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A B S T R A C T   

The presence of random defects in laser powder bed fusion (LPBF) parts is an issue that challenges the reliability 
of this manufacturing process and hinders its employment in structural, defect-sensitive components. A potential 
solution to increase the reliability of LPBF is employing in-process monitoring targeting defect detection. This 
study aims to detect stochastic defects driven by spatter particles via in-situ monitoring and validate the 
detection method ex-situ via X-ray computed tomography (XCT). By means of in-situ optical tomography (OT), 
monitoring images were registered layerwise during the manufacturing of Hastelloy X specimens. The images 
were analyzed to detect spatters landing within specimen boundaries, and the spatial coordinates of the de
tections were obtained. The specimens were also measured ex-situ by means of XCT, from which key features and 
coordinates of internal defects were obtained. The in-situ spatter detection method was then compared to the 
XCT measurements. It was found that 79 % of lack of fusion defects were detected in OT images. The detection 
was particularly successful for large defects. Spatter-induced lack of fusion defects were present in the specimens 
manufactured with optimized processing parameters in different degrees, depending on the robustness of the 
processing conditions to spatters. This study demonstrates the applicability of optical tomography in-situ 
monitoring for indirect detection of stochastic lack of fusion, whose presence is inferred from spatter redepo
sits on the powder bed.   

1. Introduction 

The presence and detectability of defects in parts manufactured via 
laser powder bed fusion (LPBF) are pivotal to the application of this 
technology as a reliable industrial manufacturing method [1,2]. A class 
of defects particularly problematic in a real-life manufacturing scenario 
consists of internal, stochastic defects [3,4]. Differently from other 
defect classes, e.g., geometrical and surface defects [5,6], these defects 
are often not apparent and, due to being internal, are typically not 
removed by surface treatment. Additionally and more importantly, the 
phenomena leading to these defects are intrinsic to the manufacturing 
process and occur despite process parameter optimization. 

A source of stochastic defects is spatter formation and redeposition in 
the printing area [7,8]. Spatters are byproducts of the LPBF process, 
whose occurrence is unpreventable [9]. The spatter particles typically 
present an oxidized surface [10–12] and can be much larger than the 
feedstock powder [8,13], thus locally disturbing the powder bed and 
prompting the formation of lack of fusion defects [7,14]. As a 

consequence of their defect-inducing character, spatters have been 
associated with degradation in tensile properties [15,16] and reduced 
fatigue performance [17]. 

Considering their detrimental effect on material properties, detecting 
spatter-driven defects is paramount to increasing the reliability of LPBF 
and ensuring the components manufactured through this process pre
sent a satisfactory, predictable performance in service. However, 
detection of internal defects via post-manufacturing, ex-situ non- 
destructive inspection can be challenging and time-consuming, 
notably if the full design possibilities of AM are utilized and complex 
geometries are created [18,19]. Fortunately, in-situ monitoring can be 
targeted toward defect detection to improve part inspection routines 
[20], thereby increasing the reliability and repeatability of AM processes 
[2,21,22]. 

Concerning the in-situ detectability of spatter connected to defect 
formation in full-scale builds, little published data exists. Even though 
monitoring of spatter has been broadly explored in recent years, as 
compiled in a recent review article [9], only a few studies address 
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spatter redeposition in the printing area, which is the factor ultimately 
leading to defect formation. Some studies have successfully detected 
spatter redeposits [23,24] and identified patterns of deposition on the 
powder bed [25] but have only signaled their connection to internal 
defects. Leung et al. [26] determined the mechanisms by which spatters 
create defects via micro-scale in-situ monitoring, while Coeck et al. [3] 
employed melt pool monitoring to detect spatter-induced defects, 
cross-validated with X-ray computed tomography (XCT). A limitation in 
these studies is the low efficiency of the monitoring data acquisition and 
handling, which challenges their employment in an industrial 
manufacturing setup. In our previous work [8,27], optical tomography 
(OT) was found to overcome this challenge thanks to its lean output and 
capability to detect redeposited spatters, which were linked to regions 
containing lack of fusion defects. However, a more exact correspon
dence between defects and in-situ detections must be established before 
this methodology can be used for quality control. 

Hence, this study aims to determine whether individual internal 
defects measured via XCT can be identified through in-situ monitoring. 
The extent to which the in-situ detection method can match actual de
fects is evaluated through metrics derived from the quantification of true 
positive, false positive, and false negative detections. The specimens 
evaluated in this study were manufactured using varying but optimized 
sets of parameters that yield defect-free material when the effects of 
spatter are negligible. This variability allowed for a more general eval
uation of the method proposed and led to the identification of processing 

conditions more robust to spatter-induced defect formation. 

