幹細胞分裂過程リアルタイムイメージングによる細 胞社会ダイバーシティ獲得機構の解明

著者	後藤 典子
著者別表示	Gotoh Noriko
雑誌名	令和3(2021)年度 科学研究費補助金 新学術領域研究(研究領域提案型) 研究実績の概要
巻	2020-04-01 2022-03-31
ページ	3p.
発行年	2022-12-28
URL	http://doi.org/10.24517/00060233

2021 Fiscal Year Annual Research Report

幹細胞分裂過程リアルタイムイメージングによる細胞社会ダイバーシティ獲得機構の解明

Publicly Offered Research

Project Area
Integrated analysis and regulation of cellular diversity
Project/Area Number
20H05029
Research Institution
Kanazawa University
Principal Investigator
後藤 典子 金沢大学, がん進展制御研究所, 教授 (10251448)
Project Period (FY)
2020-04-01 - 2022-03-31
Keywords
がん幹細胞 / シングルセル / リアルタイムイメージング / 不均一性

本研究では乳がん組織のダイバーシティ構築のメカニズムの解明を大きな目的とし、ヒトがん臨床検体由来のスフェロイド、オルガノイド及びPDXモデルを活用する。まず、NRP1濃縮がん幹細胞様細胞集団を用いた1細胞解析により、増殖しない細胞集団にいる親玉がん幹細胞を同定した(特許出願)。親玉がん幹細胞は、正常乳腺の幹細胞あるいは前駆細胞の性質を持ち、NRP1に加えて膜タンパクFXYD3を組み合わせたダブルポジティブの細胞分画として同定された(論文投稿中)。秋山(A01の計画研究者)、中戸(A03の計画研究者)との共

Outline of Annual Research Achievements

同研究による。

NRP1によって濃縮されるがん幹細胞様細胞が、対称性分裂と非対称性分裂を起こして、がん組織を形成していく過程の1細胞レベルのリアルタイムイメージングをin vitro及びin vivoで行うために、NRP1をコードする遺伝子の3'末端にIRES配列をつけ、CRISPR-Cas9システムによってGFPをつなげた。リアルタイムイメージングを行っている。

がん幹細胞内でMycの活性化によりDNA複製因子MCM10が活性化させて複製ストレスを回避していることを見出し、報告した。 乳がんマウスモデルの解析により、がん超早期の乳腺組織においてFRS2beta分子によってNFkBが活性化し、乳腺組織微小環境を整えることががん発症にクリティカルであることを見出して、報告した。

Research Progress Status

令和3年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

令和3年度が最終年度であるため、記入しない。

Research Products (17 results)

[Presentation] 新薬開発へ向けた産学連携の問題点と将来展望

	((, , , ,)			
			All 2	2021
	All Journal Article	(8 results) (of which Peer Reviewed: 8 results, Open Acce	ss: 8 resi	ults)
		Presentation (7 results) (of which Invited: 7 results) Boo	ok (2 resi	ults)
[Journal Article] The membrane-li breast cancer carcinogenesis	linked adaptor FRS2β	fashions a cytokine-rich inflammatory microenvironment that p	promotes 2021	~
[Journal Article] MCM10 compens	sates for Myc-induced	DNA replication stress in breast cancer stem-like cells	2021	~
[Journal Article] A novel oral inhib treatment for breast cancer	bitor for one-carbon n	netabolism and checkpoint kinase 1 inhibitor as a rational comb	ination 2021	~
[Journal Article] MUSASHI-2 confe adenocarcinoma	fers resistance to thirc	d-generation EGFR-tyrosine kinase inhibitor osimertinib in lung	2021	~
[Journal Article] The CD44/COL17	7A1 pathway promote	es the formation of multilayered, transformed epithelia	2021	~
[Journal Article] Xenografts derive	red from patients with	head and neck cancer recapitulate patient tumour properties	2021	~
[Journal Article] Small-molecule F myeloma	HDAC and Akt inhibito	ors suppress tumor growth and enhance immunotherapy in mul	tiple 2021	~
[Journal Article] Cytoplasmic DNA intracellular DNA sensing pathway		entially triggers cell death of myeloid leukemia cells by interacti	ing with 2021	~
[Presentation] 乳がん患者由来モデ	「ル及びマウスモデルをP	用いたがん幹細胞、微小環境構築の解明	2021	~
[Presentation] The membrane-linl promotes breast cancer carcinoge	•	a fashions a cytokine-rich inflammatory microenvironment that	2021	~

2021 ~

[Presentation] Key molecular targets in cancer stem-like cells in triple-negative breast cancer	2021 ×
[Presentation] スフェロイド・オルガノイド培養を用いた腫瘍細胞不均一性の解明	2021 ×
[Presentation] 乳がん幹細胞	2021 ×
[Presentation] 乳がん患者由来がん三次元培養によるマイ・メディシン	2021 ~
[Book] がん微小環境に1細胞レベルで挑む	2021 ~
[Book] 医学のあゆみ 「乳腺のオルガノイドによるマイ・メディシン」―がん幹細胞研究の立場から	2021 ×

URL: https://kaken.nii.ac.jp/report/KAKENHI-PUBLICLY-20H05029/20H050292021jisseki/

Published: 2022-12-28