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Summary

In this chapter, we will unite the theory and the practice of occupant-​centric 
design through an analysis of seven unique case study buildings. The case 
studies are diverse in several ways, including geographic location, type, size, 
and project phase. We will offer our key insights drawn from qualitative and 
quantitative analysis in order to support researchers and industry practi-
tioners alike.

11.1 � Introduction

In this chapter, we demonstrate the real-​world application of the occupant-​
centric design methods and principles developed and presented in the previ-
ous chapters of this book. We provide an analysis of seven unique case study 
buildings that demonstrate how occupant-​centric design can assist in devel-
oping better designs that suit occupants’ needs and preferences while meet-
ing clients’ needs and energy targets. The selected case studies demonstrate 
alternative methods and approaches for considering occupant behavior and 
occupant-​related assumptions throughout the building design process. These 
real-​world examples illustrate the strengths and shortcomings of current oc-
cupant modeling approaches and assumptions in the design process. The 
case studies also provide examples of various qualitative and quantitative re-
search approaches to evaluate both technical and nontechnical aspects of oc-
cupant modeling and representation. Our analysis involves simulation, field 
studies, surveys, and interviews with design stakeholders and occupants.

We selected the case studies in this chapter based on the following cri-
teria: (1) authors’ access to information about the cases, (2) breadth of 
design/construction phases represented among the cases, and (3) usability 
of analysis outcomes for advancing occupant modeling approaches dur-
ing building design. The case studies are diverse in terms of project phase, 
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location/climate zone, building type and size, and analysis approach. Col-
lectively, our analysis of the selected case studies covers approximately the 
whole life cycle of a building, including design, construction, and operation 
(see Figures 11.1 and 11.2).

In the Toronto and Budapest case studies (Case Studies 1 and 2), we 
demonstrate alternative methods of representing occupants during design 
(see also Chapter 3). In the Quebec City, Melbourne, Redwood City, Nied-
eranven, and Gothenburg case studies (Case Studies 3–​7), we focus on post-​
occupancy conditions, aiming to evaluate design approaches and provide 
recommendations for occupant-​centric design and operation. The seven 
case studies are summarized in Table 11.1.
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Figure 11.1 � A conceptual diagram illustrating the range of the case studies with 
regards to project phase and spatial scale.
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Figure 11.2 � Geographical distribution of the case studies.
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Table 11.1  Summary of the seven case studies

Case study
Location 
(Köppen climate 
classification)

Building size 
and type

Project phase
Case study 
objectives

Case Study 1:  
Toronto

Toronto, Canada 
(Dfa, humid 
continental)

Mid-​rise 
office 
building

Design •	 Document 
occupant 
modeling 
approaches during 
design

•	 Develop a method 
for handling 
occupant-​related 
uncertainty 
during design

Case Study 2:  
E-​co-​housing

Budapest, 
Hungary (Dfb, 
warm summer 
continental)

Mid-​rise 
multi-​unit 
residential 
building

Design & 
construction

•	 Explore and 
leverage synergies 
between people 
and the built 
environment in 
all dimensions of 
sustainability

•	 Bridge qualitative 
participatory co-​
design methods 
and simulation 
for higher fidelity 
energy models

Case Study 3: 
Cité Verte

Quebec City, 
Canada (Dfb, 
warm summer 
continental)

Mid-​rise 
multi-​unit 
residential 
building

Post-​ 
occupancy 

•	 Evaluate the 
feasibility of low-​
energy buildings

•	 Assess the impact 
of occupants on 
achieving low-​
energy goals

Case Study 4: 
Gillies Hall

Melbourne, 
Australia (Cfb, 
temperate 
oceanic)

Six-​story 
student 
residence

Post-​ 
occupancy

•	 Assess occupants’ 
comfort and well-​
being as well as 
energy saving 
potentials from 
passive house 
strategies when 
coupled with 
performance-​
based modeling

•	 Assess the benefits 
of deploying 
low-​cost sensing 
techniques in 
passive house 
design
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Case study
Location 
(Köppen climate 
classification)

Building size 
and type

Project phase
Case study 
objectives

Case Study 5: 
Stanford 
Redwood 
City

Redwood City,  
USA (Csb,  
dry-​summer 
subtropical/ 
Mediterranean)

Mid-​rise 
office 
building

Post-​ 
occupancy

•	 Optimize 
building layouts 
to maximize 
occupants’ 
productivity and 
collaboration 
while achieving 
energy efficiency

Case Study 6:  
Goblet 
Lavandier & 
Associésa 
headquarter

Niederanven, 
Luxembourg 
(Cfb, temperate 
oceanic climate)

Mid-​rise 
office 
building

Post-​ 
occupancy

•	 Derive occupant-​
centric rules for 
optimal exterior 
shading design

Case Study 7: 
Samhällsby-
ggnad 1

Gothenburg, 
Sweden (Cfb, 
marine west 
coast)

Institutional 
office 
building

Post-​ 
occupancy

•	 Enhance indoor 
environmental 
quality (IEQ) and 
energy savings 
potential based 
on an evaluation 
of occupants’ 
satisfaction in 
energy efficient 
buildings

11.2 � Case Study 1: Toronto, Canada

Tareq Abuimara, William O’Brien, Burak Gunay, Juan Sebastián Carrizo

11.2.1 � Summary

This case study is a mid-​rise office building located in Toronto, Canada. The 
analysis of this case study includes implementing alternative methods for 
occupant considerations during building design (as detailed in Chapter 3). 
The occupant-​centric analysis of this case study building covers the entire 
design phase of the building and aims to document the current practices of 
occupant modeling throughout the simulation-​aided building design pro-
cess and investigate possible improved approaches. The analysis included 
documenting occupant-​related design assumptions and the implications of 
these assumptions on design outcomes.

The analysis was performed using qualitative (workshop and interviews) 
and quantitative (simulation-​based investigation) approaches. The quali-
tative analysis included documenting occupant modeling approaches and 
assumptions through the analysis of design documents and interviewing 

Table 11.1  Continued
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design stakeholders of the case study. The quantitative analysis was a 
simulation-​based investigation to assess occupant assumptions and pro-
pose alternative approaches for modeling occupants and quantifying their 
impact on design decisions. The simulation-​based investigation included 
occupant-​centric parametric analysis, design optimization, and comfort 
analysis.

The findings of the qualitative analysis indicated the absence of a stand-
ardized and consistent occupant assumptions sharing mechanisms among 
design stakeholders. Further, these findings indicated that the adoption of 
an integrated design process (IDP) could have assisted in avoiding discrep-
ancies among design disciplines.

The findings of the quantitative simulation-​based investigation indicated 
that occupant assumptions are influential in terms of selecting optimal en-
ergy conservation measures (ECMs) and determining optimal design solu-
tions. Additionally, the occupant-​centric comfort analysis indicated the 
need to consider comfort at the occupant and building zone level rather 
than at the building level.

Overall, the findings of this case study analysis can contribute to 
occupant-​centric building design by providing insights to building de-
signers on how to handle occupant-​related uncertainty throughout the 
simulation-​aided building design process. Additionally, the findings can 
inform relevant building codes and standards on advancing requirements 
to improve the quality of assumptions and efficiently manage occupant-​
related uncertainty.

11.2.2 � Building Description

The Toronto building is a mid-​rise commercial building located in Liberty 
Village to the west of downtown Toronto, Canada. The building consists 
of four similar office floors, a retail ground floor, and two levels of under-
ground parking. The building has a gross floor area of 7,940 m2 (including 
the underground parking). The building is in ASHRAE climate zone 6A 
(cold-​humid) with overcast cold winters and hot-​humid summers.

The above grade floors were constructed using mass timber and nail lam-
inated timber (NLT) panels, and the main design objective was to create a 
building that is sustainable, aesthetically pleasing, and cost-​effective by re-
turning to the use of heavy timber. Figure 11.3 shows the building shortly af-
ter construction and Table 11.2 summarizes key performance specifications.

11.2.3 � Methodology

In this study, both qualitative and quantitative data collection and analysis 
approaches were used as described in the sections below.
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11.2.3.1 � Qualitative Analysis

The qualitative analysis sought to document occupant assumptions and oc-
cupant modeling approaches throughout the case study building’s design 
process. In brief, the process included semi-​structured interviews about cur-
rent practices with four key design stakeholders: the owner representative, 

Table 11.2  Toronto case study description

1.1.1. Item Description 

Typical office floor area 1,728 m2

HVAC Rooftop package unit with zone level variable air 
volume (VAV) reheat

Hydronic baseboard heating
Cooling coefficient of 

performance (COP)
3.5

Boiler (space heating) Type: Condensing boiler
Fuel: Natural gas
Nominal thermal efficiency = 0.9

Heat recovery Air-​to-​air heat exchanger
Sensible effectiveness at 100% heating /cooling 

airflow = 70%
Sensible effectiveness at 75% heating/cooling 

airflow = 85%
Outdoor air minimum flow 

rate 
0.000435 m3/s.m2

Windows U-​factor = 1.9 W/m2·K; SHGC = 0.33
WWR (overall) = 46.5%
WWR (south) = 85%
WWR (north) = 12%
WWR (east) = 41%
WWR (west) = 41%

Walls U-​value = 0.245 W/m2·K

Figure 11.3 � Toronto case study building.
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the architect, the mechanical engineer, and the energy modeler. First, written 
questionnaires were sent to each stakeholder, with each questionnaire cus-
tomized to the stakeholder’s scope of work and design objectives. Then, ques-
tionnaire responses were analyzed qualitatively, and the findings were used 
as the basis for a set of interview questions. Next, interviews were conducted 
to obtain depth and clarification. Finally, all the questionnaire and interview 
responses were analyzed qualitatively, and conclusions were drawn.

11.2.3.2 � Quantitative Analysis

The quantitative analysis took the form of a simulation-​based investigation 
that included a parametric analysis, optimization study, and comfort study. 
For this purpose, an energy model for a typical office floor of the case study 
building was created using EnergyPlus (see Figure  11.4). Custom scripts 
in MATLAB were used to automate simulations. Each step of analysis is 
described below.

11.2.3.2.1 � OCCUPANT-​CENTRIC PARAMETRIC ANALYSIS

The first step of the simulation-​based investigation was to use a paramet-
ric analysis to evaluate the impact of occupant assumptions on the ranking 

5 zone model

15 zone model

NN

N
N

Figure 11.4 � The EnergyPlus model used for simulation-​based investigation.
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and the saving potential of energy conservation measures (ECMs)/design 
parameters (DPs). The case study model was simulated using a parametric 
analysis and EnergyPlus under 12 occupant scenarios (see Figure 11.5).

In the parametric analysis, 12 ECMs and DPs were considered, as shown 
in Table 11.3. Multiple values for each ECM/DP were used. The simulation 
workflow is shown in Figure 11.6.

11.2.3.2.2 � OCCUPANT-​CENTRIC DESIGN OPTIMIZATION

The second phase of the simulation-​based investigation was an optimiza-
tion study. The objective of the study was to evaluate the impact of occupant 

Occupant scenarios

Schedules
Occupant 
presence

(4 scenarios) 

Occupant density
(2 scenarios)   

Temperature 
setpoints

(2 scenarios)

Plug-in 
equipment

(2 scenarios) 

Window blinds 
use

(2 scenarios)    

Figure 11.5 � Occupant scenarios used in parametric analysis.

Original 
design 

Design 
alternatives

Design 
parameters

Occupant 
scenarios

Rank lists Compare

Figure 11.6 � The parametric analysis workflow.

Table 11.3  �List of design parameters/energy conservation measures used in the 
parametric analysis

Systems-​related parameters
Cooling COP
Water boiler efficiency
Lighting power density (LPD)
Plug-​in equipment loads
Water pumps efficiency
ERV efficiency

Envelope-​related parameters
Window-​to-​wall ratio (WWR)
Window properties (U-​factor & SHGC)
Wall insulation
Roof insulation
Air infiltration
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assumptions on the outcomes of building design optimization. The optimi-
zation study was performed following the three-​step approach, as shown in 
Figure 11.7.

Step 1 was generating occupant scenarios by using multiple occupant pres-
ence scenarios and varying the relationship between occupant presence 
schedules and lighting and equipment schedules. Four different occu-
pant presence schedules were used: default (as per ASHRAE Standard 
90.1), low occupancy (40% occupancy at the highest), morning peak 
(90% morning and 40% in afternoons), and afternoon peak (40% morn-
ing and 90% in afternoons). For each occupancy schedule, four altered 
lighting and equipment schedules were generated. A total of 64 occu-
pant scenarios were created (4 occupancy × 4 lighting × 4 equipment).

Step 2 was to run the optimization using the genetic algorithm (GA) in 
MATLAB. The objective function was set to minimize the HVAC en-
ergy use intensity (kWh/m2). A penalty was applied to the objective 
function for design solutions that have unsatisfactory comfort condi-
tions (i.e., more than 300 unmet hours). Ten different ECMs/DPs were 
considered in the optimization including WWR, window material, and 
exterior shading (overhangs and sidefins).

Finally, Step 3 was training decision trees using MATLAB “fitctree” func-
tion. Decision trees are a useful method to visualize the optimization out-
comes and derive occupant-​centric design parameters selection rules.

11.2.3.2.3 � OCCUPANT COMFORT ANALYSIS

The comfort analysis was focused on investigating the impact of occupants’ 
spatial distributions on comfort and energy performance of the building. To 
this end, the following steps were followed:

1		  The building typical floor model zoning was adjusted to have 15 thermal 
zones instead of five (see Figure 11.8). The intention was to have a more 
realistic zoning strategy that included a variety of zone orientations 

Generate 
occupant 
scenarios 

Run 
optimization 

Derive 
design 

guidelines

Figure 11.7 � The three-​step approach followed in the optimization study.



266  Tareq Abuimara et al.

(south-​facing, north-​facing, east-​facing, west-​facing, core, and corner 
offices). Further, the model HVAC equipment and flow rates (air and 
water) were hard-​sized based on a sizing run using default ASHRAE 
Standard 90.1 values for occupant density and schedules. The equip-
ment hard-​sizing was done to mimic reality, as real buildings’ equip-
ment has preset maximum capacities.

2		  Seventy-​five occupant distribution scenarios (ODSs) were created for 
the use in simulations. An ODS refers to the distribution of building 
occupants across building zones. The same total number of occupants 
was maintained in all the ODSs. The ODSs were generated by sampling 
from uniformly distributed large population using a custom script in 
the programming language R.

3		  The hard-​sized model was simulated in EnergyPlus under the 75 ODSs. 
A MATLAB custom script was used to automate the process.

4		  The simulation was repeated with the demand-​controlled ventilation 
(DCV) to evaluate the impact of using building adaptive technologies 
(e.g., DCV) on comfort and energy performance.

Several performance metrics were evaluated in this analysis. For energy use, 
energy use intensity (EUI) was used, as it is a commonly used metric in the 
architecture, engineering, and construction (AEC) industry. For comfort, 
unmet hours, as defined by ASHRAE Standard 90.1, were used. However, 
a limitation of unmet hours is that it does not consider the number of oc-
cupants who suffer from discomfort. Thus, a new comfort metric was de-
veloped for this study. The new thermal comfort metric is called occupant 
discomfort hours (ODH). ODH indicates the annual share of each occupant 
at a given zone of discomfort hours. Further details about this metric and 
how it is calculated are available in Abuimara et al. (2021).

Zone 7 Zone 8 Zone 9 Zone 10 Zone 11

Zone 6 Zone 15 Zone 14 Zone 13 Zone 12

Zone 5 Zone 4 Zone 3 Zone 2 Zone 1

NORTH

Figure 11.8 � Case study model plan demonstrating thermal zones and their 
orientations.
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11.2.4 � Results and Discussion

11.2.4.1 � Design Process Documentation

The design process documentation was classified and summarized under 
four main groups of findings: (a) type and source of occupant assumptions 
during design, (b) design workflow, (c) communicating occupant-​related as-
sumptions, and (d) challenges and limitations throughout the design pro-
cess. Each group of findings is described in turn below.

11.2.4.1.1 � TYPE AND SOURCE OF OCCUPANT ASSUMPTIONS DURING DESIGN

The Toronto building was designed without a specific target tenant; instead, 
the client had a general vision of the total number of occupants the build-
ing would host. Due to the lack of specific information about occupants, 
the architect sourced occupant assumptions from Ontario Building Code 
(OBC). The OBC occupant density of 20 m2/person was used by the archi-
tect’s in-​house energy modeling using Sefaira software. The mechanical en-
gineer used conservative occupant assumptions for designing and sizing the 
mechanical equipment. It is common practice among HVAC designers to 
size HVAC equipment to supply the highest expected heating and cooling 
loads (Djunaedy et al., 2011).

The energy modeler was somewhat involved early in the design process 
in a design charrette. At this early phase, the energy modeler used the 
ASHRAE Standard 90.1 values for occupant density, lighting power density 
(LPD), and equipment power density (EPD) for creating an energy model 
of the building. Once the design development phase started and the energy 
modeler was reengaged, several of the original assumptions had to be re-
fined to align with the current design (e.g., the LPD was adjusted based on 
the selected lighting fixtures, from 8 to 3.9 W/m2).

Overall, the design team’s occupant assumptions were sourced from codes 
and standards, including, for example, OBC, NECB, and ASHRAE Stand-
ard 90.1. Additionally, some assumptions (e.g., the mechanical engineer’s) 
were based on experience.

Sourcing occupant assumptions from codes and standards or from expe-
rience can limit or narrow occupant representation during building design. 
In particular, occupant assumptions in codes and standards (densities and 
schedules) tend to be conservative and outdated, as many were developed in 
1980s and based on a small set of data (Abushakra et al., 2004).

11.2.4.1.2 � DESIGN WORKFLOW

Initially, this building’s design process was intended to be an integrated de-
sign process, as all design stakeholders participated in a design charrette 
early in the design process. However, as the design progressed, the pro-
cess became characterized by a traditional design process, where different 
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design stakeholders performed their tasks independently at different times 
throughout the process. For example, although the energy modeler was in-
volved in the early design charrette, they were not involved again until late 
in the design development phase when most of the critical design decisions 
(e.g., type of HVAC system) had already been made. This intermittent or 
delayed involvement of energy modelers is typically driven by the client’s un-
willingness and/or misunderstanding of the role of energy modeling during 
the design process (Oliveira and Marco, 2018).

Additionally, the energy modeling scope was not integrated into other 
scopes, such as the mechanical engineering scope (e.g., HVAC selection and 
sizing). The HVAC system type was selected and designed by the mechan-
ical engineer using their conservative occupant assumptions, and then the 
equipment sizing was handed to the energy modeler who performed energy 
modeling using their own occupant assumptions. This inconsistency of oc-
cupant assumptions may have led to suboptimal design decisions and/or 
missed design opportunities.

11.2.4.1.3 � COMMUNICATING OCCUPANT-​RELATED ASSUMPTIONS

The Toronto building’s design team members reported that they communi-
cated through regular phone calls, emails, and bi-​weekly meetings. Drawings, 
reports, and computer models were shared. No specific information-​sharing 
platform or mechanism was reported.

Although the design team members reported that they communicated 
regularly, a deeper investigation of the design documents and models (along 
with information obtained during the interviews) revealed discrepancies in 
some of the basic occupant assumptions made and used by different design 
stakeholders, as shown in Figure 11.9.
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The lack of information-​sharing mechanisms may have led to these discrep-
ancies in assumptions and constitutes a fundamental issue in the design process. 
Effective communication throughout the design process is widely recognized as 
fundamental for successful building design (Arditi and Gunaydin, 2002).

11.2.4.1.4 � CHALLENGES AND LIMITATIONS THROUGHOUT THE DESIGN 

PROCESS

One of the major challenges that the Toronto building designers faced was 
time, including the time each team member was involved in the design pro-
cess and the time assigned to complete the design task. The former is typi-
cally out of a design team’s control, as it is determined by the project owner. 
The latter is a common practice in the AEC industry, where a specific time-
line is assigned to design tasks. For example, in the case of the Toronto 
building, the modeler was hired to perform the main modeling scope late in 
the process when they had limited impact on design outcomes because all 
critical design decisions had already been made and approved by the owner.

Another major challenge the Toronto building design team faced was the 
cost limitation of the project (capital cost and added engineering costs). For 
example, when asked why adaptive ventilation technologies were not consid-
ered, the mechanical engineer reported that cost was the main driver for select-
ing HVAC and any additional technologies were not considered by the owner.

11.2.4.2 � Occupant-​Centric Parametric Analysis Results

The first phase of the quantitative analysis was an occupant-​centric paramet-
ric analysis. Figure 11.10 presents the results of the parametric analysis under 
different occupant scenarios. Overall, the results presented in Figure 11.10 
indicated that occupant scenarios affect the energy-​saving potential of 
ECMs/DPs. Some ECMs/DPs such as implementing DCV were sensitive 
to occupant scenarios and demonstrated drastic changes in energy savings 
potential (1%–​12%). However, ECMs/DPs such as increasing wall and roof 
thermal resistance (i.e., R-​value) demonstrated robustness to changing occu-
pant scenarios, as the energy saving potential was only moderately affected 
(6%–​8%). The energy-​savings potential of adjusting the WWR also demon-
strated moderate sensitivity to changing occupant scenarios (2%–​6%).

The results shown in Figure 11.10 also demonstrated the insensitivity of 
some ECMs/DPs, such as cooling COP, to occupant presence. According 
to the results, the ECMs/DPs saving potential was highly sensitive to as-
sumptions about temperature setpoints. Further, the results indicated the 
impact of plug-​in equipment assumptions on the energy-​saving potential of 
different ECMs/DPs. These variable sensitivities of ECMs/DPs to occupant 
scenarios point to the importance of occupant assumptions during building 
design. In other words, variable sensitivities to occupant scenarios affect 
design decisions of selecting ECMs/DPs.
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Overall, the parametric analysis results highlight the impact that occu-
pant assumptions have on the savings and ranking of ECMs/DPs. Likewise, 
the results emphasize the importance of accurately considering occupant 
assumptions during the building design process and support the use of more 
occupant-​centric parametric analysis when selecting ECMs/DPs.