2. Materials and methods 

2.1. Laser powder bed fusion manufacturing 

An EOS M290 (EOS GmbH Electro Optical Systems) LPBF machine 
was used to manufacture Hastelloy X test specimens from gas-atomized 
powder with particle size distribution 19 µm (d10), 35 µm (d50) and 58 
µm (d90). The manufacturing experiments in this study consist of three 
builds containing identical specimens with invariable cross-sections. 
The builds are differentiated by the nominal layer thickness employed. 
The process parameters employed in manufacturing have been previ
ously optimized for the attainment of a material containing a minimal 
amount of porosity through a design of experiments and metallographic 
evaluation of test coupons. The laser parameters used are in the tran
sition between keyhole and conduction modes, to maximize the melt 
pool dimensions while avoiding keyhole instability and systematic 
keyhole porosity [28]. To verify that the parameters yield virtually 
defect-free material, small test coupons were manufactured in prints 
where the effect of spatter redeposition was deemed negligible, and 
characterized following the procedure described in our previous work 
[28]. In short, the internal defects were characterized via image analysis 
of a cross-section of approximate dimensions 20 mm × 10 mm. The 
results are documented in the Appendix. 

The manufacturing process was conducted in an argon atmosphere 
with a maximum oxygen content of 0.1 %. The gas flow settings were 
kept constant throughout the builds, with exposure order against the gas 
flow direction. The build layout is schematized in Fig. 1, where the 
specimens analyzed in this study are represented in orange. The same 
three out of the five specimens from each build were analyzed. 

2.2. In-situ monitoring and spatter detection 

EOSTATE Exposure OT (EOS GmbH Electro Optical Systems, Ger
many) was used to monitor the build processes. In this monitoring sys
tem, a 5-megapixel sCMOS (scientific complementary metal-oxide- 
semiconductor) camera is installed on the outer top part of the build 
chamber and includes the entire build area in its field of view. The 
camera is equipped with a bandpass filter of 900 nm ± 12.5 nm, thus 
allowing acquisition within a narrow window of the near-infrared 
spectral range. During the exposure of each layer in the build process, 
the camera sequentially acquires images with the shutter time set to 
0.1 s. The images registered during the laser exposure of a layer are then 

Fig. 1. Build configuration. The specimens analyzed in this study (highlighted 
in orange) are located halfway between the gas inlet and outlet. 

Fig. 2. Workflow for spatter detection from optical tomography process monitoring data.  
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combined within the system to output an image representing the 
maximum intensity value in regions of the build area of size 
125 µm × 125 µm (MAX output) and an image representing the integral 
emitted intensities in the same region (INT output). EOSTATE Exposure 
OT was used only for acquisition; all data processing and analysis was 
done in a Matlab R2021b environment. Henceforth, “OT” is used to refer 
to this monitoring system, and “OT images” to its MAX output. 

To detect spatter redeposits on the specimens analyzed in this study, 
firstly the monitoring images were cropped to correspond to the volume 
measured via XCT. Then, an image analysis algorithm is applied to the 
cropped images. The algorithm detects bright blobs through convolution 
with a Laplacian of Gaussian filter followed by non-minimum suppres
sion. This approach is well-established in image analysis [29–31] and 
has also been used in prior work [8] for this specific type of image and 
application. The algorithm outputs the (x, y, z) coordinates of the 
detected spatter within the specimen, with z being a multiple of the 
nominal layer thickness. Fig. 2 schematizes the detection workflow. 

2.3. X-ray computed tomography 

The samples were inspected on a custom-developed X-ray CT system 
consisting of a microfocus X-ray tube (XWT-190-TCNF, X-RAY WorX), a 
4000 × 4000 px2 digital X-ray detector (XRD 1611 CP3, Perkin Elmer), 
and air-bearing motion axes [32,33]. Since Hastelloy X has a high X-ray 
absorption coefficient, the samples were cut to 5 × 6 × 29 mm3 to 
enable X-ray transmission in all scan directions. The X-ray tube was 
operated at a voltage of 190 kV and 20 W target power using a 1.0 mm 
copper filter to harden the spectrum. 5801 projections with an inte
gration time of 4.0 s each and 2 × 2 pixel binning were recorded on a 
helical trajectory (1044◦ scan angle, 13.1 mm pitch). Projection data 
were beam hardening corrected and reconstructed into a volume con
sisting of 1700 × 1700 × 5600 voxel with a voxel size of 5.1 µm using 
Siemens CERA 5.1. 

