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ABSTRACT
The Square Kilometre Array Observatory (SKAO) will explore the radio sky to new depths in
order to conduct transformational science. SKAO data products made available to astronomers
will be correspondingly large and complex, requiring the application of advanced analysis
techniques to extract key science findings. To this end, SKAO is conducting a series of Science
Data Challenges, each designed to familiarise the scientific community with SKAO data and
to drive the development of new analysis techniques. We present the results from Science
Data Challenge 2 (SDC2), which invited participants to find and characterise 233245 neutral
hydrogen (Hi) sources in a simulated data product representing a 2000 h SKA MID spectral
line observation from redshifts 0.25 to 0.5. Through the generous support of eight international
supercomputing facilities, participants were able to undertake the Challenge using dedicated
computational resources. Alongside the main challenge, ‘reproducibility awards’ were made in
recognition of those pipelines which demonstrated Open Science best practice. The Challenge
saw over 100 participants develop a range of new and existing techniques, with results that
highlight the strengths of multidisciplinary and collaborative effort. The winning strategy –
which combined predictions from two independent machine learning techniques to yield a
20 percent improvement in overall performance – underscores one of the main Challenge
outcomes: that of method complementarity. It is likely that the combination of methods in a
so-called ensemble approach will be key to exploiting very large astronomical datasets.

Key words: methods: data analysis – radio lines: galaxies – techniques: imaging spectroscopy
– galaxies: statistics – surveys – software: simulations

★ E-mail: philippa.hartley@skao.int

1 INTRODUCTION

The Square Kilometre Array (SKA) project was born from an am-
bition to create a telescope sensitive enough to trace the formation

© 2022 The Authors
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of the earliest galaxies. Observing this era via the very weak emis-
sion from neutral hydrogen atoms will be possible only by using
a collecting area of unprecedented size: large enough not only to
provide a window onto Cosmic Dawn but – thanks to its increase in
sensitivity over current instruments – also to explore new frontiers
in galaxy evolution and cosmology, cosmic magnetism, the laws
of gravity, extraterrestrial life and – in the strong tradition of radio
astronomy (Wilkinson et al. 2004) – the unknown (see the SKA
Science Book, Braun et al. 2015 for a comprehensive description of
the full SKA science case).

First light at the SKA Observatory (SKAO) will mark a
paradigm shift not only in the way we see the Universe but also in
how we undertake scientific investigation. In order to perform such
sensitive observations and extract scientific findings, huge amounts
of data will need to be captured, transported, processed, stored,
shared and analysed. Innovations developed in order to enable the
SKAOdata journeywill drive forward data technologies across soft-
ware, hardware and logistics. In a truly global collaborative effort,
preparations are underway under the guidance of the SKA Regional
Centre Steering Committee to build the required data infrastructure
and prepare the community for access to it (Chrysostomou et al.
2020). Alongside operational planning, scientific planning – un-
dertaken by the SKAO Science Working Groups – is underway in
order to maximise the exploitation of future SKAO datasets. The
SKA model of data delivery will provide science users with data
in the form of science-ready image and non-image SKAO prod-
ucts, with calibration and pre-processing having been performed by
the Observatory within the Science Data Processor (SDP) and at
the SKA Regional Centres (SRCs). While this model reduces by
many orders of magnitude the burden of data volume on science
teams, the size and complexity of the final data products remains
unprecedented (Scaife 2020).

The primary goal of the SKAO Science Data Challenge (SDC)
series is defined thus:

(i) To support future observers to prepare for SKAO data.

This goal is achieved via the following objectives:

• To familiarise the astronomy community with the nature of
SKAO data products.

• To drive forward the development of data analysis techniques.

The first objective allows participants not only to gain familiarity
with the size and complexity of SKAO data, but also with the provi-
sion of data products in science-ready form. It is achieved through
the distribution of publicly available1 real or simulated datasets
designed to represent as closely as possible future SKAO data. A
successful Challenge will see engagement and participation repre-
senting a broad range of geography and expertise, and a step forward
by participants in the understanding and skills involved in analysing
SKA-like data. The second objective is achieved through the ap-
plication of new or existing methods in order to extract findings
from the data. Standardised cross-comparisons of methods, which
would require a strict set of running conditions and constraints on
participants, are not performed. Instead, the focus is on inclusion,
training, and the generation of ideas. A successful Challengewill see
the application of diverse ideas and methods to the problem, and
an understanding of the ability of respective methods to produce
useful findings.

1 https://astronomers.skatelescope.org/
ska-data-challenges/

The SKAO is committed to Open Science values and the FAIR
data principles (Wilkinson et al. 2016; Katz et al. 2021) of Findabil-
ity, Accessibility, Interoperability andReproducibility. Accordingly,
we aim to ensure equal accessibility to the Challenges for all partic-
ipants. In the latest Challenge, teams were able to access the ∼1 TB
Challenge dataset and computational resources at one of eight part-
ner supercomputing facilities, at which each could deploy their own
analysis pipelines (Section 2.2). This model also served as a test bed
for a number of future SRC technologies. Throughout theChallenge,
a strong emphasis was placed on the reproducibility and reusability
of software solutions. All teams taking part in the Challenge were
eligible to receive a reproducibility prize, awarded against a set of
pre-defined criteria. We thus identified two secondary goals for this
Challenge:

(i) To test SKA Regional Centre prototyping.
(ii) To encourage Open Science best practice.

Science Data Challenge 1 (SDC1, Bonaldi et al. 2020) saw
participating teams find and characterise sources in simulated SKA-
MID continuum images, with results that demonstrate the comple-
mentarity of methods, the challenge of finding sources in crowded
fields, and the importance of careful image partitioning. Domain
knowledge proved important not only in the design of pipelines but
in the application of correct unit conversions specific to radio as-
tronomy. SDCs benefit from additional domain referencematerial to
support participants who do not have a radio astronomy background.

Science Data Challenge 22 (SDC2) involved a simulated spec-
tral line observation designed to represent the SKAOview of neutral
hydrogen (Hi) emission up to 𝑧 = 0.5, again inviting participants to
attempt source finding and characterisation within a very large data
product. Resulting from the ‘spin-flip’ of an electron in a neutral
hydrogen atom, 21cm spectral line emission and absorption traces
the distribution of Hi across the history of the Universe. This cold
gas exists in and around galaxies, fueling star-formation via ongoing
infall from the cosmic web. Observations of individual Hi sources
can reveal the interactions between galaxies and the surrounding
intergalactic medium (IGM; Popping et al. 2015), can probe stellar
feedback processes within the interstellar medium (ISM, de Blok
et al. 2015), and can allow us to study the impact of AGN on the
large-scale gas distribution in galaxies (Morganti et al. 2015). Hi
dynamics also provide a measurement of the dark matter content of
galaxies (Power et al. 2015). Deep Hi surveys are therefore crucial
for our understanding of galaxy formation and evolution over cos-
mic time (Blyth et al. 2015; Power et al. 2010; Meyer et al. 2017;
Dodson et al. 2021).

The faintness of Hi emission has until recently limited survey
depths to up to 𝑧 ∼ 0.25 (see Sancisi et al. 2008, van der Hulst & de
Blok 2013 andKoribalski et al. 2020 for reviews of the results so far).
Hi emission has now been imaged in a starburst galaxy at 𝑧 ∼ 0.376
(Fernández et al. 2016) using the Very Large Array within the
COSMOS H I Large Extragalactic Survey (CHILES), and signals
observed using theGiantMetrewave Radio Telescope (GMRT) have
been stacked in order to make a successful measurement of the
cosmic Hi mass density at 0.2 < 𝑧 < 0.4 (Bera et al. 2019) and to
detect the Hi 21 cm signal from 2841 galaxies at average redshift
𝑧 ∼ 1.3 (Chowdhury et al. 2021). The MeerKAT telescope – a
precursor to the SKAO – has now launched the Looking At the
Distant Universe with the MeerKAT Array (LADUMA) survey
(Blyth et al. 2018), which will image Hi emission in the Chandra

2 https://sdc2.astronomers.skatelescope.org/
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Deep Field-South out to 𝑧 ∼ 1. The SKAO MID telescope will
survey to depths of 𝑧 ∼ 1 in emission and 𝑧 ∼ 3 in absorption
across a wider field. Comparing both surveys over 2000 hours of
observation, an SKAO MID survey is likely to increase by 0.8 dex
the number of detected galaxies, probing a cosmic volume𝑉c ≈ 185
Mpc versus 𝑉c ≈ 74Mpc and significantly reducing the sensitivity
of the results to cosmic variance. The size of resulting datasets
necessitates the use of automated source finding methods; several
software tools are currently available for Hi source detection and
characterisation (Flöer & Winkel 2012; Jurek 2012; Whiting 2012;
Westerlund&Harris 2014; Serra et al. 2015a;Westmeier et al. 2021;
Teeninga et al. 2015) and a comparative study based on WSRT data
has recently been performed (Barkai et al. 2022).

In this paper we report on the outcome of SDC2. The structure
of the paper is as follows: in Section 2 we define the Challenge;
in Section 3 we describe the simulation of the SDC2 datasets; in
Section 4 we present the methods used by participating teams to
complete the Challenge; in Section 5 we describe the scoring pro-
cedure; in Sections 6 and 7 we present the Challenge results and
analysis, before setting out our conclusions in Section 8.

2 THE CHALLENGE

In this Section we present an overview of the Challenge delivery
and the data product supplied to Challenge teams, followed by the
definition of the Challenge undertaken.

2.1 Challenge overview

Participating teams were invited to access a 913GB dataset hosted
on dedicated facilities provided by the SDC2 computational re-
source partners (Section 2.2). The dataset, 5851 × 5851 × 6668
pixels in size, simulates an Hi imaging datacube representative of
future deep SKAMID spectral line observations, with the following
specifications:

(i) 20 square degrees field of view.
(ii) 7 arcsec beam size, sampled with 2.8 × 2.8 arcsec pixels.
(iii) 950–1150 MHz bandwidth, sampled with a 30 kHz reso-

lution. This corresponds to rest frame velocity widths 7.8 and 9.5
km s−1 at the upper and lower limits, respectively, of the redshift
interval 𝑧 = 0.235–0.495.
(iv) Noise consistent with a 2000 hour total observation, in the

range 26–31 µJy per channel.
(v) Systematics including imperfect continuum subtraction, sim-

ulated RFI flagging and excess noise due to RFI.

The Hi datacube was accompanied by a radio continuum datacube
covering the same field of view at the same spatial resolution, with a
950-1400 MHz frequency range at a 50 MHz frequency resolution.

Challenge teams were invited to use analysis methods that
were any combination of purpose-built and bespoke to existing and
publicly available. Togetherwith the full-size Challenge dataset, two
smaller datasets were made available for development purposes.
Generated using the same procedure as the full-size dataset but
with a different statistical realization, the ‘development’ and ‘large
development’ datasets were provided along with truth catalogues
listing Hi source property values. A further, ‘evaluation’, dataset
was provided without a truth catalogue, in order to allow teams to
validate their methods in a blind way prior to application to the full
dataset. The evaluation dataset was also used by teams to gain access
to the full-size datacube hosted at an SDC2 partner facility. Access

was granted upon submission of a source catalogue based on the
evaluation dataset andmatching a required format. The development
and evaluation datasets were made available for download prior to
and during the Challenge.

The Challenge description, its rules, its scoring method and
a description of the data simulations were provided on the Chal-
lenge website before and during the Challenge. A dedicated online
discussion forum was used throughout the Challenge to provide in-
formation to participants, to answer questions about the Challenge
and to facilitate participant interaction. Definitions of conventions
and units applicable to the challenge were circulated to participants
before and during the Challenge.

2.2 Supercomputing partner facilities

The following eight supercomputing centres formed an interna-
tional platform on which the full Challenge dataset was hosted and
processed:

AusSRC and Pawsey – Perth, Australia, aussrc.org

China SRC-proto – Shanghai, China, An et al. (2022)

CSCS – Lugano, Switzerland, www.cscs.ch

ENGAGE SKA-UCLCA – Aveiro and Coimbra, Portugal,
www.engageska-portugal.pt; www.uc.pt/lca

GENCI-IDRIS – Orsay, France, www.genci.fr

IAA-CSIC – Granada, Spain, Garrido et al. (2021)

INAF – Rome, Italy, www.inaf.it

IRIS (STFC) – UK, www.iris.ac.uk

Collectively, the Challenge facilities provided 15million CPU hours
of processing and 15 TB of RAM to participating teams.

2.3 The challenge definition

The Challenge results were scored on the full-size dataset, on which
teams undertook:

Source finding, defined as the determination of the location in
RA (degrees), Dec (degrees) and central frequency (Hz) of the
dynamical centre of each source.
Source characterisation, defined as the recovery of the following

properties:

(i) Integrated line flux (JyHz): the total flux density 𝑆 integrated
over the signal

∫
𝑆da .

(ii) Hi size (arcsec): the Hi major axis diameter at 1 M� pc−2.
(iii) Line width (km s−1): the observed line width at 20 percent
of its peak.
(iv) Position angle (degrees): the angle of the major axis of the
receding side of the galaxy, measured anticlockwise from North.
(v) Inclination angle (degrees): the angle between line-of-sight
and a line normal to the plane of the galaxy.

Catalogues listing measured properties were submitted via a dedi-
cated scoring service (see Section 5.1), which compared each sub-
mission with the catalogue of truth values and returned a score. For
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the duration of the Challenge, scores could be updated at any time;
the outcome of the Challenge was based on the highest scores sub-
mitted by each team. The Challenge opened on 1st February 2021
and closed on 31st July 2021.

2.4 Reproducibility awards

Alongside themain challenge, teamswere eligible for ‘reproducibil-
ity awards’, which were granted to all teams whose processing
pipelines demonstrated best practice in the provision of repro-
ducible methods and Open Science. An essential part of the scien-
tific method, reproducibility leads to better, more efficient science.
Open Science generalises the principle of reproducibility, allow-
ing previous work to be built upon for the future. Reproducibility
awards ran in parallel and independently from the SDC2 score, and
there was no cap on the number of teams to whom the awards were
given.

3 THE SIMULATIONS

Simulation of the Hi datacubes involved three steps: source cata-
logue generation, sky model creation, and telescope simulation.