11.2.4.3 � Occupant-​Centric Design Optimization Results

The second step of the quantitative analysis was occupant-​centric design 
optimization. The design optimization was performed under 64 occupant 
scenarios. Figure 11.11 presents the results of the 64 optimization runs where 
GA was used to search for optimal design solutions. Overall, Figure 11.11 
demonstrates that occupant scenarios had a substantial impact on the out-
comes of the 64 optimization runs. The results also indicated that even 
with the same occupancy scenario, varying lighting and plug-​in equipment 
schedules can impact the HVAC energy use intensity significantly and lead 
to different optimal design solutions. The box plots in Figure  11.11 show 
that the median of the cost function fluctuated drastically with different 
occupant scenarios. Figure 11.11 also indicates that there were several out-
lier solutions outside the interquartile but no outliers on the lower side of 
the population, which means that there were many poor design solutions 
but few optimal and semi-​optimal solutions. This result offers the insight 
to building designers that considering families of optimal and near-​optimal 
solutions offers flexibility in choosing ECMs/DPs that better suit each pro-
ject constraint (e.g., budget, time).
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Schedules * (1.2) 6% 5% 3% 2% 2% 1% 4% 3% 3% 3% 2% 1% 2% 0% 1% 1% 0% 3% 1% 4%

Setpoints [clg 26.7, 22℃],[htg 15.6,22℃] 7% 5% 3% 2% 2% 1% 5% 4% 4% 4% 2% 1% 2% 0% 1% 1% 0% 3% 1% 5%

Setpoints [Always 22℃] 6% 5% 3% 2% 2% 1% 5% 3% 4% 5% 3% 1% 3% 0% 1% 1% 0% 3% 1% 3%

50% of People  density [40 m2/person] 8% 7% 4% 3% 2% 1% 5% 4% 4% 4% 3% 1% 2% 0% 1% 2% 0% 3% 1% 1%

150% of People  density [13.3 6% 5% 3% 2% 1% 1% 4% 4% 3% 3% 2% 1% 2% 0% 1% 1% 0% 3% 1% 12%

Original design [Blinds always on] 7% 5% 3% 2% 2% 1% 5% 1% 5% 6% 1% 2% 2% 0% 1% 1% 1% 3% 1% 7%

Blinds triggered by solar radiation 7% 6% 3% 2% 2% 1% 5% 2% 5% 5% 3% 2% 2% 0% 1% 1% 1% 3% 1% 6%

75% of Plug-in load [7.4 W/m2] 8% 6% 3% 3% 2% 1% 5% 5% 4% 3% 2% 1% 2% 0% 1% 1% 0% 3% 1% 6%

150% of Plug-in load [14.8 W/m2] 5% 5% 3% 2% 1% 1% 4% 3% 3% 3% 2% 1% 2% 0% 1% 1% 0% 3% 1% 5%
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Figure 11.10 � Design parameters’ ranking and energy use savings under multiple 
occupant scenarios.
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Decision trees were used to better understand and visualize the final re-
sults of the optimization. Figures 11.12 and 11.13 are examples of the decision 
trees that were trained using the 64 optimization runs results. Figure 11.12 
represents a case were the DP (i.e., size of window sidefin shading on west-​
facing windows) was highly sensitive to occupant assumptions.
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Figure 11.11 � Optimization results for the 64 different occupant scenarios.
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Figure 11.12 � Example classification tree demonstrating sensitivity to occupant 
assumptions.
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Figure 11.13 demonstrates an example of a DP (i.e., window U-​factor and 
SHGC) that is robust to occupant scenarios. Decision trees are very use-
ful in occupant-​centric design optimization, as they can assist designers in 
classifying and grouping ECMs/DPs based on their sensitivity to occupant 
scenarios.

11.2.4.4 � Occupant-​Centric Comfort Analysis Results

The third phase of the quantitative analysis was evaluating the impact of 
occupants’ distributions scenarios (ODS) on comfort and energy perfor-
mance. The case study building was simulated under 75 ODSs.

Overall, the results indicated that occupants’ spatial distributions had a 
high impact on comfort and a moderate impact on energy use. Figure 11.14 
demonstrates the range of EUI reported from the 75 simulations. It is evident 

U = 1.83 W/m2·K
SHGC = 0.493

West windows assemblies

Figure 11.13 � Example classification tree demonstrating robust design parameter to 
occupant assumptions.

95 100 105 110

Energy use intensity (kWh/m2)

EUI

Figure 11.14 � EUI of the 75 simulations.
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that ODSs were modestly influential on energy use, as EUI experienced 
changes in the range of 5–​10 kWh/m2/yr. The hard-​sized HVAC equipment 
and flow rates likely contributed to limiting the changes in EUI.

On another front, Figure 11.15 presents the range of the unmet hours as 
per ASHRAE Standard 90.1 for the 75 simulation runs. The ODSs had a 
substantial impact on the number of unmet hours (i.e., thermal comfort). 
The unmet hours ranged from 150 unmet hours with the standard code 
ODS (i.e., homogeneous occupants’ distribution across building zones) to 
about 3,000 unmet hours with some extreme ODSs where some zones were 
overpopulated.

To evaluate comfort at zone and occupant level, overheating and over-
cooling ODH were reported. Figure 11.16 presents the overheating ODH. It 
is clear from Figure 11.16 that different zones had different values of ODH. 
Further, the zones that were south-​ and west-​facing and core zones (zones 
1–​5 and zones 13–​15; see Figure 11.16) experienced a wider range of ODH. 
South-​facing zones had a higher WWR (85%) and were subject to longer 
periods of direct solar gains compared to the east-​ and north-​facing zones. 
The high WWR made south-​facing zones more likely to experience over-
heating, especially with the increased internal gains from occupants. Core 
zones are also generally known to experience overheating, as they have min-
imal heat exchange with surrounding zones and the effect of infiltration is 
negligible. In the Toronto building, the wide range of ODH in south-​facing, 
west-​facing, and core zones indicates sensitivity to occupant distributions, 
where the higher the occupant density, the more discomfort levels will be in 
a given zone.

Figure 11.17 demonstrates the reported overcooling hours for the different 
building zones. Generally, overcooling ODH was not reported to be sub-
stantially sensitive to ODSs, as the highest overcooling ODH was observed 

Unmet hours as per ASHRAE Standard 90.1

0 500 1000 1500 2000 2500 3000

Figure 11.15 � Unmet hours as per ASHRAE Standard 90.1  under multiple occupant 
distribution scenarios.
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in core zones 13, 14, and 15. Upon further investigation, these core zones 
were found to be under-​occupied (only one or two occupants) and sur-
rounded by zones that were also under-​occupied.

The simulations under the 75 ODSs were repeated with DCV enabled; 
then, the results were compared to the previous run results. Figure  11.18 
presents the EUI results for both simulations under the 75 ODSs with and 

Figure 11.17 � Overcooling occupant discomfort hours (ODH) (Zones 13–​15 are core 
zones).

Figure 11.16 � Overheating occupant discomfort hours (ODH) (Zones 13–​15 are core 
zones).
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without DCV. Incorporating DCV was beneficial in terms of saving energy; 
however, it demonstrated a similar range of sensitivity to ODSs.

Figure 11.19 demonstrates a comparison between the overcooling ODH 
with and without DCV. The results indicated that deploying DCV was bene-
ficial in reducing overcooling ODH by about 50%. Using DCV also reduced 
the unnecessary ventilation of under/unoccupied zones.

11.2.5 � Concluding Remarks

To summarize, this occupant-​centric documentation and analysis of the 
Toronto case study building design process included: (1) interviews with four 
design stakeholders (owner, architect, mechanical engineer, and energy mod-
eler) and (2) a simulation-​based investigation, including an occupant-​centric 

90 95 100 105 110

With DCV

Without DCV

Energy use intensity (kWh/m2)

Figure 11.18 � EUI with and without demand-​controlled ventilation (DCV) under 
the 75 ODSs.
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Figure 11.19 � Overcooling ODH with and without DCV (Zones 13–​15 are core zones).
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parametric analysis, an occupant-​centric optimization, and a comfort study 
that analyzed the impact of occupants’ spatial distributions across the build-
ing on comfort and energy performance.

The findings of the building design process documentation (via inter-
views) indicated that occupant-​related assumptions were not a primary 
design input that influenced design outcomes. The design team typically 
sourced occupant assumptions from codes and standards and from their 
experience. Additionally, their design practice lacked an effective commu-
nication mechanism, which may have been responsible for discrepancies be-
tween occupant-​related assumptions.

The simulation-​based investigation indicated that occupant assumptions 
can be critical for selecting ECMs/DPs as well as influential on design out-
comes (i.e., different occupant assumptions can lead to different optimal 
solutions). An evaluation of the impact of ODSs on building performance 
revealed that ODSs can yield different comfort and energy performance. 
Overall, the analysis indicated that in order to achieve more accurate de-
sign predictions and reach optimal design solutions, occupants and occu-
pant assumptions should be given more attention during the design process 
in terms of consistency and accuracy of assumptions. In addition, designs 
should be evaluated using alternative occupant scenarios to predict building 
performance and inform design decisions.

11.3 � Case Study 2: Budapest, Hungary

Attila Kopányi, Viktor Bukovszki, András Reith

11.3.1 � Summary

An apartment building with 27 units, a community hall, and a shared laun-
dry room will be constructed in downtown Budapest, Hungary, as part of 
the E-​co-​housing project. This case study demonstrates a method to create 
occupancy schedules based on use-​pattern extraction through participatory 
design (also referred to as co-​design), which refers to making design deci-
sions through a problem-​oriented mutual learning process involving occu-
pants and architects. The two main research questions were therefore as 
follows: (1) How can a participatory design methodology be integrated into 
the building energy modeling workflow? (2) Does integrating participatory 
design result in significant differences in energy demand outputs compared 
to standard modeling workflows?

To assess the possibility of acquiring additional information regarding 
occupancy behavior from the participatory design process, occupancy 
schedules for the building energy simulations were created based on focus 
group interviews. The energy modeling outcomes using these co-​design 
schedules were compared to those applying schedules from national guide-
lines. A difference of over 10% heating energy use intensity (EUI) was found 
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in the apartments, and a difference of between 46% and 86% in heating EUI 
was found in the community hall. This difference is achieved through the 
differentiation between the use of living and common areas and between 
active and passive occupancy.

11.3.2 � Building Description

E-​co-​housing is an experimental building for a novel social housing policy 
spearheaded by the 14th district of Budapest, developed as part of a UIA 
(Urban Innovative Actions) research project by the same name. The main 
goals of the project are to provide methods and evidence of just, sustainable 
transition in housing and to inform policymakers of how a holistic approach 
to sustainable housing development offers a financially viable, environmen-
tally friendly, and socially sensitive alternative to alleviate housing poverty. 
As part of the project, an apartment building with 27 units and two com-
mon areas (i.e., community hall and laundry room), with a total floor area of 
1,950 m2 will be constructed in downtown Budapest, Hungary by 2022 (see 
Figures 11.20 and 11.21). Hungary is in a warm summer continental climate 
zone, and the building itself will be in a dense urban area characterized by pe-
rimeter blocks with attached buildings. The building has four stories, divided 
into two detached tracts connected by a network of suspended corridors. This 
arrangement separates an inner courtyard and a larger backyard from the 
street. The estate is legally owned by the municipality, with the apartments 
rented out at a subsidized rate to residents who live in housing poverty.

The E-​co-​housing project follows a combination of the co-​housing model, 
zero-​energy building principles, and continuous occupant engagement with 

Figure 11.20  �3D model of E-​co-​housing.
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the objective of minimizing operational expenditures to achieve a viable 
business model for affordable housing. In practice, this model entails a 
wide range of shared facilities, a strong community development program, 
collaborative facility management, and predictable and minimized energy 
demand and load curves. To that end, an initial energy simulation con-
ducted during the design phase by the design team predicted an EUI of 
54.7 kWh/m2, while the heating and cooling EUI were 6.9 and 10.6 kWh/m2, 
respectively. This simulation was based on standard Hungarian engineering 
practice, which uses standard occupancy data from conventional buildings. 
However, relying on standard data neglects two occupant behavior-​centric 
challenges:

1		  a demographically varied occupant pool of people living in housing 
poverty, and

2		  a range of unconventionally used rooms and facilities.

The first challenge stems from the building project’s goal to create a sup-
port network of occupants built on a synergistic occupant pool. This pool 
includes single, elderly, disabled, family, student, and social worker tenants. 
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The heterogeneity of expected occupants means that there is a challenge in 
accurately estimating when and how different apartments and shared facil-
ities will be used, which in turn decreases confidence in projections for en-
ergy demand and load curves. This effect is critical since a core tenet of the 
business model is to have a reliable and predictable reduction of operational 
expenditures.

The second challenge is that the co-​housing model translates to shared 
facilities with unconventional occupancy patterns. For example, the project 
includes a 107 m2 community hall, and a 20 m2 shared laundry room. The 
energy demand of these spaces is not insignificant, and their use will highly 
depend on the simultaneity of diverse occupant motivations, which adds an 
extra layer of uncertainty to predicting building operation.

In response to these two challenges, a co-​design process involving oc-
cupants in the building’s architectural design was conducted. This process 
provided an opportunity to access specific occupancy data, which can be 
used to simulate shared facilities and account for occupant heterogeneity.

The aim of the present case study is to showcase how these challenges/
opportunities were addressed during the design phase of the project—​in 
particular, how co-​design was leveraged to navigate the complexities related 
to occupant behavior.

11.3.3 � Methodology

This case study methodology followed an alteration of the standard simula-
tion approach to include participatory or co-​design (see Figure 11.22). The 
role of participatory design in this approach was to produce simulation-​
ready occupancy schedules, thus adding new data-​collection and new 
data-​preprocessing steps. The design steps were as follows: (1) defined and 
organized focus groups representative of potential building occupants, (2) 
interviewed focus group members during a design workshop to understand 
their daily routines, (3) aggregated daily routines for overall occupancy 
schedules, and (4) translated the schedules using occupant metadata. This 
exercise deviated from standard occupancy schedules by providing meta-
data to differentiate occupancy patterns of different social groups and by 
detailing activities that constituted occupancy. The research questions were 
addressed by using the new occupancy schedules together with a selection 
of standard schedules in the same building energy modeling (BEM) engine 
and comparing the outputs.

11.3.3.1 � Participatory Design

The participatory design process consisted of three design workshops with a 
focus group (n=16). To approximate the future building occupants as much 
as possible, the municipality recruited focus group participants from among 
a pool of residents who were already tenants in municipal social housing. 
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The residents were joined by a group of social workers, co-​housing experts, 
and architects from the E-​co-​housing consortium. The former “target” 
group (nt=8) and the latter “expert” group (ne=8) together formed the final 
focus group. To fulfill the project goals of synergistic housing community 
composition, this focus group was selected to provide a mix of age, sex, fam-
ily status (single, couple, etc.), education level, and employment status were 
selected (see Table 11.4). The age distribution among the focus group par-
ticipants represented the national average, and the sex balance was roughly 
equal (male = 7, female = 9). Compared to the national average, family and 
employment status were more evenly distributed, while the education level 
of the target group was lower. During the workshops, participants used 
pseudonyms (used throughout this case study).

The information relevant to occupancy patterns was collected in the sec-
ond workshop, where the focus group was partially present (nt = 8, 100%; ne 
= 3, 38%). This workshop focused on individual habits and behaviors and, 
to a lesser extent, specific design solutions. Each respondent drew up their 
individual daily routine chart for typical weekdays at an hourly resolution 
(see Figure 11.23), differentiating between four activity categories: sleeping, 
work/activities outside the house, at-​home leisure, and at-​home chores. This 

Social groups

Activity types

Focus group definition

Daily routine interviews

Occupancy schedules

Differentiated occupancy
schedules

Occupancy aggregation

Occupancy feature
engineering

Standard occupancy
schedules

Adjustments to occupancy 
schedules

Technical data (location, construction, geometry, HVAC)

Run simulations

Compare results

Participatory design1

Data preprocessing2

Data analysis3

Standard BEM workflow New, case study-related steps Information retreived from case study

Figure 11.22 � Case study design in the context of the standard BEM pipeline.
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level of differentiation and resolution was necessary for architectural design 
and served as a pre-​processing logic for occupancy schedules.

The occupancy schedules were generated through the aggregation of daily 
routine schedules. The aggregation method in each case involved taking the 
mean of responses. Two types of occupancy schedules were created: (1) a 
general schedule and (2) an active vs. passive occupancy schedule. For the 
general schedule, all activity types except for work were included equally. 
Separate active and passive occupancy schedules were generated by consid-
ering only chores and leisure activities for the former and sleeping for the 
latter. In the context of this case study, active and passive occupancy were 
differentiated in terms of occupant heat load.

11.3.3.2 � Building Energy Modeling

To evaluate the impact of using the occupancy schedule created based on the 
co-​design methodology, a BEM was created using EnergyPlus 9.2 and simulated 
applying different occupancy schedules. Along with the occupancy schedule 

Chores, errands, housekeeping

Leisure, freetime

Work, commuting to work

Sleeping

Figure 11.23 � Registering of daily routines during participatory design workshop 
#2.  Participants’ activities were color-​coded per hour (scale on top) 
as a Gantt chart.

Table 11.4  �Composition of the focus group, row-​by-​row for: age, sex, family status, 
education, employment status

Between 18 and 30 Between 30 and 65 Older than 65

Female Male
Single Couple Single 

parent
Family with fewer 

than 3 children
Family with 3 or 

more children 
Elementary Vocational Other secondary Post-​secondary education
Unemployed Seasonal Part-​time Full-​time Self-​employed Retired

Darker colors indicate a larger cohort population, where each row shows proportions 
independently.
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created using co-​design approaches, three other schedules from national guide-
lines and standards were used, as described in the paragraphs that follow.

Based on a review of the available standards and guidelines of European 
countries, the authors only found hourly occupancy schedules for residen-
tial buildings in the French Th-​BCE 2012 (2012) and the UK NCM Database 
(2018); therefore, only these were used in the study as European schedules. 
The residential occupancy schedule provided by ASHRAE Standard 90.1 
(2019) was applied as well, as it is widely recognized and used in the energy 
modeling industry worldwide.

The residential occupancy profiles provided by these three standards 
are shown in Figure 11.24. Notably, ASHRAE uses the same schedule for 
all days, and in the Th-​BCE 2012 and the UK NCM guidelines, the week-
end occupant schedule is 100% throughout the whole period. The Th-​BCE 
2012 standard weekday values are averages, as it has a different profile for 
Wednesdays. The UK standard provides occupancy schedules on room 
level. Since in the created BEM each apartment represented one thermal 
zone, the room-​level schedules had to be aggregated into an apartment-​level 
profile. This aggregation was accomplished by assuming the number of oc-
cupants for each area based on its function.

In the BEM, 3.88 W/m2 equipment power density was used with an average 
66% diversity, while the lighting power density was assumed to be 2 W/m2.

11.3.3.3 � Occupant Heat Load Profile of the Living Areas

Using the schedules from the co-​design process, it was possible to differentiate 
between active and passive occupancy when creating the hourly occupancy 
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Figure 11.24 � Residential occupancy schedules based on different standards.
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heat load profile for the living areas (i.e., private apartments). This profile was 
calculated as a weighted average of the active and passive heat loads, where 
the weighting factors were the probabilities of the active and passive occu-
pancy based on the focus group interview results (see Equation 11.1).

q p q p qa a p p= ⋅ + ⋅Co-design 	 (11.1)

where:
Co-designq : occupant heat load in the living areas, W/person

pa: probability of active occupancy
qa: heat load of active occupant, W/person
pp: probability of passive occupancy
qp: heat load of passive occupant, W/person

When calculating the heat load used in the co-​design schedule, a 72 W/
person heat load was used for each passive occupant, corresponding to the 
heat load of an average person while sleeping, as per the ASHRAE 55-​2010. 
When considering active occupancy, 100 W/person was assumed, corre-
sponding to the metabolic rate of a seated, relaxed person (International 
Organization for Standardization, 2006).

When determining the heat load profile based on the Th-​BCE 2012, UK 
NCM, and ASHRAE occupancy schedules, no differentiation was possible 
regarding active and passive occupancy; therefore, the schedule value was 
always multiplied by 100 W/person, including during the nighttime.

11.3.3.4 � Occupant Schedule and Heat Load Profile of the Common 
Areas

Since participants were not asked about their weekend habits during the co-​
design focus group workshops, information about weekend occupancy was 
not available. Therefore, in the co-​design schedules for the living areas (i.e., 
private apartments) and common areas (i.e., community hall and laundry 
room), the same weekend occupancy was used (as in the case of the Th-​BCE 
2012 and UK NCM standards, i.e., a constant value of 100%).

The co-​design schedule of the common areas was created using assump-
tions regarding the probability that an occupant will use the common rooms 
for either chores/work or leisure. The assumed probability values are sum-
marized in Table 11.5. The overall probability (at each hour) of the common 
area usage was then determined as the average of the probability values of 
the respondents. The occupancy ratio values were then determined propor-
tionately to the probability values, with 100% occupancy assigned to the 
highest probability value.

In case of the Th-​BCE 2012 and UK NCM standards, no specific guide-
lines were given for the occupancy of common areas; therefore, the same 
schedules were used for the living areas. The ASHRAE standard provided 
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the same occupancy profile for common areas in residential buildings as for 
the living areas. When determining the occupant heat load based on the 
schedules for the common areas, the 100 W/person metabolic rate used in all 
standards was used for co-​design calculations.

11.3.4 � Results

The E-​co-​housing case study results are presented below as follows: first, 
the daily routine charts drawn at the design workshop #2; then, the general, 
active-​passive, and shared facility occupancy schedules; finally, a compari-
son of the simulation outcomes following the three selected standards.

