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Abstract

We introduce the state-of-the-art deep-learning denoising diffusion probabilistic model as a method to infer the volume
or number density of giant molecular clouds (GMCs) from projected mass surface density maps. We adopt
magnetohydrodynamic simulations with different global magnetic field strengths and large-scale dynamics, i.e.,
noncolliding and colliding GMCs. We train a diffusion model on both mass surface density maps and their
corresponding mass-weighted number density maps from different viewing angles for all the simulations. We compare
the diffusion model performance with a more traditional empirical two-component and three-component power-law
fitting method and with a more traditional neural network machine-learning approach. We conclude that the diffusion
model achieves an order-of-magnitude improvement on the accuracy of predicting number density compared to that by
other methods. We apply the diffusion method to some example astronomical column density maps of Taurus and the
infrared dark clouds G28.37+0.07 and G35.39-0.33 to produce maps of their mean volume densities.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Astrostatistics (1882); Astrostatistics
techniques (1886); Molecular clouds (1072); Magnetohydrodynamics (1964); Convolutional neural net-
works (1938)

1. Introduction

Giant molecular clouds (GMCs) are one of the most important
components of the interstellar medium (ISM) in galaxies. The ISM
is the material that fills the space between stars, consisting of gas
and dust, as well as cosmic rays and magnetic fields (Spitzer 1978).
The ISM plays a critical role in the life cycle of galaxies, regulating
the rate of star formation (e.g., Leroy et al. 2008; Tacconi et al.
2020). GMCs are particularly important because they contain the
majority of the dense gas in the ISM, which is required for the
formation of stars (e.g., Shu et al. 1987; Saintonge &
Catinella 2022). The physical conditions within GMCs are highly
complex and dynamic, with variations in space and time of
density, temperature, velocity, and magnetic field strength and
direction. These conditions can lead to a wide range of
phenomena, including the formation of protostars and star clusters
(e.g., McKee & Ostriker 2007; Heyer & Dame 2015; Krumholz
et al. 2019) and the formation of complex organic molecules (e.g.,
Herbst & van Dishoeck 2009; Jørgensen et al. 2020). Conse-
quently, investigating the physical and chemical conditions of
GMCs is a crucial step toward understanding the complex physical
processes that occur within the Milky Way, as well as the
properties and evolution of galaxies throughout the universe.

Among all the physical quantities of GMCs, the density (ρ),
i.e., mass per unit volume,5 is one of the most fundamental
properties that relates to various physical quantity estimations,

such as the freefall time, the magnetic field strength
(Davis 1951; Chandrasekhar & Fermi 1953; Beck 2015), and
chemical reaction rates (Tielens & Hagen 1982; Wakelam et al.
2010; Gong et al. 2017). The freefall time depends on density
as tff∝ ρ−1/2. Considering measurement of magnetic fields,
one method commonly used is the Davis−Chandrasekhar
−Fermi (DCF) method (Davis 1951; Chandrasekhar &
Fermi 1953; Beck 2015). This estimates the plane-of-sky
(POS) component of the magnetic field using polarized thermal
dust emission (Rao et al. 1998; Planck Collaboration et al.
2016). The DCF method is based on the assumption that the
magnetic field in the ISM is in a state of equipartition with the
turbulent kinetic energy of the gas. This means that the
magnetic field strength is proportional to the square root of the
gas density and the turbulent velocity dispersion of the gas.
Thus, in the DCF method, a good estimation of the gas density
is required to obtain an accurate estimation of the magnetic
field strength. Similarly, the gas density is a crucial factor
affecting the rates of astrochemical reactions (Wakelam et al.
2010; Gong et al. 2017). Thus, a precise estimation of the gas
density within GMCs is crucial for accurate prediction of
molecular abundances and a better understanding of the
chemical evolution in GMCs.
However, it is difficult to quantify the number density of

