)

ϕ1(r2) ϕ2(r2) ... ϕn(rn)

... ... ... ...

ϕ1(rn) ϕ2(rn) ... ϕn(rn)

 (2.7)

By resolving the Hartree-Fock equation using this Slater determinant and the

variational principle, the solution can be obtained as:

[
−
∑
i

∇2
i

2
+

∑
i,I

ZI

|ri −RI |
+
∑
i ̸=j

∫
d3rjψ

∗
j (rj)

1

|ri − rj|

]
ψi

−

[∑
j

∫
d3rjψ

∗
j (rj)

1

|ri − rj|
ψi(rj)

]
ψj = ϵiψi(ri) (2.8)

”In equation 2.8, a new term, the exchange potential, has been added. However,

this approximation is inadequate in accurately reproducing the electrical proper-

ties of a system, as it overlooks the correlation energy that arises from many-body

interactions. To overcome this limitation, methods that consider both the ex-

change interaction and correlation energy must be utilized.”

The DFT is a technique computational used to explain the exchange and cor-

relation problem in many-electron systems. It uses functionals of the ground-state

electron density to determine the properties of these systems. The concept of DFT

was originated from the Hohenberg-Kohn theorem [23], which states that electron

density is the essential quantity to gather information about the electronic prop-

erties of a system.
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Theorem 1. The ground state energy from Schrödinger’s equation is

a specific functional of the electron density.

The ground-state energy, E, can be expressed as a functional of the electron

density, E[n(r)], where n(r) is the density of electron.

Theorem 2. The electron density that minimizes the energy of the

overall functional represents the true electron density, which is obtained

by solving the Schrödinger equation completely.[23]

The second theorem expresses:

EHK [n] = Einter[n] +

∫
Vext(r)n(r)d

3r + Enuc−nuc + T [n] (2.9)

where the total energy functional is defined as EHK [n], the kinetic energy described

as T [n], the energy of nuclei-nuclei interaction written as Enuc−nuc, and the energy

of electron interactions is described as Eint[n].

Kohn and Sham proposed that the true electron density of a system can be

found by minimizing its total energy[24]. The ground state charge density of a

system with non-interacting electrons can be defined as such [24]

n(r) = 2
N∑
i

|ψ(r)|2 (2.10)

The EKS then can be defined as

EKS[n(r)] = Ts[n(r)] + EH [n(r)] + EXC [n(r)] +

∫
Vextn(r)dr (2.11)

with the first term is written as:

TS[n(r)] =
∑
i

∫
Ψ∗

i (r)∇2Ψi(r)dr (2.12)
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The EH is written as

EH [n(r)] =
1

2

∫
n(r)n(r′)

|r − r′|
drdr′. (2.13)

The Kohn-Sham equation involves the process energy of determining the ground

condition and density of a many-body system by keeping the total energy func-

tional minimised utilizing a non-interacting electron system in an efficient poten-

tial. The exchange and correlation energy term, EXC [n(r)], is also taken into

consideration. The Kohn-Sham equation and the energy minimization to the elec-

tron density defined as

[
−1

2
∇2 + VKS(r)

]
Ψi(r) = ϵiΨi(r) (2.14)

where VKS is expressed by:

VKS(r) = Vext(r) + VH(r) + VXC(r) = Vext(r) +
1

2

∫
n(r′)

|r − r′|
dr′ + VXC(r) (2.15)

The effective potential, VKS, can be defined in a system where the non-interacting

the ground state of the particle system matches that of the actual interacting

system. This allows the issue with many electrons to be reduced to a single-

particle problem.

VKS(r) = Veff (r) (2.16)

And then, the kinetic energy can be defined as

Ts[n(r)] =
∑
i

ϵi −
∫
n(r)Veff (r)dr (2.17)

Then the total energy is expressed as

EKS[n(r)] =
∑
i

ϵi+
1

2

∫ ∫
n(r)n(r′)

|r − r′|
drdr′+EXC [n(r)]−

∫
n(r)Veff (r)dr (2.18)

Kohn-Sham equation, by the SCF method is illustrated in the flowchart in Fig.

3.13. The very first step is to expect n(r). Then, VH and VXC are calculated to
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Figure 2.1: Diagram of SCF for Kohn-Sham equations

VKS. The Kohn-Sham equation can be solved to yield the wave functions Ψi, which

results in a new density. This new density is then used as the updated expectation

value for n(r), and the calculation of VKS is repeated until convergence is achieved.

In DFT, the challenge lies in finding the energy of exchange correlation. While

EXC functional is only density-dependent for homogeneous electron systems, it

becomes more complex in non-homogeneous electron systems. The V LDA
XC , is given

by:

V LDA
XC = n(r)

∂EXC(n(r))

∂n(r)
+ EXC(n(r)) (2.19)

The LDA approximation is a widely used approximation for predicting elec-

tron concentrations, atomic locations, and vibration frequencies. However, LDA

has some limitations in terms of accuracy. The total energies of atoms predicted
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by LDA are not always as accurate as those predicted by Hartree-Fock (HF) ap-

proximations. LDA also tends to overestimate binding energies and systematically

underestimate the band gap, which limits its use in certain applications.

GGA includes corrections based on the gradient of the density, ∇n(r), making

it more accurate in certain cases where LDA fails.The general form of GGA is

written as:

V GGA
XC = EXC(n(r)) + n(r) (2.20)

2.2 Computational details

The electronic structure computations in our study were performed using DFT as

described in the OpenMX code [25]. Our attention was directed towards the top

diamond surface of OH-terminated diamond (111) when discussing OH-terminated

diamonds, as depicted in Fig. 1(a). On the other hand, when discussing H-

terminated diamond, our focus was on the bottom side of the diamond model.

We conducted a study on the OH-terminated (111) diamond surface using a 9-

layer carbon-carbon bonded slab model, which is shown in Fig. 1. The hexagonal

supercell of the (111) diamond surface had a lattice constant of 2.527 Angstroms

for the a111 axis and 39.285 Angstroms for the c111 axis. This included a vacuum

region to prevent interaction between neighbouring slabs. The lattice constant of

a111 was calculated by utilizing the lattice constant of diamond, 3.574 Å[26].

The study made use of a Generalized-Gradient-Approximation (GGA) [27],

to divide the first Brillouin zone into discrete sections in k-space, which is de-

picted in Fig. 1(c). In order to preserve the bulk structure, the maximum forces

were set to 0.005 eV/Å, and the bottom four atoms in the slab model were fixed

throughout shape optimization. The k-point grid used was 20x20x1, and a 500

cutoff energy Rydberg was configured for both numerical integration and Poisson’s

equation solution [28]. The effective screening medium (ESM) technique [29] was

employed to avoid dipole-dipole interactions between slab models. Wave functions
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Figure 2.2: The model of OH-terminated diamond (a) top view (b) side view
(c) Brillouin zone that we used in our calculation.

for each atom were represented using the linear combination of pseudo-atomic or-

bitals (LCPAOs) [30, 31]. Carbon was designed as C6.0-s3p2d2, hydrogen was de-

signed as H7.0-s2p2d1, oxygen was designated and O7.0-s3p2d2. The spin textures

in k-space were derived from the k-space spin density matrix of the spinor wave

function, including SOC in the computation, as described in references [32, 33].