11.3.4.1 � Co-​Design Daily Routines

Daily routines were broken down by activity type, as shown in Figure 11.25. 
The average times for key activities included waking up at 5h43; leaving 
the house at 8h53; arriving home at 18h20; and going to sleep at 22h38. 
Notably, 4 out of 11 respondents spent all their morning hours at home, 
and two stayed at home all day. These respondents explained their sporadic 
occupancy patterns mostly by their employment status. For instance, four 
respondents were self-​employed, unemployed, seasonally employed, and a 
pensioner. Also, many respondents reported temporary, short-​term, and 

start hr 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

András 1 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 4 4 2 1 1

Gyuri 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 1 1 1

Valcsi 1 1 1 1 1 1 4 4 2 2 2 2 2 2 2 2 3 3 3 3 3 3 1 1

Éva 1 1 1 1 1 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 2 1

Anna 1 1 1 1 4 4 2 3 3 3 3 3 3 3 3 3 3 3 3 4 2 2 1 1

Andrea 1 1 1 1 4 4 4 3 3 3 3 3 3 3 3 4 4 4 4 2 2 2 2 1

Margit 1 1 1 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 1

Józsi bácsi 1 1 1 1 1 4 4 4 2 2 2 4 4 4 4 4 4 4 4 4 2 2 2 1

Izsák 2 1 1 1 1 1 1 4 3 3 3 3 3 3 3 3 3 3 3 3 4 4 2 2

Beni 1 1 1 1 1 1 1 1 1 1 2 4 4 3 3 3 3 2 2 2 2 2 2 2

Zsolt 1 1 1 1 1 1 4 4 3 3 3 3 3 3 3 3 3 4 4 4 4 1 1 1

Figure 11.25 � Daily routine charts. Activities were coded as 1=sleeping, 2=at-​home 
leisure 3=away, 4=at-​home chores.

Table 11.5  Assumed probability values for the occupancy of the common areas

Community hall Laundry room

Probability of using the area for chores 
or work

10% 10%

Probability of using the area for leisure 50% 50%
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volatile employment conditions, overtime working, multiple workplaces, 
and seasonal jobs. On average, respondents spent seven hours sleeping, 
roughly eight hours out of the house, around 5.33 hours spending free time 
at home, and the remaining 3.5 hours doing chores. Regarding differences in 
sex, female respondents slept over 1.5 hours less than male respondents, but 
almost two hours more being active at home than male respondents. Differ-
ences in age and family status yielded no discernible patterns in occupancy.

11.3.4.2 � Co-​Design Occupancy Schedules

Overall occupancy of the apartment units (Figure 11.26) dropped from 100% 
to around 40% between 4h00 and 8h00 and rose to 100% between 16h00 and 
22h00. The schedules plateaued in the morning hours until noon, with some 
movement in the afternoon.

However, not all occupancies were the same from an energy perspective. 
The active and passive occupancies were equal at around 5h00 and 22h00, 
respectively. Between these two points, more people were awake than sleep-
ing. Sleep times varied from 20h00 to midnight, and wake times ranged 
between 3h00 and 10h00. This means that there was a passive occupancy 
component in the schedule for about 58% of the day. Likewise, active oc-
cupancy clearly showed a morning and evening peak at 6h00 and 19h00, 
respectively. In between those times, most but not all occupancy was active.

Time spent on active, at-​home daily activities in the common areas took 
away from time spent on the same activities in private apartments. This 
pattern was shown by a truncated inverted trajectory of common hall occu-
pancy versus apartment occupancy (see Figure 11.27). As the share of pas-
sive occupancy in overall occupancy increased, people spent more time in 
their apartments than in the community hall. The laundry room occupancy 
is flatter, with minor peaks at 9h00 and 21h00, compared to the plateau 

Figure 11.26 � Daily occupancy by the level of activity. All occupancy is the sum of 
active and passive occupancies.
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between 8h00 and 16h00 for the community hall. This flattening is due to 
the smaller overall assumed coefficients, and the peaks can be explained by 
a higher prevalence of chores (in the case of the laundry room).

11.3.4.3 � Occupant Heat Load Profiles

The daily occupant heat load profiles based on the analyzed standards and 
the co-​design workshop results are summarized in Figure 11.28. Due to the 
application of a lower heat load for occupants during night hours, the co-​
design heat load profile shows generally lower values during this time. The 
root mean squared error (RMSE) between the co-​design occupant weekday 
heat load profile and the other profiles for the living areas is summarized in 
Table 11.6. The heat load profile based on the ASHRAE occupant schedule 
shows the highest similarity to the co-​design profile.

In the case of the common areas, the occupant heat load profiles showed 
significant differences. The co-​design heat load profiles of the community 
hall and the laundry room showed higher values during daytime, which re-
flects the assumption that occupants are more likely to use these areas dur-
ing this period.

11.3.4.4 � Impact on Energy Modeling Outputs

The heating EUI, cooling EUI, and total EUI of the living areas modeled 
using the co-​design occupancy schedule were 6.0, 12.4, and 66.1 kWh/m2, 
respectively. The comparison of these values with the outcomes of apply-
ing the other analyzed occupancy schedules is shown in Figure 11.29. The 
largest deviation can be seen in the heating EUI, followed by the cooling 
EUI, while the total EUI shows a very small difference, <1%. The heating 

Figure 11.27 � Daily occupancy in private apartments vs. common areas (community 
hall and laundry room).
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consumption was predicted to be lower and the cooling consumption higher 
based on the Th-​BCE 2012 and UK NCM standards; in case of ASHRAE, 
the results were the opposite.

In the community hall, when considering the co-​design schedule, the 
cooling EUI was 119.5 kWh/m2, the heating EUI was very low (only 0.42 
kWh/m2), and the total EUI was 125.7 kWh/m2. The comparison between 
the heating, cooling, and total EUI applying different schedules is shown in 
Figure 11.30. All energy results were predicted to be lower in the Th-​BCE 
2012, UK NCM, and ASHRAE cases.

Figure 11.31 depicts the differences in the heating and total EUI of the 
laundry room using different occupancy schedules (no cooling system was 
designed for the laundry room). Figure 11.31 shows a similar pattern, with 
larger differences regarding the heating EUI. Both the heating and total 
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Figure 11.28 � Occupant heat load profiles used in the analysis. Different profiles 
were created for the living areas, the community hall, and the laun-
dry room in the co-​design methodology; for the other schedules, the 
same profile was used in every zone. The weekend heat profile was a 
constant 100 W/person in the co-​design, Th-​BCE 2012, and UK NCM 
cases; for ASHRAE, the same heat profile was applied for each day.

Table 11.6  �RMSE between the co-​design weekday heat load profile and the other 
analyzed occupant load profiles of the living areas

Th-​BCE 2012 UK NCM ASHRAE

RMSE, W/person 31.7 33.6 13.2
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Figure 11.30 � Heating, cooling, and total EUI of the community hall modeled with 
different occupancy schedules.
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Figure 11.31 � Heating and total EUIs of the laundry room modeled with different 
occupancy schedules.
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Figure 11.29 � Heating, cooling, and total EUI of the living areas modeled with dif-
ferent occupancy schedules. The reference points are the results based 
on co-​design schedule.
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EUI were predicted to be lower based on the Th-​BCE 2012 and UK NCM 
standards; in case of ASHRAE, the results were the opposite.

11.3.5 � Discussion

In the living areas, the difference in the heating and cooling EUI can be at-
tributed to the disparity in the average occupant heat loads (see Figure 11.32). 
When applying the Th-​BCE 2012 and UK NCM standards, the average heat 
load was slightly higher; yet, when applying the ASHRAE standard, it was 
lower. This discrepancy could be due to the heating EUI being lower and the 
cooling EUI higher in the case of the Th-​BCE 2012 and UK NCM stand-
ards, while the opposite was true for the ASHRAE standard. In the living 
areas, the heating and cooling EUIs represented only a small part of the to-
tal EUI. The large differences in the heating and cooling EUIs compared to 
the total EUI might be explained by the occupant heat load, which directly 
affects the heating and cooling demand.

In the community hall, the cooling constituted the largest share of the 
total demand, hence the difference in the total demand; the cooling demand 
showed a similar pattern. The heating consumption was very low in all 
cases, which could have caused larger differences.

The difference in the cooling EUI of the community hall when applying 
different schedules can be explained by the variation in the daily profile of 
the occupant heat loads. As shown in Figure 11.33, the co-​design-​based oc-
cupant heat load increased during the daytime and significantly contributes 
to the rise in cooling demand in the community hall on a typical summer 
day. Yet, the occupant load profile based on the ASHRAE standard showed 
a decrease during the day, causing the cooling EUI to remain at almost a 
constant value throughout the day.

Moreover, in the laundry room, only the heating and total energy 
EUIs could be analyzed since no cooling was designed for this space. The 
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Figure 11.32 � Average occupant heat load values in the three analyzed areas: living 
areas, community hall, and laundry room.
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difference in the heating EUI of the analyzed models can be explained by 
the changes in the occupant heat loads. All the models resulted in lower 
heating consumption while having higher occupant heat loads.

Limitations of this case study stem from: (1) uncertainties in BEM, (2) 
assumptions made prior to modeling, and (3) the co-​design methodology. 
In the case of BEMs based on the Th-​BCE 2012 and UK NCM standards, 
the occupancy schedule of the living areas was used for the common rooms 
as well, assuming an energy modeler would follow a similar path. While 
this approach is purely speculative, it draws attention to the uncertainties 
designers face because of a lack of accurate model inputs. Also, the results 
were limited to weekday analyses only, as weekend schedules were not col-
lected during the focus groups. This case study was likewise limited to ana-
lyzing the effect of changing the occupancy schedule only, whereas other 
sources of internal heat gains (e.g., equipment, lighting) may have been rel-
evant as well. Additionally, in certain cases, the analyzed energy demands 
had very low absolute values, such as the heating demand in the laundry 
room and the community hall.

Regarding assumptions, the occupancy of these rooms was based on as-
sumptions about the proportion of chore/leisure time that would be spent 
there. These assumptions, however, were not informed by focus group inter-
views. Furthermore, the calculations did not consider the facilities provided 
by the rooms, nor the number of people living in the building. Both factors 
heavily influenced common room occupancy. The comparison of these re-
sults may have been less insightful as a result.

Finally, the co-​design process used in this project was intended to sup-
port architects, not BEM. Weekend schedules were thus not collected, and 
the focus group included only a limited sample size of people currently liv-
ing in housing poverty. Retrieving occupancy schedules during co-​design 
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Figure 11.33 � The occupant heat loads and the cooling energy demand of the com-
munity hall using the co-​design schedules and ASHRAE standard, 
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is time-​consuming, and so future larger studies should consider a more 
streamlined method.

11.3.6 � Concluding Remarks

In this case study, participatory design was used as a tool for constructing 
more detailed and more accurate occupancy schedules compared to sched-
ules from the three selected standards. Overall, between 13.2 and 33.6 W/
person differences in heat load profiles were observed compared to standard 
occupancy schedules. While these differences did not translate to significant 
differences in overall energy EUI, it yielded over 10% heating EUI differ-
ence in apartments and between 46% and 86% heating EUI difference in 
the community hall. The difference in the EUI was achieved through the 
differentiation of active and passive occupancy and the ability to tell exactly 
how people are using the building beyond simply occupying it. Forecasting 
how occupants use the building could especially be significant for predict-
ing occupancy in shared facilities and common areas, which are prevalent 
features of co-​housing.

This case study analysis also showed that people living in social housing 
occupy buildings differently than standards predict (albeit this claim could 
be specific to this case study), potentially due to higher volatility in their em-
ployment schedules. The employment schedules for this study’s participants 
were closer to the standard “9-​to-​5” work schedule for male occupants and 
less so for female occupants, but further research is required to explore the 
association between sex, work schedules, and occupancy patterns to under-
stand how social housing occupancy may be distinct from conventional res-
idential buildings. Overall, this study’s findings suggest that participatory 
design may be a viable tool to depart from generic standards toward higher 
specificity in BEM as well as a valid research method to explore different 
factors of occupancy, which could potentially contribute to development of 
more inclusive standards in the field.

11.4 � Case Study 3: Quebec City, Canada

Jean Rouleau, Louis Gosselin

11.4.1 � Summary

In the mid-​2010s, a 40-​unit, four-​story social housing building called Les 
Habitations Trentino was constructed in Quebec City, Canada (lat. 46.78°N, 
lon. 71.29°W), in an eco-​neighborhood called La Cité Verte. The climate in 
Quebec City is characterized by significant variations throughout the year: 
cold and snowy winters (HDD18 = 4,843°C-​day), and relatively warm, hu-
mid summers. The stakeholders wanted to reach a high level of energy per-
formance for this building. During the design phase, building performance 
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simulations (BPS) and life-​cycle analyses were performed to test different 
options to inform the decision-​making process.

A partnership with the Chaire industrielle de recherche sur la construc-
tion écoresponsable en bois (CIRCERB) from Université Laval was estab-
lished to analyze the behavior of this case study building. Researchers from 
Université Laval analyzed the energy performance of the building from the 
beginning of operation and found that occupants had a strong influence on 
the energy performance of the building. The researchers also found a sub-
stantial energy performance gap for this building, where the energy demand 
that was predicted prior to construction differed from the actual demand.

The objectives of the present case study analysis were thus (1) to explain 
the reasons behind this energy performance gap and assess if it was caused 
by an inaccurate representation of the occupants in simulation, and (2) 
to develop a method to assess the full influence of occupants on the per-
formance of multi-​unit residential buildings (MURBs). The analysis also 
aimed to find appropriate ways to incorporate occupant behavior into BPS 
to improve the design of MURBs and reduce the energy performance gap. 
Studied occupant behavior included occupancy, space heating, hot water 
and electricity consumption, setpoint temperatures, and the use of operable 
windows for ventilation. In brief, the study found that the performance gap 
was mainly caused by differences between the assumptions regarding occu-
pants in the BPS and the actual occupant behavior observed in the building.

11.4.2 � Building Description

Construction of Les Habitations Trentino took place in 2015 (see Figure 11.34). 
Although pre-​construction BPS assumed a building population of 125 peo-
ple, the total number of occupants in 2016 was 90. Energy bills for heat and 
electricity are included in the lease. The floor area of each unit varies be-
tween 70 and 80 m2. The window-​to-​wall ratio (WWR) is 16%, with oper-
able triple-​glazed windows. A special feature of the building is that part 
of it was constructed with a cross-​laminated timber (CLT) system, and a 
light-​framed wall system was used for the other side. The thermal resistance 
(RSI value) of the opaque portion of the envelope is 6.32 m2K/W for both 
construction systems. The air tightness of the envelope was measured to be 
0.6 ACH at 50 Pa.

Heating is provided by a biomass-​based district heating system. Each 
apartment is equipped with three or four hot water radiators. The energy 
supply for producing domestic hot water comes from the district heating 
network. A 100% fresh air ventilation strategy is used. Each dwelling has 
a switch to turn the mechanical ventilation on or off (with a heat recovery 
ventilator (HRV) efficiency of 85%). No mechanical cooling was installed.

Building data have been collected since the beginning of building occu-
pancy (i.e., October 2015). Data on the consumption of electricity, domes-
tic hot water, and heating is collected. Indoor temperature and humidity, 
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window openings, mechanical ventilation control, and exhaust fan opera-
tion (kitchen hood, dryer, bathroom fan) are also monitored for some units. 
Overall, more than 500 data points are monitored, with, for the most part, 
an acquisition every 10 minutes.

At the building level, the annual EUI of the heating, electricity, and domes-
tic hot water (DHW) in 2018 was 38.4, 48.1, and 51.3 kWh/m2, respectively, 
for a total EUI of 137.8 kWh/m2. These figures are a significant improve-
ment compared to the typical total EUI observed for this type of building in 
Quebec, i.e., 250 kWh/m2 (Whitmore and Pineau, 2021). The improvement 
is mostly due to the quality of the envelope that contributes to reducing the 
heating needs. Monitoring of the building from 2015 to 2020 showed that the 
annual energy consumption for heating and DHW was consistent over time, 
but electricity consumption increased over the last few years.

Figure 11.35 presents the annual EUI of all dwellings in the case study 
building, ranked from the lowest to the highest consumers. The most strik-
ing element of this figure is the large variation of energy consumption from 
one dwelling to another, despite their similar features. The EUI varied by 
a factor of 11 from 23.2 to 267.3 kWh/m2 across dwellings. Very weak cor-
relations between the DHW consumption and the number of occupants in 

21
.2

 m

43.5 m

Figure 11.34 � Picture of the building and floor plan.
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each dwelling and between the space-​heating demand and the floor level 
were noted, but other factors such as orientation, construction system, etc., 
did not explain the variability of the EUI (Rouleau et  al., 2018). In fact, 
most of the observed variance appeared to be due to differences in occupant 
behavior.

Thermal comfort during summer was also studied. A portion of the 
dwellings exhibited overheating (Rouleau and Gosselin, 2018), with an in-
door temperature above the limit provided by the adaptive comfort model 
of ASHRAE Standard 55. In other units, the indoor temperature stayed 
within the limits of acceptable conditions. Once again, most of the variabil-
ity was linked to occupant behavior.

11.4.3 � Methodology

Since this analysis had two distinct objectives, the methodology was divided 
into two sections: one to evaluate the impact of occupant behavior on the 
energy performance gap and the other to develop a novel occupant behavior 
model. Details of the methodology are provided below.

11.4.3.1 � Occupant Behavior Assumptions during Design

During the design phase of the building, BPS was performed to assess the 
impact of different design options in terms of construction costs and en-
ergy savings. Different envelope assemblies were simulated with the Passive 
House Planning Package (PHPP) software (Feist, 2012), leading to the design 
previously presented above, which offered a good trade-​off between cost 
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Figure 11.35 � Annual energy intensity in each dwelling in 2018.
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and energy performance. In these simulations, occupants were accounted 
for by static schedules that relied on fixed assumptions regarding occupancy, 
heating setpoint, etc. These were the default schedules supplied by the PHPP 
software.

For the purposes of this study, the PHPP model was examined thor-
oughly, and the assumptions of the initial energy model were compared to 
the monitored data. This step allowed for the identification of inaccurate 
assumptions. The initial energy model was modified to account for diver-
gences between the model and the actual building. Changes in the total en-
ergy use predicted by the model were tracked as those changes were applied.

11.4.3.2 � Occupant Behavior Simulation Model Development

A versatile integrated occupant behavior model was developed. To develop 
the model, existing models that simulated different facets of occupant be-
havior were adapted and assembled. The unified model provided sets of pos-
sible coherent schedules that served as inputs for the BPS.

The main requirements for the model were:

•	 Integrated several facets of occupant behavior: The model should pro-
vide schedules for the most influential types of occupant behavior with 
respect to energy consumption and thermal comfort (occupancy, elec-
tricity consumption, DHW consumption, heating setpoint, window 
opening).

•	 Ensured coherence between sub-​models: The model should provide 
schedules that are coherent with one another. For example, if the occu-
pancy schedule indicates that no one is present, the DHW and electric-
ity consumption should be adapted accordingly.

•	 Provided high time and space resolution: The model should provide rep-
resentative schedules at the level of a single dwelling. It should provide 
daily or yearly schedules, with a time step that could be as small as 10 
minutes.

•	 Replicated observed variance: The model should generate schedules that 
properly match the observed unit-​to-​unit variance, as well as the day-​
to-​day variability observed in the dwellings. The model should be prob-
abilistic: two different runs lead to two different sets of schedules, both 
of which would still be within the observed variance for each type of 
occupant behavior.

For the occupancy, electricity, and domestic hot water sub-​models, modifi-
cations were made to existing models to account for various factors. First, 
models were created using data from foreign countries (United Kingdom 
and USA); then, adjustments were made so the models better represented 
behaviors observed in Canada (Rouleau et al., 2019). Another modification 
was to add a “diversity” factor that was randomly assigned to each simulated 
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dwelling to ensure that the dwellings had diverging behaviors (i.e., that the 
simulated occupant profiles were different between households) so the full 
range of observed occupant behaviors was reproduced. Finally, the sub-​
models communicated with each other to make sure that the generated 
schedules for occupancy, electricity, and hot water were coherent with one 
another. The methodology to develop each sub-​model is described below.

11.4.3.2.1 � OCCUPANCY

The daily occupancy profiles generator developed by Richardson et al. (2008) 
was used as the basis for the model. The generator assigned the number of 
active occupants (i.e., present and not sleeping) in the simulated dwelling 
at a 10-​minute frequency. Occupancy schedules were generated and then 
forwarded to other sub-​models.

11.4.3.2.2 � ELECTRICITY CONSUMPTION

Richardson et al. (2008) model was also used to generate schedules for the 
use of electric appliances (Richardson et al., 2010). Another model was also 
used for the usage of artificial lighting (Armstrong et al., 2009).

11.4.3.2.3 � DOMESTIC HOT WATER CONSUMPTION

The domestic hot water sub-​model used the yearly DHW event schedule gen-
erator developed by the National Renewable Energy Laboratory (NREL) in 
the United States (Hendron et al., 2010). The hourly NREL model was ad-
justed so it would fit with the desired time resolution of 10 minutes.

11.4.3.2.4 � HEATING SETPOINT

A probability distribution function that copied the distribution found in 
Canadian houses (National Resources Canada, 2011) was used to assign the 
heating setpoint of the heating system. The setpoint was treated as a static 
parameter that remains constant throughout the year.

11.4.3.2.5 � WINDOW OPENING

The state of the windows (opened/closed) was calculated based on the out-
door and indoor temperatures using a logit equation to estimate the proba-
bility of window opening (when closed) and window closure (when opened). 
This equation was developed with the monitored data from the case study 
building. The equations that calculated the states were based on coefficients 
that varied for each simulated dwelling. Unit-​to-​unit variance was thus 
ensured.
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More details on these occupant behavior models are available in Rou-
leau et al. (2019) and Rouleau and Gosselin (2020). The interactions between 
these different sub-​models are presented in Figure 11.36.

Since the occupant behavior model described above could generate many 
different schedules that were representative of possible occupants, it offered 
the possibility to run Monte Carlo simulations. For this type of simulation, 
a large number of schedules can be created by running the model repeatedly. 
Then, these different schedules can be introduced into BPS tools. The re-
sults of this procedure will be probability distributions for important model 
outputs (e.g., energy consumption, thermal comfort, overheating, peak de-
mand). These distributions can indicate the likeliness of achieving a certain 
level of performance while considering the full extent of possible occupant 
behaviors.

The abovementioned approach can also be used to size HVAC equipment. 
For instance, the methodology was used to study the sizing of hot water 
systems. The case study building’s hot water consumption was simulated 
100 times with the occupant behavior model. These 100 building consump-
tion profiles were forwarded to a numerical model of a hot water system to 
find the optimal size of the system (storage water tank volume and heating 
capacity of the system). If an instantaneous water heater had been installed 
in the building, the methodology predicted that the ideal heating capacity 
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for the building ranged between 192 and 497 kW, depending on how much 
hot water the occupants in the building use. On the other hand, with a water 
tank of 2,000 L, the ideal heating capacity was between 33 and 77 kW.