XCT data analysis was performed in VG Studio MAX 3.4 (Volume 
Graphics). The volume data were filtered with a 3 × 3 × 3 median filter 
and the outer sample surface was segmented using a gradient-based 
surface determination algorithm. Three perpendicular faces of the 
sample were used to create a local coordinate system for registration. 
Subsequently, a porosity analysis was performed using the VGEasyPore 
module with sub-voxel accuracy, a relative threshold of 35 % and a local 
area of 10 voxel to determine the local contrast. To render the XCT 
analysis more robust, defects were omitted if either the probability 
threshold (a non-disclosed quality metric) was below 0.1 %, the defect 
closer than 0.1 mm to the outer sample surface, or the defect size below 
27 voxel, representing an equivalent diameter of 0.019 mm. Previous 
simulations confirmed that the recall rate, i.e. probability of detection, 
was close to 100 % and the false discovery rate close to 0 % when using 
these filter parameters, rendering the XCT data an appropriate ground 
truth [34]. For further analysis, volume slices were exported with a 
lateral resolution of 5.1 µm and a layer spacing corresponding to the 
build layer thickness (0.08 mm, 0.12 mm or 0.15 mm). 

2.4. Microstructural analysis 

Microstructural analysis was conducted on the specimens post-XCT. 
The preparation was performed with the following steps: mounting in 
epoxy resin, plane grinding with 320-grit sandpaper, fine grinding with 
9 µm diamond suspension on a Struers MD-Largo surface, and polishing 
with colloidal silica. Etching was done electrolytically at 6 V in a solu
tion of 5 g oxalic acid in 95 mL reagent grade HCl. The investigation was 
performed in the adjacencies of defects using a field emission gun 
scanning electron microscope (FEG-SEM) Leo Gemini 1550 (Carl Zeiss 
Microscopy GmbH). Additionally, the topmost layer of the specimens 
was examined for measurement of melt pool dimensions by means of 
light optical microscopy (LOM) using a Zeiss Axioscope 7 (Carl Zeiss 
Microscopy GmbH). A cross-section perpendicular to the scan vectors on 
that layer was analyzed, with 30 measurements performed per pro
cessing condition. 

2.5. Matching X-ray computed tomography and in-situ monitoring data 

As the coordinate systems for XCT measurements and OT images 
were dissimilar, with distinct origins and units, a coordinate trans
formation was performed. The bottom left corner of each analyzed 
specimens, as seen in OT images, of the first manufacturing layer was 
assigned as the origin, see Fig. 2. The conversion from pixels to metric 
units was obtained in the xy plan by multiplying by 125 µm, which 
corresponds to a pixel in OT images. In the z direction, the layer number 
was multiplied by the nominal layer thickness to obtain the z position in 
metric units. As the post-processing step of cutting the specimens from 
the build platform results in a loss of around 1 mm of material, the z 
coordinates were adjusted to match the location of the top labels as the 
maximum z in both OT images and XCT. With that, the first OT images, 
corresponding to the material lost in the cutting process and not 
measured via XCT, were discarded. Next, the XCT detections were 
clustered into lack of fusion and porosity. After that, a point-by-point 
comparison of the detections obtained from the two systems was per
formed to assess the performance of the OT system combined with the 
image analysis approach to detect spatter-induced lack of fusion. 

3. Results and discussion 

All processing parameters used in this study, previously optimized to 
yield a material with minimal porosity, are indicated in Table 1. From 
previous studies [8,14], it is known that the number of spatter-driven 
defects within a specimen is sensitive to its position in the build area, 
in particular to the distance to the gas outlet. In this study, the distance 
of the specimens to the gas outlet is invariable, and the effect of other 
factors on spatter-driven defect formation is investigated. More specif
ically, due to the variation of the process parameters, the melt pool 
morphology and dimensions in each specimen differ, as well as the 
remelt ratio, defined as the ratio between average melt pool depth and 
nominal layer thickness. The average remelt ratios calculated from the 

Table 1 
Number of lack of fusion defects and volume fraction of defects identified in the test specimens by XCT. The variable process parameters and the average remelt ratio 
are indicated. Laser power and hatch spacing are kept constant at 370 W and 100 µm, respectively.  

Specimen 
ID 

Laser scan speed 
(mm/s) 

Nominal layer thickness 
(µm) 

Average remelt 
ratio 

Volume fraction of defects 
(%) 

Number of gas 
pores 

Number of lack of fusion 
defects 

1a  800  80  3.5  <0.01 %  251  0 
1b  900  80  3.3  <0.01 %  64  0 
1c  1000  80  3.0  <0.01 %  159  0 
2a  800  120  2.3  <0.01 %  1026  2 
2b  900  120  2.2  <0.01 %  437  4 
2c  1000  120  2.0  0.01 %  495  16 
3a  800  150  1.9  0.10 %  3347  131 
3b  900  150  1.7  0.25 %  2358  327 
3c  1000  150  1.6  1.10 %  3667  630  
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melt pool depth measurements divided by the nominal layer thicknesses 
are listed in Table 1. 