3.1 Source catalogues

To produce a catalogue of sourceswith both continuum andHi prop-
erties we used the Tiered Radio Continuum Simulation (TRECS;
Bonaldi et al. 2019) as updated by Bonaldi et al. 2023 in prep.
Initial catalogues of Hi emission sources were generated by sam-
pling from an Himass function derived from the ALFALFA survey
results (Jones et al. 2018):

𝜙(𝑀HI, 𝑧) = ln(10) 𝜙∗
(
𝑀HI
𝑀∗ (𝑧)

)𝛼+1
𝑒
− 𝑀HI

𝑀∗ (𝑧) , (1)

where the knee mass, 𝑀∗ = 8.71 × 109 M� , marks the exponential
decline from a shallow power law parameterised by 𝛼 = −1.25,
and 𝜙∗ = 4.5 × 10−3 Mpc−3 dex−1 is a normalisation constant.
A mild redshift dependence was applied by using log(𝑀∗ (𝑧)) =

log(𝑀∗) + 0.075𝑧.
Conversion from Himass in units solar mass to integrated line

flux 𝐹 followed the relation from Duffy et al. (2012):

𝑀HI = 49.8 𝐹 𝐷L
2, (2)

where luminosity distance, 𝐷L, is measured in Mpc and is obtained
via the source redshift. A lower integrated flux limit of 1 Jy Hz was
made, such that a fully face-on and unresolved source at this limit
would produce a peak flux density approximately equal to the noise
r.m.s. The catalogue also included a position angle \ drawn from
a uniform distribution between 0–360 degrees, and an inclination
angle 𝑖 from the probability distribution function 𝑓 (𝑖) = sin(𝑖).

Catalogues of radio-continuum sources – star-forming galax-
ies (SFGs) and Active Galactic Nuclei (AGN) – were then gener-
ated using the Tiered Continuum Radio Extragalactic Continuum
Simulation (T-RECS, Bonaldi et al. 2019) for the frequency inter-
val 950-1400 MHz. A flux density limit of 2 × 10−7 Jy at 1150
MHz was applied, corresponding to k-corrected radio luminosities
𝐿1150MHz = 1.58 × 1019 WHz−1 and 𝐿1150MHz = 8.59 × 1019
WHz−1 at the lower and upper redshift limits, respectively, for a

source with spectral index 𝛼 = −0.7. Continuum T-RECS cata-
logue properties included dark matter mass, star-formation rate and
redshift.

The Hi catalogue and the portion of the radio continuum cat-
alogue covering the same redshift interval were then further pro-
cessed to identify those that would constitute a counterpart, i.e. be
hosted by the same galaxy (see Bonaldi et al. 2023 for more details).

In order to generate source positions inRA (𝑥), Dec (𝑦) and red-
shift (𝑧) and to provide a realistic clustering signal, the galaxies were
associated with dark matter (DM) haloes from the P-Millennium
simulation (Baugh et al. 2019). Both the mass and environment
of host DM haloes were considered; galaxies were associated with
available DM haloes having the closest mass in the same redshift
interval, and preferential selection of DM haloes with local density
lower than 50 objects per cubic Mpc was made for Hi-containing
sources. The redshift of each source was converted to obtain the
observed frequency (a) at its dynamical centre.

3.2 Sky model

The sky model was generated using the python scripting language,
making use of the astropy, scipy and scikit-image libraries for
image and cube generation, and using fitsio for writing to file.

3.2.1 Hi emission datacube

Hi sources were injected into the field using an atlas of high quality
Hi source observations. The atlas, containing 55 sources in total,
was collated using samples available from the WSRT Hydrogen
Accretion in LOcal GAlaxieS (HALOGAS) survey (Fraternali et al.
2002; Oosterloo et al. 2007; Heald et al. 2011) – available online –
and the THINGS survey (Walter et al. 2008), made available after
the application of multi-scale beam deconvolution. The preparation
of atlas sources involved the following steps:

(i) Measurement of Hi major axis diameter at a surface density
of 1 M� pc−2, made after converting source flux to mass per pixel.
(ii) Masking of all pixels with surface density less than 1 M�

pc−2, in order to produce a positive definite noiseless model.
(iii) Rotation, using published source position angles, to a com-

mon position angle of 0 degrees.
(iv) Preliminary spatial resampling, such that the physical pixel

size of the resampled data would be no lower than required for the
lowest redshift simulated sources. A smoothing filter was applied
prior to resampling, in order to prevent aliasing.
(v) Preliminary velocity resampling after application of a

smoothing filter.

Though modestly sized, the atlas sample of real Hi galaxies
represented considerable morphological diversity, containing ex-
amples of Hubble stages 2 to 10. The parameter space representing
catalogue sources was not completely covered. Physical properties
of the atlas sample covered the SFR range 0.004 to 6.05 M� y−1,
the Hi mass range 1.20 × 107 to 1.41 × 1010 M� and the Hi ma-
jor axis diameter 2.29 to 102.23 kpc. Catalogue sources covered
the SFR range 0.0039 to 251 M� y−1 (median 0.97), Hi masses
𝑀HI = 6.99 × 107 M� and 4.08 × 108 M� at the lower and upper
limits of the simulated redshift range, respectively (with median
1.14 × 109 and maximum 1.08 × 1011), and Hi diameters 𝑆 = 4.78
to 270 kpc (median 24.7).

For each source from the simulation catalogue, a source from
the prepared atlas of sources was chosen from those nearby in nor-
malised Hi mass-inclination angle parameter space. Once matched

MNRAS 000, 1–28 (2022)
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Figure 1. 3D view of the ‘development’ Hi emission datacube, containing
2683 Hi sources. The cube uses 1286 × 1286 × 6668 pixels to represent
a 1 square degree field of view across the full Challenge frequency range
0.95–1.15 GHz (redshift 0.235–0.495). A log scaling has been applied to
image pixel values. The two shorter axes represent the spatial dimensions
and the longer axis the frequency dimenion.

with a catalogue source, atlas sources underwent transformations in
size in the spatial cube dimensions 𝑥 and 𝑦 and in velocity dimen-
sion 𝑉 in order to obtain the Hi size 𝑆, minor axis size 𝑏 and line
width 𝑤20 . An appropriate smoothing filter was applied prior to all
scalings, in order to avoid aliasing effects. Transformation scalings
were determined using the catalogue source properties of Hi mass,
inclination angle, and redshift, and making use of the following
relations:

𝑆 = 0.51 log𝑀HI − 3.32, (3)

from Broeils & Rhee (1997), in order to determine spatial scalings
for mass ;

𝑉2rot =
G𝑀dyn

𝑟
, (4)

where 𝑉rot is the rest frame rotational velocity at radius 𝑟 and 𝑀dyn
is the dynamical mass and is set using 𝑀dyn/𝑀HI = 10, in order to
determine frequency scalings for Hi mass;

cos2 (𝑖) = (𝑏/𝑆)2 − 𝛼2

(1 − 𝛼2)
, (5)

where 𝛼 = 0.2, in order to determine spatial scalings for inclination;

𝑉rad = 𝑉rot sin(𝑖), (6)

where 𝑉rad is the rest frame radial velocity, and

𝑤20 =
√︁
(𝑉2𝑇 + 2𝑉2rad), (7)

where 𝑉𝑇 is the contribution to line width from turbulence, in
order to determine velocity scalings for inclination. While a best fit
toALFALFAdata finds a value𝑉𝑇 = 90 km s−1, a lower value,𝑉𝑇 =

40 km s−1, is chosen in order to avoid excessive scaling between
peaks in velocity. Spatial scalings for redshift were determined by
calculating the angular diameter distance 𝐷A, assuming a standard
flat cosmology with Ωm = 0.31 and H0 = 67.8 km s−1 Mpc−1
(Planck Collaboration XIII 2016).

Finally, each transformed object was rotated to its catalogued

position angle, convolved with a circular Gaussian of 7 arcsec
FWHM and scaled according to total integrated Hi flux, before
being placed in the full Hi emission field at its designated position
in RA, Dec and central frequency (Fig. 1).

3.2.2 Continuum emission datacube

The treatment of continuum counterparts of Hi objects was depen-
dent on the full width at half maximum (FWHM) continuum size.
An empty datacubewith spatial resolutionmatching theHi datacube
and an initial frequency sampling of 50 MHz was first generated.
Each counterpart was then injected into the simulated field as either:

(i) an extended source, for those objects with a continuum size
greater than 3 pixels;
(ii) a compact source, for those objects with a continuum size

smaller than 3 pixels.

All compact sources were modelled as unresolved, and added as
Gaussians of the same size as the synthesised beam. Images of all
extended sources were generated according to their morphological
parameters and then added as “postage stamps” to an image of the
full field, after applying a Gaussian convolving kernel correspond-
ing to the beam.

The morphological model for the extended SFGs is an expo-
nential Sersic profile, projected into an ellipsoid with a given axis
ratio and position angle. The AGN population comprises steep-
spectrumAGN, exhibiting the typical double-lobes of FRI and FRII
sources, and flat-spectrum AGN, exhibiting a compact core compo-
nent together with a single lobe viewed end-on. Within both classes
of AGN all sources are treated as the same object type viewed from
a different angle. For the steep-spectrum AGN we used the Double
Radio-sourcesAssociatedwithGalacticNucleus (DRAGNs) library
of real, high-resolution AGN images (Leahy et al. 2013), scaled in
total intensity and size, and randomly rotated and reflected, to gener-
ate the postage stamps. All flat-spectrum AGN were added as a pair
of Gaussian components: one unresolved and with a given “core
fraction” of the total flux density, and one with a specified larger
size.

The continuum catalogues accompanying the Challenge
datasets report the continuum size of objects as the Largest An-
gular Size (LAS) and the exponential scale length of the disk for
AGN and SFG populations, respectively.

3.2.3 Net emission and absorption cube

The HI emission cube described in Section 3.2.2 was further pro-
cessed to introduce absorption features and the effect of imperfect
continuum subtraction. HI absorption occurs if a radio continuum
source is at a higher redshift along the same line of sight as an HI
source. The intensity of the effect depends on both the brightness
temperature of the continuum source and the HI opacity 𝜏Δ𝑉 of
the HI source. Absorption features were introduced on the pixels
of the HI model cube only if a background continuum source was
present having at least a brightness temperature 𝑇min = 100K. This
corresponds to a flux density of 𝑆min = 7.35 × 10−4𝑇minΔ𝜙2/_2,
with Δ𝜙 the beam size in arcsec and _ the observing wavelength in
cm, yielding 𝑆min in Jy beam−1.

The absorption signature, 𝑆HIA (a), was calculated as:

𝑆HIA (a) = 𝑆C [1 − 𝑒 (−𝜏Δ𝑉 /d𝑉 ) ], (8)

where 𝑆C is the continuum model flux density at this frequency
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and d𝑉 is the actual channel sampling in units of km s−1. When
observed with 100 pc or better physical resolution, the apparent
Hi column density 𝑁HI, can be related to an associated Hi opacity
(Braun 2012), as

𝑁HI = 𝑁0𝑒
−𝜏Δ𝑉 + 𝑁∞ (1 − 𝑒−𝜏Δ𝑉 ), (9)

where 𝑁0 = 1.25𝑥1020 cm−2, 𝑁∞ = 7.5𝑥1021 cm−2 and a nominal
Δ𝑉 = 15 km−1 provide a good description of the best observational
data in hand. In turn, the hydrogen column density, 𝑁HI, associated
with every pixel in the Hi model cube can be obtained with

𝑁HI = 49.8 𝑆L (a) ΔaM� (1 + 𝑧)4/(𝑁p 𝑚H Δ\2 𝐶2M), (10)

where 𝑆L is the Hi brightness in the pixel in Jy beam−1, Δa the
channel spacing in Hz, M� a solar mass, 𝑧 the redshift of the Hi
21cm line that applies to this pixel, 𝑁p the number of pixels per
spatial beam, 𝑚H the hydrogen atom mass, Δ\ the spatial pixel size
in radians and 𝐶M a Mpc expressed in cm. The preceding constant
in the equation follows the flux density to Hi mass conversion of
Duffy et al. (2012).

In the current case, the physical resolution is too coarse – some
10 kpc per pixel – to resolve the individual cold atomic clouds that
give rise to significant Hi absorption opacity. The apparent column
densities per pixel have therefore been subjected to an arbitrary
power law rescaling designed to render a plausible amount of ob-
servable absorption signatures. We used

𝑁 ′
HI = 10

19+[log 10(𝑁HI)−19]𝛽 , (11)

if 𝑁HI > 1019, with power law index 𝛽 = 1.9. This is followed by a
hyperbolic tangent asymptotic filtering:

𝑁 ′′
HI = 𝑁∞ [e2𝑁

′
HI/𝑁∞ − 1]/[e2𝑁

′
HI/𝑁∞ + 1], (12)

in order to avoid numerical problems when solving for the opacity.
In order to simulate imperfect continuum emission subtraction

within the final Hi datacube, a noise cube representing gain calibra-
tion errors was produced.We first interpolated the simulated contin-
uum sky model, 𝑆C(a), to a frequency sampling of 10 MHz, before
producing for each channel a two dimensional image of uncorrelated
noise to represent a r.m.s. gain calibration error of 𝜎 = 1×10−3 and
with spatial sampling 515 × 515 arcsec. The spatial and frequency
samplings were chosen in order to represent the residual bandpass
calibration errors that might result from the typical spectral stand-
ing wave pattern of an SKA dish at these frequencies, together with
the angular scale over which direction dependent gain differences
might be apparent.

The coarsely sampled noise field was then interpolated up to
the 2.8 × 2.8 arcsec sampling of the sky model and a deliberately
imperfect version of the continuum sky model, 𝑆NC(a), was con-
structed by multiplying each pixel in the perfect model by (1 + 𝑁),
where 𝑁 is the value of the corresponding pixel in the noise cube.
Finally, both the perfect and imperfect continuum models were
downsampled to the final simulation frequency interval of 30 kHz.
The net continuum-subtracted Hi emission and absorption cube,
𝑆(a)) is finally calculated from the sum

𝑆(a) = 𝑆L (a) + 𝑆C (a) − 𝑆NC (a) − 𝑆HIA (a). (13)

3.3 Telescope simulation

The simulation of telescope sampling effects has been implemented
by using python to script tasks from themiriad package (Sault et al.
1995). Multi-processing parallelisation is exploited by applying the
procedure over multiple frequency channels simultaneously.