11.4.4 � Results and Discussion

The results of the case study analysis are presented and discussed in the 
sections below.

11.4.4.1 � Occupant Behavior Assumptions during Design

According to these prior-​to-​construction simulations, the predicted annual 
heating EUI was 16.6 kWh/m2 and the annual total EUI (summation of 
heating, electricity, and DHW) was 74.3 kWh/m2. As shown in Figure 11.37, 
these values departed significantly from the actual average energy consump-
tion observed in the building.

The assumptions of the initial energy model and the measurements were 
compared and analyzed to explain the discrepancies. Three notable sources 
of discrepancies were:

	 i	 Window opening: The original model did not include window opening 
during the heating season. However, it was observed that windows were 
opened 9.4% of the time during the heating season, and so the infil-
tration rate of the building was adjusted to include this behavior. The 
relatively high rate of window openings obviously increased the heating 
demand compared to predictions.

	ii	 Heating setpoint: The heating setpoint was originally assumed to be 
20°C. In practice, the actual temperature in the units tended to be much 
higher, around 23.9°C, which again increased heat consumption com-
pared to predictions.

iii	 Domestic hot water: A daily consumption of 25 L/person was assumed, 
but the measured consumption was much higher, around 58.3 L/person.

Other changes applied to the energy model following the monitoring of 
the building included (continued from the list above): (iv) using the “true” 
weather data, (v) modifying the HRV efficiency from 85 (expected value by 
the HRV supplier) to 70 (estimated value from monitored data), (vi) reduc-
ing the building population from 125 to 90 people, (vii) considering the in-
ternal heat gains generated from the hot water recirculation loop, and (viii) 
using the “true” electricity demand. Implementing these changes in the 
original energy model achieved simulation predictions much closer to meas-
urements, thus reducing the performance gap. As shown in Figure  11.37, 
changes in the model were applied cumulatively.

This exercise illustrated the challenge of making accurate assumptions 
about occupant behavior prior to construction. At the same time, the study 
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revealed the significant impact that these assumptions might have on energy 
predictions and, potentially, on design choices. In addition, the BPS used 
during the actual design phase only accounted for the “average occupant” 
and did not consider the full spectrum of possible occupants (as highlighted 
in Figure 11.35). Thus, there is a need to develop an integrated model encom-
passing the different facets and inherent variability of occupant behavior as 
well as design methods to exploit these kinds of models.

11.4.4.2 � Occupant Behavior Simulation Method

The results presented in this section include the simulation outputs of an 
energy model of a single dwelling located in the case study building. Mon-
itoring data were used to calibrate this numerical model to make sure the 
simulations adequately reflected the real building in terms of annual heating 
demand and thermal comfort. A total of 1,000 annual occupant profiles were 
then generated and provided to the dwelling model to generate probability 
distributions for the heating demand, total energy use, and thermal comfort 
(for more details, see Rouleau et al., 2019). This approach is useful for assess-
ing the robustness of the building design for use by different occupants.

The average annual heating EUI across the 1,000 simulations was 36.6 
kWh/m2 with an average total EUI of 110.2 kWh/m2 when adding hot wa-
ter and electricity use. In terms of thermal comfort, a mean value of 2,429 
hours per year was deemed as not comfortable according to ASHRAE 55 
(ASHRAE, 2017). Figure 11.38 provides the overall distribution observed 
from all simulations for the three performance indicators and illustrates the 
wide range of possible building outputs. For example, the heating EUI in 
the simulated dwelling went from 10 to 150 kWh/m2 depending on which 
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occupant profile was used. Note that in the monitored building, the space 
heating demand per dwelling ranged from 13 to 146 kWh/m2, which was 
similar to the range obtained with the simulations. The same result was 
true for thermal comfort. On the one hand, there were multiple profiles that 
had close to zero hours of thermal discomfort. On the other hand, some 
profiles endured uncomfortable conditions for most of the year. The large 
range of energy consumption and thermal comfort conditions displayed in 
Figure 11.38 was similar to that observed in the actual dwellings.

For the three distributions shown in Figure 11.38, an important propor-
tion of the simulations was located near the bottom boundary of the distri-
bution where the contribution of each unit was small. This means that the 
overall energy consumption of the case study building was not as driven by 
the consumption of the majority of people in the dwellings as it was (at least 
to some extent) by its highest-​consuming households. For instance, the av-
erage heating EUI in the biggest 15% of consumers was 77.4 kWh/m2 versus 
29.4 kWh/m2 for the remaining 85% of households. This difference suggests 
that the current building design is sensitive to high levels of energy demand 
for certain types of behavior.

The distributions shown in Figure 11.38 were obtained for a single dwell-
ing at the level at which a high diversity of behaviors was expected, which 
translated to a widespread of possible energy demands and thermal com-
fort. When more units were considered simultaneously (i.e., when the sam-
ple size increased), extreme behaviors canceled out and the variability of 
possible energy intensity and comfort level was reduced. This result suggests 
that large MURBs should be more robust in terms of energy performance 
with respect to occupant behavior.
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Figure 11.38 � Projected distribution of various energy performance indicators de-
pending on occupant behavior.
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The energy and comfort distributions obtained from housing stocks of 1, 
10, 40, 100, and 400 dwellings were considered. For each of these housing 
stock sizes, 10,000 combinations were randomly chosen from the simula-
tions of the dwelling under different occupant behavior. The resulting dis-
tributions are displayed in Figure 11.39. The widest probability distribution 
function on each subplot corresponds to the distribution for a one-​dwelling 
housing stock, and then the distributions become narrower as the housing 
stock increases, where the most cramped distribution is for a 400-​dwelling 
housing stock. The case study building has 40 dwellings, and so the distri-
bution projects that the annual heating EUI should be between 25 and 45 
kWh/m2, which is roughly what was observed year after year.

To improve the energy robustness of the building, it will be important 
to evaluate the reasons behind its high sensitivity to occupant behavior. 
In Figure 11.40, the outputs of each simulation are represented in multiple 
grids of 30 × 30 pixels. The color of a pixel conveys the average value of an 
aspect of occupant behavior for all simulations located within the pixel. For 
example, for simulated households with a heating demand between 75 and 
100 kWh/m2, the average frequency of opened windows is approximately 
50% of the time.

At this point, the heatmaps were only produced for the actual building 
design, but the methodology can be applied to future building designs. Dif-
ferent configurations of building designs can be tested to assess their ro-
bustness regarding occupant behavior. One might envision robust design 
optimization, where the design is optimized not for a single occupant be-
havior profile but for various profiles to ensure that its high level of energy 

Figure 11.39 � Impact of the number of units on the probability distribution of possi-
ble energy consumption, space heating consumption, and discomfort.
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performance is sustained for the full array of possible occupant behaviors. 
Parametric-​based studies are also possible, where designers can change val-
ues for a specific parameter (e.g., WWR) in the building model to see the 
changes in the distributions for the energy performance.

Robust design assessment offers additional information that can be pro-
vided to the building stakeholders with the generation of probability dis-
tributions. As discussed, typical pre-​construction simulations yield only a 
single value of expected heating demand (or peak demand, thermal com-
fort, etc.). While this single expected value can be useful when comparing 
different designs, it regularly differs from reality; its predictive value is min-
imal. Generating probability distributions helps in that regard by providing 
a full range of possible outputs, which gives stakeholders a better idea of the 
range of performance that the building might exhibit.

Robust design assessment can also help building designers and owners 
identify behaviors that can drive up energy consumptions and to understand 
how the building responds to such behaviors. In this case study analysis, for 
instance, high window opening rates during the heating season were found to 
increase the heating EUI up to 100 kWh/m2. If designers are not satisfied with 
this level of consumption, they could target designs that yield better perfor-
mance with high window opening frequency (e.g., decrease WWR, increase 
mechanical ventilation rate to decrease the use of windows, inform occupants).

11.4.5 � Concluding Remarks

This case study analysis demonstrated the significant influence that 
occupants can have on the energy performance of their dwellings. It is also 

Figure 11.40 � Heatmaps representing the influence of various aspects of occupant 
behavior on the heating demand and comfort performance of the 
building.
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another example of the much-​discussed energy performance gap (i.e., ac-
tual energy consumption differs from projected energy consumption during 
the design phase of the building). This analysis showed that the energy per-
formance gap in this case study building was mainly caused by a misrep-
resentation of occupants in the energy simulations. Occupant behavior is 
a highly uncertain parameter, especially in residential buildings where be-
haviors change from one household to another; it is practically impossible to 
accurately forecast this variable in the simulations used to design a building.

For these reasons, multiple occupant behavior profiles are recommended 
when designing buildings. This method can be used to guide the decision-​
making process during the design phase. For example, the method can be 
applied to energy simulations with different levels of insulation or differ-
ent WWRs, and the resulting probability distributions can be observed for 
energy consumption. In addition to considering the most likely or average 
value of energy consumption, the designer could also consider the possi-
bilities of achieving extreme values depending on how occupants use the 
building systems

11.5 � Case Study 4: Melbourne, Australia

Ye Kang, Jenny Zhou

11.5.1 � Summary

This case study building was the first large-​scale timber structure built to 
Passivhaus standard in the southern hemisphere. This case study analysis 
evaluated the interactional behavior between occupants and the building, 
multi-​story student accommodation. Design specifications and in situ per-
formance were compared to identify misalignments in three occupant-​
centric variables: presence profile, interaction with electrical appliances and 
lighting, and thermal comfort. Compared to a fixed value defined by the Pas-
sivhaus simulation model, the actual occupant presence varied significantly 
between in-​semester and semester break, between weekdays and weekends, 
and between private rooms and shared spaces. The simulation underesti-
mated the use of electrical appliances and lighting and overlooked its time 
dependency. The building also suffered from overheating problems that had 
not been identified in the design stage. The result of this study can contribute 
to a deeper understanding of human behavior and thermal comfort in Pas-
sivhaus buildings. The measured data can also help to refine the parameter 
setting for human factor variables in the future occupant-​centric design.

11.5.2 � Building Description

The case study building (see Figures 11.41–​11.43) is a Passivhaus-​certified six-​
story student accommodation building that is located in the mild temperate 
climate zone of Melbourne, Australia. The PH building has a gross floor area 
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Figure 11.41 � Photograph of the building exterior.

Figure 11.42 � Photograph of the studio room.

Figure 11.43 � Photograph of a communal space.
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of ~5,200 m2 that includes 150 independent studio rooms and various com-
munal spaces. Each studio consists of a bedroom, an open-​plan living/kitchen 
area, and a bathroom. The living/kitchen area is outfitted with a range of 
electrical appliances (cooktop, microwave, fridge, etc.). The communal spaces 
contain recreation rooms, communal kitchens, and a laundry room.

The building is of lightweight structure, with external walls and roofs built 
from cross-​laminated timber (CLT) and a ground floor built from concrete 
panels. Rockwool and rigid foam insulation and triple-​glazed windows were 
used to improve the thermal performance of the building envelope. The 
characteristics of the building envelope are summarized in Table 11.7. The 
building is equipped with three mechanical ventilation equipment with heat 
recovery (MVHR) units. The building management system (BMS) modu-
lates air dampers to adjust the ventilation rate of the studios. The damper 
position remains in minimum mode (3.5 L/s) when the studio is vacant, and 
it adjusts to the max mode (10 L/s) and boost mode (25 L/s) based on the 
signal from the room key and bathroom light, respectively. When the aver-
age temperature of the floor exceeds 25°C for 10 minutes, the BMS will also 
activate the boost mode for the entire floor. The MVHR units are equipped 
with thermal batteries (via hot water) to provide tempered outdoor air to the 
student accommodations; the building has no active cooling systems. The 
building was occupied in February 2019.

11.5.3 � Methodology

This section is arranged into three different sub-​sections: (1) model and in-
put variables, (2) in situ performance data collection and (3) TM52 method 
for overheating assessment, to address the objectives of this analysis.

11.5.3.1 � Model and Input Variables

The Passive House Planning Package (PHPP) Version 9 simulation tool was 
used during the design stage to predict the building performance. PHPP 
is the only authorized software in the Australian context for PH certifica-
tion (Australian Passive House Association, 2021). Similar to other build-
ing energy simulation tools, the PHPP is built upon energy conservation 

Table 11.7  �Thermal transmittances (U-​value) and total areas of the Melbourne 
building envelope

Components Average U-​value (W/m2 K) Total area (m2)

Wall system 0.308 2,814
Roof system 0.135 1,139
Ground floor system 0.843 1,009
Window 1.322 1,010
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principles and heat balance equations, but it models the entire building as 
one single zone and generates simulation results on a monthly basis owing 
to the limitation of the spreadsheet computing environment (Passive House 
Institute, 2015).

The simulation required a range of inputs from weather data to building 
service equipment. This work focused on three occupant-​centric variables:

•	 Presence profile: The occupancy fraction (i.e., percentage of time that 
a space is occupied) was used to describe the presence profile. In the 
PHPP simulation, the indoor spaces were assumed to be occupied all 
the time with the occupancy fraction of 1.

•	 Interaction with electrical appliances and lighting: The energy demand 
was calculated from three variables; power rate, use frequency, and the 
total number of occupants (Eq. 1) (Passive House Institute, 2015). The 
PHPP manual (Passive House Institute, 2015) provided default settings 
for the first two variables (Table 11.8), and the last parameter was esti-
mated based on the building use: one occupant per studio and eight ad-
ditional residents for building management. The simulation was unable 
to capture the time variance of the appliance and lighting use because 
the PHPP applies a “per year” rate to the power rate or use frequency.

E V h Gel = ⋅ ⋅Norm 	 (11.2)

where
NormV  is the power use of the appliance or lighting;

h is the use frequency of the appliance or lighting;
G  is the total number of occupants.

•	 Thermal comfort: The PHPP applies overheating frequency (i.e., the 
percentage of time that the indoor temperature is above 25°C) to evalu-
ate the thermal comfort of the building (Passive House Institute, 2015). 
When the annual overheating frequency exceeds 10%, the space is clas-
sified as overheating. To simplify the calculation, the PHPP database 
only specifies monthly average temperatures (Table  11.9) and a fixed 

Table 11.8  The power rate and use frequency of electrical appliances and lighting

Power rate Use frequency

Dishwashing 0.8 kWh/use 65 use/(person-​year)
Refrigerator 0.78 kWh/person-​day 365 days/year
Cooktop 0.22 kWh/use 500 use/(person-​year)
Television 80 W 1.5 hours/(person-​year)
Small appliances 0.14 kWh/person-​year 365 days/year
Lighting 10 W 8 hours/(person-​year)
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daily temperature swing (10°C). The PHPP evaluation completed for the 
case study building identified an overheating frequency of 6%, which 
meant there were no overheating concerns in the design stage.

In this case study analysis, the simulation results from these three occupant-​
centric variables are compared to in situ performance data to evaluate the 
interactional behavior between occupants and the multi-​story student ac-
commodation built to the Passivhaus standard.

11.5.3.2 � In Situ Performance Data Collection

The building management system (BMS) and a wireless sensing platform 
were applied to collect in situ data for eight months from August 2019 to 
March 2020. The BMS recorded the energy use of the case study building 
and exterior temperature on an hourly basis. The indoor temperature and 
carbon dioxide (CO2) concentration of indoor spaces were detected every 30 
seconds using the wireless sensing platform. The monitoring devices were 
calibrated against standard reference instruments and displayed the accu-
racy of ±0.6°C for temperature and ±11 ppm for CO2 concentration. Before 
the final data analysis and visualization, the sensor data were aggregated 
to hourly intervals to facilitate the comparison. Permission was granted to 
access 12 spaces in the building for device installation (Table 11.10). The 12 
spaces spread over three floors and covered both studio rooms and com-
munal spaces. Data collected by the BMS and the sensing platform were 
applied to pursue the three occupant-​centric variables, as described below.

•	 Presence profile: The CO2 concentration of indoor spaces recorded by 
the sensor nodes was used to determine the occupancy status and to 
generate the presence profiles. When the hourly CO2 concentration 

Table 11.10  The indoor monitoring stations and room characteristics

Room number Floor Room type Window orientation

103 1 Communal Northwest
108 1 Communal Northwest
309 3 Studio Northwest
314 3 Studio Southwest
324 3 Studio Southeast
327 3 Studio Northeast
332 3 Communal Northwest
609 6 Studio Northwest
614 6 Studio Southwest
624 6 Studio Southeast
627 6 Studio Northeast
632 6 Communal Northwest
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exceeded 550 ppm, the space was considered occupied. The 550 ppm 
was a cut-​off value obtained from a four-​day dataset measured during 
the Christmas holiday. It should be noted that this is a simplified ap-
proach as the indoor CO2 concentration could be influenced by window 
operation and occupant behaviors. CO2-​based dynamic occupancy de-
tection algorithms could further improve the accuracy of the outcomes.

•	 Interactions with electrical appliances and lighting: The BMS system dis-
aggregated the energy use data of the case building into plug load, light-
ing, and other building service functions. The human interaction with 
electrical appliances and lighting was inferred from the BMS energy 
breakdown data.

•	 Thermal comfort: Considering the limitation of the fixed benchmark 
(25°C) in the PHPP tool (Fletcher et  al., 2017), the TM52 method 
(Chartered Institution of Building Services Engineers, 2013), an adap-
tive method derived from EN 15251 (CEN, 2007), was applied in this 
study to assess the overheating risk of the building. The TM52 method 
is further detailed in the following section.

11.5.3.3 � TM52 Method for Overheating Assessment

The TM52 method defines three criteria for overheating assessment. All 
three criteria, listed below, are associated with the exceedance (ΔT), which 
refers to the difference (rounded to the nearest integer) between the opera-
tive temperature of the indoor space and the TM52 benchmark. A space is 
classified as overheated when it fails any two out of three criteria specified 
by the TM52 approach.

•	 Criterion 1: Hours of exceedance, He, should not exceed 3% of the oc-
cupied hours (He ≤ 3%). He represents the total number of hours that 
the ΔT is greater than 0°C between November and March (typical non-​
heating season in the southern hemisphere).

•	 Criterion 2: Daily weighted exceedance, We, should be no more than 
6°C-​hours in any one day (We ≤ 6°C-​h). We refers to the hours when the 
indoor temperature is above the benchmark (ΔT ≥ 1°C) during occupied 
hours, weighted by a factor that is a function dependent on how many 
degrees the benchmark has been exceeded (Equation 11.3).

∑= ×( ),W h We e F 	 (11.3)

where the weighting factor WF  = 0 if ΔT ≤ 0°C; otherwise, WF  = ΔT, 
and he is the number of hours when WF  = ΔT.

•	 Criterion 3: Maximum exceedance, max_ΔT, should be less than or 
equal to 4°C (max_ΔT ≤ 4°C). The max_ΔT represents the highest value 
of exceedance.
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The determination of the exceedance (ΔT) and the TM52 benchmark (Tben) 
is based on the exponentially weighted running mean outdoor temperature 
(Trm) (Equations 11.4–​11.6).

∆ = −T T Top ben	 (11.4)

= +0.33 21.8T Tben rm 	 (11.5)

T
T T T T T

T Trm
out out out out out

out out

0.8 0.6 0.5 0.4
0.3 0.2 ) / 3.8

1 2 3 4 5

6 7
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
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
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− − − − −

− −
	 (11.6)

where,
Top is the operative temperature of the indoor space, considering the ther-

mal uniformity of the case study building, indoor air temperature (Tin) is 
a reasonable approximation for operative temperature (Top) (Tabatabaei 
Sameni et al., 2015).

Tben is the benchmark.
Trm is the exponentially weighted running mean outdoor temperature.

−1Tout , −2Tout , −3Tout , −4Tout , −5Tout , −6Tout , and −6Tout  are the daily mean 
external temperature for the previous day, the day before, and so on.

11.5.4 � Results and Discussion

A range of analyses was conducted to evaluate the interactional behavior 
between occupants and the case study building. The results are broken down 
into four sub-​sections: (1) occupant presence, (2) use of electrical appliances 
and lighting, (3) thermal comfort, and (4) recommendations to improve the 
PHPP software. Each is discussed in turn below.

11.5.4.1 � Occupant Presence

Figure 11.44 shows the occupancy fraction of the studio rooms (marked as  
orange) and communal spaces (marked as blue) of the case building. The occu-
pancy data were disaggregated by in-​semester/semester break and weekday/ 
weekend designations. In contrast to the default setting in the PHPP tool 
(i.e., the building was assumed to be always occupied), the actual occupancy 
fraction of the measured spaces fluctuated.

There were significant differences between in-​semester and semester 
break occupancy. The studio rooms had occupancy fractions ranging from 
0.32 to 0.79 (with an average of 0.56) during the semester, but the values were 
decreased to 0.03–​0.09 (with an average of 0.07) during the break. Similarly, 
the off-​peak occupancy fraction (0.01–​0.68, with an average of 0.35) was 
much lower than the in-​semester values (0.01–​0.18, with an average of 0.10) 
in communal spaces. The decrease in occupancy fraction during the semes-
ter break could be attributed to the increased vacancy in student accommo-
dation during the semester break.
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The occupancy schedules also varied between weekdays and weekends 
during the semester. In studio rooms, a slight reduction in occupancy 
fraction could be found on weekends (0.32–​0.67, with an average of 0.50; 
Figure 11.44c) compared to weekdays (0.34–​0.79, with an average of 0.58; 
Figure 11.44a). A similar trend could be observed in communal spaces (0.
10–​0.68, with an average of 0.38 for weekdays; Figure 11.44e; 0.01–​0.64, with 
an average of 0.28 for weekends; Figure 11.41g). The decreasing occupancy 
fraction on weekends could be associated with the fact that the students had 
more opportunities to attend off-​campus activities during this period and 
thus left their studios for a considerable amount of time. Considering the 
constantly low occupancy fraction (<0.2) of the case study building during 
the semester break, no discernible discrepancy in occupancy profiles could 
be discovered between weekdays and weekends.