3.1. Clustering of ground-truth defect data from X-ray computed 
tomography 

Even though the processing parameters used in this study have been 
previously optimized to yield virtually defect-free material, the coupons 
were manufactured in builds with a high build area utilization [35], i.e., 
densely packed. This experimental layout increases the overall spatter 
generation due to the increased interaction of the laser beam with the 
powder bed, thus increasing the likelihood of spatter redeposition on the 
parts and their susceptibility to spatter-induced lack of fusion. As a 
result, the only defects expected within the material in this study are 
pores in small quantities, as observed in the test coupons used for 
verification of process parameters (see Appendix), and spatter-induced 
lack of fusion. Because the formation mechanisms of these defect 
types are dissimilar [4,36,37], and spatter-induced defects are the object 
of this study, the detection of pores is outside the scope. Thus, the de
tections obtained via XCT scan must be separated per type, so only lack 
of fusion defects are further analyzed. 

To differentiate defects detected by XCT according to their type, 
clustering was performed. Three variables contained in the XCT data 
were considered: defect size, measured as the diameter of the circum
scribed sphere of the defect; sphericity, defined as the ratio between the 
surface of a sphere with the same volume as the defect and the surface of 
the defect; and compactness, defined as the ratio between the volume of 
the defect and the volume of the circumscribed sphere. 

Clustering was performed via k-means clustering. Firstly, a clustering 
evaluation was performed to determine the optimal number of clusters 
in the dataset using the silhouette evaluation criterion [38]. The 
silhouette coefficient is a measure of similarity of a point to other points 
in its cluster compared to points in other clusters. A high silhouette value 
indicates that a point matches its cluster well and others poorly. The 
clustering solution is appropriate if most points have a high silhouette 

value. Fig. 3A shows the sum of all silhouette values for 2–5 clusters and 
confirms that the optimal number of clusters is two. The clustering of the 
12,914 XCT defect data points from all specimens can be visualized in 
the matrix of plots in Fig. 3B. The three variables used for clustering are 
plotted in three combinations of two as scatterplots, where it is possible 
to visualize the patterns of each cluster. Additionally, each of the vari
ables is represented in a histogram format, where the values assumed by 
each of the two clusters are also distinguished by color. Cluster 2 (in 
orange) corresponding to around 9 % of all defects, but 94 % of the total 
volume of defects, is characterized by larger defects with lower 
compactness and sphericity. Low sphericity values combined with large 
defects have previously been listed as a characteristic of lack of fusion 
defects [39,40]; therefore, the defects in cluster 2 will be henceforward 
referred to as lack of fusion, and the defects in cluster 1 as pores. 

The defect population in each specimen separately is observed in  
Fig. 4, where pores and lack of fusion are represented in black and red, 
respectively. The scales are kept constant across plots for easier com
parison. Note that a logarithmic scale was used on the x-axis, repre
senting defect size. As the processing conditions become less robust, i.e., 
with a lower remelt ratio, the presence of large (mm-sized) lack of fusion 
defects becomes common. Note that no lack of fusion defects were 
observed in the specimens manufactured with a nominal layer thickness 
of 80 µm (1a – 1c), which indicates robustness of this processing con
dition to spatter-induced defect generation. When a nominal layer 
thickness of 120 µm was used, a few lack of fusion defects were 
observed, and the sensitivity to varying remelt ratios is clearly observed. 
For the largest nominal layer thickness (150 µm), a large number of lack 
of fusion defects was observed for all three specimens (3a – 3c), and both 
their quantity and size scales with decreasing remelt ratios. Despite that, 
the volume fraction of defects, based on XCT measurements, is relatively 
low for all specimens, as observed in Table 1, thus highlighting the 
shortcomings of relative density as a quality metric in LPBF [28]. 

Table 1 clearly shows that for sufficiently large remelt ratios (3 and 
above), XCT detected no lack of fusion (defects in cluster 2). For smaller 
remelt ratios, the number of lack of fusion defects scales with the 

Fig. 3. A) Evaluation of the optimal number of clusters via the silhouette evaluation criterion B) Scatterplot matrix visualization of clusters of defect data. The 
distributions of the variables used for clustering (defect size, compactness, and sphericity) are represented as histograms. 
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decrease in remelt ratios down to a factor of approximately 2, where a 
breaking point is reached, and the number of lack of fusion defects in
creases rapidly. These results indicate that differences in defect pop
ulations are due to the varying robustness of the processing conditions, i. 
e., to their varying sensitivity levels to spatters driving lack of fusion. 
This conclusion is in accordance with Taheri Andani et al. [41], who 
observed that even though a decrease in laser power input reduces the 
number of spatter particles generated, it prompts an increase in the 
defect percentage within the material. 

3.2. Microstructural analysis 

Microstructural investigation of the specimens shows that the 

porosity present in the specimens is predominantly residual gas porosity 
(represented by white arrows in Fig. 5), but some keyhole pores (rep
resented by red arrows in Fig. 5) are also occasionally observed. 