2.2.1 Norm Conserving Pseudopotential and Pseudo-atomic

Basis Orbitals

The initial step in creating a pseudo-potential is applying the Khon-Sham (KS)

approach to atomic problems. We can suppose that the changes in the environ-

ment only slightly affect the fundamental states. By employing a potential model

that is derived from the arrangement of atoms, these effects can be substituted.

The valence states in a system are observed to rapidly fluctuate towards the core
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regions. The introduction of a new potential is expected to lead to a more gradual

fluctuation of the valence states.

2.2.2 DFT that is Non-collinear

In DFT which is non-collinear, the two-component wave functions that represent

spin are written as:

Ψv = |Ψα
v ⟩|α⟩+ |Ψβ

v ⟩|β⟩ (2.21)

The two-component spinor wave functions are described by non-collinear DFT,

represented as |Ψα
v ⟩ for the spatial function and |α⟩ for the spin function. The

density operator is represented by a characterizing representation, which is de-

scribed as:

n̂ =
∑
v

fv|Ψv⟩⟨Ψv| =
∑
v

fv(|Ψv⟩|α⟩+ |Ψβ
v ⟩|β⟩)(|Ψv⟩|α⟩+ |Ψβ

v ⟩|β⟩), (2.22)

here, the Fermi distribution function is how the step function fv is formed. The

non-collinear electron density in real space can be expressed as per equation 2.22:

nσσ′ = ⟨rσ|n̂|rσ′⟩ =
∑
v

fvΨ
σ
vΨ

σ′∗
v , (2.23)

where (α, β) = (σ, σ′) where the eigen function of the position vector is |.

At each point, n′
↑ and n′

↓, can be calculated by diagonalizing a matrix that

consists of the non-collinear densities.

n′
↑ 0

0 n′
↓

 = UnU † = U

nαα nαβ

nβα nββ

U † (2.24)

where the U matrix is a rotation operator D

D = exp(−iσ̂i · ĥϕ/2) (2.25)
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Where ϕ is an angle of rotation around a unit vector in the direction of ĥ. The

Pauli matrices, σ̂i, are represented as follows:

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 (2.26)

The z-rotation axis’s matrix when the Euler angle is θ, ϕ results in the trans-

formed D matrix:

D(θ, ϕ) =

 exp(iϕ
2
)cos( θ

2
) exp(−iϕ

2
)sin( θ

2
)

− exp(iϕ
2
)sin( θ

2
) exp(−iϕ

2
)cos( θ

2
)

 (2.27)

The energy of a non-collinear system can be determined by utilizing the non-

collinear functional, as expressed in:

Etotal =
∑
σ=α,β

∑
v

fv⟨Ψσ
v |T̂ |Ψσ

v ⟩+
∑
σ,σ′

∫
wσσ′nσσ′ +

1

2

∫ ∫
n′(r)n′(r′)

|r − r′|
dvdv′ + Exc

(2.28)

The equation can be simplified by

Etotal = Eband −
1

2

∫
n′VHdv −

∫
Tr(Vxcn) + Exc (2.29)

where Vxc indicates the non-collinear exchange-correlation potential, and VH =∫
dr

|r−r′|dv.

A new functional, F , is added as expressed as follows:

F = Etot +
∑
σ,σ′

ϵσσ′(δσσ′ − ⟨Ψv|Ψ′
v). (2.30)

The variation of the functional F is linked to the spatial wave function Ψσ
v :

δF
δΨσ,∗

u
= T̂Ψσ

u +
∑
σ′

wσσ′Ψσ
u
′ + VHΨ

σ
u +

∑
σ′

V σσ′

xc Ψσ′

u −
∑
v

ϵuvΨ
σ
v . (2.31)

with
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V σσ′

xc =
δExc

δnσσ′
(2.32)

When the variation with regard to the Ψσ
v vanishes, the non-collinear KS equa-

tion can be represented as a minimum of the functional F . A unitary transforma-

tion of Ψσ
v can be used to extract ϵu,v from the functional.

T̂ + wαα + VH + V αα
xc wαβ + V α,β

xc

wβα + V βα
xc T̂ + wββ + VH + V ββ

xc

Ψα
u

Ψβ
u

 = ϵu

Ψα
u

Ψβ
u

 (2.33)

The exchange-correlation potential Vxc, along with another contribution, repre-

sented as w, are all included in the Kohn-Sham non-collinear equation. The alpha

and beta spin components interact with one another on the off-diagonal as well.

2.2.3 Spin texture calculation

Using the stated relation and the spinor wave functions’ alpha, beta(k, ω) k-space

spin density matrices, we can study the spin textures after the SCF potential is

achieved via DFT computations [32]:

nαβ(k, ω) = ⟨Ψα(r, k, ω)|Ψβ(r, k, ω)⟩ (2.34)

in this expression, ”r”, ”k”, and ”ω” represent the position vector, wave vector,

and band index, respectively. The spinor wave functions Ψα and Ψβ correspond

to the up ↑ and down ↓ spins.

Ψα(β)(r, k, ω) =
∑
i

cRn

i,ω,α(β)ϕi(r)e
iRn·k (2.35)

here, the crystal’s periodic vector, Rn, is used. It is now possible to express

the spin density matrix as
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n(k, ω) =

nαα(k,ω) nαβ(k,ω)

nβα(k,ω) nββ(k,ω)

 (2.36)

where

nαβ(k, ω) =
∑
i,j

[cRn∗
i,ω,αc

Rn
i,ω,βSi,j]e

i(Rn·k) (2.37)

here, Si,j is overlapping matrix.

Next, the n′
↑ and n′

↓ can be expressed as

n′
↑ =

1

2
(nαα+nββ)+

1

2
(nαα−nββ)cosθ+(Re nαβ cosϕ− Im nαβ sinϕ) sinθ (2.38)

and

n′
↓ =

1

2
(nαα + nββ)−

1

2
(nαα − nββ) cosθ+ (Renαβ cosϕ− Imnαβ sinϕ) sinθ (2.39)

where

ϕ = −arctan(
Im nαβ

Re nαβ

) (2.40)

and

θ = arctan(
2(Re nαβ cosϕ− Im nαβsinϕ

nαα − nββ

) (2.41)

The spin density can be partitioned into its constituent atomic parts by mod-

eling the wave function as a linear superposition of pseudo-atomic orbitals.
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Figure 2.3: Relativistic motion of electron from (a) proton’s and (b) electron’s
point of view

2.3 Spin-orbit Coupling

The relativistic effect of spin-orbit coupling (SOC) causes electrons to move at

v⃗ velocity under the influence of the nucleus’s electric field E⃗. The electric field

E changes into a magnetic field in the electron’s reference frame, which can be

expressed as:

B⃗ = −(v⃗ × E⃗)

c2
(2.42)

here, c⃗ represents the speed of light, and it interacts with the magnetic moment

of the electron µ⃗, yielding an expression for the electron’s energy as:

∆E = −µ · B⃗, (2.43)

where µ⃗ = −geµBS⃗/ℏ, where µB = eℏ/(2me) is the Bohr magneton, Planck’s con-

stant, the electron spin vector, and the mass of a stationary electron are denoted

by me, ℏ, and S⃗, respectively. As a result, the spin-orbit interaction is illustrated

as follows.