Figure 11.44 � Measured occupancy fraction of the studio rooms on (a) weekdays, in-​
semester, (b) weekdays, semester break, (c) weekends, in-​semester and 
(d) weekends, semester break, and communal spaces on (e) weekdays, 
in-​semester, (f) weekdays, semester break, (g) weekends, in-​semester, 
and (h) weekends, semester break. The uncertainty bounds represent 
the standard deviation. Semester: August 2019 to November 2019, 
March 2020; Semester break: December 2019 to February 2020.



312  Tareq Abuimara et al.

The discrepancy in occupancy profiles between studio rooms and com-
munal spaces also needs to be considered. During the weekdays of the se-
mester (Figure 11.44a), the studios displayed the highest occupancy fraction 
(ranging between 0.7 and 0.79) between 00h00 (midnight) and 6h00 because 
most occupants preferred to stay in the studio and sleep during this period. 
Then, the values reduced significantly until 16h00 (occupancy fraction of 
0.34), likely because students woke up and left their studios to attend various 
courses and activities.

After 16h00, people began to return to their studios and the occupancy 
fraction increased to 0.65 at 23h00. In contrast, a significant reduction of 
the occupancy fraction could be found from 0.66 to 0.10 between 00h00 
and 8h00 in communal spaces (Figure 11.44e), as individuals left communal 
spaces and returned to their studios for sleeping. After that, the value rose 
to 0.30 at 11h00 and then fluctuated between 0.25 and 0.31 until 18h00. In the 
evening, as individuals entered the communal spaces for entertainment and 
group activities, the occupancy fraction escalated again and reached the 
maximum value (0.68) at 21h00. Later, the value declined until 23h00. The 
discrepancy in occupancy profiles between studio and communal spaces 
could also be observed on weekends of the semester and during the semester 
break.

11.5.4.2 � Use of Electrical Appliances and Lighting

Figure 11.45 shows the power density of electrical appliances and lighting. 
Similar to occupancy profiles, the on-​site data related to electrical appli-
ances were categorized by in-​semester/semester break and by weekday/
weekend. In comparison to the default settings in the PHPP tool (1.9 W/m2 
for electrical appliances; 0.1 W/m2 for lighting), the measured power density 
of electrical appliances and lighting ranged from 1.0 to 5.5 W/m2 (an average 
of 2.7 W/m2) and from 0 to 2.9 W/m2 (an average of 1.7 W/m2), respectively.

As expected, the power density of electrical appliances and lighting was 
much higher during the semester as compared to the semester break. Elec-
trical appliances in-​semester value (2.6–​5.5 W/m2, with an average of 3.6 
W/m2) was approximately three times the off-​peak data (1.0–​1.8 W/m2, with 
an average of 1.3 W/m2). A similar trend was observed for lighting, the case 
study building required 0.5–​2.9 W/m2 (with an average of 2.1 W/m2) for 
lighting during the semester, and the power density was reduced to 0–​2.1 
W/m2 (with an average of 1.0 W/m2) during the break. The significant reduc-
tion in power density during the semester break could be attributed to the 
increased vacancy, as mentioned in the previous section.

The variation in the power density of the electrical appliances could 
also be observed between weekdays and weekends during the semester. 
The power density of the electrical appliances decreased from 3.6 to 2.7 
W/m2 between 00h00 and 5h00 (Figure 11.45a) as individuals stopped us-
ing electrical appliances and fell asleep. When students woke up, the value 
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increased and reached the first peak (3.9 W/m2) at 12h00 (lunchtime). Then 
after another reduction (12h00 to 14h00) and growth (14h00 to 20h00), the 
power density reached the second peak (5.2 W/m2) at 20h00 (suppertime). 
The two peaks could be attributed to the cooking and corresponding energy 
demand related to kitchenware (e.g., microwave oven and cooktop). During 
the weekends, the electrical appliances were found to consume more energy 
than on weekdays (Figure 11.45c). The power density reached 5.2 and 5.5 
W/m2 at 12h00 (first peak) and 18h00 (second peak). The higher energy con-
sumption during the weekends can be related to the fact that students did 
not have any courses during this period and could spend more time cooking. 
During the semester break, no significant difference in the power density of 
electrical appliances was observed between weekdays and weekends due to 
high vacancy.

Figure 11.45 � Power density of electrical appliances on (a) weekdays, in-​semester, 
(b) weekdays, semester break, (c) weekends, in-​semester and (d) week-
ends, semester break and lighting on (e) weekdays, in-​semester, (f) 
weekdays, semester break, (g) weekends, in-​semester and (h) week-
ends, semester break. The uncertainty bounds represent the standard 
deviation. Semester: August 2019 to November 2019, March 2020; 
Semester break: December 2019 to February 2020.
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There was no discernible discrepancy in the lighting power density between 
in-​semester weekdays and weekends, despite the increased vacancy during 
the weekends (see the previous section). Considering the utility expense was 
amalgamated into the fixed rent, some vacant studio rooms might have had 
the lights left on during the weekends by less energy-​conscious occupants. 
During the weekdays (Figure 11.45e), the power density of the lighting dimin-
ished from 1.6 to 0.6 W/m2 between 00h00 and 4h00, as students fell asleep 
and turned off the lights. Then the value rose to 2.7 W/m2 at noon with oc-
cupants getting up. After that, the power density fluctuated between 2.6 and 
2.8 W/m2 until 21h00, which was likely because individuals (who were not 
responsible for the energy bills) preferred to keep the lights on. After 21h00, 
the occupants began to rest, and the value dropped again. A similar profile 
was observed during the weekends (Figure 11.45g). No obvious variation was 
discovered in the lighting power density between weekdays and weekends 
during the semester break. It should be noted that considering the lights in 
the communal spaces were always on during the daytime, the lighting power 
density was observed to exceed 1 W/m2 even during the semester break.

11.5.4.3 � Thermal Comfort

The thermal comfort results based on the TM52 method are displayed in 
Table 11.11. It is worth mentioning that this table only shows data for five 
months (November 2019 to March 2020), which covered the non-​heating 
season in the southern hemisphere. The remaining months were not in the 
scope of the TM52 analysis.

Although the PHPP simulation tool reported no overheating risk in the 
case study building, all 12 selected spaces were observed to have overheating 

Table 11.11  TM52 analysis result summary

Room number

TM52 method Overheated
(at least two 
criteria failed)

He (%) Annual max 
We (°C-​h)

Annual  
max_ ΔT (°C)

103 0   0 0 No
108 0   0 0 No
309 0.17 40 5 Yes
314 0.08 56 5 Yes
324 0.08 64 4 Yes
327 0.15 76 6 Yes
332 0.09 28 5 Yes
609 0.12 32 7 Yes
614 0.08 27 4 Yes
624 0.04 25 4 Yes
627 0.13 50 8 Yes
632 0.12 29 5 Yes
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problems with the annual overheating frequency above 10%. Additionally, all 
the selected spaces on the third and sixth floors were classified as overheated 
based on TM52 analysis, as they failed both Criterion 1 and Criterion 2. Some 
occupants in the case study building also reported overheating problems. The 
overheating problem is likely because the PHPP recommended inputs underes-
timated the heat emitted from electrical appliances and lighting. As shown in 
Figure 11.46, the daily weighted exceedance (We) of room 309 was found to be 
higher than the threshold specified by the TM52 method (6°C-​h) during the se-
mester (i.e., November and March), likely because the in situ energy consump-
tion for electrical appliances (with an average of 3.6 W/m2, see Figure 11.45a 
and c) and lighting (with an average of 2.1 W/m2, see Figure 11.45e and g) was 
much higher than that considered in the PHPP (1.9 W/m2 for electrical appli-
ances and 0.1 W/m2 for lighting). The uncertainty in weather could also be a 
contributor. The maximum exceedance (max_ΔT) of room 309 was observed 
to reach 5°C, higher than the TM52 threshold (4°C), on the 1st of November 
(see Figure 11.46). In the PHPP software, the average monthly outdoor tem-
perature in November was assumed to be 17.1°C (see Table 11.9) and a fixed 
value (10°C) was applied to represent the diurnal temperature fluctuation. In 
contrast, the maximum outdoor temperature recorded on the 1st of November 
reached 34°C. The maximum outdoor temperature measured on-​site higher 
than that simulated in the PHPP software could be the main reason contribut-
ing to the high exceedance (ΔT) of room 309 on the 1st of November. Similar 
trends were observed in all the other selected rooms.

11.5.4.4 � Recommendations to Improve the PHPP Software

The following strategies are proposed to reduce the performance gap of the 
Passivhaus case study building:

Figure 11.46 � Daily weighted exceedance (We) and daily maximum exceedance 
(max_ ΔT) of room 309 between November 2019 and March 2020 in 
the southern hemisphere.
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•	 The monthly quasi-​steady state method in the PHPP software could 
be substituted by a dynamic building simulation model. The dynamic 
simulation could consider the variation of outdoor temperature and hu-
man interaction with plug load and lighting on an hourly basis. Thus, 
it could deliver more accurate simulation outcomes than the monthly 
calculation method. Additionally, the incorporation of dynamic simu-
lation with the TM52 model could provide opportunities to better pre-
dict the overheating problems of the case building.

•	 A feedback loop could be integrated into the PHPP software to bring 
the predicted outcomes closer to reality. It is because the feedback 
mechanism could enable the incorporation of variations in occupant 
behavior and different building electrical appliance profiles into the 
PHPP simulation tool. The feedback loop could be used to better in-
form building design by identifying common mistaken assumptions. 
This process could be supported by various advanced methods, such as 
low-​cost sensing techniques and post-​occupancy evaluation.

11.5.5 � Concluding Remarks

To summarize, the performance of a recently constructed Passivhaus stu-
dent accommodation in the operational stage was compared to the cor-
responding PHPP simulation in the design stage to develop an in-​depth 
understanding of occupant behavior in large Passivhaus buildings. The 
temporal schedule of occupancy, the human interaction with electrical ap-
pliances and lighting, and thermal comfort were analyzed and discussed.

The PHPP simulation assumed that spaces were always occupied, but 
this simplification does not work well, as evident by the fluctuating occu-
pancy fraction. Discernible variation can be found between in-​semester and 
semester breaks and between weekdays and weekends. The fluctuation of 
the occupancy fraction can be attributed to the discrepancy in occupants’ 
activities. The design prediction underestimated the use of electrical appli-
ance and lighting. The use frequency defined by the Passivhaus authority 
would have been a valid assumption for small family dwelling cases but not 
for the examined student accommodations. In addition, the occupants of 
the student accommodation may have been less energy-​conscious with their 
appliance and lighting use since the utility expense was amalgamated into 
the fixed rent. There were also serious overheating issues that had not been 
identified in the design stage. The increased heat emission from electrical 
appliances and lighting and uncertainty in weather data contributed to the 
discrepancy in thermal comfort assessment.

Considering the limitation of the classical PH design applied in this study, 
adopting a dynamic building simulation model and feedback loop to rec-
ognize the context-​dependent features of human behavior is suggested. 
Future occupant-​centric building design should also consider the energy-​
consciousness of occupants, as it is a factor that can significantly affect 
occupant-​building interactions and, consequently, building performance
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11.6 � Case Study 5: Redwood City, USA

Andrew Sonta, Thomas Dougherty, Rishee Jain

11.6.1 � Summary

This case study considers the question of leveraging information on occu-
pant behavioral patterns to optimize a commercial building’s layout in terms 
of seat assignments in an effort to save energy. The case-​study building is 
a three-​story commercial office building located in Redwood City, Cali-
fornia, USA, in a warm-​summer, Mediterranean climate. Real-​time data 
collected from one floor of the building was used to establish a correlation 
between zone-​level lighting energy consumption and diversity in occupant 
behavior, where diversity refers to the level of differences in space use among 
occupants within a particular building zone. A data-​driven surrogate sim-
ulation model was used to estimate lighting energy consumption as a result 
of changes to the building’s layout. Both clustering-​based and genetic algo-
rithm optimization routines were introduced to find the layout that reduced 
lighting energy as much as possible. Through simulation, it was found that 
optimizing the building’s layout can reduce lighting energy consumption 
by 5% compared to the existing layout. This study demonstrates the ability 
to use low-​cost ambient sensing infrastructure to reconsider the layouts of 
existing buildings based on the past behavioral patterns of its occupants.

11.6.2 � Building Description

This case study building is a three-​story commercial office building located 
in Redwood City, California (Figure 11.47). The building is owned and op-
erated by Stanford University and largely houses university operations staff. 
The building was completed in 2019. Plug load energy sensors were installed 
at each workstation on the third floor of the building (164 workstations) in 
June 2019, just before occupancy began (see sensor details in “Plug load 
energy sensors” below).

These plug load energy sensors enabled analysis of occupancy patterns. 
Workers were each assigned their own workstation, which did not change 
over the study period. The office design can be characterized as open plan, 
with large, shared office spaces in addition to meeting rooms of various 
sizes. Generally, occupants used the spaces during standard, but flexible, 
business hours: 7h00–​19h00 Monday through Friday. Through the build-
ing management system’s application programming interface (API), the 
energy consumption of the lighting system (see details in “Lighting system 
and zones” below) was also collected. The lighting system is controlled with 
infrared sensors by zone; 11 of the lighting zones service the 164 worksta-
tions in this office building. The data-​collection period spanned August 1, 
2019 to February 29, 2020. Due to sensor outages at the beginning of data 
collection, data collected between August 1 and September 30, 2019, was 
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discarded. Data collected between December 16, 2019, and January 4, 2020, 
was also discarded due to irregularities during the university’s winter hol-
iday break. The analysis therefore included 132 full days of data. The col-
lection of highly granular occupancy data alongside lighting energy data 
enabled analysis of the relationship between occupant behavior and energy 
consumption.

11.6.2.1 � Plug Load Energy Sensors

Installed at each workstation on the third floor of the building were Zooz 
SmartPlugs, which communicated using Z-​Wave technology to a Sam-
sung SmartThings hub. A schematic of the sensing strategy is shown in 
Figure 11.48. The sensors reported power consumption values any time the 
power consumption varied by more than 0.1 W. Consistent with previous 
work (Sonta et al., 2018; Sonta and Jain, 2020), the power consumption was 
aggregated to 15-​minute intervals. This 15-​minute scale offered insight into 
occupant behavioral patterns while reducing noise.

11.6.2.2 � Lighting System and Zones

The building is equipped with an automated lighting system that operates 
using infrared occupancy sensors, daylighting sensors, and schedules. This 
system is controlled by zone (as shown in Figure  11.49). The occupancy 
sensors turn on the lights in the zone if they sense any motion in the past 

Figure 11.47 � Stanford case study building.
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20 minutes (10 minutes on the weekends). Eleven of the lighting zones service 
all 164 workstations. There are other lighting zones that service the small, 
shared spaces of the building (e.g., meeting rooms, break areas), but analysis 
was restricted to the zones that service workstations, as this study focused 
on how workstation space use impacts lighting energy for those spaces. This 
lighting energy data were scraped for each fixture at one-​hour intervals.

11.6.3 � Methodology

This section describes the methodology for optimizing the layouts of ex-
isting buildings by leveraging individualized occupancy data, that is, data 
ascribed to each individual occupant (as outlined in Figure 11.50). First, the 
time series plug load energy data at each workstation was used to model 
occupancy schedules. The methodology introduced by Sonta et  al. (2018) 

Figure 11.48 � Schematic of plug load sensing data collection.
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Figure 11.49 � Floorplan diagram, with open office areas shown in white, worksta-
tions and meeting rooms in blue, and the ten lighting zones servicing 
workstations in red.
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was leveraged to abstract the raw time series data into activity states, which 
describe patterns of space use and individual schedules. A distance metric, 
referred to as zone diversity, was introduced to describe the level of differ-
ences among the occupants’ schedules within each lighting zone. This met-
ric allowed the characterization of the relationship between zone diversity 
and empirical energy data, which has been theorized in the literature to be 
a positive relationship (Yang et  al., 2016). Given this theoretical relation-
ship, two optimization routines were developed to rearrange the occupants’ 
seat assignments. One optimization spatially clustered occupants in a man-
ner that reduced zone diversity. The other, a genetic algorithm, leveraged a 
data-​driven surrogate model for simulating energy consumption based on 
the layout. This surrogate model used both the occupant layout and the in-
dividualized occupant behavior data to estimate the energy consumption of 
the building’s lighting system.

11.6.3.1 � Individualized Occupant Schedules from  
Plug Load Energy Data

This section briefly describes the process for abstracting data streams from 
plug load monitoring devices into individualized occupant schedules. The 
key insight that enabled this process was that time series plug load energy 
signatures provide information about how occupants are interacting with 
their workstations. For example, higher energy consumption indicates that 
occupants are interacting with the electronic equipment at their worksta-
tions and are therefore likely to be actively using their workspaces. Lower 
energy consumption indicates that occupants have stopped interacting with 
this equipment and are likely away from their workstations. In this case 
study, the time series plug load data was defined as Xi, d, where i is the oc-
cupant index and d is the day index. Each entry in Xi, d is a vector {x1,..., 
xT} where T is the number of time steps during the day (here, T = 96). The 
method described in detail in Sonta et al. (2018) was used to map this raw 

Large distance

Small distance

Occupant schedules
(Section 2.1)

Distance metric
(Section 2.2)

Layout optimization
(Sections 2.3 & 2.4)

Energy simulation
(Section 2.5)
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Figure 11.50 � Methodology overview: Occupant schedules were used to measure 
zone diversity, which enabled layout optimization. Energy simulation 
was used to estimate the impact of layout optimization.
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data onto the abstracted occupant schedules: Xi, d → Si, d. This mapping 
leveraged a variational Bayesian Gaussian Mixture Model to cluster the 
raw time series data into discrete states. As in Sonta et  al. (2018), a two-​
step process was used, whereby the data for each occupant for each day was 
first clustered into two components, effectively clustering out the low-​energy 
data (data near 0 W). The higher energy data was then clustered again, as 
this data generally maintains higher variability. As in past work, the higher 
energy data was clustered into two further components, giving three com-
ponents in total: low energy, medium energy, and high energy (X → S, where 
si d

t { }⋅ ∈⋅ 1,2,3,  ). Hereafter, these time series of clustered states are referred to 
as occupant schedules.

11.6.3.2 � Zone Diversity

Given these individualized occupant schedules, a method was adapted from 
the building operation literature for characterizing the similarities and dif-
ferences in the behavioral patterns of all occupants within a zone. These 
similarities and differences are referred to as zone diversity, with a higher 
zone diversity indicating a greater level of differences in behavior. Based 
on the work of Yang et  al. (2016), this diversity metric was computed as 
the Euclidean distance among all vectors containing the occupant sched-
ule data. It should be noted that other distance metrics could have been 
used (e.g., Manhattan distance, cosine similarity), but it was found that the 
specific distance metric did not have a meaningful impact on the analysis. 
With the schedule data defined as Si, t, where i is the occupant index and t 
an arbitrary time index, the distance between any two occupants i and j was 
computed via Equation (11.7):
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i t j t 	 (11.7)

The distances between all pairs of occupants were computed within each 
zone, which formed a distance matrix. This matrix was normalized by the 
total number of entries (excluding the diagonals, because the distance be-
tween occupants and themselves is 0). This normalized value is the overall 
zone diversity. Then, zone diversity computed over the course of a single day 
(i.e., T = 96) was compared to the energy consumption of the lighting system 
summed over a single day.

11.6.3.3 � Optimizing Layouts: Naïve Clustering

The zone diversity metric quantifies the level of differences in occupant 
dynamics within each building zone. Given that higher zone diversity can 
be expected to cause more energy consumption, a clustering algorithm was 



322  Tareq Abuimara et al.

developed to change the occupant layout in an effort to reduce the diversity. 
A challenge in working with time series data is that the dimension of the 
vectors used for the distance calculation can grow quickly (e.g., 35,000 sig-
nals per year per occupant in our case). Distance metrics are known to be 
costly to compute and to potentially lose meaning when applied to data of 
such high dimensionality—​often referred to as the curse of dimensionality. 
Therefore, singular value decomposition (SVD) was used in this study to 
reduce the dimensionality of the occupancy data without losing valuable in-
formation. SVD was applied to the occupant schedule data matrix S, which 
has dimension I D T× ⋅ . The user can choose the number of dimensions d 
retained, up to I (in this case, 151), so that the resulting matrix is ×I d  with 

≤d I . It should be noted that the zone diversity metric can be computed for 
either the unreduced data or the reduced data.

The data in S (reduced or otherwise) can then be used to cluster occu-
pants. The next paragraphs describe the stochastic optimization routine 
used in this study for reducing zone diversity based on past occupancy data. 
This particular clustering problem had the real-​world constraint that each 
building zone had a predefined size (i.e., number of workstations). There-
fore, the resulting cluster sizes needed to match the sizes of the zones, which 
prevented the use of standard clustering algorithms such as k-​means. The 
clustering algorithm simulated occupant “swaps”, whereby two individuals 
swap locations, and then the resulting zone diversity was calculated.

Figure 11.51 outlines the algorithm. First, a random occupant, with re-
placement, was selected. Then, the effect on overall zone diversity across all 
building zones was simulated when the selected occupant was swapped with 
all other occupants in the building. The swap that produced the largest re-
duction in overall zone diversity was completed. This swap could include the 
null action of swapping the occupant with itself. The process was repeated 
by manually setting an iteration limit, beyond which no further improve-
ment in overall zone diversity was seen. It should be noted that this stopping 
criterion could be automated if desired.

Compute zone 
diversity for all 
possible swaps

Choose random 
occupant

Complete switch 
with largest 

diversity reduction

Repeat until 
iteration limit is 

reached

Zone Desk

Figure 11.51 � Occupant clustering algorithm.
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11.6.3.4 � Optimizing Layouts: Genetic Algorithm

The spatial optimization problem considered in this case study has an ex-
tremely large solution space. In an effort to fully explore the solution space 
and gain confidence in our clustering approach, an optimization routine that 
made direct use of our expected energy outcomes was also implemented. 
The clustering approach was designed to reduce zone diversity efficiently, 
but it does not explicitly consider energy consumption of building systems. 
It assumes that reducing zone diversity will have the effect of reducing en-
ergy consumption because these two concepts are hypothesized to be re-
lated. However, in this study, to optimize explicitly for energy, a simulation 
engine was required for predicting energy as new layouts are produced. The 
genetic algorithm optimization approach used to explicitly optimize for en-
ergy reduction is described here, and the data-​driven surrogate simulation 
model is described in the following subsection.