Microstructural investigation also reveals particles on the surface of 
the parts in manufacture (Fig. 6 A and B). The particles can be incor
porated into the material upon manufacture of subsequent layers (Fig. 6 
C and D), notably when the remelt ratio is larger, or can fail to be 
incorporated in the material upon manufacture of subsequent layers, 
presumably originating lack of fusion (Fig. 6 E, F and G), as previously 
observed in other studies [13,23,42]. The interaction of a single particle 
with the laser beam can either result in its incorporation into the bulk 
material (C) or in insufficient binding (E and G). The same observations 
are valid for the interaction of a cluster of particles with the laser beam, 

Fig. 4. Representation of the internal defects detected via XCT in each individual specimen. Red points denote lack of fusion defects; black points denote pores.  
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as illustrated in D and F. It is not trivial to ascertain that the particles 
observed consist of spatter. Spatter particles differ from feedstock par
ticles mainly in size and surface characteristics [8,10–13]. The particle 
size being larger than the feedstock is indicative that the particle was 
generated in-process; however, a large portion of generated spatter 
particles is within the size range of the feedstock [8,11]. Additionally, 

the sizes measured in cross-sections do not necessarily correspond to the 
maximum particle size, making this criterion less than ideal to deter
mine the nature of a particle. Spatter particles are typically covered with 
an oxide layer substantially thicker than that present on the virgin 
powder, on average [8,12,43]. However, there are substantial 
particle-to-particle variations, and, while the largest particles tend to be 

Fig. 5. Microstructure of specimens 2b (A) and 3b (B), highlighting the porosity present. Residual gas pores are indicated by white arrows; keyhole pores, by 
red arrows. 

Fig. 6. Interactions of spatter particles with the bulk material. Particles deposit on the surface of the material (A, B) and can be incorporated into the bulk during 
future interactions with the laser (C, D). Complete fusion can be prevented due to the presence of spatter particles (E-G). 

Fig. 7. Fracture surface of specimen 3c. The smooth surface is presumed lack of fusion. Multiple particles are observed on its surface, among them a particle with 
diameter of around 120 µm and multiple satellites. 
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covered with thicker oxide layers [43], this thickness is in the order of a 
couple of hundreds of nanometers, maximum. In this study, the surface 
oxide layer could not be distinguished on the cross-sections by energy 
dispersive X-ray spectroscopy (EDX). 

Therefore, the determination of whether a given particle observed in 
a cross-section is spatter is challenging. On the other hand, observation 

of the particles on a free surface allows a more accurate measurement of 
particle size and observation of surface characteristics. Specimen 3c, 
which contains abundant lack of fusion defects, was manually fractured 
to investigate a typical lack of fusion defect by direct observation from a 
perspective alternative to the cross-sections exemplified in Fig. 7. The 
fracture surface in Fig. 7A reveals multiple particles attached to a 

Fig. 8. Visual correspondence between XCT slices (top) and OT images overlaid with detections (bottom). A coordinate system and a grid are superimposed on the 
images for better visualization of the locations of lack of fusion in XCT and detections in OT images. 

Fig. 9. A large lack of fusion in specimen 3a that extends through four printing layers. The XCT slices are seen on the top row, and the corresponding OT images are 
seen on the bottom row, overlaid with detections represented by red dots. All images are overlaid with the (x, y) center of the defect, represented by a cross, and its 
projection in the (x, y) plan, represented by the box. The build height is indicated in mm. The blue arrow indicates a detection associated with another major lack of 
fusion, visible in subsequent XCT slices. 
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smooth surface, presumably lack of fusion. The measured particle di
ameters are typically up to 50 µm and, due to their size, can either be 
smaller spatter or feedstock particles. Larger particles were occasionally 
observed. For example, Fig. 7B depicts a particle of diameter ~120 µm 
with multiple satellites, most likely a spatter particle due to its di
mensions, significantly larger than the feedstock powder. The particle 
presents patches of oxide on the surface, corroborating the claim that it 
is spatter. 

3.3. Detection of redeposited spatter particles on optical tomography 
images acquired in-situ 

A visual comparison between corresponding XCT volume slices and 
OT images overlaid with spatter detections is provided in Fig. 8, where a 
grid with 1 mm spacing is superimposed on both sets of images. These 
instances have been randomly selected from several specimens. The 
correspondence between spatter detections and defects is evident, 
especially for larger defects. A fair spatial correspondence between both 
detections is present, but the match is not exact, as the features detected 

are distinct (voids for XCT and spatters for OT). As spatter particles 
induce defects, a slight offset is expected and observed. 