GMCs from observations. The traditional approach of estimat-
ing the number density of GMCs is based on observations of
column density and certain assumptions on the geometry of the
clouds, for example, a cylindrical geometry for filamentary
structures or spherical geometry for dense cores (André et al.
2014). Bisbas et al. (2021, 2023) proposed an empirical power
law to convert the observed column density to the mean
number density of GMCs based on the MHD simulations from
Wu et al. (2017), which works decently but with noticeable
scatter. Another method to constrain the number density of
GMCs is utilizing density “probes,” such as cyanoacetylene
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5 We will also use the number density of H nuclei as a metric of density.
Under the assumption of an abundance of one He nucleus for every 10 H nuclei
in interstellar gas, we have a mass per H nucleus of μH = 1.4 mH =
2.34 × 10−24 g. Thus, nH = 1 cm−3 is equivalent to ρ = 2.34 ×
10−24 g cm−3.
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(HC3N; Avery et al. 1982; Schloerb et al. 1983; Li &
Goldsmith 2012). The relative intensity of different transitions
of HC3N is sensitive to the number density of the cloud, which
makes it possible to constrain the mean number density directly
by observing multiple transitions of HC3N. Li & Goldsmith
(2012) successfully observed J= 2− 1 and 10–9 transitions of
HC3N in the Taurus B213 filament and constrained the number
density of H2 molecules, nH2∼ (1.8± 0.7)× 104 cm−3. Note
that nH= 2nH2 under the assumption that all H is in the form of
H2. Unfortunately, the line ratio of HC3N can only probe the
number density at a relatively narrow range, between ∼104 and
106 cm−3 (Li & Goldsmith 2012), which limits its ability to
infer the number density of the full range of structures that exist
in GMCs. Consequently, a novel method to infer the number
density of GMCs under a variety of physical conditions with
high precision is in great demand. Machine learning makes it
possible to learn from both the morphology of clouds and their
column density to infer the mean number density rather than
using a simple average power-law conversion.

Machine learning has gained great popularity among
astronomers. For example, convolutional neural networks
(CNNs) have been successfully applied to a series of tasks,
including galaxy classification (Domínguez Sánchez et al.
2018; Becker et al. 2021); identification of structures like
protostellar outflows, stellar-wind-driven bubbles, and Galactic
cirrus filaments (Xu et al. 2020a, 2020b, 2022a; Smirnov et al.
2023); and inferring physical quantities based on observations,
such as protostellar outflow inclination angles, magnetic field
directions, stellar masses, exoplanet masses, galactic redshifts,
and galactic star formation rates (Liu et al. 2020; Xu et al.
2022b; Zhang et al. 2022; Bisigello et al. 2023; Xu et al. 2023).
Furthermore, CNNs have also been utilized to mitigate the
impact of noise in astronomical observations (Gheller &
Vazza 2022; Bartlett et al. 2023). For instance, Gheller &
Vazza (2022) employed CNNs to remove noise and artifacts of
radio interferometric images, while Bartlett et al. (2023)
employed CNNs to diminish the impact of noise on various
observation targets and preserve the morphology of galaxies.
Meanwhile, generative adversarial networks (GANs) have been
applied to a variety of tasks (Hemmati et al. 2022; Sweere et al.
2022). Sweere et al. (2022) applied GANs to generate super-
resolution and denoised images from the XMM-Newton
telescope. Hemmati et al. (2022) utilized GANs to effectively
deblend galaxies from Hubble Space Telescope observations.
More recently, denoising diffusion probabilistic models
(DDPMs) have demonstrated their proficiency and robustness
in image generation (Sohl-Dickstein et al. 2015; Ho et al.
2020). They have been particularly successful in creating
realistic mock images that imitate observations of galaxies
(Smith et al. 2022), making them well-suited for the prediction
tasks in astronomy.

In this paper, we introduce the deep-learning method
DDPMs to infer the number density of GMCs from column/
surface density maps. We describe the diffusion model and
how we generate the training set from MHD simulations in
Section 2. Here we also introduce a CNN-based machine-
learning approach, Convolutional Approach to Structure
Identification-2D (CASI-2D), to infer the number density from
column density. In Section 3, we evaluate our diffusion model
in predicting the number density and compare with other
approaches. We also apply our diffusion model to real

observations in Section 3. We summarize our results and
conclusions in Section 4.

2. Data and Method

2.1. Magnetohydrodynamics Simulations

We carry out ideal MHD simulations based on the setup of
Wu et al. (2020) and Hsu et al. (2023), which were conducted
using the MUSCL-Dedner method and HLLD Riemann solver
in the adaptive mesh refinement (AMR) code Enzo (Dedner
et al. 2002; Wang & Abel 2009; Bryan et al. 2014). The
simulations include self-gravity, magnetic fields, and heating/
cooling based on a photodissociation model, which assumes a
far-UV radiation field of G0= 4 Habings with attenuation from
the nH− AV relation introduced in Wu et al. (2015) and cosmic-
ray ionization rate ζ= 10−16 s−1. Initially, two clouds with a
radius of 20 pc are initialized in a 128 pc3 domain resolved by
2563 cells. The clouds have initial density nH= 83 cm−3,
temperature T= 15 K, and solenoidal turbulent velocity field
with  µ -v k k, 2 20k