HSOI = − ℏ
4m2

ec
2
· (p⃗× E⃗) (2.44)
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the σ is Pauli matrices given as

σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 (2.45)

The energy solution obtained from the Hamiltonian in crystal systems with time-

reversal symmetry follows E(k⃗, ↑) equal to E(−k⃗, ↓, ). Here, ↑ and ↓ represent

up and down spins, respectively. Additionally, the presence of spatial inversion

symmetry in the crystal leads to E(k⃗, ↑, ) = E(−k⃗, ↑, ).

When TRS and spatial IS happen at the same time, it produces spin degener-

acy, and this condition is referred to as Kramer’s degeneracy, defined as:

E(↑, k⃗) = E(↓, k⃗),

The violation of space inversion symmetry leads to lifting of spin degeneracy

due to spin-orbit interaction (SOI). The Rashba effect, caused by structural in-

version asymmetry (SIA), arises from the loss of space inversion symmetry. The

Dresselhaus effect, on the other hand, is caused by bulk inversion asymmetry

(BIA). As a contrast to bulk inversion asymmetry (BIA), which occurs in non-

centrosymmetric crystal formations, surface inversion asymmetry (SIA) is brought

on by an asymmetric captivity potential in a 2DEG in a semiconductor heterostruc-

ture. The effective Hamiltonian of Rashba SOI can characterize this interaction:

HR = − ℏ
4m2

ec
2
σ⃗ · (p⃗× E⃗) = αR(σxky − σykx), (2.46)

where Rashba spin orbit strength defined as αR = −ℏEz/(4m
2
ec

2).

The Rashba effect, which confines electrons to an interface, has been exten-

sively studied in semiconductor heterostructures [34–36]. The effect is also ob-

served at surfaces, which have been explored using high-quality epitaxial metal

layers [37–40].
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According to a theoretical work [41], the Rashba parameter αR at the surface

can be represented as

αR =
ℏ2

4m2c2

∫
dz|ϕ(z)|2∂zV (z) (2.47)

where the velocity of light is represented by c, the surface wavefunction is rep-

resented by ϕ(z), and the crystal potential is averaged for the xy− plane and

represented by V (z). Light elements with strong electric fields and charge asym-

metry have the capability to produce strong SOC, as previously demonstrated in

theoretical works on graphene [42] and SrTiO3(001) [43]. Next, the Dresselhaus

SOI can be expressed as

HD = βD[kx(k
2
y − k2z)σx + ky(k

2
z − k2x)σy + kz(k

2
x − k2y)σz]. (2.48)

The Dresselhaus spin-orbit coupling strength is defined as βD. When electrons are

confined to a (x−y) plane in a semiconductor heterostructure quantum well (QW),

the expectation values of kz and k2z are ⟨kz⟩ = 0 and ⟨k2z⟩ = (π/d)2, respectively,

where d represents the width of the well. This condition results in the expression

for the Dresselhaus spin-orbit interaction:

HD = β1(kxσx − kyσy) + β3[kxk
2
yσx − kyk

2
xσy] (2.49)

where the Dresselhaus spin-orbit strength is defined as βD.

The interaction of the Rashba and Dresselhauss terms is described in complete

Hamiltonian, as follows:

HSOC = αR(σxky − σykx) + β1(kxσx − kyσy) + β3(kxk
2
yσx − kyk

2
xσy) (2.50)

The Schrödinger equation applied to this Hamiltonian results in two energy

bands referred to as spin-split bands E(k⃗, ↑↓), which exhibit time reversibility. At

k⃗ = 0, the bands are required to satisfy E(k⃗, ↑) = E(−k⃗, ↓).
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The difference between the two spin-split bands, E(k⃗, ↑) and E(k⃗, ↓), is known

as the spin splitting, ∆Esplit(k), for a given wavevector k which can be defined as

∆Esplit(k) = E(k, ↑)− E(k, ↓) (2.51)

If β3 = 0, the band dispersion can be expressed as:

E(k, ↑↓) = ℏ2k2

2m∗
± kϱ(αR, βa, θk), (2.52)

here ϱ(αR, βa, θk) is defined as

ϱ(αR, βa, θk) =
√
α2
R + β2

1 + 2αRβasinθk (2.53)

where k⃗(|⃗k|cosθk, |⃗k|sinθk). Persistent Spin Helix (PSH) is produced if αR is equal

to βa [16]. Then, the band dispersion is changed to

E(k, ↑↓) = ℏ2k2

2m∗
± 2αRk+, (2.54)

where k+ = (kx + ky)/
√
2. The shifting properties of PSH band dispersion can be

written as

E(k⃗, ↑) = E(k⃗ + Q⃗, ↓). (2.55)

Here, the wave vector shift is defined as Q = Q+ = 4mαR.

According to the reference [44], the E(k⃗, ↑↓) correspond to eigenstates :

Ψ(k⃗, ↑↓) = exp[i(k̃ · r̃]√
2

i exp(−iΦ(k̃))

±1

 (2.56)

where

exp(−iΦ(k)) = αR exp(−iθk)− i β1 exp(−iθk)

ζ(αR, β1, θk)
(2.57)
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Figure 2.4: (a)Pure Rasba SOI,(b) Dresselhaus SOI, and (c) Persistent spin
helix spin polarization.

Calculating the spin polarization can be done by

P ↑↓ = ⟨Ψ(k⃗, ↑↓)|S|Ψ(k⃗, ↑↓)⟩ =


∓ sin Φ(k̃)

± cos Φ(k̃)

0

 (2.58)

In the case of pure Rashba spin orbit interaction, the φ(k) = θk. Then, the

spin polarization of Rashba case can be done as

P ↑↓ =


∓ sin θk

± cos θk

0

 (2.59)

In PSH case, the φ(k) = π
4
then, the spin polarization of PSH can be written

as

P ↑↓ =


∓ 1√

2

± 1√
2

0

 (2.60)

The spin polarization for Rashba, Dresselhaus, and the persistent spin helix is

shown in Figure 2.4. While the spin polarization in pure Rashba and Dresselhaus

cases is dependent on k, this results in a shorter spin relaxation time due to the
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decay of spin polarization. In contrast, because spins do not undergo precession,

the one-dimensional orientation of spin polarizations in the persistent spin helix

situation is independent of k and leads to a larger augmentation of the spin relax-

ation time. The spin relaxation time, an important aspect of spin-orbit interaction

(SOI), can be understood in the convensional model of electrons. The precession

of the ballistically propagating single spin can be represented as:

ds⃗k⃗
dt

= Ω⃗k⃗ × s⃗
k⃗,(2.61)

where Ω⃗k⃗ =
gµBB⃗

k⃗

ℏ is the precession frequency. The spin-orbit coupling (SOC)

Hamiltonian can be obtained as:

HSOC =
gµBB⃗k⃗

ℏ
· S⃗ (2.62)