Genetic algorithms belong to a class of evolutionary optimization algo-
rithms originally inspired by the process of natural selection. They make use 
of a fitness function, which in our case study was expected energy consump-
tion. This study’s genetic algorithm routine started with a set of random 
design points x—​in this case, occupant layouts—​in an initial population 
P. The energy consumption of each design point was evaluated, and the B 
best performing designs were chosen as well as R random designs in order 
to maintain diversity. A key step in genetic algorithms is the recombination 
of selected designs in order to produce a new generation of designs based on 
the previous generation. For a pair of selected designs, this recombination 
was done c times. The first step is crossover, whereby a random selection of 
the two occupants in the two “parent” designs was selected for each desk 
location. The next step in recombination is mutation, which occurred with 
probability m. If mutation did occur, a random occupant in each zone was 
swapped with a random occupant in another random zone. This recombina-
tion was repeated until a new generation was formed. This overall process 
repeated G times. Figure 11.52 represents the algorithm and a visual sum-
mary of the crossover and mutation steps.

11.6.3.5 � Data-​Driven Surrogate Energy Simulation Model

To evaluate the impact of the occupant layout on energy consumption, a 
simulation engine that considers the key features of occupant layout and 
historical occupant schedule data was implemented. There are two major 
categories of building energy simulation: physics-​based thermodynamic 
models (e.g., EnergyPlus), and data-​driven “surrogate” models. Thermody-
namic models can be particularly helpful when modeling heat flows, such 
as in the case of HVAC systems. However, these models are also quite com-
plex and can be prohibitively time-​intensive when evaluating many different 



324  Tareq Abuimara et al.

alternatives. Data-​driven simulation models are growing in popularity for a 
variety of tasks and significantly reduce the time cost of prediction.

Because the present case study considers the lighting system, which is 
controlled through simple on/off sensors, a data-​driven surrogate model 
was chosen for simulation. This surrogate modeling approach amounted to 
a machine learning problem that considered the study’s key features (layout 
and schedules) to predict lighting energy consumption. We tested several 
models—​multiple linear regression (MLR), support vector regression 
(SVR), random forests (RF), and artificial neural networks (ANN)—​to de-
termine the most robust model for the study’s purpose. Each of these models 
has been applied to energy prediction tasks in the past (Ekici and Aksoy, 
2009; Jain et al., 2014; Ahmad et al., 2017; Wang et al., 2018). Key aspects of 
the surrogate modeling tests are listed below.

•	 Features: Seven specific features for this prediction task were identified:
•	 s1, s2, s3: the occupant energy states as described above, for each oc-

cupant in each zone.
•	 Hour of day (0–​23)

x

Figure 11.52 � Genetic algorithm adapted for building layout optimization.
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•	 Day of week (0–​6)
•	 Weekend/weekday indicator (0 or 1)
•	 Zone number (0–​number of zones)

It should be noted that the inclusion of both the day or week fea-
ture and the weekend/weekday feature can introduce multicollinearity. 
While this may reduce confidence when conducting hypothesis testing, 
it does not negatively impact the power of the machine learning algo-
rithms. For the non-​tree-​based models (i.e., MLR, SVR, and ANN), 
the day of week and zone number features were one-​hot encoded. For 
these models, the hour-​of-​day feature was also transformed using sine 
and cosine transformations to preserve cyclicity. Lastly, the state count 
features were transformed using a sigmoid function, as there are dimin-
ishing returns to having increasing occupants in each state. All features 
were scaled to fall between 0 and 1. These transformations are not re-
quired for the RF model, as the decisions on the trees in the model are 
invariant to this scaling.

•	 Training and testing: The data was split into a training set and a test set, 
using fivefold cross validation on the training test for model develop-
ment. The training/test split was 80%–​20%, and the choice was made to 
preserve the time-​series order in this split so that the time-​series nature 
of the predictions could be visualized.

•	 Hyperparameter tuning: For the high-​performing models, any hyper-
parameters were tuned using fivefold cross validation on the training 
set. The specific hyperparameters for the high-​performing models are 
discussed in “Data-​driven prediction of energy consumption” below.

With this surrogate modeling approach defined and the layout optimization 
routines discussed above, simulation-​based results from layout optimiza-
tion can be analyzed.

11.6.4 � Results and Discussion

This section describes the key results from the case study analysis and dis-
cusses their significance for occupant-​centric design. The results are broken 
down into three sections: (1) analysis of zone diversity and energy consump-
tion, (2) data-​driven surrogate model performance, and (3) analysis of occu-
pant layout optimization.

11.6.4.1 � Energy Consumption versus Zone Diversity

A regression analysis was completed between the lighting energy consump-
tion and the zone diversity metric. The analysis involved each of the 11 zones 
using energy and diversity data aggregated by day over the data-​collection 
period. Zone diversity was computed using the Euclidean distance of the 
96-​dimensional vectors for each zone for each day, and the average lighting 
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consumption was computed across lighting fixtures within each zone. The 
regression analysis found that there exists a positive relationship between 
energy consumption and zone diversity for each zone, with the p-​values for 
the t-​statistics being significant at the 0.001 level for all zones. Figure 11.53 
shows the data along with the regression lines for (a) all zones, (b) the zone 
with the strongest relationship in terms of the regression coefficient (zone 7), 
and (c) the zone with the weakest relationship (zone 10).

This result suggests that reducing zone diversity would be a means to re-
duce the energy consumption of the lighting system. The following sections 
present the results for simulating energy consumption based on occupant 
schedules as well as optimizing building layouts in order to reduce this en-
ergy consumption.

11.6.4.2 � Data-​Driven Prediction of Energy Consumption

The four models described above (MLR, SVR, RF, and ANN) were tested 
using the fivefold cross-​validation methodology. Table 11.12 shows the per-
formance of each model, as estimated through cross validation, using stand-
ard metrics, as well as the time required for both training and prediction 
in this case. The RF model performed the best in terms of MAE, while 
the ANN performed the best in terms of MSE and R2. Therefore, these 
two models were chosen for hyperparameter tuning. Again, fivefold cross 

Figure 11.53 � Relationship between zone diversity metric and energy consumption 
along with regression fits and confidence intervals for (a) all zones—​
with colors representing different zones, (b) zone with the largest re-
gression coefficient (zone 7), and (c) zone with the smallest regression 
coefficient (zone 10).
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validation was performed, and these parameters were tuned using a grid 
search. The final parameters for each model were as follows:

•	 ANN: single hidden layer of size 100, tanh activation function, Adam 
solver, learning rate of 0.01.

•	 RF: 200 trees, minimum split size of 50, minimum samples per leaf of 2, 
maximum depth of 300, bootstrap used in model training.

Model performance after training is shown in Table 11.13. The RF model 
outperformed the ANN model after hyperparameter tuning. In addition to 
calculating R2 for hourly lighting energy prediction values, the data by day 
was also aggregated and the R2 for these daily values computed. Prediction 
improved for both models, especially the RF model, after this aggregation.

Figure 11.54 shows the actual vs. predicted energy consumption (using the 
tuned RF model) for the first seven days in the test set for zone 1. The model, 
while not perfect, accurately captured the major jumps between low energy 
and high energy consumption. One of the benefits of the RF model is that 

Table 11.12  Energy prediction model results on fivefold cross-​validation

Model
Mean 
absolute error 
(MAE)

Mean 
squared error 
(MSE)

Explained 
variance 
(R2)

Time for 
training 
(s)

Time for 
prediction 
(s)

Multiple linear 
regression

9.55 141 0.534   0.0311 0.00198

Support vector 
regression

7.13 118 0.614 30.9 4.38

Random forest 
regression

6.11   98.2 0.678   2.82 0.0983

Artificial neural 
network

6.29   88.7 0.710 54.8 0.0105

Table 11.13  �Energy prediction model results after hyperparameter tuning on both 
fivefold cross-​validation and final test set

Model Errors on CV Errors on test set

Mean 
absolute 
error 
(MAE)

Mean 
squared 
error 
(MSE)

Explained 
variance 
(R2)

Explained 
variance 
(R2)
Hourly

Explained 
variance 
(R2)
Daily

Tuned random forest 
regression

6.27 87.1 0.715 0.740 0.834

Tuned artificial neural 
network

6.28 88.5 0.710 0.734 0.817
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it is quite interpretable in that the importance of each feature in the model 
can be quantified. The feature importance was calculated using the Gini 
importance metric, which can be interpreted as the relative number of times 
tree decisions involved a particular metric (see Figure 11.55). The number 
of occupants in state 3, the high-​energy state, was the second most impor-
tant feature. This finding may explain why the jumps between high and low 
energy consumption were accurately captured in the simulation model: the 
presence of occupants causes the lights to turn on, and this was accurately 
captured in the model.

11.6.4.3 � Occupant Layout Optimization

The surrogate simulation model was leveraged to estimate the energy con-
sumption of the lighting system for the existing occupant layout using the full 

Figure 11.54 � Example predicted (using tuned RF model) versus actual energy con-
sumption data for the first seven days of data in the test set for zone 1.

Figure 11.55 � Feature importance for the final tuned random forest regression model.
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132 days of data, which serves as a baseline. One hundred random occupant 
layouts were also produced and energy consumption was estimated again. 
Then, the clustering-​based algorithm was applied using increasing dimen-
sionality (3, 5, 10, 100, 151, and full dimensionality without reduction). The 
genetic algorithm was also implemented, which explicitly used the surrogate 
model in its optimization. For each optimization option, the algorithm was 
executed 100 times to produce 100 layouts, and the expected energy con-
sumption was simulated for each. The results are shown in Figure 11.56. The 
100-​dimension clustering, 151-​dimension clustering, full-​dimension cluster-
ing, and the genetic algorithm all performed very similarly, resulting in a 
5% reduction in expected energy compared to the existing layout and a 6% 
reduction compared to random layouts. An important result to highlight is 
that the distance-​based clustering algorithm performed about the same as 
the genetic algorithm, which suggests that high-​performance layouts can be 
generated without designing an optimization routine that explicitly consid-
ers energy consumption.

It is interesting to note that the random layouts performed slightly worse 
than the existing layout. There are many possible explanations for this. One 
likely explanation is that people tend to align their behavior to those around 
them, as documented in previous work (Chartrand and Bargh, 1999). In 
other words, individuals’ actions could be influenced by what they see 
their physical neighbors doing. For example, a particular occupant might 
be inspired to take a coffee break when they see their neighbor doing so 
instead of going at a random time, which would have the effect of reduc-
ing the zone diversity metric. This possibility has notable implications for 
the interpretation of this study’s results because the results were based on 
the assumption that occupants’ behavior would not change when their seat 
assignments changed. While this possibility is unlikely to be completely 

Figure 11.56 � Simulated energy consumption (expressed as % change from the exist-
ing layout) for random and optimized building layouts.
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true (and is therefore a limitation of this study’s approach), an important 
question is what the direction of the impact would be if individuals did in 
fact change their behavior. If occupants tend to assimilate their behavior to 
those around them, as this study’s random versus existing results suggested, 
then it is quite possible that given new layouts, people will again assimilate 
to those around them, and thus an even further reduction in energy con-
sumption might be expected. It is also possible that people would change 
their behavior after reassignment in other ways. Therefore, future work is 
recommended to test the empirical effects of true layout changes in office 
buildings.

11.6.5 � Concluding Remarks

This case study demonstrated how capturing data on individualized occu-
pant dynamics within existing buildings can be helpful for improving spatial 
design throughout the building’s use phase. Using ambient plug load energy 
sensors at the desk level, individual schedules of behavior were captured. 
Higher diversity (i.e., more differences) in behavior within individual light-
ing zones correlated with higher energy consumption of the zone’s lighting 
system. Two novel optimization methods were applied: (1) a naïve cluster-
ing approach that used only the occupant schedule data, and (2) a genetic  
algorithm that actively made use of a data-​driven energy simulation engine. 
For this surrogate model, a random forest model was able to accurately 
predict the lighting system’s energy consumption. Both spatial optimiza-
tion routines could reduce lighting energy consumption by 5% compared to 
the existing layout and 6% compared to a random layout. Overall, this case 
study demonstrated the added value of reconsidering commercial buildings’ 
spatial designs after occupancy has begun. This approach offers new oppor-
tunities for achieving sustainable energy targets in existing buildings and 
ensuring that buildings perform well throughout their life cycle.

11.7 � Case Study 6: Niederanven, Luxembourg

Ghadeer Derbas, Karsten Voss, Tugcin Kirant Mitic

11.7.1 � Summary

This case study presents the methodology and key findings of a field study 
conducted on a mid-​rise office building located in Niederanven, Luxem-
bourg. The study focused on the building’s automated shading system 
activation and the interaction between occupants and the shading system 
with the aim of identifying occupant-​centric rules for optimal shading de-
sign solutions. The study included a design investigation, data monitoring 
statistical analysis, a questionnaire, and a simulation-​based analysis. The 
design investigation included an interview with the building designer to 
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better understand the shading system design characteristics and selection 
criteria. The data monitoring was performed under summer conditions in 
2019, and the questionnaire was conducted in 2021 under similar conditions. 
Finally, the simulation-​based analysis evaluated the daylighting and energy 
performance of the shade control strategy.

Contrary to expectations and previous studies’ findings (Reinhart and 
Voss, 2003, Meerbeek et  al., 2014), the present study found relatively few 
interactions between the occupants and the shading system, though more 
interactions occurred when the occupant was located closer to the button 
for manual shade adjustment. Building orientation, social constraints, 
and time of day were found to influence the manual activation of shad-
ing systems. The statistical analysis of the monitoring data showed the low 
performance of a regression model and the superior performance of data 
mining techniques. The main takeaways from this study for designers and 
researchers include: (1) the use of internal/external shading systems can lead 
to optimal results (i.e., fewer override actions), (2) the definition of control 
thresholds is essential, and (3) the deployment of lighting sensors is benefi-
cial. On the operation level, simple and robust shade control strategies are 
recommended.

11.7.2 � Building Description

The case study building was the new Headquarters Goblet Lavandier, a five-​
story office building located in Niederanven, Luxembourg. The building 
received DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen) Platinum 
certification in 2018. The building is located in a temperate oceanic climate 
(Cfb) with a mild marine winter and warm summer with no dry season. The 
building is a quadrilateral concrete structure (25 m × 25 m) with a galva-
nized metal sheet façade (see Figure 11.57). It consists of three underground 
parking floors, a ground floor, and four upper floors (the fourth floor is 
rented). The building core includes circulation and washrooms and creates 
a naturally daylit office zone and passive night cooling. The moderate use 
of transparent surfaces (fenestration) in combination with external Venetian 
blind and inner textile screen play a central role in the energy efficiency and 
daylight concepts of the building design. Table 11.14 provides further details 
about the building.

11.7.2.1 � Monitored Offices

Forty-​seven offices were monitored over 66 working days from June to mid-​
September 2019. The majority of the offices are located along the quadrilat-
eral perimeter facing one of the four cardinal directions (see Figure 11.58). 
The offices are situated on three floor levels and are occupied by an aver-
age of two to six workers per office (see Figure 11.59). The offices’ windows 
are the same in width and height. Each window is equipped with a double 
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Figure 11.57 � Perspective view of Luxembourg building, Christian Bauer & Associés 
Architects.

Source: Jürgen Leick from Goblet Lavadier.

shading system with an external Venetian blind (type Warema E80) and an 
inner textile screen operated manually to avoid glare discomfort.

11.7.2.2 � Configuration of Automated Shading System

The automated external blinds combined with inner glare protection are a 
reflection of design considerations such as more individual workplace con-
trol and passive solar gains in winter. Due to the extra cost, this “double 
system approach” (see Figure 11.60) is not common. The designer was inter-
viewed and the design briefs and architectural documents were investigated 
in-​depth in order to define the design characteristics and selection criteria of 
the shading systems (more details in “Design Investigation” below).

The shading control strategy was developed based on the designer’s ex-
perience. The external shading system is operated automatically based 
on light and temperature control thresholds. Occupants can override the 
blind position and tilt the slat angle to different positions (horizontal slat 
equal to 0°, 60°, and 80°). Any manual interventions disable the automated 
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Figure 11.58 � Typical offices plan view (Goblet Lavandier & Associés Navigation).

Table 11.14  Luxembourg building general characteristics (Lichtmess, 2018)

Item Description

Net floor area (NFA) 2,600 m2

Area-​to-​volume ratio 0.31 m–​1

Window-​to-​wall ratio (WWR) 43% per façade
No. of employees in offices 138 employees (30–​40 employees during the 

COVID-​19 pandemic, July and August 2020)
Year of completion 2018
Thermal insulation U-​walls: 0.13 W/m2 K, U-​roof: 0.13 W/m2 K, U-​

floor: 0.17 W/m2 K
Windows U-​value: 0.75 W/m2 K, g-​value (SHGC): 0.49, 

color rendering: 96%
Ventilation 11,000 m³/h total air volume control depending 

on CO2 concentration, individual air volume 
control in meeting rooms.

Highly efficient heat recovery 80.8%
Shading systems •	 External Venetian blind (upper threshold if 

irradiance on the façade exceeds 400 W/m2, 
lower threshold 250 W/m2), g-​tot = 0.07

•	 Inner textile screen (Ts = 8%, Rs = 12%,  
As = 80%)

Cooling system •	 Passive night cooling to cover 20% of the 
cooling energy demand

•	 Passive ground cooling to cover 80% of the 
rest of the cooling demand

•	 A heat pump can be switched on only in hot 
weather

Heating system Geothermal heat pump with an array of 
vertical probes (i.e., liquid-​filled tubes 
installed in the drilled hole)

Electricity demand and 
generation 

23.7 kWh/(m² a), PV = 14.5 kWh/(m² a)



334  Tareq Abuimara et al.

system until it resets at 11h00 and 15h00. The KNX Elsner sensor controls 
the blinds in each facade. The blinds are automatically raised (closed) when 
wind speed exceeds 12 m/s. The blinds are lowered when the irradiance on 
the façade exceeds 120 W/m2, and the outdoor temperature is above 5°C 
without any delay time. When the irradiance is below 50 W/m2, the blinds 
are retracted after 60 minutes. During the operation phase, the established 
thresholds were modified. The lowering threshold is set up to 250 W/m2 with 
a horizontal slat position to maximize the view to the outside. When the 
irradiance exceeds 400 W/m2, the slat angle inclines up to 15° instead of 80° 
to provide sufficient daylight. Thresholds values can also be increased (e.g., 
a temporary cloudy sky) for less disruptive blind movements.

11.7.3 � Methodology

Figure 11.61 outlines the methodology of the study. This study began with 
a design investigation via a written interview with the designer who was in-
volved during the design and operation phase of the shading systems. Then, 

Monitored
offices

Figure 11.59 � Section view of the building, where shaded areas indicate monitored 
offices (Goblet Lavandier & Associés Navigation).
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(a)

(b)

Figure 11.60 � The double shading system approach. Left: Interior view. Right: Sec-
tion view.

Source: Jürgen MÜLLER, https://www.golav.lu/.
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Figure 11.61 � Methodology of the study.

a post-​occupancy evaluation (POE) was performed using data monitoring 
and data collection (via a web-​based questionnaire) to explore occupants’ 
interaction, satisfaction, and preferences regarding the shading systems. 
Finally, a simulation-​based analysis was performed. Each of these steps is 
presented and described in the sections that follow.

http://www.golav.lu
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11.7.3.1 � Design Investigation

A written, structured interview with the building’s designer was conducted 
via email to explore if any of the questions below were considered during 
the shading system design. To streamline the interview, potential responses 
were provided for many of the questions (in brackets below).

a	 Which solar shading scenarios were proposed before the final shading de-
sign selection? (Internal roller shades, fixed, dynamic, vertical, complex, 
combined).

b	 Which selection criteria were considered during the shading design? 
(Environmental and climatic parameters, energy concern, aesthetics, 
safety, privacy, cost, user comfort, codes, etc.).

c	 What was the basis for the selection of shading control strategy? (Codes, 
guidelines, literature, design brief, designer experience).

d	 Which occupant assumptions were considered during the shading design? 
(Number of occupants, demographic, occupancy, work activities, pref-
erences, etc.).

e	 Did the simulation specialist consider any simulation-​based evaluation 
for the selection of the optimal shading design? If yes, which metrics were 
used?

f	 Was there any cooperation between stakeholders (designer, client, energy 
modeler, etc.) with regard to shading selection and design?

The designer’s feedback provided clarity on the shading system design pro-
cess and selection criteria and a better understanding of the quantitative 
findings of the monitoring study and the questionnaire analysis.

11.7.3.2 � Data Monitoring

Monitored datasets were extracted from the building’s KNX-​based building 
management system (BMS). Data preprocessing was performed on the raw 
datasets, including cleaning, removing outliers, interpolation, and normali-
zation (rescale a variable to have a value between 0 and 1).

The monitored weather parameters included global irradiance (Igl, W/m2),  
outdoor vertical illuminance (Eout, lux), air temperature (Tout, °C), solar 
azimuth, and altitude. The outdoor parameters were measured using a 
weather station mounted on the rooftop of the building. Indoor parame-
ters included air temperature (Tin, °C), relative humidity (RH%), and CO2 
concentration (ppm). The indoor parameters were measured with Netatmo 
data loggers distributed in 11 workspaces throughout the building. Shading 
system-​triggered actions and user-​triggered actions were recorded as event-​
based measurements. The external Venetian blind position—​activated by 
the automated system—​was expressed as 0% fully open and 100% fully 
closed. The datasets were resampled every five minutes using an Excel tool 
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(i.e., HisKNX_V1_2_17_BETA.xlsb, developed by Jürgen Leick from Gob-
let Lavadier) to unify intervals. For analysis purposes, the range of data was 
limited to daytime work hours, between 6h00 and 20h00.

