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Abstract

A problem that occurs in machine learning methods for drug discovery is a
need for standardized data. Methods and interest exist for producing new data
but due to material and budget constraints it is desirable that each iteration of
producing data is as efficient as possible. In this thesis, we present two papers
methods detailing different problems for selecting data to produce. We invest-
igate Active Learning for models that use the margin in model decisiveness to
measure the model uncertainty to guide data acquisition. We demonstrate that
the models perform better with Active Learning than with random acquisition
of data independent of machine learning model and starting knowledge. We
also study the multi-objective optimization problem of combinatorial library
design. Here we present a framework that could process the output of gener-
ative models for molecular design and give an optimized library design. The
results show that the framework successfully optimizes a library based on
molecule availability, for which the framework also attempts to identify using
retrosynthesis prediction. We conclude that the next step in intelligent data
acquisition is to combine the two methods and create a library design model
that use the information of previous libraries to guide subsequent designs.
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Gökçe, Peter, Jiazhen, Preeti, Jon Paul, Mikhail, Christos, Marco, Thierry
Hannes, Thomas, Emma, Lakshidaa, Emma, Alessandro, Bob, Varvara, Vin-
cenzo, Yasmine, Alexey, Annie, Michele, Helen and Lewis. A special thanks
to my fellow industrial PhD colleagues Juan and Hampus, with whom I am a
colleague twice over and whose shared experiences has given me immeasurable
support.

I want to thank former colleagues for being part in a work environment that
made me want to pursue my PhD: Atanas, Hongming, Josep, Amol, Esben,
Panagiotis, Laurianne and Michael.

I want to thank my friends Iliyan, Jisoo, Stefan and Stefaan, whom despite
never having physically met me has continuously provided support and ideas
both intentionally and unintentionally.

I also want to thank my close long time friends Sebastian, Lukas, Björn,
Rickard, Jonathan and Helmer, Ida, Honoka and Amanda, for reminding me
that work is not everything and that it sometimes can be productive to have a
break.

Finally, I want to thank my family; my father Kenneth, my mother Berit
and my sister Sara, for the continuous support through everything.

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallenberg
Foundation

vii





Contents

Abstract iii

List of Publications v

Acknowledgement vii

I Summary 1

1 Introduction 3

2 Background 5

2.1 Chemistry and chemical representations . . . . . . . . . . . . . 5

2.2 The Drug Discovery Process . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Connection to own research . . . . . . . . . . . . . . . . 7

2.2.1.1 Library design and combinatorial chemistry . . 7

2.2.1.2 de novo design . . . . . . . . . . . . . . . . . . 8

2.2.1.3 Synthesis prediction . . . . . . . . . . . . . . . 8

2.3 Evaluating molecules for drug discovery . . . . . . . . . . . . . 8

2.4 Computational techniques . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Determinantal Point Processes . . . . . . . . . . . . . . 10

2.4.2 Machine Learning architectures . . . . . . . . . . . . . . 10

2.4.3 Active Learning . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Summary of Included Papers 13

3.1 Paper I: Using active learning to develop machine learning mod-
els for reaction yield prediction . . . . . . . . . . . . . . . . . . 13

3.2 Paper II: de novo generated combinatorial library design . . . . 16

4 Concluding remarks and future direction 19

4.0.1 Future Direction . . . . . . . . . . . . . . . . . . . . . . 19

Bibliography 21

ix



x CONTENTS

II Appended Papers 29

Paper I - Using Active Learning to Develop Machine Learning
Models for Reaction Yield Prediction

Paper II - De novo generated combinatorial library design



Part I

Summary

1





Chapter 1

Introduction

Data science and artificial intelligence have made remarkable strides in develop-
ment in every field from recent developments in natural language processing to
pharmacology. In drug discovery, the progress of machine learning research is
often limited by the availability of data [1]. Reasons that the availability of data
is low could be that the data is proprietary to a company, or unreported because
it was an unsuccessful experiment. Additionally, chemistry data historically
could be recorded formats that require processing before it could be used in
machine learning, such as free text in lab notebooks. As the need for data has
grown, interested parties have looked to producing chemistry data at larger
scale to better train models.

Combinatorial chemical libraries are used to select and produce chemistry
data for a group of molecules that share a common purpose; whether that be
model training in machine learning, lead optimization in hit discovery or patent
protection [2]. The appeal of combinatorial chemistry lies in the material
efficiency since the reagents are shared between the reactions, thereby reducing
the number of different compounds needed to be acquired before synthesis. The
different goals of library design can be focused [3],[4],[5], i.e. oriented towards
optimizing around a target area of the chemical space to find variations on a
lead compound that optimize some chemical property or diversity-driven[6][7],
i.e. covering a large part of the chemical space to reduce redundancy and
increase the information that can be derived per experiment. In practice, the
weighting between the goals is continuous and changing depending on where in
the hit discovery process that a project currently is located. This is a case of
the trade-off between explore and exploit that is present in decision making.