3.3.1 Calculation of effective PSF and noise level

The synthesized telescope beam was based on a nominal 8 hour
duration tracking observation of the complete SKA MID configu-
ration. A one minute time sampling interval was used in order to
make beam calculations sufficiently realistic while limiting compu-
tational costs. The thermal noise level was based on nominal system
performance (Braun et al. 2019) for an effective on-sky integration
time of 2000 hours distributed uniformly over the 20 deg2 sur-
vey field. The effective integration time per unit area of the survey
field increases towards lower frequencies in proportion to wave-
length squared. This is due to the variation in the primary beam
size in conjunction with an assumed survey sampling pattern that
is fine enough to provide a uniform noise level even at the highest
frequency channel. The nominal r.m.s. noise level, 𝜎𝑁 , therefore
declines linearly with frequency between 950 and 1150 MHz.

Observations of the South Celestial Pole (Experiment ID
20190424-0024) using MeerKAT, which is located on the future
SKA MID site and will constitute part of the SKA MID array, have
been used to obtain a real world total power spectrum. With this
power spectrum we can estimate the system noise temperature floor
of the MeerKAT receiver system as a function of frequency, in
addition to an estimate of any excess average power due to Radio
Frequency Interference (RFI). The ratio of excess RFI to system
noise temperature, 𝛾RFI, was used to scale the nominal noise in
each frequency channel and to determine the degree of simulated
RFI flagging to apply to the nominal visibility sampling. Flagging
was applied to all baselines from a minimum Bmin = 0 up to a
maximum 𝐵max according, in units of wavelength, to

𝐵max = 71 × 10(𝛾RFI−1)
1/3

, (14)

which produced maximum baseline lengths ranging from under
15 m to around 10 km across the relevant range of observing fre-
quencies. The duration of RFI flagging, ΔHA, was determined, in
hours, from

ΔHA =


0, if 𝛾RFI < 𝛾min
8 (𝛾RFI − 𝛾min)/(𝛾max − 𝛾min), if 𝛾min > 𝛾RFI > 𝛾max
8, if 𝛾RFI > 𝛾max

where 𝛾min = 1.1 and 𝛾max = 2, are used to define the ranges of
RFI ratios over which flagging is absent, intermittent or continuous.
Intermittent flagging intervals were placed randomly within the
nominal HA = −4h to +4h tracking window.

After application of flagging to the nominal visibility sampling,
the synthesized beam and corresponding “dirty” noise image were
generated for each frequency channel. During imaging, a super-
uniform visibility weighting algorithm was employed that makes
use of a 64×64 pixel FWHM Gaussian convolution of the gridded
natural visibilities in order to estimate the local density of visibility
sampling. The super-uniform re-weighting was followed by a Gaus-
sian tapering of the visibilities to achieve the final target dirty PSF
properties, namely the most Gaussian possible dirty beam central
lobe with 7×7 arcsec FWHM. The effective PSF is then modified to

MNRAS 000, 1–28 (2022)



SKA Science Data Challenge 2 7

account for the fact that the survey area will be built up via the linear
combination of multiple, finely spaced, telescope pointings on the
sky. The effective PSF in this case was formed from the product
of the calculated dirty PSF with a model of the telescope primary
beam at this frequency, as documented in Braun et al. (2019). The
dirty noise image for each channel was then rescaled to have an
r.m.s. fluctuation level, 𝜎𝑖 , corresponding to the nominal sensitivity
level of the channel degraded by its RFI noise ratio:

𝜎𝑖 = 𝜎𝑁 𝛾RFI. (15)

3.3.2 Simulated sampling and deconvolution

The Hi net absorption and emission datacube (Section 3.2.3) was
subjected to simulated deconvolution and residual degradation by
the relevant synthesized dirty beam. Any signal, both positive and
negative, in excess of three times the local noise level, 3𝜎𝑖 , was
extracted as a “clean” image with the threshold signal retained to
form a residual sky image. The residual sky imagewas subjected to a
linear deconvolution (via FFT division) with a 7×7 arcsec Gaussian,
truncated at 10 percent of the peak and then convolved with the dirty
beam. The final data product cube was formed by summing for each
channel the dirty residuals, the previously extracted clean feature
image and the dirty noise image.

3.4 Limitations of the simulated data products

While significant effort has been expended to make a realistic data
product for the Challenge analysis, there are many limitations to the
degree of realism that could be achieved. Some of the most apparent
are outlined below.

(i) Telescope sampling limitations, arising from the adoption
of image plane sky model convolution to approximate the actual
imaging process. This forms the most significant limitation to the
simulations, but is necessitated by the fact that working instead in
the visibility plane would require processing of datasets 7.4 PB in
size, far exceeding current capabilities.
(ii) Realism of the noise properties: systematic effects such as

residual RFI, bandpass ripples, residual continuum sidelobes and
deconvolution artifacts were not included in the simulation. Addi-
tionally, the properties of the errors that have been included feature
mostly Gaussian, uncorrelated noise, which may not represent the
complexity of those those found in real interferometric data.
(iii) Hi emissionmodel limitations, arising from the limited num-

ber of real Hi observations used to generate simulated Hi sub-cubes.
(iv) Catalogue limitations, arising from the independent genera-

tion of Hi and continuum catalogues.
(v) Hi absorption model limitations, due to very coarse sampling

used to assess physical properties along the line of sight in order
to introduce Hi absorption signatures. Further, the relatively low
resolution of the simulated observation results in a low apparent
brightness temperature of continuum sources (< 100 K), such that
the occurrence of absorption signatures has been restricted only to
those continuum sources that exceed this brightness limit.
(vi) Continuum emission model limitations, arising from the use

of simple models to describe SFGs and flat-spectrum AGN sources,
and from the limited number of real images used to generate steep
spectrum sources.
(vii) An assumption of negligible Hi self-opacity which, al-

though widely adopted in the current literature, is unlikely to be
the case in reality (see e.g. Braun 2012).

(viii) The overall translation of truth catalogue inputs to simu-
lated source morphologies: the Challenge scoring definition mea-
sures the recovery of truth catalogue inputs, while teams themselves
measure properties from a simulated realisation of those inputs. This
could introduce a degeneracy in the evaluation of method perfor-
mance.

The limitations listed above would in turn place limits on how
well teams’ performances on this dataset would transfer to real data.

4 METHODS

Participating teams made use of a range of methods to tackle the
problem, first making use of the smaller development dataset and
truth catalogue in order to investigate techniques. Twelve teams
made a successful submission entry using the full Challenge dataset.
The methods employed by each of those finalist teams are presented
below.

4.1 Coin

C. Heneka, M. Delli Veneri, A. Soroka, F. Gubanov, A. Meshch-
eryakov, B. Fraga, C.R. Bom, M. Brüggen

During the Challenge the Coin team tested several modern ML al-
gorithms from scratch alongside the development our own wavelet-
based ‘classical’ baseline detection algorithm. For all approaches
we first flagged the first 324 channels in order to remove residual
RFI, as measured by the per-channel signal mean and variance.
We considered the following ML architectures for object detection:
2D/3D U-Nets, R-CNN and an inception-style network that mim-
ics filtering with wavelets. The to-date best-performing architecture
was a comparably shallow segmentation U-Net that translated the
2D U-Net in Ronneberger et al. (2015a) to 3D. It was trained on
3D cubic patches taken from the development cube, each contain-
ing a source and with no preprocessing applied. We mitigated High
(> 90%) rates of false positives to moderate levels (∼ 50%; see
Fig. 2) by imposing interconnectivity and size cuts on the poten-
tial sources and discarding continuum-bright areas. We obtained
a roughly constant ∼50:50 ratio between true and false positives
for 0.25 deg2 cutouts across the development cube and the full
Challenge cube. Our ‘classical’ baseline performed an alternative
detection procedure, first using Gaussian filtering in the frequency
dimension followed by wavelet filtering and thresholding. Interscale
connectivity (Scherzer 2010) and reconstruction were performed on
the denoised and segmented output. This pipeline detected < 10%
true positives for the Challenge data release: an order of magnitude
higher false positive rate than the ML-based pipeline.

Source positions (RA, Dec, central frequency, line width)
were directly inferred from the obtained segmentation maps via
the regionprops function of the scikit-image python pack-
age (van der Walt et al. 2014). Source properties (flux, size) were
derived through a series of ResNet CNNs (He et al. 2016) applied to
the source candidate 3D cutouts. The position angle was measured
using the scikit-image package to fit ellipses to sources masks;
inclination could not be fitted for most objects.

We conclude that further cleaning and denoising and the appli-
cation of techniques from the ‘classical’ baseline, such as wavelet
filtering, is needed to improve on our machine learning pipeline
method. Alternatively, further steps that include classification and
a more curated training set could be desirable. Lessons learned in
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Figure 2. Data processing pipeline used by the Coin team.

these ‘from-scratch’ developments can give valuable insights into
the performance and application of said algorithms, such as the suit-
ability of 3D U-Nets for segmentation of tomographic Hi data and
the need for additional cleaning algorithms jointly with networks
or multi-step procedures, such as a classification step, when faced
with low S/N data.

4.2 EPFL

E. Tolley, D. Korber, A. Peel, A. Galan, M. Sargent, G. Fourestey,
C. Gheller, J.-P. Kneib, F. Courbin, J.-L.Starck

The EPFL team used a variety of techniques developed specif-
ically for the Challenge and which have been collected into the
LiSA library (Tolley et al. 2022) publically available on github3.
The pipeline (Fig. 3) first decomposed the Challenge data cube into
overlapping domains by dividing along RA and Dec. Each domain
was then analysed by a separate node on the computing system. A
pre-processing step used 3D wavelet filtering to denoise each do-
main: decomposition in the 2D spatial dimensions used the Isotropic
UndecimatedWavelet Transform (Starck et al. 2007), while the dec-
imated 9/7 wavelet transform (Vonesch et al. 2007) was applied to
the 1D frequency axis. A joint likelihood model was then calculated
from the residual noise and used to identify Hi source candidates
through null hypothesis testing in a sliding window along the fre-
quency axis. Pixels with a likelihood score below a certain threshold
(i.e. unlikely to be noise) were grouped into islands. The size and
arrangement of these islands were used to reject data artefacts. Ul-
timately the location of the pixel with the highest significance was
kept as an Hi source candidate location.

A classifier CNN was used to further distinguish true Hi
sources from the set of candidates. The final Hi source locations
were then used to extract data from the original, non-denoised do-
main to be passed to an Inception CNN which calculated the source
parameters. The Inception CNN used multiple modules to examine
data features at different scales. Finally, the Hi source locations and

3 https://github.com/epfl-radio-astro/LiSA

Figure 3. Data processing pipeline used by the EPFL team.

features for each domain were concatenated to create the full cata-
logue. Both CNNs were trained on the development dataset using
extensive data augmentation.

4.3 FORSKA-Sweden

H. Håkansson, A. Sjöberg, M. C. Toribio, M. Önnheim, M. Olberg,
E. Gustavsson, M. Lindqvist, M. Jirstrand, J. Conway

The FORSKA-Sweden team performed source detection using a U-
Net (Ronneberger et al. 2015b) CNN with a ResNet (He et al. 2016)
encoder. Our methods are presented more in detail in Håkansson
et al. (2023), and all related code is published onGitHub 4.A training
set was generated from the lower 80% of the development cube, split
along the x-axis, by applying a binarymask to all pixels within range
of a source defined by a cylinder using source properties (major
axis, minor axis, line width) from the truth catalogue. Batches of
128 cubes of size 32×32×32 pixels were sampled from the training
area. Half of these cubes contained pixels assigned to a source in the
target mask, which caused galaxy pixels to be over-represented in

4 https://github.com/FraunhoferChalmersCentre/ska-sdc-2/
tree/cb3d34ebd944f3332de661cfb8fd7d3403cf9a45
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Figure 4. Cross-section images of input data, target and prediction with
velocity and one positional dimension for one of the sources in the cube by
team FORSKA-Sweden. The position axis is aligned with the major axis of
the source.

a training batch compared to the full development cube. This over-
representation made training more efficient. The remaining 20% of
the development cube was used for frequent validation and tuning
of model hyperparameters.

We used the soft Dice loss as the objective function (Milletari
et al. 2016a; Khvedchenya 2019). The initial weights of the model,
pretrained from ImageNet, were provided by the PyTorch-based
Segmentation Models package (Yakubovskiy 2020). Each 2D
𝑘 × 𝑘-filter of the pretrained model was converted to a 3D filter
with a procedure similar to Yang et al. (2021). We aligned two
dimensions to the spatial plane, and repeated the same 2D filter
for 𝑘 frequencies, which resulted in a 𝑘 × 𝑘 × 𝑘 filter. The Adam
optimizer (Kingma & Ba 2014) with an initial learning rate of 10−3
was used for training the model. The trained CNN was applied to
the raw Challenge data cube to produce a binary segmentation mask
assigning each pixel either to a galaxy or not (Fig. 4).

The merging and mask dilation modules from SoFiA 1.3.2
(Serra et al. 2015b) were employed to post-process the mask and
extract coherent segments into a list of separated sources. The last
step of the pipeline was to compute the characterisation properties
for each extracted source. Some source properties were estimated
in the aforementioned SoFiAmodules, while others had to be com-
puted outside in our code. The most recent weights obtained from
CNN training and a fixed set of hyperparameters from the post-
processing step were used to compute a score intended to mimic the
scoring of the Challenge. The best model from training was then
used as a basis for hyperparameter tuning, again using the mimicked
scoring.

4.4 HI FRIENDS

J. Moldón, L. Darriba, L. Verdes-Montenegro, D. Kleiner, S.
Sánchez, M. Parra, J. Garrido, A. Alberdi, J. M. Cannon, Michael
G. Jones, G. Józsa, P. Kamphuis, I. Márquez, M. Pandey-Pommier,
J. Sabater, A. Sorgho

The HI-FRIENDS team implemented a workflow (Moldon et al.
2021a) based on a combination of SoFiA-2 (Westmeier et al. 2021)
and python scripts to process the data cube. The workflow, which is

publicly available in GitHub5, is managed by the workflow engine
snakemake (Mölder et al. 2021), which orchestrates the execution
of a series of steps (called rules) and parallelizes the data analy-
sis jobs. snakemake also manages the installation of the software
dependencies of each rule in isolated environments using conda
Anaconda (2020). Each rule executes a single program, script, shell
command or jupyter notebook. With this methodology, each step
can be developed, tested and executed independently from the oth-
ers, facilitating modularisation and reproducibility of the workflow.