Setting the β3 = 0 and insert Eq. 2.62 to Eq. 2.50 we will get B⃗k⃗ as

B⃗k⃗ =
2k

gµB

 αR sin θ + β1 cos θ

−αR cos θ − β1 sin θ

 (2.63)
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Persistent Spin Helix psin

splitting on Hydroxyl-terminated

Diamond (111) surface

3.1 Geometry Optimization

In this geometry optimization, we try to make a model which in agreement with

the other theoretical study. We produced the distance between the carbon atom

and oxygen in our model as depicted in Fig. 2.2(b), which was determined to

be 1.425 AA, which is slightly stronger compared to the bond found in previous

research (1.39 AA) [45]. The bond between the hydrogen and oxygen atoms was

measured to be 0.99 AA, which is slightly less than the bond of 1.01 Åthat was

reported in the prior study [45]. The bonds between the carbon atoms ranged in

strength from 1.526 to 1.550 Å, which is in line with the results of earlier theoretical

work (between 1.51 and 1.55 Å) [45]. The computed distance of the hydrogen and

carbon atoms on the hydrogenated bottom side was found to be 1.11 Å, which

is consistent with the results from prior theoretical work, which also recorded a

distance of 1.11 Å[45].

22
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Figure 3.1: (a) Band structure of OH-terminated diamond, the blue lines give
information about the band structure of surface diamond (111), and the black
lines indicate the band structure of bulk diamond (111). (b)Density of states

for OH-terminated diamond for top hydrogen, oxygen, and carbon atoms

3.1.1 Electronic properties of materials

Fig. 3.1(a) contained information about the band structure of an OH-terminated

diamond, with black and blue lines denoting the bands of the bulk supercell and

the diamond surface (111) of course with OH termination, respectively. For the

OH-terminated (111) diamond surface, the direct band gap at Γ point is 2.94

eV and for the bulk (111) diamond, 4.4 eV. According to the PDOS, the oxygen

atom’s 2p orbital is the occupied surface state in Fig. 3.1(b).
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Table 3.1: Cs’s character

Cs E σyz
A1 1 1
A2 1 -1

Table 3.2: Direct product from two irreducible representations

Cs A1 A2

A1 A1 A2

A2 A2 A1

Table 3.3: Cs symmetry operation

Cs E σyz
kx kx -kx
ky ky ky
σx σx σx
σy σy -σy
σz σz -σz

3.1.2 The Hamiltonian Spin-Orbit Interaction of OH-terminated

diamond

To analyze the SOC in our model, Hamiltonian of Rashba [34], expressed in the

2DEG, is given as H= ℏ2
2m
k2 +HR. Here, the Planck constant is ℏ andm = effective

mass of electrons. The Rashba Hamiltonian is defined as αR(kxσy − kyσx), where

αR = 2ER/kR, σx and σy are the Pauli matrix vectors and wave vector components

in the x and y directions are symbolized as kx and ky.

The OH termination of our substance created the in-plane field of electricity.

It has electric polarization in the direction of y. Always keep in mind that the

Hamiltonian shouldn’t change as a result of the symmetry operation. So, the

R−1HR = H.
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Our slab model belongs to Cs symmetry. Dresselhaus give the character table

of Cs is shown in Table 3.1. Table 3.2 displays the direct product of two irreducible

representations, and Table 3.3 provides the results of applying the symmetry op-

eration Cs to k and σ.

Comparing the character table of Cs with the direct product table of two

irreducible representations for k and σx,y,z, we obtain.

kx → A2, ky → A1, σx → A1, σy → A2, σz → A2,

The invariant results are produced by multiplying two irreducible representa-

tions. For A1 ⊗ A1 = kyσx, and for A2 ⊗ A2 = kxσy and kxσz. Here we get the

first order of Hamiltonian equation=

HSOC = α1kxσz + α2kxσy + α3kyσx (3.1)

3.2 Persistent spin helix on OH terminated dia-

mond (111) surface

Fig. 3.2 shows how SOC affects the surface state of our model. Along the Γ - M

direction, where kx ≈ 0, the SOC Hamiltonian is given byHSOC = α3kyσx. α3 ≈ 0,

since along the Γ - M line the bands are degenerate. However, the bands split along

the Γ-K′ direction, as shown in Fig. 3.2. The spin-orbit Hamiltonian’s first and

second terms are all that remain after ky = 0: α1kxσz+α2kxσy. This results in the

expected spin value being mostly comprised of ⟨Sy⟩ and ⟨Sz⟩, as shown in Fig. 3.2.

The αΓ−K′ , can be evaluated using the band dispersion method, yielding a value

of 14.2 meV·Å, significantly larger than previous observations of PSH coefficients

3.5 to 4.9 meV·Å[17] and (2.77 meV·Å[18]) of in GaAs/AlGaAs, as appears in Fig.

3.2(b).
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Figure 3.2: Band spltting around VBM, the energy difference (∆E) and wave
vector difference (∆k) in the K-Γ-M direction can be used for calculate the large

of spin splitting (α).

Fig. 3.5(a), revealed a unidirectional pattern in the k-space in which the inner

and outer Fermi arcs have different spin orientations. The spin components ⟨Sx⟩

and ⟨Sz⟩ essentially stayed constant, excluding the Fermi arc encircling the degen-

erate points at θ = π/2 and θ = −π/2. Fig. 3.5(a) displays the surface states’

spin textures at the VBM. It has an out-of-plane z component, and also showed

a nearly one-dimensional orientation in the direction of the plane, indicating the

creation of PSH, as described in [16]. This resulted in a long spin lifetime with

unidirectionally directed spin components. The demonstration that spin SU(2)

symmetry corresponds to OH-terminated diamond (111) surfaces can be achieved

by eliminating 2DHG from diamond surfaces via water vapor annealing while pre-

serving an atomically flat surface, as described in [13].

Our spin textures are implemented in area surrounding the VBM, hence, we

anticipate that these spin textures will be highly apparent at this location. To
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Figure 3.3: (a) The spin texture of OH-terminated diamond at the valence
band maximum area. (b) Spin component Sx, Sy, and Sz related to the rotation

angle θ.

confirm our expectation, we investigate how spin patterns are projected onto each

bilayer spatially. Fig. 3.4(b) highlights the fact that the spin states are heavily

concentrated on the surface, where they make up more than 80% of the first two

bilayers. Additionally, the O atom is primarily responsible for the localized-spin

surface states.

Our system corresponds to the spin SU(2) symmetry. In Phys. Rev. Lett. 97

236601, Bernevig, Orenstein and Zhang performed the global spin rotation to the

Rashba and Dresselhaus Hamiltonian by using unitary matrix U = (1/
√
2){1 +

[(i/
√
2)(σx + σy)]}. As the same way, we could perform the global spin rotation

45◦ around the x-axis to the present spin Hamiltonian by using

U =

 1 0

0 1

 cos(π/8) + iσx sin(π/8), (3.2)
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Figure 3.4: (a) The first bilayer is made up of O and H atoms, the second
through sixth bilayers are made up of C atoms, and the last layer is made up
of H atoms. (b) Spin values expected to be projected to atoms in each bilayer.

where σx is the Pauli matrix. Therefore,

U † 1√
2
(σy + σz)U = σz. (3.3)

The discussion of SU(2) symmetry in [Phys. Rev. Lett. 97 236601] is also appli-

cable to the present system.