Still, even producing millions of compounds is but a drip in the ocean, as
the total number of synthetically feasible molecules is estimated to be > 1060

[8]. Virtual libraries are now a popular alternative as the storage capability of
computers has grown to the capacity to store hundreds of billions of virtual
compounds for virtual screening, but this is especially sensitive to false positive
rates [9], [10]. Recently, several generative models have been developed for lib-
rary design that are capable of creating building blocks, through de novo design
[11], which might bring library design back into focus when novel compounds
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4 CHAPTER 1. INTRODUCTION

are generated. However, the generative models are capable of producing more
suggestions than can feasibly be synthesized by a chemist and such a compound
selection method is needed. Moreover, the published models that do provide a
ranking of products do not provide their selection from a combinatorial design
but rather a cherry-picked selection, which in the worst case can have unique
building blocks for all suggestions. Methods for library optimization exist, but
assume that all molecules are feasible; the concept that some of the suggested
building blocks might be impossible to acquire in practice is not considered,
when building block providers with synthesis on demand services have a success
rate of 76% [12].

This research focuses on the development of frameworks that can bridge
the gap between current generative models and the practical constraints that
exist for an actor in drug discovery.

This thesis consist of two papers. Paper I is a retrospective study on
two combinatorial data sets of high-throughput experimentation for reaction
data. Here, we studied the robustness of Active Learning [13] for improving
the training of predictive machine learning models. We found in the case that
active learning could suggest data better than random selection, that the effect
was consistent when varying the machine learning model. We also found that
even when the model had next to no initial information about the data, active
learning still performed at least as good as random selection, and eventually
resulted in learning the task with less data required. Paper II is the design
of a framework for a combinatorial library from de novo generation of build-
ing blocks, to evaluation of building block availability through retrosynthesis
and finally the multi-objective optimization of the library using both quality
(exploit) and diversity (explore) metrics. Here we propose the grouping of
building blocks by the number of reaction steps needed for acquisition. Further
we simulate the case of limited building block availability for a single actor
with limited building block stock and show that we can estimate the marginal
gain between using the building blocks available to the actor and extending
the design to acquisition through synthesis.



Chapter 2

Background

This section covers the chemistry and machine learning background for the
papers in this thesis. The chapter starts by covering basic organic chemistry and
notation behind the chemical representations that were used in the papers. I
then briefly describe the drug discovery process. The following section discusses
the areas within early-stage drug discovery which are relevant to this thesis.
Finally, I cover the methodology of the computational techniques that were
used in the papers.

2.1 Chemistry and chemical representations

In chemistry and cheminformatics, the same molecule can be represented in
numerous ways, from the organic chemistry notation to computer based fea-
turization. In this section we summarize the representation methods that are
used in the appended papers. This is not an exhaustive list of the available
methods.

Molecular Fingerprints are vector representations of a molecule. These can
vary from a set of physiochemical descriptors to an encoding of the molecular
structure. The most common representations are the Extended-Connectivity
Fingerprints (ECFPX ) [14], a hashing of the substructures present in the
molecule, where X is the the diameter of the structure. As an example, the
ECFP4 fingerprint is hashes substructures where for each atom structures up
to a ”radius” of two atoms away are encoded. The most common version of the
ECFP fingerprint is a fixed-length bit vector, which is a folded version of the
sparse bit-vector of all possible substructures into a vector constant length. The
most common sizes of bit vectors for this fingerprint are 1024 and 2048. As with
any folded vector representation, there is a risk of bit-collision and in particular,
this risk increases as the size of the molecule increases. In addition, for larger
molecules, the ECFP has difficulty capturing some differences between two
molecules such scrambled order of amino acids in two peptides of the same
length and total composition. Thus, the ECFP fingerprints are suitable mostly
for small molecule applications.
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6 CHAPTER 2. BACKGROUND

SMILES or the Simplified Molecular-Input Line-Entry System [15], is a
string representation of the skeletal structure. Starting from an atom in the
structure, and traversing along the longest possible path in the molecular graph
without revisiting any atom denotes the order of visited atoms. Any branching
paths are denoted within brackets and connections such as ring closures are
denoted with pairs of digits, where e.g. two atoms that are followed by the
digit ’1’ are connected. An example for the translation of a molecule into a
SMILES string is illustrated in Figure 2.1.

Figure 2.1: Example of the canoncical order to create a SMILES string for an
organic molecule. The example shown is for Aspirin. Figure extracted, with
permission, from original work by [16].

2.2 The Drug Discovery Process

The drug discovery process is the first step in the process from early stage to
released drug. The steps that are included during the discovery stage are as
follows:

Target Identification: The process of identifying a molecule or pathway
in the body, which might play a crucial role in the disease or condition that
the drug is supposed to treat. This target can be e.g. a protein, enzyme or
receptor. Classical methods for target identifications are genomics, proteomics,
bioinformatics and phenotype-oriented identifications. [17], with recent devel-
opments using machine learning [18].

Target Validation: When a target has been identified, a testing process
is performed to validate that the target indeed is significant for the disease.
Methods that are used for this could be in-silico models, gene knockouts, RNA
interference or in-vivo experiments in animal testing [19].
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Hit Generation: The process of finding possible molecules that interact
with the target to change the activity. Methods for this are various screening
methods, library design or de novo design [20].