Defects can extend to several layers of the build, notably in the form 
of large lack of fusion. Fig. 9a-d shows XCT and OT image representa
tions of the largest lack of fusion present in specimen 3a. This defect has 
a measured size of 1.483 mm and a projected size of 0.608 mm in the z- 
direction, meaning it spans approximately four layers. The XCT image 
slices are overlaid with the 1-mm spaced grid and with the center of the 
XCT detection, represented as a cross, and with the projections in x and y 
directions, represented by a box. Two OT images in the corresponding 
layers contain detections within the bounding box of the defect (a-ii and 
b-ii), and the first one contains additional detections in its vicinity. In the 
subsequent OT images (c-ii and D-ii), further detections appear in the 
adjacencies of the bounding box, possibly as a manifestation of distur
bances associated with the newly formed defect. In Fig. 9a-d, the only 
other detection associated with another major defect is indicated with a 
blue arrow. This second defect is visible in the next XCT slices and is 
marked with a blue box in Fig. 9e-i and f-i. In Fig. 9e-ii, another distinct 
detection is visible (indicated by the orange arrow) and is in the vicinity 

Table 2 
Evaluation metrics when the spatter detection method is applied to each specimen separately and compared to ground-truth XCT data.  

Specimen ID TP FP FN Precision 
TP

TP + FP  

Recall 
TP

TP + FN  

False negative rate 
FN

FN + TP  

False discovery rate 
FP

TP + FP  

F1 score 
2TP

2TP + FP + FN  

1a  0  68  0 - - - - - 
1b  0  12  0 - - - - - 
1c  0  0  0 - - - - - 
2a  2  22  0 0.08 1.00 0.00 0.92 0.15 
2b  2  6  2 0.25 0.50 0.50 0.75 0.33 
2c  5  8  11 0.38 0.31 0.69 0.62 0.34 
3a  120  41  11 0.75 0.92 0.08 0.25 0.82 
3b  254  10  73 0.96 0.78 0.22 0.04 0.86 
3c  494  0  136 1.00 0.78 0.22 0.00 0.88 
Overall  877  167  233 0.84 0.79 0.21 0.16 0.81  

Fig. 10. Examples of true positive (TP) occurrences (a-e), false positives (FP) (f-j), and a false negative (FN) (k).  
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Fig. 11. Analytics of matches of detections in OT images and defects measured via XCT. A: Sizes of lack of fusion defects detected simultaneously via XCT and OT 
(TP), and not detected via OT (FN). The table insert shows the minimum, average, and maximum defect sizes in each category, FN and TP. B and C: Number of 
detections in OT images matching a single defect, plot against its size. C Illustrates a magnification of the range with the most occurrences, represented by the yellow 
box in B. D: Distribution of the distances between the center of TP OT detections and the center of lack of fusion, measured by XCT. E: Distance between detections 
and defect centers plot against the defect size. 
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of a third large defect, highlighted in Fig. 9f-i by an orange box. 
In general, spatter particles will be visible in OT images due to their 

near-infrared emissions overlapping the range of acquisition of the 
sensor. The spectral radiance emitted is higher with higher tempera
tures, according to Planck’s law. However, cooling rates in LPBF can 
range between 1 and 40 K/µs [44]. Considering that in the OT system, 
an extended shutter time (100 ms) is used, the intensity observed in OT 
images is predominantly providing information on the local heat 
transfer. The interaction of the laser beam with the feedstock and 
possibly spatter particles causes the particles to melt, and the melted 
region to be visible (have a nonzero intensity) in OT images. With the 
disturbance provoked by, e.g., spatter particles in the fusion zone, the 
heat provided by the laser beam might not be effectively transferred due 
to insufficient connection of the particle with the remaining material, 
resulting in local accumulation and an afterglow, or bright blob, in OT 
images. As observed in previous work [8], these detections occur almost 
exclusively in areas actively used for manufacturing. This observation 
suggests that the local signal peak resulting in a detection is predomi
nantly a result of the interaction of hot spatter particles with the laser 
beam rather than purely the radiance emitted by the particles. 

3.4. Matching ex-situ X-ray computed tomography and in-situ optical 
tomography detections 

The XCT data analysis outputs key features of each detected defect, 
among which the diameter dct,i and the (xct,i, yct,i, zct,i) coordinates of the 
center position of the sphere circumscribing the defect i, also referred to 
as “defect center” in this study. Considering the offset between the po
sition of spatter detection j and defect i, and that the z output of de
tections in OT images is a multiple of the nominal layer thickness t, Eq. 
(1) was formulated as the matching criterion. 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
xs,j − xct,i

)2
+
(
ys,j − yct,i

)2
+
(
zs,j − zct,i

)2
√

≤ dct,i + t+ e (1)  

Where 
(

xs,j, ys,j, zs,j

)
are the coordinates of the center position of the 

spatter particle j, and e is an error factor corresponding to 0.5 mm, 
which accounts for deviations such as the size of spatter particles (up to 
0.2 mm, as measured in [8]), and the (x, y) mismatch observed in Fig. 8 
and Fig. 9. Additionally, the matching of the coordinate systems is a 
source of error in itself. The resolution of the OT system is a limitation, 
as each pixel corresponds to an area of 125 µm × 125 µm in the xy plan, 
and of the nominal layer thickness in the z direction. Further, in the z 
direction, it is assumed that the nominal layer thickness equals the 
effective layer thickness, while a mismatch actually exists between the 
two [45,46]. 