Diamond is a large band gap material, expecting much smaller spin-orbit

strength than GaAs and InGaAs. In addition, the composed materials are based

on C, O, and H on the present surface, which are light materials. The spin-orbit

coupling (SOC) in the surface system originated from not only the atomic SOC
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Figure 3.5: Asymmetry potential around surface y− (a) and z− (b) direction

but also the electric field induced around the surface. In addition, the asymmetry

of the surface charge density contributes to the SOC.

The Rashba parameter can be written as αR = ℏ2
4m2c2

∫
dz|ϕ(z)|2∂zV (z), where

ϕ(z) is surface wavefunction, V (z) the crystal potential averaged for xy plane.

The light element can produce strong SOC with a strong electric field and charge

asymmetry. For example, hydrogenated graphene[Phys. Rev. Lett. 110, 246602

(2013)] shows dipole moment induced Rashba splitting, between 2 meVÅ to

8 meVÅ depending on the strain. This origin is consistent with the αR =

ℏ2
4m2c2

∫
dz|ϕ(z)|2∂zV (z). We extended the explanation to the in-plane electric field

and charge asymmetry in the surface states caused by the in-plane dipole moment

as the origin of the PSH state.
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3.3 Pseudo spin model

We conducted a DFT calculation of a pseudo-spin model for OH-terminated dia-

monds and confirmed the OH ordered state on the surface. To explore the pseudo-

spin order, we constructed 2x2 supercells with either ferromagnetic (FM) or fer-

rimagnetic (FiM) pseudo-spin configurations as shown in Fig. 3.13(a) and (b),

respectively. The FM system had uniform OH directions as shown in Fig. 3.13(a),

while the FiM system had a variation of OH direction with a 180-degree rotation

as shown in Fig. 3.13(b).

The exchange energy was calculated using the difference in total energy be-

tween FM and FiM modes, expressed as EEX = EFM − EFiM . This result was

obtained for a simple spin model of a 2 × 2 OH-terminated diamond case with

varying OH orientation.

Total energy of this system Fig.3.13(a) can be obatained as

EFM
total = −J{S1(S2+S3)+S2(S4+S1)+S3(S1+S4)+S4(S3+S2)} = −8J (3.4)

For Fig.3.13(b), the total energy is defined as

EFiM
total = −J{S1(S2+(−S3))+S2(S4+S1)−S3(S1+S4)+S4((−S3)−+S2)} = −4J

(3.5)

From this equation, we can obtained

EFM
total − EFiM

total = −4J (3.6)

so for our system, the Heisenberg exchange energy J is

J = −E
FM
total − EFiM

total

4
= 0.38 eV (3.7)

From this result, we can see that the FM condition is more stable than the FiM

condition system.
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Figure 3.6: Ferromagnetic (FM) and ferrimagnetic (FiM) configurations.

Our DFT calculations showed that the spin textures on the OH-terminated

diamond (111) surface have a predominantly one-dimensional orientation. Ad-

ditionally, we found that the OH ending creates a persistent spin helix on the

(111) surface. The PSH coefficient, αPSH , in the Γ-K′ direction was 14.2 meV·Å,

which is much higher than those found in GaAs/AlGaAs zinc-blende n-type QW

structures (3.5 to 4.9 meV·Å[17], 2.77 meV·Å [18]) and comparable to ZnO (1010)

(34.78 meV·Å[19]). These kinds of results indicate that terminating diamond

surface using OH, with electric polarization inside the plane combined with the

mirror symmetry can serve as a viable method creating a persistent spin helix, a

key ingredient in spintronic devices.
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Figure 3.7: Φ is angle between carbon, oxygen, and hydrogen atoms

3.3.1 Variation of the angle between hydrogen, oxygen,

and carbon

To investigate the influence of the angle between hydrogen, oxygen, and carbon

(ϕ), we calculate the model structure by using 6 difference (ϕ). To keep the

distance between O and H around 0.99 Å and C and O around 1.424 Å for all

systems with different ϕ, we fixed all of the atoms in the system.
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Figure 3.8: (a)Band structure for ϕ = 90◦ and (b) zoom-in version area inside
the red box in band structure.

Figure 3.9: (a) Band structure for ϕ = 120◦ (b) zoom in version area inside
the red box in band structure.

We summarize the α due to the variation of ϕ in Tab. 5.1. By comparing the

energy total of all structures, we can see that the minimum energy total is when

ϕ = 105.5◦. The largest spin orbit coupling strength parameter is when the angle

between C,O,and H at diamond surface is equal to 165◦. The type of splitting is

persistent spin helix for ϕ from 90◦ to 165◦, meanwhile, for 180◦ the band splitting

shows Rashba-like splitting.
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Figure 3.10: (a) Band structure for ϕ = 135◦(left) and (b) zoom in version
area inside the red box in band structure.

Figure 3.11: (a) Band structure for ϕ = 150◦ and (b) zoom in version area
inside the red box in band structure.

Figure 3.12: (a) Band structure for ϕ = 165◦ and (b) zoom in version area
inside the red box in band structure.
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Figure 3.13: (a) Band structure for ϕ = 180◦ and (b) zoom in version area
inside the red box in band structure.

Table 3.4: Spin orbit coupling strength parameter for every ϕ variation

No ϕ(◦) α(meV · Å) Energy total (eV)

1 90 14.3 0.312
2 105.5 14.2 0
3 120 18 0.2457
4 135 24.3 0.7998
5 150 36.6 0.4031
6 165 54.6 0.936
7 180 14 0.152



Chapter 4

Rashba effect on H-terminated

diamond

4.1 Hydrogen-terminated diamond (111) surface

This section will focus on the bottom of our model material with the H-terminated

diamond at its base (111). The bond length of hydrogen and carbon atoms was

calculated to be 1.11 Å, in line with earlier theoretical research (1.11 Å[45]). The

bottom hydrogen layer was found to have a significant contribution to the band

near the conduction band minimum, as illustrated in Fig. 4.1. The DOS near the

CBM area is shown in Fig. 4.1, revealing that the hydrogen atoms on the bottom

surface mostly contribute to the DOS around the CBM.

In the previous section, we focused on band splitting around VBM, indicating

the PSH spin-splitting type. The PSH splitting is mostly contributed by 1st

bilayer, consisting of oxygen and hydrogen atoms. Now, we found that at CBM,

which is the conduction band top area, the most contributing atom is the hydrogen

atom (the bottom layer). We can see from 4.1 (a) the CBM area is depicted within

the rectangle black area and 4.1. The band splitting of the CBM area can be seen

in Fig. 4.2(a), the band around Γ is splitting to K ′ and M directions with similar

magnitude.