2 4 . The gas outside the clouds has a
10 times lower density nH= 8.3 cm−3 and 10 times higher
temperature 150 K to balance the pressure. Note that while the
GMCs have an initial temperature of 15 K, soon a multiphase
temperature structure is established, e.g., with typical tempera-
tures of ∼10–20 K at high densities (nH 103 cm−3), ∼40 K at
intermediate densities (nH∼ 102 cm−3), and ∼1000 K at low
densities (nH 10 cm−3; see Figure 2 of Hsu et al. 2023).
The initial magnetic field is oriented at an angle of 60° with

respect to the collisional axis, and its strength varies from 10 to
30 to 50 μG in different considered cases. Four additional
levels of refinement are allowed to resolve the local Jeans
length with eight cells. For each magnetic field, we select two
different types of setup of the large-scale dynamics of the
GMCs, noncolliding and colliding GMCs. In the colliding
cases, the clouds have a relative velocity of 10 km s−1 and are
offset by 0.5RGMC. The simulations do not include star
formation or feedback, so they represent the structures that
develop in the early phases of collapse up to the onset of star
formation. The simulations are run for 5 Myr. We take two
evolutionary stages, 3 and 4Myr, for analysis from each run.
To enhance the diversity of the data set, we generate column

density maps and their corresponding line-of-sight (LOS)
mass-weighted number density across different scales by
adopting different AMR levels with different physical resolu-
tions. The image size in pixels is 128× 128, with multiple
physical scales, including 32, 16, 8, and 4 pc. In total, we have
7179 images in the data set, in which 70% are used for the
training set and the remaining 30% are a test set. Figure 1
shows the correlation between the LOS mass-weighted number
density and the column density for different simulations.
Although the column density range is not the same for different
simulations, it is obvious that the relation between the mass-
weighted number density and column density is similar for all
the different simulations.

2.2. Machine-learning Approaches

2.2.1. Denoising Diffusion Probabilistic Models

DDPMs (Sohl-Dickstein et al. 2015; Ho et al. 2020), hereafter
called diffusion models for short, are the state-of-the-art generative
method in deep-learning and computer vision research field in
recent years. Specifically, diffusion models have been successfully
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applied in synthesizing various high-fidelity data, including
images, video, and audio (Rombach et al. 2022; Singer et al.
2022; Zhu et al. 2023a; Zhu et al. 2023b).

The core formulation of diffusion models is inspired by
nonequilibrium thermodynamics (Sohl-Dickstein et al. 2015),
which models a stochastic Markov chain of T steps in two
directions. The forward direction q, also known as the diffusion
process, gradually adds stochastic Gaussian noises to a data
sample x0 following

b b= -- -( ∣ ) ( ) ( )x x xq I1 , , 1t t t t t1 1

where b ={ } 1t t
T are prescheduled variances. The other

direction, often referred to as the reverse direction or generative
process p, denoises a noisy sample xT from a standard Gaussian
distribution to a data sample x0 as

b
b
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There are several reasons why we adopt the diffusion model
as the tool to infer the number density of GMCs. First, the
diffusion models have demonstrated great potential and
impressive performance in learning the data distribution in

the generative field as the current mainstream method.
Moreover, unlike the previous deep-learning methods such as
GANs (Goodfellow et al. 2014), diffusion models are well
known for the benefits of stable training, robust performance,
and better interpretability and traceability via the rigorous
mathematical formulations as a Markov chain. Additionally,
originating from the natural thermodynamics problem, the
diffusion models simulate a random walk process in the data
space, which shares the intrinsic alignment and consistency
with most scientific problems.
To adapt the diffusion models in our context, we deploy a

diffusion model with a similar parameter setup to that in Ho
et al. (2020). Specifically, the diffusion model has in total
T= 1000 steps and is optimized using the variational loss in
Equation (3), which makes valid the assumption that the
reverse direction converges to the Gaussian stochastic diffusion
process. In particular, we provide xc as an additional input
condition to make the prediction follow each individual
observational sample. We train the diffusion model for 400
epochs and evaluate the performance on a sample in the test set.
Figure 2 shows an example of the reverse process on our test
data, where Gaussian noise is gradually converted to our target
after 1000 time steps.

2.2.2. CASI-2D

In this subsection, we introduce the CASI-2D model to predict
the number density of GMCs from the column density. We
adopt the same CNN architecture, CASI-2D, from Van Oort
et al. (2019). CASI-2D is an autoencoder with both residual
networks (He et al. 2016) and a “U-net” (Ronneberger et al.
2015). CASI-2D has two major components, the encoder part
and the decoder part. The encoder part extracts the features

Figure 1. Relation between the LOS mass-weighted number density and the column density for different simulations. The rainbow color background indicates the 2D
histogram of the distribution between number density and column density for each simulation. The lines with error bars represent the mean and their standard deviation
of each column density bin.
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from the input data and maps them into a lower-dimensional
space, called the latent space, and then the decoder part takes
this compressed representation from the latent space and
attempts to reconstruct the target data. During the training
process, the autoencoder is fed both input data, i.e., the column
density map, and the target data, i.e., the number density map.
It then learns to map the column density data to the number
density data in a way that minimizes the difference between the
reconstructed output and the target. We adopt the same training
hyperparameters as Xu et al. (2020a, 2020b).