The study analyzed two shade deployment datasets using statistical anal-
ysis methods: (1) system-​triggered datasets and (2) occupant-​triggered da-
tasets. The preliminary behavioral patterns were analyzed in terms of the 
“rate of change” of blind use. The “rate of change” was defined as the num-
ber of user-​shade override adjustments (UOAs) per day per office. Logistic 
regression was applied to the given datasets to identify associations between 
the physical measurements and user-​shade interactions and predict the like-
lihood of UOAs. Alternatively, clustering analysis and association rules 
mining (ARM) were used on the given dataset to allow more accurate as-
sumptions on complex and diverse behavior in big office buildings. Cluster-
ing analysis was used to obtain distinct behavioral patterns using K-​means 
algorithm. The frequent pattern growth algorithm (FP growth) was em-
ployed to mine the association rules. Both regression and clustering analysis 
were performed in IBM SPSS (version 21.0) software, while Rapid Minor, 
an open-​source data mining program, was used for the ARM analysis.

11.7.3.3 � Questionnaire

A cross-​sectional web-​based questionnaire using LimeSurvey was distrib-
uted to the building’s occupants to examine subtle and non-​physical trig-
gers behind blind adjustments and better understand the findings of the 
monitored datasets. The questionnaire was distributed in the summer of 
2021 to ensure that occupants had experienced the same thermal and visual 
conditions as those studied during the monitoring period. The question-
naire was distributed via email to the building’s occupants on July 30, 2021, 
and followed by a reminder three weeks later. The questionnaire included 
questions about participants’ demographic details, mood, work activity, 
contextual environment (e.g., window orientation, size, location), thermal 
and visual discomfort, and interaction with the shading systems, and their 
satisfaction and preferences regarding shading system performance. A total 
of 32 participants (25% of the population) working in single-​occupancy of-
fices completed the questionnaire. Employees who were working from home 
due to the COVID-​19 pandemic were excluded from the population sample.

11.7.3.4 � Simulation-​based Analysis

Daylighting and energy performance of the automated shading control 
strategy was evaluated using a simulation-​based analysis using IDA Indoor 
Climate and Energy (IDA ICE) software. Annual heating, cooling, and 
lighting demand (kWh/m2) were calculated under five shading control strat-
egies, including low (S01: irradiance on the façade exceeded 100 W/m2), and 
high (S03: irradiance exceeded 450 W/m2), S02 was the established design 
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lowering threshold (irradiance exceeded 250 W/m2), S04 (fully closed) and 
S05 (fully open) were added to the analysis for benchmarking. Useful day-
light illuminance (UDI) was used for the daylighting performance assess-
ment. Achieved UDI% is defined as the annual occurrence of illuminances 
across the work plane where the illuminance is within the range of 300–​
3,000 lux (Nabil and Mardaljevic, 2005).

11.7.4 � Results and Discussion

The main findings of the study are presented and discussed in the following 
sections.

11.7.4.1 � Design Investigation

According to the designer’s interview responses, the external and internal 
shading systems were proposed from the early stages of the building design. 
The design of the systems was based on different environmental and cli-
matic parameters, thermal and visual comfort, energy concerns, aesthetics, 
safety and maintenance, budget restrictions, and building codes and stand-
ards. A simulation-​based analysis had been conducted by the designer to 
find the optimal shading control strategy in terms of thermal and visual 
comfort as well as energy performance. However, according to the designer, 
occupant assumptions were not considered in their analysis.

The designer indicated that the intention of the shading design was to 
maximize users’ satisfaction and comfort in their workspaces, which aligns 
with the notion of occupant-​centric design, that is, placing occupants and 
their well-​being as a top priority throughout the building life cycle. The de-
signer’s details about the shading design were helpful in better understand-
ing the quantitative results of the monitoring and questionnaire analysis, 
described below.

11.7.4.2 � Data Monitoring

Shade patterns are explored in terms of system-​ and user-​triggered actions 
to differentiate their behavior regarding office orientation and shade control 
strategies.

11.7.4.2.1 � SYSTEM BEHAVIOR

A total of 576 system-​triggered actions (287 fully raising actions and 289 
fully lowering actions) were recorded—​an average of 8.72 blind changes per 
day. Figure 11.62 shows that the highest frequency of system-​triggered ac-
tions was in west-​facing offices, while the lowest was in east-​facing offices. In 
contrast, the highest frequency of UOAs was in the east-​facing offices, while 
the lowest was in the west-​facing offices. The high rate of system-​triggered 
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actions in the west and south elevations can be explained by (a) the average 
daily high irradiance on the facade (above 400 W/m2) and (b) the users (i.e., 
occupants) occasionally correcting the system.

11.7.4.2.2 � USER BEHAVIOR

A total of 1,148 blind position changes were recorded over the 66 working 
days in the 47 monitored offices. The users triggered approximately 49% 
of the blind movements (fully and intermediate), 274 lowering actions, and 
298 raising actions. The average daily rate of blind use was 0.184 per office. 
Figure 11.63a shows that the highest rate of UOAs was in the east elevation, 
where an average of 3.93 adjustments per day occurred. Fewer interactions 
were observed in the west and north elevations compared to the east and 
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Figure 11.62 � Relative frequency of system-​ and user-​triggered actions for each 
façade.

East

North

South

West

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Relative frequency

Lowering
Raising
Total adjustment

(b)

Conference

Open plan office

Private office

Shared office

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Relative frequency

(a)

Figure 11.63 � Relative frequency of UOAs in terms of (a) office orientation and (b) 
occupancy level.
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south. This result can be explained by the significant variations of global 
irradiance and indoor work plane illuminance in offices in different eleva-
tions. To reduce the visual discomfort and blind-​triggered actions in the 
east and south elevations, smaller window size and fixed shading could 
be adapted in the building envelope design, as suggested by O’Brien and 
Gunay’s (2015) robust design strategies.

Figure 11.63b shows a higher frequency of UOAs observed in shared of-
fices, with an average of 0.19 changes per day per office compared to single-​
occupancy and open-​plan offices. Most of the shared offices are located in 
north-​east elevation close to a nearby building. This result is not in agree-
ment with O’Brien et al. (2013), who found that, due to social pressure and 
constraints, occupants tend to be more reluctant to control their environ-
ment if others are present.

Figure  11.64 shows that the shades in the east and south facades were 
adjusted more frequently in the morning than during the rest of the day, 
while the opposite occurred in west-​facing offices. This result is in line with 
previous studies (Inoue et al., 1988; Haldi and Robinson, 2010b) that found 
that occupants interact more with blinds immediately upon arrival to the 
space. In north-​facing offices, occupants tended to raise the blinds all day 
and in the evening.

Overall, the daily rate of change of UOAs was relatively low compared to 
the findings of previous studies. For comparison, Reinhart and Voss (2003) 
reported a mean of 3.7 blind movements per day per office over 174 weekdays 
in 10 south-​facing offices, which is 20 times the present study’s findings. In 
another study by Meerbeek et al. (2014), an average of 0.86 blind adjustments 
per day per office were recorded over 100 working days in 40 offices, which 
is five times this study’s findings. Considering these studies were conducted 
in temperate climate zones same as the present case study, the difference in 
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findings may be explained by the case study building having both (a) appro-
priate and acceptable shade control thresholds and high-​quality light sensor 
performance, and (b) additional inner glare protection, which requires less 
effort to prevent glare. Additionally, the daily profile of CO2 concentration 
was analyzed in nine offices in the case study building to estimate occupancy 
presence; based on the results, the offices were occupied approximately 97% 
of the study period. Thus, the low rate of blind use is unlikely to be related to 
occupant absence. Instead, the findings suggest that the automation system 
performance met occupants’ preferences and expectations.

11.7.4.3 � Regression Analysis

The initial aim of the present study was to derive occupant behavior models, 
as a high rate of shades adjustments was expected based on previous studies 
(Reinhart and Voss, 2003, Meerbeek et al., 2014). Thermal and visual stim-
uli were identified by earlier research as influencing blind use (Haldi and 
Robinson, 2010a; Mahdavi et al., 2008). Accordingly, this study used logistic 
regression to predict the probability of UOAs as a function of several ex-
planatory variables:
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where tan_d is the tan of solar profile angle, AOV% is the average occlu-
sion value of the blind (0% fully open and 100% fully closed), θslat angle is 
the slat angle degree (0°, 60°, 80°), β0 is the intercept, and βn is the variable 
coefficient.

Separate analyses were conducted to predict the probability of UOAs 
(lowering and raising actions) for each façade (E, S, N, W), including eight 
sub-​models. The forward regression method was used to select the explan-
atory variables that have a statistically significant influence on the value of 
the dependent variable ( p-​value < 0.05). Further details about the statistical 
analysis process are available in Derbas and Voss (2021).

The regression results had a considerably low Nag. R squared (in other 
words, the proportion of the variance for a dependent variable was close to 
zero) of all sub-​models for shade lowering and raising actions. Moreover, a 
weak relationship between the model predictions and the physical parame-
ters was found. The developed sub-​models were all incapable of predicting 
UOAs. The limitations of the monitored parameters such as indoor work 
plane illuminance and glare probabilities, which are the primary triggers 
behind blind use, may explain why the models could not accurately explain 
the actions. Based on these results, it can be concluded that in this case, 
this commonly used modeling approach was not successful for explaining 
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occupant behavior. This limitation justified an alternative approach for 
analyzing the observed patterns, as discussed in the next section.

11.7.4.4 � Data mining Analysis

Data mining techniques, including clustering analysis and association rules 
mining, were considered an alternative methodology to provide more accu-
rate assumptions of complex and diverse individual behavior in big office 
buildings and overcome the limitations of the regression models. The results 
of the two techniques are described in turn below.

11.7.4.4.1 � CLUSTERING ANALYSIS

First, interactivity patterns clustered occupant behavior based on the fre-
quency of UOAs per day. The user-​control ratio was calculated by dividing 
the number of user-​triggered adjustments per office by the total number of 
adjustments (system-​ and user-​triggered actions) for that office. The activity 
ratio was calculated by dividing the total number of user-​shade override 
adjustments for an office by the average number per 47 offices. Figure 11.65 
shows 47 offices labeled by numbers and plotted, where the x-​axis indicates 
the activity ratio and the y-​axis represents the user-​control ratio. The fol-
lowing interactivity behavioral patterns were clustered in the given dataset:

•	 Passive adjustments [C01]: 66% of offices assigned (range of 0–​0.17 times 
per day).

•	 Neutral adjustments [C02]: 21% of offices assigned (range of 0.18–​0.36 
times per day).

•	 Active adjustments [C03]: 13% of offices assigned (range of 0.44–​0.58 
times per day). The offices assigned to this cluster have common design 
features: they are all shared offices and face north-​east.

Second, motivational patterns clustered the factors that drive users to over-
ride the automated shading systems. Three clusters of shade-​lowering actions 
and two clusters of shade-​raising actions were defined (see Figure 11.66a and 
b). The clusters were based on each variable’s impact factor (regression co-
efficients) that influenced the UOAs. Accordingly, logistic regression was 
performed to define the most statistically significant variables in each office. 
Patterns of user-​shade lowering were clustered in 25 offices, and user-​shade 
raising was clustered in 30 offices. The rest of the offices were excluded since 
they had the lowest frequency of UOAs.

Based on the motivational patterns, five clusters were induced as follows:

•	 Shade lowering cluster 01 [C01_L]: 12% of offices were assigned and 
associated with the time of the day (early morning and morning) and 
outdoor weather conditions (Tout, tan_d).
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Figure 11.65 �  User-​shade clusters based on interactivity patterns.

•	 Shade lowering cluster 02 [C02_L]: 24% of offices were assigned and 
associated to the time of the day (early morning until afternoon) more 
than physical drivers.

•	 Shade lowering cluster 03 [C03_L]: 64% of offices were assigned and 
appeared to be more influenced by slat angle position than physical and 
time-​related drivers.

•	 Shade raising cluster 01 [C01_R]: 63% of offices were assigned and ap-
peared to be more influenced by the slat angle position and time of the 
day (noon and afternoon) than physical drivers.

•	 Shade raising cluster 02 [C01_R]: 37% of offices were assigned and asso-
ciated to the time of the day and indoor air temperature.

The clustered patterns constitute a base for association rules classifying the 
building occupants into typical office user profiles as described in the next 
section.

11.7.4.4.2 � ASSOCIATION RULES MINING (ARM)

Based on the 20 rules mined, two working user profiles (user ß, user µ) were 
drawn in this study:
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•	 User type ( ß) represents the passive user who tends to override the au-
tomated shading system on average 0.09–​0.17 times per day (passive 
adjustments). User ß is mainly influenced by the time of day and the 
current blind state for both lowering and raising adjustments.

•	 User type (µ) represents the medium user who tends to override the 
automated shading system on average 0.18–​0.36 times per day (neutral 
adjustments). User µ is mainly influenced by the time of day and the 
current blind state only for raising adjustments.

11.7.4.5 � Questionnaire

In total, 32 of the case study building’s occupants completed the question-
naire, 71.9% of whom identified as male and 28.1% as female. Regarding 
employee role, 68.8% of participants performed professional jobs (e.g., en-
gineer, specialist planner), 18.8% were in managerial positions, and 12.5% 
were administrators. The main results of the questionnaire are presented 
and discussed in the sections that follow.
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Figure 11.66 � User shade (a) lowering and (b) raising clusters based on motivational 
patterns.
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11.7.4.5.1 � USER-​SHADE INTERACTION, SATISFACTION, AND PREFERENCES

About 75% of the participants reported never opening or adjusting the ex-
ternal blind once per week, whereas 10% closed the external blind a few 
times per day or week (see Figure 11.67). Overall, a low level of manual over-
rides to the automated shading system was observed, which is in line with 
the quantitative results from the study’s monitoring analysis. More than half 
of the occupants indicated that there was no need to adjust the external 
blind, 20% reported that the blinds are fully open all the time, and 20% pre-
ferred the automatic position. Roughly 25% of the occupants chose to adjust 
only the inner glare protection because it is faster and easier to avoid glare 
(compared to waiting for the external blind to move). However, 34.4% of the 
occupants preferred the external blinds to the inner glare protection, while 
28% liked both systems equally and 12% did not like either.

Approximately half of the occupants were satisfied with the performance 
of the automated shading system with an average of 3.68 on a 5-​point scale 
(0 = very dissatisfied, 5 = very satisfied). Some participants explained that 
the automated shading systems are much more efficient than the glare pro-
tection and simple to operate via a push button. Most participants (93.8%) 
were satisfied with their ability to control both shading devices, that is, 
the “double approach”, with an average satisfaction rating of 4.43 (see 
Figure 11.68).

11.7.4.5.2 � INFLUENCE OF CONTEXTUAL FACTORS ON BEHAVIORAL PATTERNS

Figure  11.69 shows the relative frequency of shade lowering and raising 
actions in terms of floor level, office orientation, WWR, and window to a 
desk position. Few occupants (15%) whose offices are located on the first 
floor raised the external blind once or more per day. Fewer raising actions 

0% 20% 40% 60% 80% 100%

Adjusting inner
glare protection

Raising external
blinds

Lowering external
blinds

Response %

Never
not very often
Once or twice a week
More than twice a week
Once or twice a day
More than twice a day

Figure 11.67 � Relative frequency of user interactions with inner glare protection and 
external blinds.



346  Tareq Abuimara et al.

3.
68

75

4.
43

75

External blind Double system
1

2

3

4

5

6

Sa
tis

fa
ct

io
n

vo
te

s

Figure 11.68 � Satisfaction rating of the performance of external blind and the ability 
to control “double systems”.

0% 25% 50% 75% 100%

1st floor (41%)

2nd floor (38%)

3rd floor (22%)

East (22%)

South (19%)

West (28%)

North (25%)

25% of the wall area (9%)

50% of the wall area (41%)

75% of the wall area (50%)

up to 1 metre (50%)

up to 2 metres (28%)

up to 3 metres (22%)

Fl
oo

r l
ev

el
O

ffi
ce

 o
rie

nt
at

io
n

W
W

R
%

W
in

do
w

 to
de

sk
 p

os
iti

on

Relative frequency %

(a) How often do you open the external blinds?
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(b) How often do you close the external blinds?

Never Once or twice a week More than twice a week

Once or twice a day More than twice a day

Figure 11.69 � Influence of contextual factors on shade behavioral patterns.
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were noticed on the upper floors, while more closure actions occurred on 
the third floor. In the east-​ and south-​facing offices, occupants opened the 
external blinds more frequently than in the north-​ and west-​facing offices. 
This finding is in line with the findings from the data monitoring analysis.

In Figure 11.70a and b, considering that 0 on the y-​axis refers to “never 
adjusted” and 5 refers to “more than twice a day”, occupants who sit about 2 
m from the window adjusted the external blinds more frequently than those 
sitting closer to the window. This difference could be due to (a) ease of access 
to the push button for the automatic blinds (next to the office door), and (b) 
most of these offices faced north (see Figure 11.70b). In the east-​ and south-​
facing offices with large window areas (WWR=75%), occupants opened the 
external blinds more frequently than those in offices with smaller windows 
(WWR=50% and 25%) (see Figure 11.70a). Therefore, moderate window size 
(50%) and desks farther from the window (more than 2 m) in east and west 
elevations may decrease UOAs. Based on these results, it is recommended 
that building designers set the first row of desks several meters back from 
the façade, such that the work planes will rarely receive direct solar radi-
ation. Furthermore, moderately sized window areas are recommended in 
east and south elevations to decrease the number of shade interventions.

11.7.4.6 � Simulation-​based Analysis

The daylighting and energy performance of the different shading control 
strategies (based on irradiance threshold) were simulated. The impact of 
inner glare protection was ignored in the analysis since insufficient infor-
mation about the usage of the system (e.g., number of lowering and raising 
actions) was known during the study period. Figure 11.71 demonstrates that 
UDI% values were the highest under S01 and S02 (original design) control 
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strategies in west-​ and north-​facing offices with slight differences. This re-
sult is expected since the shade-​lowering irradiance threshold exceeds 100 
W/m2 in S01 and 250 W/m2 in S02. The lowest UDI% values were in the 
south elevation when irradiance thresholds exceeds 450 W/m2 (S03), and the 
blind is fully closed or open.

Figure 11.72 shows the annual heating, cooling, and lighting demand in the 
building offices under different shading control strategies (S01–​S05). Light-
ing demand was hardly affected by the different control strategies since the 
lighting was turned off if the work plane illuminance was above 500 lux. 
More significant differences were found in the heating demand, where the 
difference between the original design (S02) and the lowest demand (S05) 
reached up to 9.2 kWh/m2. The total energy demand of S02 was higher than 
S01 by 43.74 kWh/m2 and lower than S03 by 76.82 kWh/m2. The main dif-
ference was in the cooling demand. Overall, the established shading con-
trol strategy seems to provide sufficient daylighting and views to the outside 
(note that the blind is closed 40% of annual working hours) as well as keep 
the energy use close to the minimum compared to other control strategies.

11.7.5 � Concluding Remarks

The case study presented a successful example of automated shading sys-
tem design and utilization. Based on the monitored datasets results, the 
daily rate of change of UOAs (i.e., occupants’ interaction with the systems) 
was relatively low compared to previous studies (Reinhart and Voss, 2003; 
Meerbeek et  al., 2014). The regression analysis, a commonly used mode-
ling approach, did not successfully explain the occupant behavior in this 
case. Using data mining techniques as an alternative methodology might 
be an improvement in terms of exploring occupant behavior patterns and 
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(fully closed)
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(fully open)
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35%
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North
East

(100 W/m2) (250 W/m2) (450 W/m2)

Figure 11.71 � UDI% (300–​3,000 lux) distribution on the work plane under different 
shading control strategies.
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allowing more accurate assumptions of complex and diverse behaviors in 
big office buildings. Similar results were found in the questionnaire analysis, 
where more than 50% of the occupants indicated that they rarely or never 
adjusted the automated external blinds.

This case study provides building designers and operators with potentially 
valuable insights about shading design features and operation strategies that 
may increase occupant comfort and satisfaction. Key insights include:

1		  Use double shading system approach (internal/external).
2		  Apply an acceptable range of established shade control thresholds. For 

instance, low irradiance thresholds (250–​400 W/m2) are recommended 
for shade control in south-​ and east-​facing offices with moderate win-
dow size or fixed shades. In contrast, high irradiance-​lowering thresh-
old (above 400 W/m2) can be adopted in north-​ and west-​facing offices.

3		  Use high-​quality and accurate light sensors.
4		  Quiet and infrequent movements while operating the automated shad-

ing systems can increase occupant satisfaction.
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Further research is needed to develop comprehensive guidelines for 
occupant-​centric shading design—​for example, studies exploring various 
building types in different climatic zones and with long-​term monitoring.

11.8 � Case Study 7: Gothenburg, Sweden

Quan Jin, Holger Wallbaum

11.8.1 � Summary

This case study, A-​building, is a newly renovated office building in Goth-
enburg, Sweden. The building is certified Miljöbyggnad Silver (version 2.2), 
which aims to achieve both better indoor comfort and low energy use. This 
occupant-​centric analysis focused on the operation phase and examined the 
indoor environmental performance predicted during design. The findings 
indicated both conformities and discrepancies between the designed per-
formance and the actual performance as perceived by the occupants. On 
the one hand, the design enhanced the building’s performance regarding, 
for example, daylight, ventilation, and energy savings. On the other hand, 
occupant surveys revealed that performance gaps exist between what was 
targeted and what was perceived regarding, for example, satisfaction with 
the indoor temperature and window screen and preference for daylight and 
indoor climate control. The findings of this study can contribute to closing 
performance gaps by examining how occupants perceive and experience the 
office environment.

11.8.2 � Building Description

The A-​building is an office building hosting the Department of Architecture 
and Civil Engineering on the Chalmers University campus in Gothenburg, 
Sweden (see Figures  11.73 and 11.74). The building was built in 1968 and 
extensively renovated in 2016 and 2017. A significant challenge during the 
building renovation was the preservation of the historical features of the 
building. The building was reoccupied in 2018 and is currently fully oper-
ational as of May 2022. It is located in the marine west coast climate zone 
according to the Köppen Climate Classification and features mild summers 
and cool but not cold winters.