First, the cube is divided into smaller subcubes using the
spectral-cube library. Adjacent subcubes include an overlap of 40
pixels (112 arcsec) in order to avoid splitting large galaxies. In the
second rule, source detection and characterisation is performed on
each subcube using Sofia-2 (Westmeier et al. 2021). We optimised
the Sofia-2 input parameters based on visual inspection of plots
of the statistical quality of the fit and of some individual sources.
In particular, we found that the parameters scfind.threshold,
reliability.fmin, and reliability.threshold were key to
optimising our solution. We found that using the spectral noise
scaling in SoFiA-2 dealt well with the effects of RFI-contaminated
channels and we did not include any flagging step.

The third rule converts the Sofia-2 output catalogues to new
catalogues containing the relevant SDC2 source parameters in the
correct physical units. We computed the inclination of the sources
based on the ratio of minor to major axis of the ellipse fitted to
each galaxy, including a correction factor dependent on the intrin-
sic axial ratio distribution from a sample of galaxies, as described in
Staveley-Smith et al. (1992). The next two rules produce a concate-
nated catalogue for the whole cube: we concatenate the individual
catalogues into a main, unfiltered catalogue containing all the mea-
sured sources, and then we remove the duplicates coming from the
overlapping regions between subcubes using the r.m.s. as a quality
parameter to discern the best fit. Because the cube was simulated
based on real sources from catalogues in the literature we further
filtered the detected sources to eliminate outliers using a known
correlation between derived physical properties of each galaxy. In
particular, we used the correlation in Fig. 1 in Wang et al. (2016)
that relates the Hi size and Himass of nearby galaxies. Several plots
are produced during the workflow execution, and a final visualiza-
tion rule generates a jupyter notebook with a summary of the most
relevant plots.

Our workflow aims to follow FAIR principles (Wilkinson et al.
2016; Katz et al. 2021) to be as open and reproducible as possible.
To make it findable, we uploaded the code for the general workflow
to Zenodo (Moldon et al. 2021b) and WorkflowHub (Moldon et al.
2021c), which includes metadata and globally unique and persistent
identifiers. To make the code accessible, we made derived products
and containers available on Github and Zenodo as open source.
To make it interoperable, our workflow can be easily deployed on
different platforms with dependencies either automatically installed
(e.g., in a virtual machine instance in myBinder (Project Jupyter
et al. 2018) or executed through singularity, podman or docker con-
tainers. Finally, to make it reusable we used an open license, we
included workflow documentation6 that contains information for
developers, the workflow is modularized as snakemake rules, we
included detailed provenance of all dependencies and we followed
The Linux FoundationCore Infrastructure Initiative (CII) Best Prac-

5 https://github.com/HI-FRIENDS-SDC2/hi-friends
6 https://hi-friends-sdc2.readthedocs.io/en/latest/
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tices7. Therefore, the workflow can be used to process other data
cubes and should be easy to adapt to include new methodologies or
adjust the parameters as needed.

4.5 HIRAXers

A. Vafaei Sadr, N. Oozeer

The HIRAXers team used a multi-level deep learning approach
to address the Challenge. The approach extends to 3D a method
applied to a similar, 2D, challenge (Vafaei Sadr et al. 2019) and
uses multiple levels of supervision. Prior to source finding, a pre-
processing step is used to detect regions of interest. Motivated by
the recent progress in image-to-image translation techniques, one
can utilize prior knowledge about source shapes to magnify signals,
effectively suppressing background noise in a manner similar to
image cleaning. We investigated two pre-processing approaches to
reconstruct a ‘clean’ image. For both approaches we used a training
set generated by using 2D spatial slices of the development dataset to
produce a source map containing masks and probability values. The
output of the trained model can then be interpreted as a probability
map.

Our first preprocessing approach used 2D slices in frequency
as grayscale images. The model learns to retrieve information em-
ploying only transverse information. For the second approach, we
extended the inputs into 3D to benefit from longitudinal patterns by
adding different frequencies as convolutional channels, thus form-
ing a multichannel image. We used a 128 × 128 sliding window to
manage memory consumption, a mean squared error loss function,
and a decaying learning rate. We used the standard image processor
in TensorFlow (Abadi et al. 2015) for minimal data augmentation,
with ranges of one degree for rotation and one percent for zoom
range, in addition to horizontal and vertical flips.

We developed our pipeline to examine the following archi-
tectures: V-Net (Milletari et al. 2016b); Attention U-Net (Oktay
et al. 2018); R2U-Net (Alom et al. 2018); U2net (Qin et al. 2020);
UNet3+ (Huang et al. 2020); TransUNet (Chen et al. 2021) and and
ResUNet-a (Diakogiannis et al. 2020). One can find most of the im-
plementations in the keras-unet-collection (Sha 2021) package.
The learning rate was initiated at 1 × 10−3 with a 0.95 decay per
10 epochs using the Adam optimizer. Our results using the devel-
opment dataset found that the U2net architecture achieved the best
performance. U2net employs residual U-blocks in a ‘U-shaped’ ar-
chitecture. It applies the deep-supervision technique to supervise
training at all scales by downgrading the output.

In the second step of our method we trained a model to find
and characterise the objects. To find the objects, we applied a peak
finder algorithm to the 3D output of U2net. A peak is simply the
pixel that is larger than all its 27 neighbours. The ‘found’ catalogue
was then passed into a modified 8-layer HighRes3DNet (Li et al.
2017) as a regressor for characterisation before generating the final
catalogue.

4.6 JLRAT

L. Yu, B. Liu , H. Xi, R. Chen, B. Peng

The JLRAT team first divided the whole dataset into small cubes

7 https://bestpractices.coreinfrastructure.org/en/
projects/5138
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Figure 5.TeamMinerva: Difference in the number of sources found between
CHADHOC and YOLO-C catalogues in a flux against line width parameter
space. The color encodes the difference in the local number of sources as
a proportion of the total merged catalogue size (32652 predicted sources).
The contours are the local number of sources averaged between the two
catalogues with values: 6, 14, 30, 50, 64, 92, 128, 192. The density heatmap
is computed on a 30×30 grid and plotted with interpolation.

of size 320 × 320 × 160 (RA, Dec, frequency) before applying
to each cube a CNN containing a fully convolutional layer and a
softmax layer. The CNN used 1D spectra from the cube as inputs
and produced a masked output of candidate spectral signals. Using
the inner product, we computed the correlation in the space domain
between each candidate spectrum and known spectra from the SDC2
development cube. The result provided us with a set of 3D cubes,
each containing a predicted galaxy with approximate position and
size, and accurate line width. A two-dimensional Gaussian function
was used to fit themoment zeromapwith an intensity cutoff at 1M�
pc−2. The fit produced an ellipse with central position (RA, Dec),
major axis and position angle, and the inclination of the galaxy.
The flux integral was obtained by integrating the spectra within the
ellipse in both space and frequency.

4.7 MINERVA

D. Cornu, B. Semelin, X. Lu, S. Aicardi, P. Salomé, A. Marchal, J.
Freundlich, F. Combes, C. Tasse

The MINERVA team developed two pipelines in parallel. The final
catalogue merges the results from the two pipelines.

4.7.1 YOLO-CIANNA

The YOLO-CIANNA pipeline implemented a highly customised
version of a YOLO (YouOnly LookOnce, Redmon et al. 2015; Red-
mon & Farhadi 2016, 2018) network, which is a regression-based
object detector and classifier with a CNN architecture. Our YOLO
implementation is part of our general-purpose CNN framework,
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CIANNA8 (Convolutional Interactive Artificial Neural Networks
by/for Astrophysicists).

The definition of the training sample was of major importance
to get good results. Most of the sources in the large development
dataset are impossible for the network to detect, and tagging them
as positive detections would lead to a poorly trained model. For
YOLO we used a combination of criteria to define a training set: i)
the CHADHOC classical detection algorithm (see Section 4.7.2);
ii) a volume brightness threshold; iii) a local signal-to-noise ratio
estimation. Our refined training set contains around ∼1500 ‘true’
objects, with 10% set aside for validation. All inputs were aug-
mented using position and frequency offsets and flips. Our retained
network architecture for this challenge operates on sub-volumes
of 48 × 48 × 192 (RA, Dec, Frequency) pixels. The network was
trained by selecting either a sub-volume that contains at least one
true source or a random empty field, in order to learn to exclude all
types of noise aggregation and artefacts.

The network maps each sub-volume to a 6×6×12 grid, where
each element corresponds to a region of 8× 8× 16 pixels inside the
input sub-volume. We chose to have the network predict a single
possible detection box per grid element, producing the following
parameters: 𝑥, 𝑦, 𝑧 the bounding-box central position in the grid
element; 𝑤, ℎ, 𝑑 the bounding-box dimension. We modified the
YOLO loss function to allow us to predict the required Hi flux,
size, line width, position angle and inclination in a single network
forward for each possible box. The retained network architecture is
made of 21 3D-convolutional layers, which alternate several ‘large’
filters (usually 3 × 3 × 5) that extract morphological properties and
fewer ‘smaller’ filters (usually 1 × 1 × 3) that force a higher degree
feature space while preserving a manageable number of weights
to optimise. Some of the layers include a higher stride value in
order to progressively reduce the dimensions down to the 6×6×12
grid. The last few layers include dropout for regularisation and
error estimation. In total the network has of the order of 2.3 × 106
parameters. When applying on the full datacube, predicted boxes
are filtered using an “objectness” score threshold to maximize the
SDC2 metric.

Despite the fact that YOLO networks are known for their com-
putational performance, our retained architecture still requires up to
36 hours of training on a single RTX 3090 GPU using FP16/FP32
Tensor Core mixed precision training. The trained network has an
inference speed of 76 sub-volumes per second using a V100 GPU
on Jean-Zay/IDRIS, but due to necessary partial overlap and RAM
limitations, it still requires up to 20 GPU hours to process the full
∼1 TB data cube.

4.7.2 CHADHOC

The Convolutional Hybrid Ad-Hoc pipeline (CHADHOC) has been
developed specifically for SDC2. It is composed of three steps: a
traditional detection algorithm, a CNN for identifying true sources
among the detections, and a set of CNNs for source parameter
estimation.

For detection, we first smooth the signal cube by a 600 kHz
width along the frequency dimension and convert to a signal-to-
noise ratio on a per channel basis. Pixels below a fixed SNR of
∼2.2 are filtered out, and the remaining pixels are aggregated into
detected sources using a simple friend-of-friend linking process

8 https://github.com/Deyht/CIANNA

with a linking length of 2 pixels. The position of each detection
is computed by averaging the positions of the aggregated pixels.
A catalogue of detections is then produced, ordered according to
the summed source SNR values. When applied to the full Chal-
lenge dataset, we divide the cube into 25 chunks and produce one
catalogue for each chunk.

The selection step is performed with a CNN. A training sample
is built by cross-matching with the truth catalogue the 105 brightest
detections in the development cube, thus assigning a True/False
label to each detection. Unsmoothed signal-to-noise cutouts of 38×
38 × 100 pixels around the position of each detection are the inputs
for the network. The learning set is augmented by flipping in all three
dimensions, and one third of the detections are set aside as a test
set. The comparatively light network is made of 5 3D convolutional
layers, containing 8, 16, 32, 32 and 8 filters, and 3 dense layers,
containing 96, 32 and 2 neurons. Batch normalisation, dropouts and
pooling layers are inserted between almost every convolutional and
dense layer. In total the network has of the order of 105 parameters.
The training is performed on a single Tesla V100 GPU in at most
a few hours, reaching best performances after a few tens of epochs.
The model produces a number between 0 (False) and 1 (True) for
each detection. The threshold where the source is labelled as True
is a parameter that must be tuned to maximise the metric defined
by the SDC2. This optimisation is performed independently of the
training.

A distinct CNN has been developed to predict each of the
source properties and includes a correction to the source position
computed during the detection step. The architecture is similar to
the one of the selection CNN, with small variations: for example,
no dropout is used between convolutional layers for predicting the
line flux. Cutouts around the ∼1300 brightest sources in the truth
catalogue of the development cube are augmented by flipping and
used to build the learning and tests sets. The networks are trained
for at most a few hundred epochs in a few to 20 minutes each on
a Tesla V100 GPU. Training for longer results in overfitting and a
drop in accuracy.

Many details impact the final performance of the pipeline.
Among them, the centering of the sources in the cutouts. Transla-
tional invariance is not trained into the networks. This is dictated
by the nature of the detection process and is possibly the main lim-
itation of the pipeline: the selection CNN will never be asked about
sources that have not been detected by the traditional algorithm.

4.7.3 Merging the catalogues

If we visualize the catalogues produced by YOLO and CHADHOC
in the sources parameter space (Fig. 5), we find that they occupy
slightly different regions. For example, CHADHOC tends to find
a (slightly) larger number of typical sources compared to YOLO,
but misses more low-brightness sources because of the hard SNR
threshold applied during the detection step. Thus, merging the cat-
alogues yields a better catalogue.

Since both pipelines provide a confidence level for each source
to be true, we can adjust the thresholds after cross-matching the
two catalogues. In case of a cross-match we lower the required
confidence level while when no cross-match is found we increase
the required threshold. The different thresholds must be tuned
to maximise purity and completeness. Finally, the errors on the
source properties are at least partially uncorrelated between the two
pipelines. Thus averaging the predicted values also improves the
resulting catalogue properties.
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4.8 NAOC-Tianlai

K. Yu, Q. Guo, W. Pei, Y. Liu, Y. Wang, X. Chen, X. Zhang, S. Ni, J.
Zhang, L. Gao, M. Zhao, L. Zhang, H. Zhang, X. Wang, J. Ding, S.
Zuo, Y. Mao

After testing several methods, the NAOC-Tianlai team used the
SoFiA-2 software to process of the SDC2 datasets. We optimised
the SoFiA-2 input parameters by first performing a grid search in
parameter space before refining the result using an MCMC simula-
tion. We are currently developing a dedicated cosmological simu-
lation on which to test our methods. However, during the Challenge
time frame we mainly used the development and large development
datasets to perform the optimisation. The optimised parameterswere
then used for the processing of the full Challenge dataset.