3. Results

3.1. Comparison between Different Approaches

In this subsection, we adopt several different approaches to
convert column density to mass-weighted number density on the
LOS. Note that when converting from nH and NH to a total mass
per unit volume, ρ, or a mass per unit area (mass surface density,
Σ), as mentioned above, one must also account for He (assuming
nHe= 0.1nH, so that the mass per H is μH= 1.4mH=
2.34× 10−24 g. Note also that observational studies of molecular
clouds sometimes report results for nH2, since H2 is the main
collision partner. We will convert these estimates to nH assuming
that all H is in the form of H2 so that nH= 2nH2.

We start with power-law fitting on the relation between the
LOS mass-weighted number density of H nuclei (nH) and the
column density of H nuclei (NH) for all simulations in Figure 1.
We adopt two-component and three-component power laws to
fit the nH− NH relation, i.e., nH= f (NH). Meanwhile, we
conduct the “inverted” fitting, i.e., adopting two-component
and three-component power laws to fit the NH− nH relation
NH= f (nH), and then derive the inverse function nH= f−1(NH).
We summarize the fitting results in Table 1. We then follow the
power-law fitting results to convert the column density to mass-
weighted number density. We show the fitting results in
Figure 3. In addition, we present the result from machine-
learning approaches, including CASI-2D and the diffusion
model, in Figure 3.

Considering the results, it is obvious that there is significant
dispersion between the true mass-weighted number density,
nH,True, and the predicted number density, nH,Pred, that is

converted by the power-law relation and that is predicted by
CASI-2D. The predicted number density by the diffusion model
has a much smaller dispersion around the true density. We
present the dispersion values between nH,True and nH,Pred in
Figure 3 for the various cases. The predicted number density by
the diffusion model is an order of magnitude better than that by
all the other approaches. The 2D distribution between the
actual number density and the predicted number density is
shown in the second row of Figure 3. The power-law
conversion approach leads to a nonuniform distribution across
densities, with a systematic underestimation at low density and
a systematic overestimation at moderate density.
We proceed to measure the error distribution across the

range of densities in the third row of Figure 3. It is observed
that, except for the diffusion model, all other approaches have a
nonuniform distribution across densities. In the last row of
Figure 3, we provide an overview of the error distribution for
all methods, i.e., listing the average offset (μb), internal
standard deviation (σi), and total standard deviation
(s m s= +t b i

2 2 ). It can be seen that the diffusion model has
the lowest offset bias and the smallest variation compared to
the other methods. For the diffusion model the mean offset is at
a level of 10% and the total standard deviation, which indicates
the total deviation from the true value, is at the level of 38%.
To better visualize the performance between different

approaches, we show a sample image from the test set and apply
different approaches to obtain the predicted number density in
Figure 4. Although the column density map is similar to the true

Figure 2. Demonstration of the diffusion process (reverse) on a sample in the test set.

Table 1
Power-law Fitting Resultsa

Label Components Break Points Power Indices

2PL 2 20.82 0.61/1.47
3PL 3 20.73/22.69 0.61/1.41/1.49
2PL-i 2 20.19 0.67/1.42
3PL-i 3 21.35/21.79 0.79/4.06/1.26

Note.
a Label, number of power-law components, break points of power-law fittings
in log scale, and power indices of each power-law component.
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Figure 3. Summary of the performance of different approaches to convert the gas column density to number density on all the data samples.

Figure 4. Comparison between different approaches to converting gas column density to number density on a sample in the test set.
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number density map, there is noticeable difference at relatively
high column densities, where more structures are highlighted in
the true number density map but appear faint in the column
density map. The power-law conversion approach cannot
reconstruct the structures that have relatively high number
densities. CASI-2D is able to regenerate some of the high-density
structures, but due to the intrinsic convolution manipulation, the
number density map predicted by CASI-2D is smoother compared
to the true number density map. The number density map
predicted by the diffusion model is able to re-create the actual
structures across a wide density range.