36
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Figure 4.1: (a) Conduction band minimum is depicted within the rectangular
blue area, this CBM is mostly comprised by the H-terminated diamond, (b)

Partial density of state for the band around CBM

The Hamiltonian for SOI, HSOI , is written as follows:

HSOI = αR(kyσx − kxσy). (4.1)

where, respectively, the wave vectors kx and ky are pointing in the −x and −y

directions, and the Pauli matrices are represented by σx and σy. αR, the αR, is

defined as follows:

αR =
−eℏEz

4m2c2
(4.2)

here, Ez denotes the electric field parallel to the (kx − ky) plane.
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Figure 4.2: (a)Zoom in area within black square in 4.1and (b) Spin texture
around CBM

n, In this calculatio, with regard to the energy E0 at k = 0, ER represents the

energy of the band extremum. The αR, Rashba coupling parameter, is possible

to be calculated by using the delta energy band dispersion, which disappears at

k = k0. After that, using the band dispersion approach, we obtained αΓ−K′ , in

the H-terminated case is evaluated, depicted in 4.2. The calculated αΓ−K′ is 3.6

meV·Å, which is significantly smaller than αPSH of OH-terminated diamond (14.2

meV·Å).

According to Fig.4.2(b), we discovered that the inner and outer circles’ spin

textures have various directions. The outer circle has a counter-clockwise direction
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Figure 4.3: (a) The first bilayer is made up of O and H atoms, the second
through sixth bilayers are made up of C atoms, and the last layer is made up
of H atoms. (b) Spin values expected to be projected to atoms in each bilayer.

but the inner has a counter-anticlockwise direction. The circles here are Fermi arcs.

Fig. 4.3(b) shows that the spin states are widely dispersed (more than 60%)

on the surface H-layers, where they are tightly localized. Here, the H atom is pri-

marily responsible for the localized-spin surface states of the CBM. Furthermore,

in agreement with the PDOS depicted by Fig. 4.1 (b), hydrogen at the bottom

surface predominated the occupied surface state.



Chapter 5

Summary

5.1 PSH on OH-terminated diamond surface 111

Our results of the first-principles study show that the surface states of the dia-

mond (111) surfaces are comprised of OH-terminated and H-terminated diamonds.

By analysing the band structure, we found that the VBM is mostly comprised of

OH-terminated diamonds. The analysis of the band structures and spin textures

demonstrate that the OH-terminated diamond (111) surface has a PSH spin split-

ting type with a large PSH coefficient of 14.2 meV·Å in the Γ-K′ direction. The

spatial projection of spin patterns onto each bilayer emphasizes how dense the

spin states are on the surface, where they make up more than 80% of the first two

bilayers. Additionally, the O atom is primarily responsible for the localized-spin

surface states.These results expect that diamonds with hydroxyl (OH) termination

at their surface will have electric polarization with in-plane direction, and com-

bined with mirror symmetry may promising for the development of miniaturized

spintronic devices.

40
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Figure 5.1: (a) OH-terminated diamond and its αPSH. (b) H-terminated
diamond and its αR .

Table 5.1: The αPSH of materials

Parameter OH-diamond GaAs/AlGaAs QW [17] ZnO [19]

αPSH(meV ·Å) 14.2 3.5-4.9 34.78
λPSH(µm) 0.59 7.3-10 0.19

5.2 Rashba on H-terminated diamond surface 111

Our results showed that CBM is mostly comprised by H-terminated diamonds.The

diamond (111) surface with hydrogen termination, has Rashba spin splitting with

a much smaller spin-orbit coupling parameter of 3.6 meV·Å in the Γ-K′ direction.

We discovered that the spin textures has difference orientation for the inner and

outer circles’. The outer circle has a counter-clockwise direction but the inner has

a counter-anticlockwise direction. The circles here are Fermi arcs. We also found

that the spin states are widely dispersed (more than 60%) on the surface H-layers,

where they are tightly localized. Here, the H atom is primarily responsible for

the localized-spin surface states of the CBM. Furthermore, in agreement with the

PDOS that showed that the hydrogen at the bottom surface predominated the

occupied surface state.
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5.3 Future plans

We have carried out the study of the spin splitting of diamond (111) surfaces based

on the DFT. We have found that the diamond (111) surface terminated by OH is

expected as potential material for miniaturization spintronic devices because of its

persistent spin helix type spin splitting on its spin textures. Nowadays, diamonds

are not only well-known as high-priced jewellery. Diamonds also have an important

role in technology due to their special properties like high thermal conductivity,

high withstand voltage, and sustained exciton even at room temperature. There

are so many applications of diamonds for example as high-power devices, diamonds

for quantum computing, quantum sensor, and highly secured telecommunication

devices. We expected the OH-terminated diamond material can be used as the

diamond-based for the nitrogen-vacancy (NV) center. The NV center is commonly

used for quantum computing and quantum communication applications.



Appendix A

First-principles study of NV

center diamond

A.1 Introduction

Nitrogen-vacancy center is made up of a lattice vacancy and a nearest-neighbor

pair of nitrogen atoms that act as a carbon atom’s replacement. There are five

valence electrons on the nitrogen. While two of 5 electrons stay unbonded and

are referred to as a lone pair, the three additional atoms are chemically joined to

the carbon atoms. As opposed to that, three of the vacancy’s electrons are not

coupled. While two of them make a quasi-covalent bond, one is left unpaired.

The research established the effects such as the effect of nitrogen-vacancy (NV),

boron vacancy, and the other defects in diamond. The term ”NV center” refers

to a location in a diamond’s structure where a nitrogen atom has replaced a

carbon atom to fill an empty space. This type of imperfection could cause levels

to appear in the diamond bandgap. The NV−1 (nitrogen-vacancy center with -1

charge) diamond is a potential prospect ffor various spin information systems like

magnetic sensors, electric sensors, and quantum computing devices.

The purposes of our study are to use a first-principles study to observe and

examine the geometry and electronic characteristics of the nitrogen vacancy in

43



Appendix. First-principles study of NV center diamond 44

Figure A.1: (a)Bulk diamond (b) NV center in diamond.

diamond. Furthermore, we would like to provide clear data to ease the implemen-

tation by using unfolding-band method.

A.2 Computational Details

The NV center diamond calculation was carried out by using OpenMX code. We

used the unit cell of diamond consisting of 8 atoms of carbon and supercell diamond

2× 2× 2, 3× 3× 3, because a larger supercell may be required for highly precise

computations. Pseudo atomic orbital (PAO)= C6.0-s3p2d2 and fully relativistic

pseudopotential (VPS) = C-PBE19 as the most precise for carbon atoms. The

energy cutoff was set to 200 Rydberg, and the Kpoint = 15 × 15 × 15 for the

unit cell calculation. We applied the spin-polarized calculation. Unfolding the

supercell’s band structure into a standard unit cell’s Brillouin zone is a technique

available in OpenMX. [46]. In experimental field, Angle Resolved Photoemission

Spectroscopy (ARPES) is used for measure the spectrum of system with defect.

Compared to the band structure produced by calculation method, the periodicity

of supercell measured by ARPES is difference with the calculation. To ensure that

the estimated band structure’s periodicity matches that of the measured one, the

band structure produced by the supercell calculation should be depicted, for the

Brillouin zone of a suitable unit cell. In supercell calculation, the first Brillouin
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Figure A.2: Density of state of bulk diamond.

zone of a supercell (SBZ) and a primitive cell (PBZ) are connected by a reciprocal

lattice vector (G⃗), which folds a wave vector k⃗ from the SBZ into a wave vector

K⃗ from the PBZ, it can be expressed as k⃗ = K⃗ + G⃗.