Due to the memory constraints and the consideration of avoid-
ing excessive division along the spectral axis, the dasets were split
into subcubes of size ∼330× 330× 3340 pixels for processing. Ad-
jacent subcubes had an overlap of 10 or 20 pixels along each axis
to ensure that Hi galaxies on the border region were not missed.
The full Challenge dataset was therefore divided into 18 × 18 × 2
subcubes when processing.

Our main parameter selection procedure is as follows:

(i) We set a list of values to be searched for each parame-
ter of interest, such as: replacement, threshold in the scfind
module; minSizeZ, radiusZ in the linker module; and minSNR,
threshold, scaleKernel in the reliability module. We then pro-
cessed in parallel the development dataset with the different com-
binations of parameters values.
(ii) Next, we selected the optimal parameter combination by

comparing the output catalogues from the previous step with the
development dataset truth catalogue. To choose the optimal param-
eters, thresholds were applied to the total detection number, to the
match rate (true detection/total detection), and to the final score.
(iii) To make the found optimal parameter combination more

robust, different subcubes were processed following the procedure
given above, and the combination that performed well on all sub-
cubes was selected.

For reference, our trial produced the following optimised
parameter settings: scaleNoise.windowXY/Z = 55 for normal-
ising the noise across the whole datacube; kernelsXY = [0,
3, 7], kernelsZ = [0, 3, 7, 15, 21, 45], threshold =
4.0, replacement = 1.0 in the scfind module for the S+C finder
inSoFiA-2; radiusXY/Z = 2, minSizeXY = 5, minSizeZ = 20
in the linker module for merging the masked pixels detected by the
finder; and threshold = 0.5, scaleKernel = 0.3, minSNR =
2.0 in the reliabilitymodule for reliability calculation and filtering.
In our processing, each parameter combination instance took ∼5
minutes with one CPU thread to process one subcube.

Finally, we applied the optimal parameter combination to the
processing of all subcubes from the Challenge dataset, and merged
the results.

4.9 SHAO

S. Jaiswal, B. Lao, J. N. H. S. Aditya, Y. Zhang, A. Wang, X. Yang

The SHAO team developed a fully-automated pipeline in python to
work on the Challenge dataset. Our method involved the following
steps: 1)We first sliced the datacube into individual frequency chan-
nel images and used SExtractor (Bertin &Arnouts 1996) to perform

Cubelet
Divison

Acceptance
Regions

Ovelapping Cubelets Buffer regionsNormal Cubelets

Overlapping Normal

Figure 6. Team Spardha: The 2D projection along one axis of the schematic
division of the data into Normal and Overlapping cubelets (top row), and
the corresponding Acceptance regions (black hashing; bottom row). Normal
cubelets are illustrated by black outlined boxes. Overlapping cubelets are
centred at the common boundaries of Normal cubelets and are illustrated by
green boxes. Orange regions (top row) represent buffer zones.

source finding on each image.We used a 2.5 sigma detection thresh-
old (for ∼99% detection confidence) and minimum detection area
of 2 pixels. 2) We cross-matched the sources found in consecutive
channel images using the software TOPCAT (Taylor 2005) with a
search radius of 1 pixel = 2.8 arcsec. 3) For each source detected
in at least two consecutive channel images we estimated the range
of channels for each source, adding 1 extra channel on both sides.
4) We extracted a subcube across the channel range obtained in the
previous step, using a spatial size of 12 pixels around each identi-
fied source. 5) We made a moment-0 map for each extracted source
using its subcube, after first masking negative flux densities. 6) We
used SExtractor on the moment-0 map of each extracted Hi source
to estimate the source RA and Dec coordinates, major axis, minor
axis, position angle and integrated flux. Inclination angle was es-
timated using the relations given by Hubble (1926) and Holmberg
(1946). 7) We constructed a global Hi profile for each source by
estimating the flux densities within a box of size 6 pixels around
the source position in every channel of its subcube. 8) We finally
fit a single Gaussian model to estimate the central frequency of Hi
emission and line width at 20% of the peak.

The score obtained by this method is not very satisfactory.
However, our investigations gave us confidence in dealing with a
large Hi cube and making the pipeline for the analysis. We will
try to improve our pipeline by optimising the input parameters and
implementing different algorithms in the future. The use of machine
learning techniques could be a good choice for such datasets.

4.10 Spardha

A. K. Shaw, N. N. Patra, A. Chakraborty, R. Mondal, S. Choudhuri,
A. Mazumder, M. Jagannath

The SPARDHA team developed a python-based pipeline which
starts by dividing the 1 TB Challenge dataset into several small
cubelets. We performed source finding using an MPI-based imple-
mentation to run parallel instances of SoFiA-2 on each cubelet. We
tuned the parameters of SoFiA-2 to maximize the number of de-
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tected sources. A total of 118 cubelets were analysed, which were
categorised into two groups, namely: 1) Normal cubelets and 2)
Overlapping cubelets. The whole datacube was first divided into
consecutive blocks of equal dimensions to create Normal cubelets
(Fig. 6). Overlapping cubelets were then centred at the common
boundaries of Normal cubelets in order to detect sources that fall at
their common boundaries.

In order to avoid source duplication, buffer regions were de-
fined around the faces of each cubelet (see Fig. 6, top row). We
always accepted any source whose centre was detected within the
cubelet but not in the buffer zone (see Fig. 6, bottom row). We
conservatively set the width of buffer zones based on the physi-
cally motivated values of the spatial and frequency extent of typical
galaxies scaled at the desired redshifts. We chose the maximum
extent of the galaxy on the sky plane to be ∼80 kpc (Wang et al.
2016), corresponding to ∼10 pixels in the nearest frequency chan-
nel. The buffer region was set to be twice this extent, i.e. 20 pixels.
Overlapping regions were therefore 4× 20 = 80 pixels wide. Along
the frequency direction, galaxies can have a line-width extent of
∼500 km/s, which corresponds to ∼72 channels. The widths of the
buffer regions and Overlapping regions along the frequency axis
were therefore 144 and 288 channels, respectively. The acceptance
regions of the cubelets (normal and overlapping) were such that they
spanned the whole data cube contiguously when arranged accord-
ingly. Although this approach increased the computation slightly
due to analysing some regions of the data more than once, it en-
sured that there was no common source present in the list. Analysing
cubelets was the most time consuming part in our pipeline.We anal-
ysed 118 cubelets on 472 cores in parallel in around 15 minutes.

We used physical equations to convert the SoFiA-2 catalogue
into the SDC-prescribed units and to discard bad detections such
as those sources having NaN values in the columns or those with
negative flux values. In the final stagewe put limits on the linewidth,
discarding detections with unusual values. Motivated by physical
models and observations of galaxies, we conservatively accepted
the sources having 𝑤20 ∈ [60, 500] km/s (McGaugh et al. 2000).
We finally arranged the catalogue in descending order of the flux
values. Based on tests using the development datacube, for which
the exact source properties are known, we chose the top 35% of
total sources to generate the final catalogue for submission.

4.11 Starmech

M. J. Hardcastle, J. Forbrich, L. Smith, V. Stolyarov, M. Ashdown,
J. Coles

The Starmech tackled the Challenge from the point of view of
dealing with the Challenge dataset within the constraints of the
resources provided to us (a single node with 30 cores and 124 GB
RAM, 800GB root volume and 1TB additional data volume). Some
computational constraints will be a feature of future working in the
field when computing resources are provided as part of shared SKA
Regional Centres.

We considered existing source finding tools: PyBDSF (Mo-
han & Rafferty 2015), a continuum source finder, and SoFiA and
SoFiA-2, two generations of a 3D source finder already optimised
for Hi (Westmeier et al. 2021). While PyBDSF readily generated a
catalogue of the continuum sources and could be run on many slices
in frequency, slicing and averaging with fixed frequency steps does
not give good results since emission lines have a variety of possible
widths in frequency space. Instead we focused on the two publicly
available 3D source finders. Our tests showed that SoFiA-2’s mem-

ory footprint is much lower than that of SoFiA for a given data cube
and its speed significantly higher, so it became our algorithm of
choice.

In order toworkwith the available RAM,we needed to slice the
full Challenge datacube either in frequency or spatially. We chose to
slice spatially because this allows SoFiA-2 to operate as expected in
frequency space; essentially the approach is to break the sky down
into smaller angular regions, run SoFiA-2 on each one in series, and
then join and de-duplicate the resulting catalogue. Whether done in
parallel (as in the MPI implementation SoFiA-X; Westmeier et al.
2021), or in series as we describe here, some approach like this will
always be necessary for large enough Hi series in the SKA era since
the full dataset sizes will exceed any feasible RAM in a single node
for the foreseeable future.

Our implementation was a simple python wrapper around
SoFiA-2. The code calculates the number of regions into which the
input data cube needs to be divided such that each individual sub-
cube can fit into the available RAM. Assuming a tiling of 𝑛 × 𝑛, it
then tiles the cube with 𝑛2 overlapping rectangular spatial regions.
We define a guard region width 𝑔 in pixels: each region passed to
SoFiA overlaps the adjacent one, unless on an edge, by 2𝑔 pixels.
Looping over the sub-cubes, SoFiA-2 is run on each one to produce
𝑛2 overlapping catalogues in total. For our final submission we used
SoFiA-2 default parameters with an scfind.threshold of 4.5
sigma, 𝑔 = 20 pixels, a spatial offset threshold for de-duplication
of 1 pixel, and a frequency threshold of 1 MHz. 𝑔 was chosen
to be larger than the typical size in pixels of any real source. We
verified that there were no significant differences, using these pa-
rameters, between the reassembled catalogue for a smaller test cube
and the catalogue directly generated by running SoFiA-2 on the
same cube, using TOPCAT for simple catalogue visualization and
cross-matching. Due to time constraints, we did not move on to the
next obvious step of optimising the parameters used for SoFiA-2
based on further runs on the test and development datasets.

We removed source duplication arising from overlapping re-
gions by considering catalogues from adjacent sub-cubes pairwise.
We firstly discarded all catalogue entries with pixel position more
than 𝑔 pixels from the edge of a sub-cube; these should already
be present in another catalogue. The remaining overlap region,
2𝑔 pixels in width, height or both, was cross-matched in posi-
tion and sources whose position and frequency differ by less than
user-defined threshold values were considered duplicates and dis-
carded from one of the two catalogues. Finally the resulting 𝑛2

de-duplicated catalogues were merged and catalogue values con-
verted according to units specified by the submission format.

We would like to have explored the utility of dimensional
compression of the data as part of the source finding, for example
by using moment maps in an attempt to eliminate noise and better
pinpoint source detection algorithms. A priori, this would have
been of rather technical interest since any resulting bias on source
detection would need to be considered. However, in this way, it may
have been possible to identify candidate sources to then characterise
based on observable parameters such as size and linewidth, in a first
step as point sources vs resolved sources, and including flags for
potential overlap in projection or velocity.

4.12 Team SoFiA

K. M. Hess, R. J. Jurek, S. Kitaeff, P. Serra, A. X. Shen, J. M. van
der Hulst, T. Westmeier

Team SoFiA made use of the Source Finding Application (SoFiA;
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Figure 7.TeamSoFiA:Histogram of total detections (light-grey), real galax-
ies (dark-grey), detections after filtering (red) and real galaxies after filtering
(blue) as a function of integrated signal-to-noise ratio from a SoFiA run on
the development cube (top panel). The reliability of the original and fil-
tered catalogue is shown as the grey and orange curve, respectively (bottom
panel). Parameter space filtering significantly boosts SoFiA’s reliability at
low SNR. Note that we measure SNR within the actual SoFiA source mask,
and the resulting values can not be directly compared with the optimised
SNR defined in Section 6.2.

Serra et al. 2015a; Westmeier et al. 2021) to tackle the Challenge.
Development version 2.3.1 of the software, dated 22 July 2021,9 was
used in the final run submitted to the scoring service. To minimise
processing time, 80 instances of SoFiA were run in parallel, each
operating on a smaller region (≈ 11.8 GB) of the full cube. The
processing time for an individual instancewas just under 25minutes,
increasing to slightly more than 2 hours when all 80 instances were
launched at once due to overhead from simultaneous file access.
The resulting output catalogues were merged and any duplicate
detections in areas of overlap between adjacent regions discarded.

We ran SoFiAwithwith the following options: after flagging of
bright continuum sources > 7 mJy followed by noise normalisation
in each spectral channel, the S+C finder was run with a detection
threshold of 3.8 times the noise level, spatial filter sizes of 0, 3
and 6 pixels and spectral filter sizes of 0, 3, 7, 15 and 31 channels.
We adopted a linking radius of 2 and a minimum size requirement
of 3 pixels/channels. Lastly, reliability filtering was enabled with a
reliability threshold of 0.1, an SNR threshold of 1.5 and a kernel
scale factor of 0.3.

Based on tests using the development cube, we improved the
reliability of the resulting source catalogue fromSoFiA by removing
all detections with 𝑛pix < 700, 𝑠 < −0.00135 × (𝑛pix − 942) or
𝑓 > 0.18 × SNR + 0.17, where 𝑛pix is the number of pixels within
the 3D source mask, 𝑠 is the skewness of the flux density values
within the mask, 𝑓 is the filling factor of the source mask within its
rectangular 3D bounding box, and SNR is the integrated signal-to-
noise ratio of the detection. Detection counts for the original and
filtered catalogue from the development cube are shown in Fig. 7 as
a function of SNR. Our final detection rate peaks at SNR ≈ 3, with
a reliability of close to 1 down to SNR ≈ 2. The filtered catalogue
from the full cube contains almost 25, 000 detections, about 23, 500
of which are real, implying a global reliability of 94.2%.

9 https://github.com/SoFiA-Admin/SoFiA-2/tree/
11ff5fb01a8e3061a79d47b1ec3d353c429adf33

It should be emphasised that our strategy of first creating a low-
reliability catalogue with SoFiA and then removing false positives
through additional cuts in parameter space is based on development
cube tests and was adopted to maximise our score. This strategy
may not work well for real astronomical surveys which are likely to
have different requirements for the balance between completeness
and reliability than the one mandated by the scoring algorithm.