The building consists of five stories with lecture halls and work studios on 
the first and second floors, staff and faculty offices on the third and fourth 
floors, and a kitchen and study rooms for students as well as a lunch and cof-
fee room with a kitchen for employees on the fifth floor. In this case study, 
only the office floors (i.e., third and fourth floors) were the subject of anal-
ysis. The total floor area of the office floors is approximately 4,925 m2. The 
study was conducted in 2018 after the building had been reoccupied for a 
year post-​renovation.
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The newly renovated A-​building was certified as Miljöbyggnad Silver 
(version 2.2) by the Sweden Green Building Council. Miljöbyggnad is a 
Swedish system for the environmental certification of buildings (new and 
existing buildings as well as buildings in operation) that aims to provide 
comfortable and safe environments for people to work and live. The system 
certifies buildings at three levels—​Bronze, Silver, and Gold—​with regard 
to energy, indoor environment, and materials/chemicals. The case study 
building’s Silver level is awarded when a building is designed to perform 
better than the reference values in the Swedish building regulation in terms 
of, for example, lower energy use, a higher daylight factor, and a lower pre-
dicted percentage of dissatisfied (PPD) value. The A-​building specifically 
addresses low energy consumption, a comfortable indoor environment, and 
creative workspaces. The main energy-​efficient features include sun shades, 
energy-​efficient windows, a low U-​value of wall, and a mechanical variable 

Figure 11.73 � Photo of the A-​building exterior space.

Figure 11.74 � Photo of the A-​building interior office space.
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air volume (VAV) ventilation system. Since the renovation of the A-​building 
was so extensive, the certification process followed the (stricter) certification 
requirements required for new buildings.

11.8.3 � Building Design Parameters

The focus of the renovation design was to create a building that contributed 
to different sustainable perspectives, including energy conservation and 
an improved indoor environment. The heating, cooling, and electricity are 
intended to be controlled based on internal load variations from people, 
equipment, and the outdoor climate. Table 11.15 shows the design parame-
ters for the renovation of the A-​building.

The building envelope was a classical brick-​and-​mortar double-​wall with 
a cavity gap in between, as was very popular in Sweden in the 1960s. Dur-
ing the renovation, the building exterior was kept similar, and additional 
inorganic insulation was added from the inside. By adopting this strategy, 
the historical features of the building were preserved and better thermal 
performance of the exterior wall achieved by reducing the heat flows from 
the indoor to the outdoor environment.

The windows were also renovated. All the windows in the building were 
replaced with energy-​efficient windows with a low thermal transmittance 
(U-​value). The windows are now operable, triple-​pane casement windows. 
Exterior screens (i.e., awnings, a sheet of canvas, or other material stretched 
on a frame and used to keep the sun off the windows) were also installed to 
further reduce solar heat gain and protect from glare. All sunlit rooms fac-
ing south, west, and east were provided with effective exterior screens. The 
screen is automatically controlled based on the solar radiation level and out-
door temperature. Curtains were also added on the inside of the windows to 
be controlled manually by occupants.

The ventilation system was replaced by a mechanical variable air volume 
(VAV) ventilation system with heat recovery. The ventilation system is con-
trolled based on the presence of occupants in each room by adjusting the 

Table 11.15  Design parameters for the renovation of the A-​building

Exterior wall U = 0.44 W/m²K

Window Triple pane casement
U = 1.04 W/m² K including window frame
SHGC (g-​value) = 0.4
Light transmission, 60%

Exterior screen Awning, fabric
g-​value screen: 0.21–​0.24

Ventilation FTX with VAV
Maximum four outlets × 5 m³/s in office room
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airflow rate according to the signal of presence as well as the indoor tem-
perature. Figures 11.75–​11.77 show each of the components mentioned above 
(exterior screens, windows, and ventilation).

11.8.4 � Methodology

Energy performance is a topic frequently addressed in building renovations 
and green building design. However, there are still many newly renovated 
buildings that regularly receive complaints from their occupants, especially 
concerning the indoor environmental conditions (Lee et al., 2019). In other 
words, there are often gaps regarding occupant satisfaction between the 
designed and the actual conditions. The purpose of the present case study 
was to examine the A-​building’s post-​renovation performance in terms of 
indoor environmental quality (IEQ)—​specifically, the extent to which the 

Figure 11.75 � Photo of the A-​building’s exterior screens.

Figure 11.76 � Photo of one of the A-​building’s triple pane windows and screens.
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building’s design achieved the target of a comfortable indoor environment 
based on occupants’ perceptions of the building’s performance.

To achieve this purpose, the study included three parts. The first part in-
volved reviewing the building’s design parameters and simulation results of 
its energy performance and indoor comfort (thermal comfort and daylight). 
The second part was a post-​occupancy evaluation (POE) based on the smart 
and sustainable office (SSO) User Insight Toolbox (Cordero et al., 2017; Jin 
et al., 2019) that collected occupant feedback on indoor environmental qual-
ity (IEQ) and behaviors related to indoor comfort and individual control 
over indoor climate. The third part was a comparison of the original build-
ing design and the occupant survey results and a reflection on the develop-
ment of an occupant-​centric design concept (see Figure 11.79). Each part is 
described in turn below.

11.8.4.1 � Building Design Simulations

In this study, simulation was used in the early stage building design and to 
support the implementation of the Miljöbyggnad certification. There are 13 
aspects and up to 16 indicators in the Miljöbyggnad certification that need to 
be rated individually and then aggregated to grade a building as Bronze, Silver, 
or Gold. The goal of the A-​building renovation was to achieve Miljöbyggnad 
Silver. To achieve this goal, the renovation could not only focus on the energy 
performance but also needed to reach high-​performance level of IEQ related 
to occupant comfort and health. This goal was achieved by performing com-
prehensive simulations of the building’s energy demands, thermal comfort, 
and daylight. A detailed building model was created using the software IDA 
Indoor Climate and Energy (IDA ICE) to predict the building energy and 
indoor environment performance (see Figure 11.78). The results of this simu-
lation were used for comparison with the results of the POE, described below.

Figure 11.77 � Photo of the A-​building’s ventilation inlet.
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Energy simulation was performed to ensure that the specific energy use, 
which refers to the supplied energy to building’s service and energy system 
distributed over the floor area heated above 10°C, meet the requirement of 
75% of the energy use of BBR (2017).

Indoor thermal comfort in winter and summer were simulated as well, 
and PPD index was calculated. To meet the Miljöbyggnad requirements, 
representative floors and worst cases were studied. The representative floor 
stands for the type of the entire building or a few floors (i.e., office or class-
room). The worst cases are considered, such as lower floors for daylight sim-
ulation, the risk of overheating and cooling for thermal comfort in summer 
and winter, and full exposure toward north-​ and south-​west. In this case, for 
the thermal comfort simulation, floor 4 was selected as the representative 
floor of office space, and for daylight simulation, floor 3 was selected as the 
representative floor, considering it bad for good daylight.

Occupant-​related information and assumptions such as internal loads 
and occupancy were taken into account as they are of significance for the 
indoor climate. The basis of the set up for these parameters is based on 
the national guideline on determining the building energy use (BEN 2) and 
the default values provided by IDA ICE. The following Table 11.16 shows 
detailed information about these parameters.

11.8.4.2 � Post-​occupancy Evaluation

POE is frequently used to evaluate building performance and gather data 
from building occupants. When conducting POE, useful knowledge is 

Figure 11.78  �3D model for the structure of A-​building.
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assembled to improve the design and operation of both new and renovated 
buildings. POE is essential to examine and motivate occupant-​centric build-
ing design. There are various ways to implement POE depending on the 
complexity and depth of evaluation. Surveys are a commonly used method 
to assess occupants’ satisfaction levels—​for example, the Building User 
Satisfaction (BUS) survey and UC Berkeley’s Center for the Built Environ-
ment (CBE) survey on office IEQ satisfaction (Leaman and Bordass, 2001; 
Zagreus et al., 2004). These two surveys include detailed questions about 
occupants’ comfort, health, and productivity.

For the preset case study, POE was conducted using the SSO User Insight 
Toolbox (Cordere et al., 2017; Jin et al., 2019). This toolbox relies on a holistic 
mixed methods approach based on qualitative and quantitative measures 
to capture a broad range of office occupants’ comfort-​ and health-​related 
factors, including current and general well-​being. The empirical evidence 
can help identify implementation strategies for a new generation of user-​
oriented and resilient building design solutions for future offices. One of the 
main goals of the SSO User Insight Toolbox is to put users at the center of 
office design by collecting their experiences and needs—​in this case, regard-
ing the A-​building’s indoor environment, individual control, energy use, 
and social aspects of building use.

In addition to IEQ measurements, the SSO User Insight Toolbox includes 
the following tools:

•	 Web-​based SSO Survey
•	 Web-​based SSO Diary App
•	 Observation studies
•	 Individual and focus group interviews
•	 Reporting tool

The web-​based survey (see Figure 11.79) is a tool to gain a holistic impression 
of a user’s experience with the environment. The survey includes a series 
of questions around broad themes, such as general satisfaction, stress, and 
preferences, as well as more specific themes, such as mood and job and life 
satisfaction. Information about users’ energy-​related behavior, perceived 
health, and self-​reported work performance is also gathered, as are details 
about individual contextual factors (e.g., nature of work). As the other tools 

Table 11.16  Occupant-​related parameters and setpoint (the third and fourth floors)

Cooling setpoint 23°C at presence, 25°C no presence
Heating setpoint 22°C at presence, 20°C no presence
Person heat 80 W/person
Clothing, activity 1.0 clo winter; 0.5 clo summer; 1.2 MET
Occupancy Varying attendance between 7:00 and 17:00

Occupancy density: 0.07 person/m2
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of the SSO User Insight Toolbox are not the focus of this chapter, the de-
tailed description can be found in the study (Jin et al., 2019).

In the present study, a POE adapted from the SSO User Insight Toolbox 
focusing on the web-​based survey was conducted over a two-​week period in 
August and September 2019, one year after occupants’ return post-​renovation. 
In brief,

•	 A total of 283 permanent employees (i.e., long-​term contracts) working 
in occupying offices on the third and fourth floors were invited to com-
plete the web-​based SSO survey; 160 (57%) participated in the survey, 
although around 40 chose not to answer all of the questions. Data were 
collected from occupant experience and satisfaction on IEQ, behavior, 
and individual control over indoor environment. The survey asked oc-
cupants a range of questions about their perceptions (i.e., experience 
and satisfaction) about the building’s performance, including several 
factors of the indoor environment (glare, daylight, temperature, etc.) 
and adaptive behaviors for indoor comfort.

•	 Observations of the offices took place four times a day during three 
working days and three times a day during two working days to better 
understand how the spaces were used.

•	 A total of 46 in-​depth individual interviews and two focus group inter-
views were conducted with a selection of the employees to gain a deeper 
understanding of individual needs.

For the purposes of this chapter, we will present and discuss only the survey 
findings because the study focuses on occupant perceptions of the actual 
indoor environments and the building design. See the study (Jin et al., 2020) 
for more results of the POE. The diary app and the reporting tool will be 
introduced in the future study.

Figure 11.79 � Image of the SSO User Insight Toolbox’s web-​based survey accessed 
via smartphone.
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11.8.4.2.1 � COMPARISON OF THE BUILDING DESIGN AND SURVEY RESULTS

The target of the original building design is to achieve a high performance 
of good indoor environment and low energy use. The survey results from 
the study will be analyzed to examine the building’s real performance and 
compare with the building design and simulation results. See Figure 11.80.

11.8.5 � Results and Discussion

This section begins with the results of the building simulation from the early 
design phase, followed by key findings from the survey from the POE. Then, 
the simulation and survey results are compared and discussed alongside re-
flections on the development of an occupant-​centric office design concept.

11.8.5.1 � Building Simulation Results

The following sections describe the simulation results for the original model 
for the A-​building’s renovation, with a focus on energy performance, ther-
mal comfort, and daylight.

11.8.5.1.1 � ENERGY

Specific energy use intensity (EUI) for the whole building was calculated as 
57.4 kWh/m2 Atemp per year, which meets the requirement of Miljöbygg-
nad Silver (60 kWh/m2 Atemp per year). The term Atemp defines the f loor 
area for which the building’s primary energy use is to be calculated. Atemp is 
the sum of the interior area for each floor, attic, or basement that is heated to 
more than 10°C. With the exterior screen installed, the solar heat load was 
reduced to less than 43 W/m2 Atemp, which is rated as Miljöbyggnad Gold.

Building 
Design

Design Target: 

high performance of 
good indoor comfort 

and 
low energy use

Post-
occupancy 
Evaluation

Exterior 
sunshades

Building design: Learning from occupant experience

Low U-value 
exterior wall

Energy efficient 
windows

Indoor 
environment

Questionnaire
• Indoor environment
• Comfort
• Energy use

Perceived indoor 
environment 
• Temperature
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• Air freshness
• Visual comfort

Perceived indoor 
climate control 
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• Temperature
• Sunshade

Variable air 
volume

Occupant behavior
(window, curtain, 
clothing, and heater)

Figure 11.80  Building design concept: learning from occupant experience in the 
A-building.
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11.8.5.1.2 � THERMAL COMFORT

The simulation results showed that the PPD in summer was lower than 
10% in all simulated offices on the fourth floor. In the Miljöbyggnad rating 
system, this indicator of summer indoor climate was rated as Miljöbygg-
nad Gold. The simulation results also showed that the PPD in winter was 
lower than 10% in all simulated office spaces. This result means that the 
indicator of winter indoor climate was rated as Miljöbyggnad Gold as well. 
Figure 11.81 shows the PPD values on the fourth floor in a cold winter from 
the simulation by IDA ICE.

11.8.5.1.3 � DAYLIGHT

The simulation results for daylight showed that the daylight factor (DF) was 
≥1.2% for more than 21% of the total heated floor area on the third floor (see 
Figure 11.82). Only 3% of the total heated floor area was calculated with the 
DF of 1.0%. For all the office rooms on plan 3, most of the rooms were rated 

Figure 11.81 A selection of simulation result of the PPD on the fourth floor.  �

Figure 11.82 � Simulation result of daylight factor on the third floor.
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as Miljöbyggnad Gold, and one room was rated as Miljöbyggnad Bronze. 
The final grade for the DF was rated as Miljöbyggnad Silver.

11.8.5.2 � Post-​occupancy Evaluation Results

Figure 11.83 shows the levels and percentages of occupants’ satisfaction with 
eight factors of the indoor office environment based on the survey results 
from the POE. In general, most of the factors were perceived as satisfactory 
by most of the occupants, except the screen and indoor temperature. The 
satisfaction rate for the overall indoor climate was about 70%. The amount 
of light and glare had a satisfaction rate higher than 80%, and other factors 
(air quality, daylight, air movement, and access to outside views) had a sat-
isfaction rate of 70%. The most dissatisfactory factors were the air temper-
ature and the screen.

Figure  11.84 shows occupants’ satisfaction with the level of individual 
control of the indoor climate. In the survey, occupants were asked about 
their perceptions of daylight, ventilation, and indoor temperature since 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Air quality

Temperature

Amount of light

Daylight

Air movement

Access to outside view

Glare on the computer

Function of sunscreen

Dissatisfied Neutral Satisfied

Figure 11.83 Percentage of occupant satisfaction with eight factors of the indoor 
environment.
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Figure 11.84 � Percentage of occupant satisfaction for individual control of the indoor 
environment.
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these can be controlled to some extent by occupants. For example, glare/
daylight can be blocked by a curtain, airflow can be controlled by either 
opening or closing a window, and indoor temperature can be controlled by 
operable windows. The screen cannot be operated manually by the occu-
pants. In general, the satisfaction rates for all three components were rela-
tively low, where more than 30% of occupants reported feeling dissatisfied. 
A majority of occupants expressed dissatisfaction with the control possibil-
ities regarding indoor temperature.

Figure 11.85 shows the frequency of occupants’ adaptive actions to improve 
comfort. It was observed that about half of the occupants reported operating 
the windows “Very often” in the office, and, in total, more than 70% of the 
occupants reported operating the windows at least “At times”. Another fac-
tor related to occupant behavior was clothing: about 70% of the occupants 
reported adjusting their clothing to improve their thermal comfort.

11.8.5.3 � Comparison of the Building Design Performance and the 
Perceived Performance

The original design for the renovation of the A-​building met the design re-
quirements of Miljöbyggnad Silver with a good indoor environment and 
low simulated energy consumption. In this case study analysis, the design 
information was collected and compared with data collected from occu-
pant surveys. The results showed that the design enhanced the building’s 
performance regarding daylight, ventilation rate, and energy saving, among 
others. Some indicators, such as daylight factor and PPD, were simulated 
and met the requirements for the Miljöbyggnad Gold level. Additionally, 
the exterior screen both reduced specific energy use in the A-​building and 
contributed to high occupant satisfaction against the glare on their com-
puter screens.

However, the survey results pointed to gaps between the designed per-
formance and perceived building performance. Thermal comfort was not 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Window

Clothing

Curtain

Heater

Never At times Very often

Figure 11.85 � Frequency of occupant behavior for individual comfort.
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perceived to be satisfactory by the majority of the occupants even though 
the PPD was simulated to be less than 10% with a thermal sensation around 
neutral. The majority of occupants indicated a preference for a warmer in-
door environment. Simultaneously, 30% of the occupants were not satisfied 
with the air movement, as drafts were perceived in some rooms. Yet, the 
reported occupant satisfaction with perceived air quality was at a good level 
with VAV ventilation.

Furthermore, the function of the screen was not perceived to be satisfac-
tory by more than half of occupants, where many occupants preferred more 
daylight and felt that the screen blocked daylight and outside views, and it 
cannot be operated manually. Thus, 30% of the occupants felt dissatisfied 
with daylight levels, even though the amount of light was sufficient accord-
ing to the measured values (Jin et al., 2020). Likewise, occupants were not 
satisfied with the level of individual control of the indoor climate, such as 
room temperature, mechanical ventilation, and natural light.

These gaps may be because of design decisions and/or control strategies 
in the operation phase. For example, the airflow rate, which varies with 
presence, might be set too high and it cannot be controlled by occupants. 
Alternatively (or additionally), the setup value of solar radiation for daylight 
might be too low. The color and transparency of the screen material might 
be another influential factor.

When considering energy conservation in a building renovation, occu-
pant demand and preference need to be addressed. In the A-​building, the ex-
terior screen was energy efficient; however, it reduced daylight and outside 
views. A better solution is needed to balance energy savings and visual com-
fort. Likewise, occupants’ control of the indoor climate must be considered. 
With the possibility of ventilation and screen control, for example, occupant 
satisfaction might be improved.

11.8.6 � Concluding Remarks

The A-​building is an example of a building renovation that was designed 
to perform well in terms of indoor environment and low energy consump-
tion. Energy-​efficient solutions were applied, including high-​performance 
windows, low U-​value exterior walls, exterior screens, and a VAV with heat 
recovery. Yet, there were notable discrepancies between the A-​building’s de-
signed and actual performance during operation and its occupants’ percep-
tions of indoor comfort. Occupants’ insights, collected through an extensive 
POE using the SSO User Insight Tool, included occupant satisfaction with 
IEQ, indoor climate control, and occupant behavior. The study found sev-
eral instances of occupant dissatisfaction with the indoor environment that 
reinforce the need for more occupant-​centric building design processes.

For example, in the A-​building, opening windows happened frequently 
compared to other interventions, such as interactions with heaters and cur-
tains. Enabling occupants to control the indoor climate, particularly the 
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temperature and the shading situation, may have significantly increased oc-
cupant satisfaction. However, these aspects were not sufficiently considered in 
the building design, nor are they considered in building regulations or build-
ing certification schemes. Early-​phase design and building control strategies 
need to better consider occupants’ indoor comfort and preferences alongside 
energy consumption. Conducting occupant surveys can increase stakehold-
ers’ awareness of occupant-​centric building design and performance. A pre-​
intervention survey or POE should be conducted for building renovations 
as well as new building designs, and the collected information and feedback 
should be integrated into the building planning and design process.

The next step of this case study is to provide recommendations to the  
A-​building owner and facility managers to further improve occupants’ sat-
isfaction regarding IEQ. A further point to make is for the office design of 
the future, we need to better understand not only the factors to negatively 
affect occupants’ comfort and well-​being but also the positive factors, for 
example, salutogenic design (health-​promoting potential), drawing on sense 
of coherence (SOC) theory (Antonovsky, 1987; Eriksson and Lindström, 
2006; Allen et al., 2019; Forooraghi et al., 2021).

11.9 � Closing Remarks

In this chapter, we presented occupant-​centric analyses of seven case study 
buildings to demonstrate the benefits of recognizing occupants and their be-
havior during the design process and throughout the building life cycle. The 
buildings were of different types and located in different countries and cli-
mates, and in different phases of the building life cycle. Likewise, the studies 
represented different design and analysis approaches including participa-
tory design, parametric and sensitivity analysis, optimization, operational 
data analysis, and statistical modeling. Considering the lessons learned 
from each case study, we can conclude the chapter with the following:

•	 Undertaking occupant-​centric design requires information to be shared 
effectively among design stakeholders. The traditional linear design 
process is problematic, as it can lead to discrepancies in design assump-
tions and, consequently, to suboptimal or overlooked design solutions.

•	 Assumptions about occupants can be influential when performing design 
parametric analysis. Different occupant-​related assumption can lead to a 
different savings potential of ECM/DP. Additionally, occupant assump-
tions can influence the outcomes of the design optimization process.

•	 Occupant assumptions can also influence the comfort performance of 
buildings, as current comfort metrics used by practitioners do not con-
sider comfort at the occupant and zone levels. New occupant-​centric 
comfort metrics should be developed and used instead.

•	 Occupant participation in the design process (i.e., co-​design) is benefi-
cial in achieving a more accurate representation of occupants’ presence 
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and activities. Co-​design can reduce performance gaps and improve en-
ergy efficiency.

•	 Increasing occupants’ consciousness of their energy-​intensive behaviors 
is an important factor in achieving energy efficiency.

•	 Collecting occupant-​related data on individualized occupant dynamics 
post-​occupancy can be helpful for improving spatial design (i.e., opti-
mized layouts) and energy efficiency. More broadly, such data collection 
is useful to understand performance gaps between predictions during 
design and actual performance.

•	 The analyses highlighted the importance of post-​occupancy data col-
lection through occupant surveys, sensing infrastructure, and inter-
views with building design stakeholders.

Note
		  Figures 11.50, 11.51, 11.52, 11.53, 11.54, 11.55, 11.56, and Tables 11.12, 11.13 re-

printed from Energy and Buildings, Vol 238, Andrew Sonta, Thomas R. 
Dougherty, and Rishee K. Jain, Data-driven optimization of building layouts 
for energy efficiency, Copyright (2021), with permission from Elsevier.
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