The performance of the proposed diffusion model exhibits an
improvement of one order of magnitude compared to CASI-2D,
which is a CNN similar to variational autoencoders (VAEs;
Kingma & Welling 2014). In the context of machine learning,
we discuss the reasons for the significant improvement
achieved by our proposed diffusion model as follows. The
DDPMs are formulated based on the Markov stochastic process
and model a random walk in the data space, which aligns with
most existing physics problems and is consistent with intrinsic
properties of the natural world. In contrast, CNNs and VAEs
were originally designed for image classification and genera-
tion tasks in computer vision and lack explicit connections to
the physical world. For instance, the observed structure of
GMCs is likely to be shaped, at least in part, by turbulent
motions that involve compressions in a series of quasi-random
directions. Then, the overall mass surface density map is
constructed by summing a series of quasi-independent patches
of volume density along the LOS. Thus, inferring the raw
mass-weighted number density distribution based on the
observed column density inherits the basic concepts of
diffusion models. Furthermore, with respect to information

loss, DDPMs maintain the same data dimensionality through-
out the entire denoising (i.e., prediction) process, thus better
preserving the information conveyed by the original data. In
contrast, CNNs and VAEs involve dimension reduction and
information compression during training, resulting in inevitable
information loss for the prediction objective. In terms of
traceability and interpretability, we employ predefined Gaus-
sian transition kernels to introduce and remove noise at each
diffusion step in DDPMs. This provides us with superior
traceability and interpretability for the data transition compared
to CNNs and VAEs, whose traceability relies on a relatively
vague gradient descent optimization direction.

3.2. Test on Herschel Observations of Taurus B213

In this subsection, we apply our diffusion model to a
Herschel-derived column density map of Taurus B213. The
Herschel column density map of Taurus B213 is obtained from
Palmeirim et al. (2013), which has a resolution of 18 2. The
column density map is derived based on an optically thin
graybody assumption with the function Iν= Bν(Td)κνΣ, where
Iν is the observed surface brightness at frequency ν and κν is
the dust opacity per unit mass. Four data points of spectral
energy distributions (SEDs) are included in the fitting,
including 160, 250, 350 and 500 μm.
Taurus B213 is one of the closest star-forming filamentary

structures located in the Taurus molecular cloud (Li & Gold-
smith 2012; Palmeirim et al. 2013). Palmeirim et al. (2013)
adopted a power-law radial density profile to fit the column
density profile of the B213 filament and found the central density
of the filament to be nH,c= 7.5× 104 cm−3. Li & Goldsmith
(2012) analyzed multiple transitions of HC3N in the B213

Figure 5. Herschel column density map of Taurus B213 (top) and the diffusion-model-predicted corresponding gas number density (bottom).
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filament and constrained the number density to be nH∼ 3.6×
104 cm−3. We apply our diffusion model to predict the LOS mass-
weighted number density and show the predicted map in Figure 5.
The peak number density of the B213 filament predicted by the
diffusion model is nH,peak= 4.7× 104 cm−3. Note that the
diffusion model predicts the LOS mass-weighted number density
but not the actual central peak density of the filament. We adopt
the power-law fitting results from Palmeirim et al. (2013) and
calculate the LOS mass-weighted number density of the center of
the B213 filament, which is nH= 4.0× 104 cm−3. Consequently,
our diffusion model prediction is highly consistent with the
estimation from other methods.

The above example examines the diffusion model’s ability to
accurately predict number density on real data that were not
included in our training set. We further evaluate the diffusion
model’s performance on a new simulation in Appendix A, as
well as its performance on data with varying physical
resolutions in Appendix B. Our findings demonstrate that the
diffusion model performs reasonably well in predicting number
density on previously unseen data. As a comparison, we also
apply CASI-2D to the Taurus data and report our results in
Appendix C. Our findings suggest that the predictions of CASI-
2D exhibit greater blurring, with a smoother density peak at a
lower value. This observation implies that CASI-2D may not be
as effective when dealing with unseen data.

3.3. Test on Extinction Maps of IRDCs

In this subsection, we apply our diffusion model to dust
extinction maps of two infrared dark clouds (IRDCs), G28.37
+00.07 (Cloud C) and G035.39-00.33 (Cloud H). IRDCs are
cold, dense regions that are considered the birthplace of
massive stars and star clusters. It is of great significance to
study the physical and chemical conditions of IRDCs.
Particularly, the number density of IRDCs is one of the most
fundamental quantities.