Lastly, the source parameters measured by SoFiA were con-
verted to the requested physical parameters. As the calculation
of disc size and inclination required spatial deconvolution of the
source, we adopted a constant disc size of 8.5 arcsec and an in-
clination of 57.3 degrees for all spatially unresolved detections. In
addition, statistical noise bias corrections were derived from the
development cube and applied to SoFiA’s raw measurement of in-
tegrated flux, line width and Hi disc size.

5 SCORING

A live scoring service was provided for the duration of the Chal-
lenge. The service allowed teams to self-score catalogue submis-
sions while keeping the truth catalogue hidden, and automatically
updated a live leaderboard each time a team achieved an improved
score. All participating teams were provided with credentials with
which the scoring service could be accessed over the internet using
a simple, pip-installable command line client. Participants used this
client to upload submissions to the service, after which it was eval-
uated by a scoring algorithm against the truth catalogue. Once the
score had been calculated, it could be retrieved from the scoring ser-
vice using the client. Teams were limited to a maximum submission
rate of 30 submissions per 24 hour period.

5.1 Scoring procedure

The scoring algorithm 10 is written in python and makes use of the
pandas and astropy libraries. Scoring is performed by comparing
submitted catalogues with a truth catalogue, each containing the
same source properties. The first step of the scoring is to perform
a positional cross-match between the true and the submitted cat-
alogues. Matched sources from the submitted catalogue are then
assigned scores according to the combined accuracy of all their
measured properties. Finally, the scores of all matched sources are
summed and the number of false detections subtracted, to give the
overall Challenge score.

5.1.1 Source cross-match

Cross-matching is performed using the scikit nearest neighbours
classifier with the kd_tree algorithm, which uses a tree-based data
structure for computational efficiency (Bentley 1975). The cross-
match procedure considers the position of a source in the 3D cube,
identified by RA, Dec and central frequency. Each coordinate set is
first converted to a physical position space via the source angular di-
ameter distance. All submitted sources with positions within which
a truth catalogue source is in range are then recorded as matches.
For each submitted source, this range in the spatial and frequency
dimensions is determined by the beam-convolved submitted Hi size
and the line width, respectively. Detections that do not have a truth

10 https://pypi.org/project/ska-sdc/
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Team name Pre-processing Detection False-positive rejection Characterisation Additional notes

Coin RFI flagging 3D U-Net CNN Size cuts ResNet CNNs Several CNNs tested
Interscale connectivity Continuum rejection Ellipse-fitting

EPFL Wavelet filtering Joint likelihood Size cut Inception CNN Data augmentation
Classifier CNN

FORSKA-Sweden - 3D U-Net CNN SoFiA SoFiA -
Modelling: check

HI-FRIENDS SoFiA: SoFiA SoFiA SoFiA -
Continuum flagging Additional parameter cuts Ellipse fitting
Noise normalisation

HIRAXers U2 net Peak-finding - HighRes3DNet Data augmentation
JLRAT - CNN - Gaussian-fitting Spectral inputs to CNN

Cross-correlation
MINERVA∗ - | Smoothing YOLO CNN | Friend-of-friend - | CNN YOLO CNN | CNNs Training data refinement

| SNR mask Data augmentation
NAOC-Tianlai SoFiA: SoFiA Parameter tuning SoFiA Gridsearch, MCMC

Continuum flagging
Noise normalisation

SHAO - SExtractor - SExtractor -
TOPCAT Gaussian fitting

Spardha SoFiA: SoFiA SoFiA SoFiA Partioning buffer zones
Continuum flagging Additional parameter cuts
Noise normalisation

Starmech SoFiA: SoFiA SoFiA SoFiA TOPCAT for verification
Continuum flagging
Noise normalisation

Team SoFiA SoFiA: SoFiA SoFiA SoFiA Noise bias corrections
Continuum flagging Additional parameter cuts
Noise normalisation

Table 1. The main features of the methods applied by each team to SDC2 are summarised for ease of reference. The methodology is divided into pre-processing,
source finding, false-positive rejection and source characterisation steps. The asterisk denotes the step taken by team MINERVA to combine the results of two
independent methods, demarcated here by the pipe symbol, to form a final catalogue.

source within this range are recorded as false positives. Matched de-
tections are further filtered by considering the range of the matched
truth sources. Detections which lie outside the beam-convolved Hi
size and the line width of the matched truth source are at this stage
also rejected and recorded as false positives.

It is possible that the cross-match returns multiple submitted
sources per true source. In that case, all matches are retained and
scored individually. The reasoning behind this choice is that com-
ponents of Hi sources, especially in the velocity field, could be
correctly identified but interpreted as separate sources. If that were
the case, classifying them as false positives would be too much of a
penalty. All submitted sources matched to the same true source are
inversely weighted by the number of multiple matches during the
scoring step. It is also possible for more than one truth source to
be matched with a single submitted source. In these cases, only the
match between the submitted source and truth source which yields
the lowest multi-parameter error (eq. 16) is retained. This proce-
dure ensures that matches in crowded regions take into account the
resemblance of a truth source to a submitted source, in addition to
its position.

A final step is performed to compare the multi-dimensional
error with a threshold value, above which any nominally matched
submitted sources are discarded and counted as false positives. The
multi-parameter error 𝐷 is calculated using the Euclidean distance
between truth and submitted sources in normalised parameter space:

𝐷 = (𝐷2pos + 𝐷2freq + 𝐷2HI size + 𝐷2line width + 𝐷2flux)
1
2 , (16)

where the errors on parameters of spatial position, central frequency,
line width and integrated line flux have been normalised following
the definitions in Table 2. The error on Hi size is at this stage
normalised by the beam-convolved true Hi size in order not to
lead to the preferential rejection of unresolved sources. The multi-
dimensional error threshold is set at 5, i.e. the sum in quadrature of
unit normalised error values.

5.1.2 Accuracy of sources properties

For all detections that have been identified as a match, properties
are compared with the truth catalogue and a score is assigned per
property and per source. The following properties are considered
for accuracy: sky position (RA, Dec), Hi size, integrated line flux,
central frequency, position angle, inclination angle and line width.
Each attribute 𝑗 of a submitted source 𝑖 contributes a maximum
weighted score 𝑤 𝑗

𝑖
of 1/7, so that the maximum weighted score 𝑤𝑖

for a single matched source is 1:

𝑤𝑖 =

7∑︁
𝑗=1

𝑤
𝑗

𝑖
. (17)

The weighted score of each property of a source is determined by

𝑤
𝑗

𝑖
=
1
7
min

{
1,
thr 𝑗
err 𝑗

𝑖

}
, (18)
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Property Error term Threshold

RA and Dec, 𝑥, 𝑦 𝐷pos =
(𝑥 − 𝑥′)2 + (𝑦 − 𝑦′)2

𝑆′
0.3

Hi size, 𝑆 𝐷HI size =
|𝑆 − 𝑆′ |

𝑆′
0.3

Integrated line flux, 𝐹 𝐷flux =
|𝐹 − 𝐹 ′ |

𝐹 ′ 0.1

Central frequency, a 𝐷freq =
|a − a′ |
𝑤′
20,Hz

0.3

Position angle, \ 𝐷PA = |\ − \′ | 10

Inclination angle, 𝑖 𝐷incl = |𝑖 − 𝑖′ | 10

Line width, 𝑤20 𝐷line width =
|𝑤20 − 𝑤′

20 |
𝑤′
20

0.3

Table 2. Definitions of errors and threshold values for the properties of
sources. Prime denotes the attributes of the truth catalogue, 𝑥, 𝑦 are the
pixel coordinates corresponding to RA, Dec, a is the central frequency, 𝑆 is
the Himajor axis diameter and �̂� is the beam-convolvedmajor axis diameter,
𝑓 is the source integrated line flux, \ is the position angle, 𝑖 is the inclination
angle, and 𝑤20 is the Hi line width. Calculations of position angles take into
account potential angle degeneracies by defining the angle difference as
a point on the unit circle and taking the two-argument arctangent of the
coordinates of that point: |\ − \′ | = atan2[sin(\ − \′) , cos(\ − \′) ]

where err 𝑗
𝑖
is the error on the attribute and thr 𝑗 is a threshold applied

to that attribute for all sources. Errors calculated in this step are de-
tailed in Table 2, along with corresponding threshold values, which
have been chosen using the distribution of errors obtained during
tests on the Challenge data products using the SoFiA source finder.
Finally, the weighted scores of submitted sources are averaged over
any duplicate matches with unique truth sources.

5.1.3 Final score per submission

The final score is determined by subtracting the number of false
positives 𝑁f from the summed weighted scores 𝑤𝑖 of all 𝑁m unique
matched sources:

final score =
𝑁m∑︁
𝑖

𝑤𝑖 − 𝑁f . (19)

False positives are linearly penalised in order to preserve equal
weighting between characterisation performance and the ability to
remove false detections.

5.2 Reproducibility awards

Participating teams were encouraged to consider early on in the
Challenge the overall architecture and design of their software
pipelines. At the Challenge close, teams were invited to share
pipeline solutions. Reproducibility awards were then granted in ac-
knowledgement of those teams whose pipelines demonstrated best
practice in the provision of reproducible results and reusable meth-
ods. Pipelines were evaluated using a checklist developed in part-
nership with the Software Sustainability Institute (SSI)11 (Crouch

11 https://www.software.ac.uk/

et al. 2013), which was provided to teams for the purposes of self-
assessment during the Challenge. The checklist12 considered the
following criteria:

Reproducibility of the solution. Can the software pipeline be re-
run easily to produce the same results? Is it:

(i) Well-documented
(ii) Easy to install
(iii) Easy to use

Reusability of the pipeline.Can the code be reused easily by other
people to develop new projects? Does it:

(i) Have an open licence
(ii) Have easily accessible source code
(iii) Adhere to coding standards
(iv) Utilise tests

All parts of the software pipeline developed by each team were
evaluated, including packages that the teams have written and code
that interacts with third party packages, but not including any third
party packages themselves.

6 RESULTS AND ANALYSIS

In this Section we first present the overall Challenge results before
reporting on the determination of source signal-to-noise values. We
then analyse the results from source finding and characterisation
perspectives and present the results of the reproducibility awards.

6.1 Challenge results

The final scores of all teams who submitted a catalogue based on the
full Challenge dataset are reported in Table 3. Each team’s number
of detections, 𝑁d – composed of matches, 𝑁m, and false positives,
𝑁f – are also listed, along with the number of matches, the overall
reliability, 𝑅, and completeness, 𝐶, calculated as follows:

𝑅 =
𝑁m
𝑁d

=
𝑁m

𝑁m + 𝑁f
; (20)

𝐶 =
𝑁m
𝑁t

, (21)

where 𝑁t is the number of sources in the truth catalogue. The over-
all characterisation accuracy of each team’s method, 𝐴, is defined
as the accuracy of source property measurement according to Sec-
tion 5.1.2, averaged over all properties for all matches per team:

𝐴 =

∑𝑁m
𝑖

𝑤𝑖

𝑁m
. (22)

We note that the scoring algorithm (Section 5), designed to penalise
false detections, can result in a teams’ highest scoring submission
containing a significantly less complete catalogue than other sub-
missions made by the same team if the number of false positives
is high. This is the case for teams Coin, HIRAXers and SHAO.
With each teams’ agreement, therefore, we have used the team’s

12 https://sdc2.astronomers.skatelescope.org/
sdc2-challenge/reproducibility-awards
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Team name Score 𝑁d 𝑁m 𝑅 𝐶 𝐴

MINERVA 23254 32652 30841 0.945 0.132 0.81
FORSKA-Sweden 22489 33294 31507 0.946 0.135 0.77
Team SoFiA 16822 24923 23486 0.942 0.101 0.78
NAOC-Tianlai 14416 29151 26020 0.893 0.112 0.67
HI-FRIENDS 13903 21903 20828 0.951 0.089 0.72
EPFL 8515 19116 16742 0.876 0.072 0.65
Spardha 5615 18000 13513 0.751 0.058 0.75
Starmech 2096 27799 17560 0.632 0.075 0.70
JLRAT 1080 2100 1918 0.913 0.008 0.66
Coin -2 29 17 0.586 0.000 0.60
HIRAXers -2 2 0 0.000 0.000 -
SHAO -471 471 0 0.000 0.000 -

Table 3. SDC2 finalist teams’ scores are reported, rounded to the nearest
integer. Also reported are the number of detections 𝑁d and matches 𝑁m
(Section 5.1.1), and the overall reliability (𝑅; eq. 20) and completeness (𝐶;
eq. 21) of each method. Finally, the source characterisation accuracy (𝐴;
equation 22) reports the percentage accuracy of source property measure-
ment averaged over all properties for all sources matched per team.

submission with the highest completeness for the following anal-
ysis, while leaving the leaderboard scores unchanged. This allows
us more robustly to investigate the characterisation performance of
these teams’ methods.

6.1.1 Conventions and units

Several conventions and conversions are used during the characteri-
sation ofHi spectral line datawhich, without clear and unambiguous
specification, can lead to inconsistencies between catalogues and
between physical and measured properties. Room for error arose
due to potential alternative position angle definitions and to the
need to shift the rest frequency into the frame of the source. Where
teams’ catalogues have followed alternative conventions or incor-
rect conversions, catalogue corrections have been applied after the
close of the Challenge leaderboard. While teams’ scores are af-
fected slightly, leaderboard positions do not change. The Challenge
organising team used the dedicated discussion forum (Section 2.1)
to resolve misunderstandings in the rules and conventions as they
arose. Future SKAO Science Data Challenges will benefit from ad-
ditional instructions and examples where ambiguity or unfamiliarity
can be anticipated. The reporting of observed rather than derived
parameters would also reduce measurement inconsistencies.