An intensity map that shows the expanded spectral weight after a Lorentian

function smears out the weight w. It is important to note that the intensity map’s

absolute value has no physical significance. The model of pristine diamond and

diamond with NV-center is shown in Fig.A.1 (a) and (b) are 3×3×3. The brown

ball, grey, and black are carbon, nitrogen, and vacancy, respectively.

A.3 Results and Discussions

A.3.1 Bulk Diamond

First, for the supercell diamond 2× 2× 2 we calculate the density of states, band

structures, and also unfolded band. The density of states for bulk diamond 2×2×2

is given in Fig.A.2 in spin-polarized condition. The purple lines defines the spin-up

meanwhile the green lines defines the spin-down. The DOS are zero around -2.09

eV to 2.44 eV of eigen energy. Which means there is a gap with 4.4 eV in this

system.
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Figure A.3: (a) Band structure (b) Unfolded band structure of bulk diamond.

The band structure of bulk diamond 2× 2× 2 system is given in Fig. A.3 (a).

The VBM and CBM lie on -2.09 eV and 2.44 eV, under and above EF = 0 eV.

The energy band gap of diamond is 4.53 eV, according to the calculations. The

diamond band gap is 5.47 eV experimentally [47] and 4.869 [2] as the other PBE

calculation result. The GGA definetly underestimate the bandgap. To confirm

that the perfect structure of supercell diamond consists of 64 atoms is in accordance

with the unit cell of diamond, we present the unfolded band energy in Fig. A.3

(b). Here, the black lines define the band energy of unit cell determined by the

standard calculation, and the entire spectral weight is denoted by the green circles.

For this diamond supercell without imperfection case, we can see that the purple

circles are inline with the green line.

A.3.2 NV center diamond with neutral charge

Next, we calculated the NV center diamond with neutral charge (NV0). In the

center of diamond structure, we removed one atom carbon and substituted it using

the nitrogen (N) atom. We also remove one more atom carbon and let the vacancy

remained. After constructed the NV center in bulk diamond, we optimized the

structure and measured the distance between atom carbon and carbon (C-C),

nitrogen and carbon (N-C), as given in . From this table, we can see that the C-C

distance of NV center case are arises compared to the bulk diamond system. But,
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Figure A.4: Ilustration of the models NV center in diamond. The detail
information of distance between atoms are given in A.1

.

Table A.1: lengths and angles (degrees) calculated for various case systems.
The N-C bonds’ angle with the C3 vector is known as ◦. The value in the

parentheses are the previous DFT calculation result [1]

System Atoms C-C (Å) N-C (Å) ◦

Pristine 2.526 1.547(C-C) [1.547] 109.4

NV−1 64 2.661[2.664] 1.481[1.478] 105.76[105.66]
216 2.662[2.666] 1.478[1.475] 105.59[105.50]

NV1 64 2.702 1.48 106.29
216 2.67 1.483 105.99

the N-C distance is smaller compared to C-C distance in the pristine system. If

we set that the C3 axis is in the same direction with Vacancy-Nitrogen direction,

we can analyzed the angle degree between N-C and C3 axis. After NV center

is introduced to the diamond, the angle degree between NC and the c3 axis are

decrease.

First we will focuse in the case of NV center diamond with neutral charge in 2
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Figure A.5: (a)DOS and (b)band structure of NV0 center in 2 × 2 × 2
supercell diamond.

× 2 × 2 supercell. The DOS for this system is given in Fig.A.5(a). Difference with

non-NV center case, the DOS can be seen to emerge around the Fermi level. This

is in agreement with the band structure shown in Fig.A.5(b), that we can found

several states of band are exists around the Fermi level. The NV0 in diamond

yields the band states within the band gap. Here, the purple lines indicates the

spin-up, meanwhile the green lines indicate the spin-down.

Band structure of primitive cell is depicted as the black lines which is calcu-

lated conventionally; the purple and green circles show the overall spectral weight

determined through the unfolding procedure. The size of a circle’s radius shows

the weight’s magnitude. Following that, an intensity image can be used to display

the unfolded spectral weight.

The spectral weight is given by the spectral function in quantum mechanics.

Alternatively the spectral function as a kind of density of states for a given. The

spectral function can be directly measured using Angle-Resolved Photo-Electron

Spectroscopy (ARPES) shows the unfolded band for (a) spin-up (purple circles)

and (c) spin-down (green circles) of NV0 in diamond, and the intensity map of

the unfolded total spectral weight for (b) spin-up and (d) spin-down states of NV0

center in diamond . The black lines in (a) and (c) depicted the band energy of
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Figure A.6: (a) Unfolded band and (b) intensity map spin-up NV0 center in
2 × 2 × 2 supercell diamond.

Figure A.7: Band structure (a) and spin density (b) NV0 in 3 × 3 × 3 supercell
diamond.

unit cell. The VBM switch about 0.14 eV and 0.25 eV close to Fermi Level for

spin up and down, respectively. While the CBM switch around 0.6 eV for spin up

and down compare with the pristine system case.

We also calculate the NV0 in 3 × 3 × 3 supercell diamond. The band structure

of this system is shown in Fig. A.7 (a). The purple and green lines defines the

up and down spin, respectively. The spin density is given in Fig.A.9 (b). The
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Figure A.8: Spin-up-unfolded band structure and intensity map of NV−1

center in 2 × 2 × 2 supercell diamond.

spin density are distributed around carbon atoms near NV center. In this neutral

charge state conditions, the total magnetic of the NV center in diamond is 1 µB.

A.3.3 NV center diamond with -1 charge

Fig. A.8 shows the unfolded band for (a) spin-up and (b) spin-down NV−1 in

diamond, and the (c) spin-up and (d) spin-down intensity maps of the expanded

total spectral weight NV−1 states of NV0 center in diamond . The black line

depicted the band of unit cell diamond. The VBM and CBM also change compared

with the system without imperfection. The VBM switch about 0.14 eV and 0.25

eV close to Fermi Level for spin up and down, respectively compared with the

system without imperfection.

We also calculate the NV−1 in 3× 3× 3 supercell diamond. The band structure

of this system is depicted in Fig.A.9 (a). The definition of the up and down spins,
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Figure A.9: Band structure (a) and spin density (b) of diamond supercel 3 ×
3 × 3

respectively, is shown by the purple and green lines. The spin density is given

in Fig.A.9 (b). The spin density are distributed around carbon atoms near NV

center. In this negative charge state conditions, the total magnetic of the NV

center in diamond is 2 µB.

We successfully computed the NV center defect in diamond. NV center affects

the geometry, electronic, and magnetism properties of diamond. Furthermore, we

successfully provided unfolded band energy for NV center diamond which made

easier for data implementation. According to our findings, the unfolded band of

NV center and supercell of bulk diamond have fewer lines than the traditional

folded band one. The patterns of the unfolded energy bands match the reference

band for primitive cells. Introducing the diamond NV center which has a negative

charge state yields the impurity levels within the diamond bandgap of diamond

around the Fermi level. In NV0 and NV−1 charge state conditions, total magnetic

of NV center in diamond is 1 µB and 2 µB, respectively.
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Journal of Physics, 21(5):053037, may 2019. doi: 10.1088/1367-2630/ab1ec5.