We adopt the mid-IR (MIR) extinction (MIREX) map
derived column density maps from Kainulainen & Tan (2013),

which are derived from a 2″-resolution 8 μm Spitzer−IRAC
extinction map (Butler & Tan 2012), along with a lower-
resolution, larger-scale near-IR extinction correction. The
relation of column density NH to visual extinction AV is
NH= 1.9× 1021 cm−2(AV/mag). We first apply the diffusion
model to the column density map of IRDC G28.37+0.07, i.e.,
Cloud C, and show the predicted number density in Figure 6.
The number density of Cloud C varies from 103 to 106 cm−3.
Entekhabi et al. (2022) applied spherical geometry with a
radius of 0.39 pc to derive the number density from the column
density map of Cloud C at 10 locations, as indicated in
Figure 6. We compare the number density calculated by

Figure 6. MIR-extinction-derived column density map of IRDC G28.37+0.07, i.e., Cloud C (left; from Kainulainen & Tan 2013), and the diffusion-model-predicted
corresponding gas number density (right). Crosses indicate the locations that have number density estimates by Entekhabi et al. (2022).

Figure 7. Comparison between the true mass-weighted LOS number density
and that estimated by assuming a sphere with a certain radius on a simulation
sample. Different colors indicate different radii of apertures, where rA is 0.39
pc. Black symbols represent the comparison between the number density
estimates by Entekhabi et al. (2022) and those by the diffusion model in
IRDC G28.37+0.07, i.e., Cloud C. Squares and triangles represent different
number density estimates in Entekhabi et al. (2022) based on two different data
sets, MIR extinction from Spitzer and submillimeter emission from Herschel,
respectively. The red line indicates the 1–1 line. The blue line indicates the
5–1 line.
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Entekhabi et al. (2022) to that by the diffusion model in
Figure 7. It is likely that the previous estimation of the number
density in Cloud C is systematically underestimated by a factor
of 2, which may have a slight impact on the chemical modeling
of Cloud C performed by Entekhabi et al. (2022). To evaluate
the impact of the radius of the aperture in spherical geometry
approximation, we apply different radii of apertures to calculate
the mean number density in each circle and compare that with
the true number density calculated from simulations. Figure 7
also shows the impact of aperture radius in density estimation.
As the aperture increases, the mean density calculated with a
circle-to-sphere approximation is likely underestimated in
dense regions. When the aperture is small, the density

calculated with a circle-to-sphere approximation is similar to
the true density, which indicates that the dense cores likely
have a similar scale to this aperture radius. It is worth noting
that this scale might only be an upper limit owing to the finite
resolution of the simulation. At the low-density region, we can
see a significant overestimation of density using a circle-to-
sphere approximation with a small aperture. This is consistent
with intuition, where the diffuse region has a much larger scale
on the LOS than 0.39 pc. Consequently, we conclude that the
density estimation with a circle-to-sphere approximation is
sensitive to the choice of aperture radius.
Next, we apply the diffusion model to the column density map

of IRDC G35.39-0.33, i.e., Cloud H, which is a highly filamentary

Figure 8. MIR-extinction-derived column density map of IRDC G35.39-0.33, i.e., Cloud H (left; from Kainulainen & Tan 2013), and the diffusion-model-predicted
corresponding gas number density (right). The black box indicates the location of the filamentary structure studied in Jiménez-Serra et al. (2014).

Figure 9. Distribution of gas column density and the mass-weighted number density predicted by the diffusion model for both Cloud C and Cloud H. The study of the
entire Cloud C and Cloud H regions is represented by the blue and green lines, respectively. The red line corresponds to the study focused on the central dense region
of Cloud C as illustrated by the black box in Figure 6. The orange line indicates the study conducted on the filamentary structure, located within the black box in
Figure 8.
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cloud. The predicted number density is shown in Figure 8. The
number density of Cloud H varies from 103 to 105 cm−3. Jiménez-
Serra et al. (2014) adopted multitransition 13CO and C18O lines to
estimate H2 number density of the filamentary structure in Cloud
H. Based on the large velocity gradient approximation of the non-
LTE radiative transfer, Jiménez-Serra et al. (2014) constrained the
number density to be nH,avg= 8.3× 103 to 1.2× 104 cm−3. The
diffusion model predicts a mean number density of the filamentary
structure of nH,avg,diffusion= 1.3× 104 cm−3. The diffusion-model-
predicted mean number density of the entire Cloud H is
nH,avg,diffusion= 6.1× 103 cm−3. The predicted number density
by the diffusion model is thus consistent with that inferred by an
independent non-LTE radiative transfer approach in Jiménez-
Serra et al. (2014).

It is important to note that our objective is not to reproduce the
measurements of individual points obtained by other methods.
Rather, our aim is to establish the diffusion model as a useful tool
for determining the number density of GMCs over a wide range of
values. Such a tool can be useful for various analyses, including
statistical analysis of turbulence. An example of comparing the
column density distribution with the number density distribution in
Cloud C and Cloud H is shown in Figure 9. The dissimilarity
between the column density distribution and the number density
distribution is evident in the high-density regions. This result may
help astronomers in investigating the statistical properties of
turbulence more thoroughly in the future. It is noteworthy that the
quantity referred to as the number density does not reflect the true
density; rather, it represents the mass-weighted number density
along the LOS.