6.2 Signal-to-noise

The appropriate definition and calculation of source signal-to-noise
values is important in order to gain an understanding of the absolute
performance of teams’ methods and to transfer insights gained from
SDC2 to other datasets. While the value of peak signal-to-noise
is easy to define, it fails to capture any information about source
extent. Alternatively, the integrated signal-to-noise can be evaluated
for a chosen mask across the source. The total error contribution
from the mask pixels can be calculated using the usual rules of
correlated error propagation. However, due to the smoothing effect
of beam sampling, the amount of true signal containedwithin a finite
mask cannot be determined. Further, the application of smoothing
kernels – routinely used in signal processing problems to boost
signal with respect to noise – results in modification to the signal-to-
noise properties of a given source. For the purpose of this analysis,

therefore, we use a signal-to-noise definition based on the peak
signal of a smoothed source. The definition adopted for this paper
is intended to provide the most helpful insight into SDC2 results,
but is not necessarily the best choice for other datasets.

A given signal in the presence of additive white Gaussian noise
can be maximised with respect to the noise by applying a smoothing
filter matched to the signal. In this case, the matched filter optimises
the trade-off between noise-suppression and signal-suppression. In
the case of an SKA-observed spatial noise field, logarithmic spacing
of the array configurations results in a relatively uniform sensitivity,
in units of Jy beam−1, across a wide range of angular scales (Braun
et al. 2019). This property is evident upon Gaussian smoothing of
the SDC2 simulated spatial noise field, which sees a slight reduction
in beam-normalised r.m.s. noise to an approximately constant level
between angular ranges ∼10–80 arcsec FWHM (see Fig. 8, which
presents r.m.s. noise as a function of total spatial smoothing and
frequency for a simulated 2000h SKA-MID observation of a 20
square degree field). The signal-to-noise of a source observed using
the SKA can therefore be maximised in the spatial dimensions
simply by applying a sufficiently large Gaussian smoothing kernel,
provided that the source itself is no larger in spatial extent than
the angular range of uniform sensitivity. Fig. 9 presents the effect
on signal-to-noise of smoothing an SKA-observed Gaussian source
using a range of Gaussian smoothing kernels.

For each SDC2 source, a signal-to-noise ratio (SNR) value was
obtained by first selecting the minimum r.m.s noise value, 𝜎rms,a ,
achieved by smoothing the SKA noise field at the source central fre-
quency, a, with a Gaussian smoothing kernel. The total smoothing
scale is obtained by adding in quadrature the FWHM of the corre-
sponding smoothing kernel to the SKA beam FWHM. Making the
assumption that the spatial extent of the source is smaller than the
total smoothing scale, such that the integrated source flux density
per channel 𝑖 would equal the peak value of the smoothed source
per channel, the source pixel values were integrated over spatial
dimensions to produce a spectral profile, 𝑆(𝑖). A tophat filter was
then applied to the source spectral profile:

𝑆′(𝑖) = 1
𝑘

𝑘−1∑︁
𝑢=0

𝑆(𝑖 − 𝑢), (23)

and to a one-dimensional white Gaussian noise field 𝑁 (𝑖) with
standard deviation equal to 𝜎rms,a :

𝑁 ′(𝑖) = 1
𝑘

𝑘−1∑︁
𝑢=0

𝑁 (𝑖 − 𝑢). (24)

The size of the tophat filter, 𝑘 , was chosen to equal the number of
channels in the spectral profile with values greater than 10 percent
of the maximum value. The final SNR value,

SNR =
𝑆′max
𝜎′
rms

, (25)

was calculated using the maximum value of the filtered spectral
profile,

𝑆′max = max{𝑆′(𝑖)}, (26)

and the r.m.s. value of the filtered Gaussian noise,

𝜎′
rms =

√︁
〈𝑁 ′(𝑖)〉. (27)
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Figure 8. The r.m.s noise of the 2000h SKA-MID 20 square degree noise
field is plotted as a function of frequency and of smoothing. The smoothing
FWHM presented is the result of adding in quadrature the 7 arcsec beam
FWHM and the FWHM of a Gaussian smoothing filter applied to the field.

Fig. 10 presents binned SNR values of all sources in the full SDC2
truth catalogue.

6.3 Source finding

Fig. 11 presents for each team the number of final matches and
false positives, binned according to integrated line flux along with
all sources from the truth catalogue. When considering matches,
truth catalogue line flux values are used; when considering false
positives, the lack of corresponding truth values necessitates the
use of submitted line flux values. Fig. 12 presents reliability and
completeness values as a function of integrated line flux, where
submitted values are again used in the calculation of reliability due
to the absence of corresponding truth values for false positives.
Fig. 12 also presents completeness as a function of SNR values.

6.4 Source characterisation

In order to investigate the performance of teams’ methods in the re-
covery of source properties, several relationships were investigated.
Fig. 13 presents error terms (Table 2) calculated without using ab-
solute values and plotted as a function of true property value and of
SNR for flux, of true property value for size and line width measure-
ments, and as a function of true size, for position and inclination
angle measurements. Fig. 14 presents overall source characterisa-
tion accuracy as a function of SNR. Characterisation accuracy is
determined according to Section 5.1.2, averaged over all properties
except position in RA, Dec and central frequency, for all matches
per team in the given SNR interval.

Fig. 15 compares Hi mass distributions constructed using
teams’ matched sources with the function constructed by taking
the input redshift-dependent Hi mass function 𝜙(𝑀HI) (eq. 1) and
multiplying by the sky volume covered by a given redshift interval.
True Hi masses generated during our simulation (Section 3) were
used to obtain for each team an Hi mass distribution, 𝑁m (𝑀 ′

HI), by
counting matched sources that fall within a logarithmic bin centred
on true mass value 𝑀 ′

HI.
A second Hi mass distribution, 𝑁m (𝑀HI), was constructed
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Figure 9. A simulated circular Gaussian source of FWHM 14 arcsec is
convolved with a circular Gaussian ‘beam’ of 7 arcsec FWHM and used to
illustrate signal-to-noise characteristics of the SKA-MID field as a function
of smoothing. A series of Gaussian smoothing filters is applied both to the
beam-convolved source and to a simulated noise field representing 2000h
of Band 2 SKA-MID observations of a 20 square degree field. The beam
FWHM and smoothing FWHM are added in quadrature to obtain the total
smoothing FWHM, which is represented by the abscissa. From top, in blue:
peak smoothed source flux density; total source flux density; r.m.s. noise
of the noise field; peak SNR obtained using the peak smoothed source flux
density and the r.m.s noise. The orange horizontal line represents the values
obtained by applying instead a filter matched to the source.
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Figure 10. Truth catalogue sources are binned according to SNR values (see
Section 6.2 for a description of the signal-to-noise calculation).
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Figure 12. Top: Reliability, defined as the number of matches divided by
the number of detections, is plotted for each team as a function of submitted
integrated line flux.Middle:Completeness, defined as the number ofmatches
divided by the number of truth catalogue sources, is plotted for each team
as a function of true integrated line flux. Bottom: Completeness is plotted
for each team as a function of true SNR (see Section 6.2 for a description of
the chosen signal-to-noise definition).

using submitted property values, 𝐹 and a, of teams’ detections,
which were converted to mass according to eq. 2 (Duffy et al.
2012). The same conversion was applied to the full truth catalogue
to produce the complete Hi mass distribution, 𝑁𝐶

m (𝑀 ′
HI), which

was used to verify consistency between the input mass function and
simulated observables.

Submitted and true values of teams’ matches and detections,
respectively, were used to plot the residual,

Δ𝑁m (𝑀HI) = 𝑁m (𝑀HI) − 𝑁m (𝑀 ′
HI), (28)

after applying a second order spline interpolation to both distribu-
tions.

For each team, the Himass distribution derived from true mass
values, 𝑁m (𝑀 ′

HI), was interpolated and compared with the input Hi
mass distribution, 𝑁m (𝑀HI), in order to identify the Himass above
which at least 50 percent of truth catalogue sources are recovered
(Table 5). Fig 16 presents this mass for the top eight scoring teams
as a function of redshift and compared with the Hi mass function
‘knee’ mass (equation 1).

6.5 Reproducibility awards

Six teams submitted entries for the SDC2 reproducibility awards.
Each pipeline was evaluated by an expert panel against the pre-
defined award criteria (Section 5.2). Table 4 reports the awards
granted to each team.

7 DISCUSSION

Challenge teams employed a variety of methods to tackle the simu-
lated SKA MID Hi dataset. In this section we discuss the findings
in terms of individual and collective method capabilities.

7.1 Source finding and characterisation

The overall results (Table 3) show a wide range of performance
both within and between methods. Reference to Table 1 indicates
that strategies for false positive rejection are important. Further, the
use of a refined training dataset, as employed by team MINERVA,
may be crucial.

While reliability and completeness (Fig. 12) generally show an
increase with increasing flux and SNR, several teams show a drop-
off at the brighter flux end. This is partly explained by a low number
of sources, resulting in statistical noise. Reliability, in addition, will
be particularly affected by the presence of brighter artefacts arising
from imperfect continuum subtraction. Unreliability could in turn
lead to a lower level of completeness in the corresponding flux
bin, if source-finding methods themselves become correspondingly
uncertain. For the top two scoring teams, a completeness of at least
50 percent is achieved down to a limit of SNR∼5 and an integrated
flux limit of ∼20 Jy Hz.

The analysis of individual source property recovery (Fig. 13)
finds that of all properties, position angle is the most difficult to
recover, with a standard deviation on the errors often covering most
of the position angle range. This is understandable considering the
large fraction of partially unresolved sources, and some teams are
able to recover position angle well for resolved source sizes. In-
clination angle, which gives rise to the radial velocity for a given
rotational velocity (equation 6), and can therefore be approximated
by making use of line width, flux and size measurements, does not
suffer the same problem. Source characterisation could be improved
by choosing a suitably high detection threshold. For example, anal-
ysis of characterisation accuracy as as function of SNR (Fig. 14)
finds a clear trend. The winning team,MINERVA, dominates across
most of the SNR range, maintaining an average accuracy above 0.8
from SNR∼10–60, and remaining around 10 percent higher than
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Figure 13. Error terms (see Table 2), calculated without using absolute values, are plotted as a function of true property value, SNR, or spatial source size.
Joined circles represent the median error per logarithmic bin, the filled regions represent the standard deviation of the error, and all plots use teams’ matched
submissions. A dashed line represents the beam size of the simulated observations.

Team name Reproducibility award Pipeline

EPFL Bronze https://github.com/epfl-radio-astro/LiSA
FORSKA-Sweden Silver https://github.com/FraunhoferChalmersCentre/ska-sdc-2
HI-FRIENDS Gold https://github.com/HI-FRIENDS-SDC2/hi-friends
NAOC-Tianlai Bronze https://github.com/kfyu/SDC2-tianlai
SHAO Bronze https://github.com/astrosumit/SDC2-SHAO
Team SoFiA Silver https://github.com/SoFiA-Admin/SKA-SDC2-SoFiA

Table 4. Reproducibility awards were made to six teams who submitted pipelines demonstrating best practice in the provision of reproducible results and
reusable methods. Entries were evaluated by an expert panel using a pre-defined set of criteria (Section 5.2).
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Figure 14. Source characterisation as a function of SNR. Source accuracy
is determined according to Section 5.1.2, averaged over all properties except
position in RA, Dec and central frequency, for all matches per team in the
given SNR interval.

the next team from SNR∼3–60. At the very highest SNR, however,
Team SoFiA achieved the greatest averaged accuracy, while the
MINERVA performance falls slightly.

7.1.1 Noise biases

The analysis of integrated line flux measurements finds in general
a positive excess at lower values. This demonstrates the problem
of so-called ‘flux boosting’ as a result of increasing number counts
in the presence of local noise fluctuations (Hogg & Turner 1998).
In terms of SNR, flux boosting becomes apparent at SNR∼7 but
remains minimal for the top three scoring teams, which see a flux
boosting effect of ∼40 percent at SNR= 3. Similar noise biases may
be apparent in the measurement of Hi size and line width, where
there is a general tendency to overestimate smaller sizes and un-
derestimate larger sizes. Some teams used the SDC2 development
dataset to calibrate pipeline output against the available truth cat-
alogue. For example, team SoFiA used polynomial fits to affected
parameters as a function of flux, in order to derive corrections for
flux, Hi size and line width. While corrections can remove the bias,
intrinsic scatter, which is likely to be considerable at low SNR,
will remain (see e.g. Hogg & Turner (1998)). The overestimation
of Hi size is compounded by the finite resolution of the simulated
observation: the fractional error on Hi size understandably rises
steeply as the true size decreases below the 7 arcsec beam size.
Despite this limitation, some teams are significantly more accurate
in constraining the source size limit.

7.1.2 Hi mass recovery

The Himass distributions presented in Fig. 15 are constructed with-
out making corrections for survey sensitivity, which is a non-trivial
task that falls outside the scope of the Challenge. Our analysis is
therefore intended to demonstrate the depth of Hi mass that can be
probed by respective methods, and the discrepancy that may arise
between number counts of observed and intrinsicmasses of detected
sources.

A 50 percent completeness threshold was chosen to charac-
terise Hi mass recovery depths following Rosenberg & Schneider
(2002), who, using an Hi-selected galaxy sample from the Arecibo

Dual-Beam Survey (Rosenberg & Schneider 2000), found a negligi-
ble difference between the mass function derived using only sources
above the 50 percent ‘sensitivity limit’ and the function derived us-
ing all sources. Fig. 16 demonstrates that the two top scoring teams’
methods are able to probe the Hi knee mass with a 50 percent com-
pleteness out to a redshift of approximately 0.45, or 1740 Mpc of
comoving distance. For comparison, the ALFALFA survey – with a
footprint of ∼6900 deg2 – has probed the knee mass out to distances
of approximately 200 Mpc.

With the caveat that line width completeness corrections have
not been performed on the mass distributions constructed using
teams’ submitted values, we use Fig. 15 also to demonstrate the
relative error between distributions constructed using the true and
submitted values of teams’ detections. The top three scoring teams
attain a relatively high degree of accuracy for detected sources, each
seeing an overestimation in the mass distribution of less than 0.1
dex at the point where completeness falls below 50 percent.

7.2 Machine learning vs non-machine learning

Supervised machine learning (ML) methods, particularly convolu-
tional neural networks (CNN), proved a popular technique during
the Challenge, and featured in the pipelines of the two top scor-
ing teams. Of particular note is the significant success by winning
team MINERVA in both the finding and characterisation parts of
the Challenge. The winning technique, which used ML both to find
and characterise sources, achieved a ten percent improvement over
the next team in characterisation accuracy across a SNR range ∼4–
30. Methods involving traditional signal processing techniques also
achieved high scores, including the SoFiA package, which was used
not only by the third-placed team of its developers, but also in the
source characterisation of the second placed team and by several
others.