[2] J. M. Lauerhaas and M. J. Sailor. Science, 261(5128):1567, 1993. doi: 10.

1126/science.261.5128.1567.

[3] S. Rivillon, Y. J. Chabal, F. Amy, and A. Kahn. Appl. Phys. Lett., 87(25):

253101, 2005. ISSN 0003-6951. doi: 10.1063/1.2142084.

[4] L. H. Dubois and G. P. Schwartz. Phys. Rev. B, 26:794–802, Jul 1982. doi:

10.1103/PhysRevB.26.794.

[5] B. B. Pate, M. H. Hecht, C. Binns, I. Lindau, and W. E. Spicer. J. Vac. Sci.

and Technol., 21(2):364, 1982. ISSN 0022-5355. doi: 10.1116/1.571781.

[6] M. Tachiki, Y. Kaibara, Y. Sumikawa, M. Shigeno, H. Kanazawa, T. Banno,

K. Soup Song, H. Umezawa, and H. Kawarada. Surf. Sci., 581(2):207, 2005.

ISSN 0039-6028. doi: 10.1016/j.susc.2005.02.054.

[7] S. G. Ri, C. E. Nebel, D. Takeuchi, B. Rezek, N. Tokuda, S. Yamasaki, and

H. Okushi. Diam. Relat. Mater., 15(4):692, 2006. ISSN 0925-9635. doi:

10.1016/j.diamond.2005.12.013.

[8] K. Hirama, K. Tsuge, S. Sato, T. Tsuno, Y. Jingu, S. Yamauchi, and

H. Kawarada. Appl. Phys. Express, 3(4):044001, 2010. ISSN 1882-0778,

1882-0786. doi: 10.1143/APEX.3.044001.

[9] S. Albin and L. Watkins. Appl. Phys. Lett., 56(15):1454, 1990. ISSN 0003-

6951, 1077-3118. doi: 10.1063/1.102496.

52



Bibliography 53

[10] M. I. Landstrass and K. V. Ravi. Appl. Phys. Lett., 55(14):1391, 1989. ISSN

0003-6951, 1077-3118. doi: 10.1063/1.101604.

[11] F. Li, J. Zhang, X. Wang, M. Zhang, and H. Wang. Coatings, 7(7):88, 2017.

ISSN 2079-6412. doi: 10.3390/coatings7070088.

[12] N. Tokuda, H. Umezawa, S.G. Ri, K. Yamabe, H. Okushi, and S. Yamasaki.

Diam. Relat. Mater., 17(4-5):486, 2008. ISSN 09259635. doi: 10.1016/j.

diamond.2008.01.042.

[13] R. Yoshida, D. Miyata, T. Makino, S. Yamasaki, T. Matsumoto, T. Inokuma,

and N. Tokuda. Appl. Surf. Sci., 458:222, 2018. ISSN 01694332. doi: 10.

1016/j.apsusc.2018.07.094.

[14] M. T. Edmonds, L. H. Willems van Beveren, O. Klochan, J. Cervenka,

K. Ganesan, S. Prawer, L. Ley, A. R. Hamilton, and C. I. Pakes. Nano

Lett., 15(1):16, 2015. ISSN 1530-6984. doi: 10.1021/nl502081y.

[15] G. Akhgar, O. Klochan, Laurens H. Willems v. B., M. T. Edmonds, F. Maier,

B. J. Spencer, J. C. McCallum, L. Ley, A. R. Hamilton, and C. I. Pakes.

Nano Lett., 16(6):3768, 2016. ISSN 1530-6984, 1530-6992. doi: 10.1021/acs.

nanolett.6b01155.

[16] B. A. Bernevig, J. Orenstein, and S.C. Zhang. Phys. Rev. Lett., 97(23):

236601, 2006. doi: 10.1103/PhysRevLett.97.236601.

[17] M. P. Walser, C. Reichl, W. Wegscheider, and G. Salis. Nat. Phys, 8(10):757,

2012. ISSN 1745-2481. doi: 10.1038/nphys2383.

[18] C. Schönhuber, M. P. Walser, G. Salis, C. Reichl, W. Wegscheider, T. Korn,

and C. Schüller. Phys. Rev. B, 89(8):085406, 2014. doi: 10.1103/PhysRevB.

89.085406.

[19] M. A. U. Absor, F. Ishii, H. Kotaka, and M. Saito. Appl. Phys. Express, 8

(7):073006, 2015. ISSN 1882-0778, 1882-0786. doi: 10.7567/APEX.8.073006.

[20] D. R. Hartree. Mathematical Proceedings of the Cambridge Philosophical So-

ciety, 24(1):89–110, 1928. doi: 10.1017/S0305004100011919.



Bibliography 54

[21] V. Fock. Zeitschrift für Physik, 61(1):126–148, Jan 1930. ISSN 0044-3328.

doi: 10.1007/BF01340294.

[22] J. C. Slater. Phys. Rev., 81:385–390, Feb 1951. doi: 10.1103/PhysRev.81.385.

[23] P. Hohenberg and W. Kohn. Phys. Rev., 136:B864–B871, Nov 1964. doi:

10.1103/PhysRev.136.B864.

[24] W. Kohn and L. J. Sham. Phys. Rev., 140:A1133–A1138, Nov 1965. doi:

10.1103/PhysRev.140.A1133.

[25] T. Ozaki, H. Kino, J. Yu, M. J. Han, N. Kobayashi, M. Ohfuti, F. Ishii,

T. Ohwaki, H. Weng, M. Toyoda, and K. Terakura. http://www.openmx-

square.org/.

[26] Y. Zhao, F. Yan, and Y. An. Coatings, 12(5):619, 2022. ISSN 2079-6412. doi:

10.3390/coatings12050619.

[27] J. P. Perdew, K. Burke, and M. Ernzerhof. Phys. Rev. Lett., 77(18):3865,

1996. ISSN 0031-9007, 1079-7114. doi: 10.1103/PhysRevLett.77.3865.

[28] T. Ozaki and H. Kino. Phys. Rev. B, 72(4):045121, 2005. ISSN 1098-0121,

1550-235X. doi: 10.1103/PhysRevB.72.045121.

[29] M. Otani and O. Sugino. Phys. Rev. B, 73(11):115407, 2006. ISSN 1098-0121,

1550-235X. doi: 10.1103/PhysRevB.73.115407.

[30] T. Ozaki. Phys. Rev. B, 67(15):155108, 2003. doi: 10.1103/PhysRevB.67.

155108.

[31] T. Ozaki and H. Kino. Phys. Rev. B, 69(19):195113, 2004. doi: 10.1103/

PhysRevB.69.195113.

[32] H. Kotaka, F. Ishii, and M. Saito. Jpn. J. Appl. Phys., 52(3R):035204, 2013.

ISSN 0021-4922, 1347-4065. doi: 10.7567/JJAP.52.035204.

[33] N. Yamaguchi and F. Ishii. Appl. Phys. Express, 10(12):123003, 2017. ISSN

1882-0778, 1882-0786. doi: 10.7567/APEX.10.123003.



Bibliography 55
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