4. Conclusions

We have trained the deep-learning method diffusion
probabilistic models to predict the LOS mass-weighted number
density of GMCs from column density maps. We have tested
the diffusion model performance on synthetic test samples and
real observational data. Our main findings are as follows:

1. The diffusion model is able to predict the LOS mass-
weighted number density with higher accuracy (an order
of magnitude better) than that from traditional power-law
fitting and that from CASI-2D.

2. We applied the diffusion model to predict the LOS mass-
weighted number density of the Taurus B213 filament from
the Herschel-derived column density map. The predicted
result is consistent with the estimation by the density probe
HC3N and by the cylindrical geometry fitting.

3. We applied the diffusion model to predict the LOS mass-
weighted number density of two IRDCs from MIR-
extinction-map-derived column density maps. The pre-
dicted result is consistent with the estimation by non-LTE
radiative transfer modeling. However, application of a
local circle-to-sphere conversion appears to underesti-
mate the density by a factor of about 2, potentially due to
the small-scale dense substructure within the volume.

4. The diffusion model, along with all the other methods of
predicting density, encounters difficulties when there are
differences between the properties of observational data
and those of the training data, such as variations in
physical resolutions or dissimilarities in column density
distributions. Thus, it is important for more precise
predictions for the model to be trained with data that most

accurately represent the observed system that is being
investigated.
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Appendix A
Model Evaluation on Different Simulations

In this appendix, we apply the power-law fitting result, CASI-
2D, and the diffusion model to a new simulation that is
conducted with a different code and with different physical
conditions. We follow the same simulation setup in Xu et al.
(2023). We conduct ideal MHD simulations with ORION2 (Li
et al. 2021) to model turbulent clouds with periodic boundary
conditions and without self-gravity. The simulation box is
5× 5× 5 pc3. The magnetic field is initialized along the z-
direction. The gas is assumed to be an isothermal ideal gas with
an initial temperature of 10 K. The three-dimensional Mach
number is 10.5, which places the simulated cloud on the line
width–size relation, s = R0.721D pc

0.5 km s−1(McKee & Ostri-
ker 2007). The calculations use a base grid of 2563 without
AMR. Simulations are performed with a virial parameter of
a s= =( )R GM5 2vvir

2 . We adopt two different mass-to-flux
ratios μΦ=Mgas/MΦ= 2πG1/2Mgas/(BL

2), μΦ = 1 and 16,
which yield Alfvén mach numbers of 0.87 and 14, respectively.
We show the correlation between the LOS mass-weighted

Figure 10. Relation between the LOS mass-weighted number density and the
column density for different simulations. The lines with error bars represent the
mean and their standard deviation of each column density bin.
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number density and the column density for these turbulent
simulations in Figure 10. We also show the correlation between
the LOS mass-weighted number density and the column
density for all Enzo simulations, i.e., colliding and noncolliding
multiphase GMCs with self-gravity, in Figure 10 for
comparison. The correlation observed in the ORION2 pure
turbulent simulations, which lack self-gravity, differs slightly
from the correlation seen in the Enzo simulations that
incorporate self-gravity and heating/cooling processes. The
range of density variation in the ORION2 simulations is
narrower compared to that in the Enzo simulations. However,
the overall trend of both correlations is in close accordance.

We then apply the same power-law fitting results from
Section 3.1 and two machine-learning approaches to predict the
gas number density from their column density. We summarize our
results in Figure 11. It is worth noting that all the approaches are
derived or trained on the Enzo simulations. This ORION2 turbulent
simulation is completely new to these approaches. One can clearly
observe that all four power-law conversion approaches are
systematically offset from the true value. Similarly, CASI-2D
systematically overestimates the gas number density. On the other
hand, the diffusion model is relatively robust in predicting the gas
number density with only a small offset. In addition, the error
distribution from the diffusion model predictions is more
symmetric compared to the other approaches. This highlights
the capability of the diffusion model in predicting gas number
density on a previously unseen data set. However, this finding
also highlights a potential limitation when applying the diffusion
model to observational data sets. Specifically, if the properties of
the observational data differ significantly from those of the
training data, retraining the model may be necessary to ensure
more accurate predictions.