7.2.1 Generalisation

The results demonstrate the promise of ML in the analysis of very
large and complex datasets. As seen in similar community chal-
lenges (e.g. Metcalf et al. 2019), ML methods are often able to out-
perform traditional methods. This success is not without its caveats.
In order for supervised ML models to transfer successfully to real
data, they must be able to generalise beyond the parameter distri-
bution that has been sampled by the training data (Burges 1998).
Overfitting by models with large numbers of parameters can be
avoided using a sufficiently large set of training data. A more dif-
ficult problem is that of covariate shift: when the distributions of
training and real datasets are intrinsically different. This is a com-
mon issue for astronomy (see e.g. Freeman et al. 2017; Luo et al.
2020; Autenrieth et al. 2021), where techniques are often being
developed in preparation for data that is yet to be recorded. Mod-
els are instead trained using simulated data, which cannot capture
unknown characteristics of the future observations. Limitations to
the realism of the SDC2 data products (Section 3.4) are likely in
turn to introduce limitations in the ability of SDC2 ML models to
transfer to real data. An increased number of real Hi observations
used to generate the Hi emission cube will reduce the risk of model
overfitting. Further characterisation of RFI and other instrumen-
tal effects during the commissioning phase of the SKAO telescopes
will enable the simulation of ever more realistic datasets for training
purposes, and transfer learning (Pan &Yang 2009; Tang et al. 2019)
could close the gap further still. In future SDCs, the inclusion of a
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Figure 15. Top panels: Hi mass distributions 𝑁m (𝑀 ′
HI) are constructed using the true values of integrated line flux and central frequency of each teams’

matches (joined circles). The redshift-dependent Hi mass function (eq. 15), from which truth catalogue sources were drawn, is multiplied by the comoving
volume of the given redshift interval and plotted (grey curve). Black diamonds represent the Hi mass distribution reconstructed using the full truth catalogue.
Dotted lines indicate for each team the Hi mass above which completeness exceeds 50 percent. Bottom panels: the Hi mass distribution residual represents the
difference between the distribution constructed from the values of teams’ submissions and distribution constructed from truth values of teams’ matches. Both
distributions are interpolated prior to finding the residual. Completeness values are in this case calculated using teams’ submitted values, and dotted and solid
curves are used to delineate Hi masses where completeness falls below and above 50 percent, respectively.
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Figure 16. The Hi mass above which at least 50 percent of truth catalogue
sources are recovered is plotted against redshift for the eight top scoring
teams. The dotted line represents the input Hi ‘knee’ mass,𝑀∗ (equation 1),
which marks in the Himass function the exponential decline from a shallow
power law.

data product produced using a different distribution could provide
a test for model robustness to covariate shift.

Non-machine learning methods, generally making use of far
fewer parameters thanMLmodels and less reliant on the availability
of training data, may transfer more successfully from simulated to
real data. This advantage appears to be evidenced by the comparative
successes of team-SoFiA andHI FRIENDS – both of which used the
sofia software package – at the brighter end of the integrated flux

and SNR ranges across reliability, completeness, and characterisa-
tion accuracy (see Figs. 11, 12 and 14). By contrast, the ML-based
pipelines used by teams MINERVA and FORSKA-Sweden have
produced a number of false positives and false negatives, respec-
tively, in the detection of the very brightest sources. The ML-based
pipelines also appear to show a fall in characterisation accuracy at
the very highest SNR values. It is possible that the paucity of very
bright samples in the training datasets has prevented ML methods
from modelling very well the features of the brightest sources. On
the other hand, it is likely that the small number of bright samples
in the Challenge dataset has led to the prioritisation during pipeline
optimisation of greater accuracy for fainter populations, since the
large number of fainter sources produce a much greater impact on
the score.

7.3 Method complementarity

The strategy employed bywinning teamMINERVAunderscores one
of the most important outcomes of the Challenge: that of method
complementarity. By combining the outputs of two independent
pipelines the teams were able to recover sources from a larger
amount of the flux–linewidth parameter space than by using a single
pipeline alone (Fig. 5), and could further exploit the independence
of the pipelines to reduce bias and variance in sourcemeasurements.
The success of this strategy demonstrates that, given a selection of
sufficiently independent and well-performing methods, stacking –
where the predictions made by a group of independent machine
learning methods are used as inputs into a subsequent learning
model – could improve generalisation from training data to new
data (see also Wolpert 1992; Alves 2017; Zitlau et al. 2016).

The promise of a multi-method approach is further demon-
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Team name Redshift interval
0.25 0.30 0.35 0.40 0.45
–0.30 –0.35 –0.40 –0.45 –0.50

MINERVA 2.60 3.82 5.27 7.12 10.04
FORSKA-Sweden 2.52 3.80 5.15 6.91 9.57
Team SoFiA 3.32 4.77 6.68 8.52 11.59
NAOC-Tianlai 3.12 4.67 6.33 8.40 11.69
HI-FRIENDS 3.67 5.37 7.51 9.94 13.55
EPFL 4.14 6.10 8.45 11.21 17.60
Spardha 4.78 6.98 9.47 12.55 20.91
Starmech 3.97 6.52 9.41 12.44 20.22
JLRAT - 46.03 - 46.77 72.57
Coin - 69.44 - 70.11 72.52
HIRAXers - - - - -
SHAO - - - - -

Table 5. The Hi mass (in units of 109 M�) above which at least 50 percent
of truth catalogue sources are recovered is reported per redshift interval for
the SDC2 finalist teams.

strated by the performance of different methods in different aspects
of the Challenge. Teams Starmech and Coin, for example, though
occupying the lower half of the leaderboard, performed particularly
well in the recovery of line flux and Hi size, respectively (Fig. 13).
Teams NAOC-Tianlai, HI-FRIENDS, EPFL, though missing out on
the top three positions of the leaderboard, all demonstrated a high ac-
curacy in the recovery, variously, of flux, source size and inclination
angle. HI-FRIENDS also achieved highest overall reliability, while
Team ForSKA, a very close second on the leaderboard, achieved
the highest level overall completeness (Table. 3). If the measure-
ment of source properties is considered a separate problem from
source finding, and the measurement of different source properties
considered a many-problem task in itself, then a so-called bucket-
of-models approach (Kim et al. 2015) could harness the capabilities
of different methods to further improve performance beyond any
individual method.

7.4 Scoring metrics

In the case of SDC2, the scoring algorithm has been designed to
evaluate source finding and characterisation performance together.
We note that the choice of any scoring metric will necessarily have
an impact on the analysis that teams will perform. Strategies de-
signed to maximise such a score might not be the best ones for
other scientific goals: a search for fewer, highly resolved sources
will take a very different approach from one aiming to produce a
complete catalogue. The Challenge leaderboard score, if looked at
in isolation, can obscure strong performance by teams on source
characterisation. This is a consequence of the strong penalty for
false positives. Given the strong degree of method complementar-
ity, a challenge scoring system that can reflect specialised solutions
to a problem may further exploit complementarity as a quality of a
collection of independent methods.

7.5 Open Science

The SDC2 reproducibility awards were designed to recognise Open
Science best practice in the preparation and dissemination of analy-
sis software pipelines. By providing public access to codes written
to address SDC2, six teams were able to enhance the reproducibility

and reusability of their methods. Noteable examples of best prac-
tice included the use of clear and comprehensive documentation,
quick-start examples, command line interface excerpts, open-source
licensing and descriptive variable names. Practices employed by the
Gold-standard HI-FRIENDS pipeline included the use of the work-
flow management system snakemake (see Section 4.4) to design
the overall workflow and suggest well-structured code directories,
to manage the installation of software dependencies, and to gen-
erate a workflow graph image, all of which support the reusability
and portability of the code. The advantages of well-documented and
easily accessible codes are underscored by the popularity during the
Challenge of the publicly available and regularly maintained SoFia
package, which was used by six of the participating teams.

Reproducible and reusable analysis pipelines help to address
some of the challenges of conducting research under a deluge of data
while leveraging the many new technologies available to deal with
the data. However, preparing software for public access can require
a significant time investment. As we look ahead to the exascale
era of data (Scaife 2020), adequate funding to allow for software
package maintenance and development will be essential.

7.6 Data handling

Teams were able to handle the large Challenge dataset with min-
imal difficulty thanks to the generous provision of computational
resources by the SDC2 partner facilities (Section 2.2). By divid-
ing the dataset into smaller portions and running parallelised codes,
teams could comfortably process the full Challenge dataset in under
24 hours of wall clock time. Efficiency savings will become ever
more important as volumes of observational data grow and analysis
pipelines proliferate; the use of fewer resources to analyse data will
not only allow future SKA Regional Centres to support a greater
number of researchers, but will also reduce energy consumption
during processing.

7.7 Lessons learned

We summarise here the opportunities for improvement in Challenge
delivery that would further support the achievement of the overall
goals of the SDC series:

(i) Additional guidance for the use of radio astronomy convention
and conversions (see Section 6.1.1).
(ii) Consideration of the use ofmultiple scoringmetrics to reflect

different aspects of a challenge (see Section 7.4).
(iii) A smaller set of criteria for a reproducibility component of

a challenge could prove more accessible for teams to achieve (see
Section 4).

8 CONCLUSIONS

The second SKAO Science Data Challenge has brought together
scientists and software experts from around the world to tackle
the problem of finding and characterising Hi sources in very large
SKAO datasets. The high level of engagement coupled with mul-
tidisciplinary collaboration has enabled the goals of the Challenge
to be met, with over 100 finalists gaining familiarity with future
SKAO spectral line data in order to drive forward new data process-
ing methods and improve on existing techniques.

Interpretation of the results from SDC2 is limited by three
main factors:
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(i) The Challenge dataset is a simulation and cannot fully repre-
sent real future SKA observations. Dataset realism is limited most
significantly by oversimplication of the noise (see Section 3.4).
(ii) The Challenge did not aim to provide a standardised cross

comparison of methods; only a single dataset was used and no
attempt was made to control for team effort or domain expertise.
(iii) Team methods were developed as a means to maximise a

score calculated according to the Challenge definition. Depending
on the scientific goal, alternative metrics may be measured, for
which other strategies may be explored.

With these caveats in mind, the main outcomes from the Challenge
are summarised below:

(i) Twelve international teams, using a variety of methods (Sec-
tion 4) were able to complete the full Challenge.
(ii) Simulated data products representing a 2000 h spectral line

observation by SKA MID telescopes were produced for the Chal-
lenge (Section 3), and are now publicly available together with
accompanying truth catalogues13. We encourage the use of these
data products by the science community in order to support the
preparation and planning for future SKAO observations.
(iii) The generous contribution from supercomputing partner fa-

cilities (Section 2.2) has been integral to the success of the Chal-
lenge. Thanks to the provision of resources for hosting, processing
and access to Challenge data, it has been possible to provide a real-
istically large Hi data product in an accessible way. The support has
also provided the opportunity to test several aspects of the future
SRC model of collaboratively networked computing centres, from
web technologies involved in the SDC2 scoring service (Section 5),
to the access processes in place for resource users.
(iv) The provision of a realistically large Hi data product has

allowed participants to explore approaches for dealing with very
large datasets. By interacting with the full Challenge dataset, finalist
teams were able to investigate optimisation and efficiency savings
in readiness for future SKAO observational data products.
(v) Analysis of teams’ submissions (Section 6.1) has shown that

sources are recovered with over 50 percent completeness down to a
SNR limit of ∼5 and an integrated flux limit of ∼20 Jy Hz by the top
scoring teams. Keeping in mind the caveats above, this translates to
the ability to probe the Hi mass function down to ∼ 3 × 109 M� at
0.25 < 𝑧 < 0.30 and to ∼ 1 × 1010 M� at 0.45 < 𝑧 < 0.50. The
‘knee’ mass of the Hi mass function can be probed out to 𝑧 ∼ 0.45
by the same methods for the chosen redshift evolution.
(vi) The analysis of submitted catalogues also provides a qual-

itative and quantitative understanding of the biases inherent to
sensitivity-limited survey results. Biases arising from the presence
of local noise fluctuations resulted in overestimation of flux at
SNR.7. Source size and line width also showed a positive bias
with fainter objects and smaller sizes.
(vii) Six teams took part in the SDC2 reproducibility awards,

which ran alongside themainChallenge andwere designed to recog-
nise best practice in the preparation of reproducible and reusable
pipelines. All six teams received an award, with team HI-FRIENDS
receiving a Gold award for an exemplary software pipeline.
(viii) New applications of machine learning-based techniques –

used by the two top scoring teams – have shown particular promise
in the recovery and characterisation of Hi sources. The results sug-
gest a dependency on sufficient training data, evidenced by a drop

13 https://sdc2.astronomers.skatelescope.org/
sdc2-challenge/data

in performance at the bright flux end, where a paucity of very bright
training sources exists. A more uniformly distributed training sam-
ple may address this problem. Further work using real observations
from SKAO commissioning activities and from precursor instru-
ments will examine how well machine learning models can transfer
from simulated training data to real observational data.
(ix) The existing SoFiA software package also performed very

well, achieving third place in the Challenge and also being used
by several other teams, including by the second placed team for
source characterisation. That the package proved so popular further
demonstrates the value of clearly documented and easily accessible
codes, in addition to its accuracy and efficiency. This challenge
highlights the need for such software packages, built and designed
by astronomers to tackle specific problems, to receive the funding
to be well maintained.
(x) Perhaps the most important finding of the Challenge is that

of method complementarity. Also seen in the first SKAO Science
Data Challenge (Bonaldi et al. 2020), the relative performance of
individual teams varied across aspects of the Challenge. It is likely
that a combination of methods will produce the most accurate re-
sults. This finding is underscored by the strategy employed by the
winning team, MINERVA. By optimising the combined predictions
from two independent machine learning methods, the teamwas able
to record an improvement in score 20 percent above either method
alone (see Fig. 5). The result demonstrates the promise of ensemble
learning in exploiting very large astronomical datasets.
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