Thus, a spatter detection j in an OT image matches a defect i if the 
criterion above is met, and in this case, the detection is a true positive 
(TP). Note that it is possible and likely that multiple detections in OT 
images match a single defect (XCT detection) because a disturbance can 
propagate through multiple layers, as illustrated in Fig. 9, and because 
multiple spatters landing close together can create a massive 3D defect. 
Spatter detections in OT images that do not meet the criterion above, i. 
e., do not match a lack of fusion indicated by XCT, are false positives 
(FP). Lack of fusion defects detected by XCT that do not have at least one 
match in OT images are false negatives (FN). 

Table 2 summarizes the evaluation of the detection method proposed 
in this work. False positives were found consistently in most specimens. 
Their presence can partially be explained by the incorporation of the 
particle into the bulk and by the iterative nature of the process, which 
prompts remelting of the top layers and allows defects to heal. Part of the 
FP detections has the same characteristics as TP detections, as observ
able by comparing the FP in Fig. 10 f-g with the TP in Fig. 10 a-e, which 
indicates that spatter redeposited in this location and was subsequently 
fully incorporated into the bulk, not forming a defect. Part of the FP 
detections has a distinct appearance, as illustrated in Fig. 10 h-j (and 

even visible in Fig. 9a-ii, b-ii, and e-ii). In these cases, the laser exposure 
pattern and short scan vectors provoke the emergence of brighter re
gions, as previously reported in the literature [47]. The higher local 
intensity combined with the surrounding darker features, i.e., specimen 
edges and stripe overlaps, result in detections, despite the dissimilarity 
of these regions to the features of interest. The resulting occurrences of 
FP have a higher representativity in specimens manufactured with a 
higher global energy input (1a and 1b). Because these FP are concen
trated on the edges of the specimens, an alternative to improve the 
detection method is discarding edge detections in processing conditions 
with high energy input. In this study, the detection parameters were 
deliberately kept constant to enable the recognition of such patterns. 
Overall, the performance of the algorithm can be expected to increase if 
adjustments such as sensitivity and edge detections are tailored to each 
process setting. 

With the FP and TP of all specimens summed, the overall false dis
covery rate is 16 %, which implies that the overall precision is 84 %. 
Within the same group (same nominal layer thickness), the number of FP 
tends to scale with the increased remelt ratio, and the inverse trend is 
observed for TP, mainly due to fewer lack of fusion occurring with an 
increased remelt ratio, as shown in Table 1. Consequently, the precision 
decreases and the false discovery rate increases with more robust pro
cessing conditions. On the other hand, specimens with a higher remelt 
ratio are less prone to false negatives, i.e., it is less likely to miss an 
existing defect in specimens manufactured with more robust processing 
conditions. Fig. 10k exemplifies an FN occurrence in specimen 2c. The 
XCT slice where the defect is visible is shown, together with its co
ordinates and size. The OT images representing the layers closest to the z 
coordinate of the defect center do not contain any features of interest, 
indicating that the occurrence of FN is not due to a fault in the detection 
algorithm. The overall false negative rate, considering the sum of all FN 
and TP throughout the specimens, is 21 %, meaning 79 % of the defects 
are detected. For the overall evaluation of the method in Table 2, TP, FP, 
and FN are summed across specimens, and the deriving metrics are 
calculated based on these sums. It is noteworthy that the overall eval
uation metrics do not consider each specimen equally, and their 
contribution is weighted based on their individual numbers of TP, FP, 
and FN. 

The count of FN is particularly substantial in specimens manufac
tured with a nominal layer thickness of 150 µm (3a–3c). The lack of 
fusion defects in these specimens might have alternative origins to 
spatter redeposition. Locally inhomogeneous powder packing is a well- 
known stochastic defect-inducing factor [4,48,49] that is likely present 
in these specimens due to the irregularities caused by the large number 
of spatter redeposits. Thus, the formation of defects observed in this 
study, particularly in specimens 3b and 3c, is plausibly a result of two 
defect-inducing stochastic processes occurring simultaneously, of which 
only one is detectable through the method proposed here. 