Appendix B
Model Evaluation on Different Physical Scales

In this appendix, we evaluate the performance of the diffusion
model on observational data at various scales. It is important to
point out that the training data cover a particular range of physical
resolutions, which spans from 0.315 to 0.25 pc pixel−1. For nearby
GMCs, such as Taurus, most column density maps obtained by

infrared telescopes, like Spitzer and Herschel, have a much higher
physical resolution. As a result, to use the diffusion model on such
data, we need to downsample it to a lower resolution that is within
the range covered by our training set. The column density map of
Taurus B213 obtained from Palmeirim et al. (2013) using Herschel
has a high physical resolution of 0.002 pc pixel−1 when adopting a
distance of 140 pc for Taurus, as discussed in Section 3.2.
However, to use this map with our diffusion model, it needs to be
downsampled by a factor of at least 15 to match the physical
resolution range covered by our training data.
Here we assess the performance of the diffusion model on

various physical scales using a subregion in Taurus, as
illustrated in Figure 12. The diffusion model likely under-
estimates the number density by a factor of a few at higher
resolutions that are beyond the scope of our training set. To
obtain a more accurate assessment, we focus on the same
locations observed by Li et al. (2012) and calculate the
average number density in this region across different
physical scales. Figure 13 presents the mean density
prediction for the same region as Li et al. (2012) at different
physical scales. To achieve the highest resolution within the
training set, a minimum downsample factor of 15.4 is
required. When the physical resolution is higher than the
range of our training set, the diffusion model appears to
underestimate the number density by a factor of a few, as
compared to the measurements in Li et al. (2012). However,
when we downsample the column density to a physical
resolution of 0.04 and 0.05 pc pixel−1, which corresponds to
a downsampling factor of 20 and 24, respectively, the model
predictions become relatively stable and consistent with the
measurements. It is worth noting that we are unable to
downsample the Taurus column density map by a larger
factor owing to the restriction imposed by the diffusion
model, which requires an image size of 128× 128.
We proceed to evaluate the performance of the diffusion

model on Cloud C and Cloud H at various resolutions. The
distances to Cloud C and Cloud H are 5 and 2.9 kpc,
respectively, indicating that their physical resolutions are at
the upper limit of the resolutions covered by our training set.
However, it should be noted that the presence of masked
areas in the column density maps of both clouds results in a

Figure 11. Summary of the performance of different approaches to convert the gas column density to number density on ORION2 turbulent simulations.
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substantial decrease in the values of downsampled maps when
padded with zeros. As a result, we only perform a limited
evaluation at a few resolutions as a basic check on the method.

Figures 14 and 15 depict the performance of the diffusion
model on various physical resolutions of Cloud C and Cloud

H. It is evident that the predicted number density reduces by
several factors as we downsample the data. To quantify this
trend accurately, we take Cloud C as an example, and
Figure 16 displays the diffusion model’s prediction on
various physical resolutions at locations examined by

Figure 12. Diffusion model performance on different physical scales on a subregion in Taurus. The top row shows column density maps. The bottom row shows the
number density maps predicted by the diffusion model. The rectangle indicates the location of the observation by Li et al. (2012).

Figure 13. Predictions of the number density for the region examined by Li et al. (2012) at different physical scales. The minimum downsampling factor necessary to
match the highest resolution in the training set is indicated by the vertical dashed line.
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Figure 14. Diffusion model performance on different physical resolutions on Cloud C.

Figure 15. Diffusion model performance on different physical resolutions on Cloud H.
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Entekhabi et al. (2022). The predicted number density
decreases by a factor of two when we downsample the input
column density by a factor of two.
In light of the differences in physical resolution that may

exist between the observational data sets and the training data,
it is important to exercise caution when applying the diffusion
model to such data sets. In such cases, the diffusion model
would need to be retrained with data that are representative of
the relevant physical resolutions before being applied to actual
observational data sets.

Appendix C
CASI-2D Performance on Observational Data

In this appendix, we provide an overview of the performance
of CASI-2D on observational data. Figures 17 and 18 show the
number density predictions of CASI-2D for GMCs. Upon
comparison with the predictions of the diffusion model, it is
evident that the CASI-2D predictions are more blurry, with a
smoother density peak at a lower value.

Figure 16. Comparison between the number density estimates by Entekhabi
et al. (2022) and those by the diffusion model in Cloud C. Squares and triangles
represent different number density estimates in Entekhabi et al. (2022) based on
two different data sets, MIR extinction from Spitzer m and submillimeter
emission from Herschel. The red line indicates the 1–1 line. The blue line
indicates the 2–1 line. Different colors indicate predicted number density at
different physical resolutions.

Figure 17. Number density predicted by CASI-2D on Taurus B213.

Figure 18. Number density predicted by CASI-2D on Cloud C (left) and Cloud H (right).
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