With the method proposed in this study, the largest defects within 
the specimens were successfully detected, as seen in Fig. 11A. Addi
tionally, it is observed that the defects not detected in OT images (FN) 
tend to be smaller than the ones successfully detected (TP). Fig. 11B 
confirms that the largest defects tend to be detected multiple times. 
Notably, defects over 3 mm are associated with a minimum of 30 de
tections. Defects in the size range more often observed are highlighted in 
Fig. 11C, where it is also observed that the number of detections tends to 
scale with defect size. Fig. 11D shows the distance of the centers of TP 
detections in OT images to the centers of the circumscribed spheres of 
corresponding defects. The range 0.3–0.4 mm contains the most occur
rences, while the average distance is 0.53 mm. Only a few observations 
presented a distance of less than 0.1 mm, which is a critical aspect to 
consider when estimating the location of the spatter-induced defect. The 
distance between detections in OT images and the defect center after 
coordinate transformation is not related to the defect size, as illustrated 
in Fig. 11E. The distances between the largest defects and their multiple 
detections span a wide range. In Fig. 11E, it is also highlighted that many 
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detections are outside the defect boundaries, i.e., outside the sphere 
circumscribing the defect. Detections outside defect boundaries are 
more prevalent for defects of size 1 mm or less, thus showing that the 
addends to defect size in Eq. (1), i.e., the error factor and the layer 
thickness, are essential to detecting defects in this size range. 

4. Conclusions 

This study addressed the in-situ detectability of spatters redeposits, 
responsible for defect formation in laser powder bed fusion. Hastelloy X 
specimens were measured via XCT, and the lack of fusion defects 
detected were compared to those detected in images acquired via optical 
tomography (OT) in-situ monitoring. Variability was introduced in the 
experiment by different processing conditions that induce varying 
remelt ratios. The main findings are summarized as follows: 

• No lack of fusion was identified through XCT in specimens manu
factured with a remelt ratio of 3 and above, indicating that pro
cessing conditions that meet this criterion fully incorporate spatter in 
the bulk and are robust to spatter-induced defects. Conversely, 
remelt ratios below 2 have a high sensitivity to spatter-driven 
defects.  

• A clear visual correspondence between detections in OT images and 
defects in XCT was observed. Some location offset is consistently 
observed and the distance between detections and defect centers 
averages 0.53 mm. The offset is attributed to the fact that the fea
tures detected are distinct (defects for XCT and spatters for OT im
ages), with spatter particles potentially inducing defects.  

• Multiple detections in OT images can be matched to a single lack of 
fusion, particularly if the defect is large enough to span multiple 

build layers. The number of detections in OT images scales with the 
defect size.  

• The method proposed here had a false discovery rate of 16 %, 
attributed to full incorporation of spatters into the bulk, and faulty 
detections on specimen edges due to short scan vectors.  

• Considering all analyzed specimens, 79 % of lack of fusion defects 
were detected with the method proposed in this study. As the match 
between detections in OT images and XCT features varies substan
tially among specimens, the performance of the algorithm can be 
expected to increase if adjustments such as sensitivity and edge de
tections are made for each specific process setting.  

• Manufacturing with robust processing conditions decreases the 
likelihood of missing an existing defect, i.e., of obtaining a false 
negative. On the other hand, it increases the likelihood of obtaining 
false positives using the method proposed in this study.  

• Locally inhomogeneous powder packing may potentially act as an 
important alternative stochastic defect-inducing factor in specimens 
where a large number of spatter redeposits are detected, as the 
spatter particles introduce packing irregularities. The occurrence of 
this event simultaneously with spatter redeposition is a possible 
explanation for the considerable number of false negatives present in 
two of the specimens. 

This study demonstrates that in-situ monitoring using optical to
mography can be employed for indirect detection of stochastic lack of 
fusion through inference from the detection of spatter redeposits. The 
detectability of random, internal, and typically large defects in-process 
is a pivotal step towards their mitigation, achievable through closed- 
loop control to be developed in future work. 

Table 3 
Summary of defect populations measured in coupons manufactured with each set of process parameters used in this study. The measurement was made via image 
analysis of a cross section of approximately 20 mm × 10 mm.  

Parameter set 
ID 

Laser power 
(W) 

Laser scan speed (mm/ 
s) 

Hatch spacing 
(µm) 

Nominal layer thickness 
(µm) 

Volume fraction of defects 
(%) 

Maximum defect size 
(µm) 

1a  370  800  100  80  0.007  42 
1b  370  900  100  80  0.005  38 
1c  370  1000  100  80  0.006  42 
2a  370  800  100  120  0.037  78 
2b  370  900  100  120  0.019  88 
2c  370  1000  100  120  0.024  36 
3a  370  800  100  150  0.072  70 
3b  370  900  100  150  0.049  43 
3c  370  1000  100  150  0.066  88  

Fig. 12. Graphical representation of the defect populations obtained from each set of process parameters.  
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