Lead Optimization: The hits that are found during the hit generation
might have good interaction with the target, but have undesirable ADMET
(absorption, distribution, metabolism, excretion, and toxicity) properties, or
perhaps the hit is not selective enough [21]. This is an iterative process where
small modifications are made to the structure. These are then examined by
experimental ways such as magnetic resonance and mass spectrometry, or by
computational methods, pharmacophore studies, molecular docking, molecular
dynamics and QSAR [22].

Lead Compound Selection: The most promising hits are selected. Factors
that play a role in this selection are based on the pharmacological properties
and absence of toxicity, but also chemical properties such as synthesize-ability
and possibility of scale-up to production levels [23].

Following this, the candidate drugs leave the discovery stage and enter the
drug development stage, which is not covered by this thesis.

2.2.1 Connection to own research

In this section I introduce the drug discovery problems that are related to the
papers included in this thesis. These problems are commonly encountered in
the Hit Generation and Lead Optimization stages of the drug discovery process.

2.2.1.1 Library design and combinatorial chemistry

Combinatorial library design is a method for producing collections of molecules
in an economically and materially efficient manner [20],[2]. Suppose that a
number of different reagents, or building blocks with the same reactive region
are available for reaction synthesis. Combinatorial chemistry is used when
multiple building block types are used in the same library design. As an
example, if a study has identified that a common central molecule, a scaffold
[24] has good properties and can be patented, a library could be designed with
purpose to explore the attachment of two building blocks, A and B for how
good the product binds to a target. The material advantage of combinatorial
design becomes clear, since for a 10× 10 design, 100 products are produced,
whereas the worst case design could use 100 separate building blocks A and B
each.

Library design can be either focused [3],[4],[5], optimizing around a target
area of the chemical space to find variations on a lead compound that optimize
some chemical property or diversity-driven[6][7], i.e. covering a large part
of the chemical space to increase the information that can be derived per
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experiment and possibly increase the applicability domain of the molecular
property modeling. The multi-objective optimization of focused library goals
such as QSAR value and QED score as well the diversity (see 2.3) is a central
research question we contribute to in Paper II.

2.2.1.2 de novo design

The formal definition of de novo design is ”the design of bioactive compounds
by incremental construction of a ligand model within a model of the receptor
or enzyme active site, the structure of which is known from X-ray or nuclear
magnetic resonance (NMR) data” [11]. This field of research has benefited
greatly from development in machine learning [25]. A common problem is
that the available training data for a specific target is too small for most most
models to learn both the features of the target domain and to generate sensible
drug-like molecules at a high rate. Typically this is solved by first training an
agent on a larger dataset of valid molecules, such as ZINC [26] or ChEMBL
[27], followed by a fine-tuning of the model towards the drug target by transfer
learning or reinforcement learning. In Paper II we use this technique with
the generative model LibINVENT [28] to generate building blocks to attach to
a scaffold in order to create the data set we want to optimize around.

2.2.1.3 Synthesis prediction

Synthesis prediction is a field related to the production of a molecule. Synthesis
problems are generally of two different categories: forward synthesis prediction
and retrosynthesis prediction [29]. Forward synthesis prediction tries to answer
questions regarding where a reaction is attempted involving given reactants.
Will the reactants interact? What are the resulting product(s)? There are a
number of reaction condition variables that can affect the reaction, such as
temperature, catalyst, solvent and other additives that could be optimized.

In Paper I we examine the performance of models for predicting the
reaction yield when reaction conditions are changed for the same reaction.
Retrosynthesis instead addresses problems from the product end of the reaction.
Given a product, retrosynthesis predictions attempt to compute which products
that were used in the formation of the product. Retrosynthesis prediction is
used in Paper II to evaluate the availability of molecules that are generated
through de novo design.

2.3 Evaluating molecules for drug discovery

For both de novo design and library design a success metric is needed as an
optimization goal. These can range from a target lipophilicity, minimization of
toxicity or bio-activity. The following are metrics that are used in Paper II:

QSAR is a family of modeling approaches which use the assumption that
similar molecules should have similar properties [30]. QSAR modeling consist
of a regression or classification task with predictor features to describe the
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molecule. These features could use physiochemical descriptors or molecular
features of the structure, such as molecular fingerprints, a graph of the structure
or directly use the SMILES. For Paper II, QSAR models are used to model the
probability that the molecules can inhibit the dopamine receptor D2 (DRD2).

QED is an estimate of the drug-likeness of a molecule based on the dis-
tribution of molecular properties of known drugs [31]. This is not by itself an
indicator of the suitability for a molecule as a drug, but shows correlation to
features common in small molecule drugs. In general, the QED score favours
compounds that are chemically accessible rather than to complex and prefer
molecular structures that are not too large. The estimated difference in medians
behind molecules that were deemed attractive and those that were considered
unattractive was around 0.164.

Chemical Diversity is desired in library design as it represent less redundancy
in experiments and higher information gain. There is no convention or formal
definition for chemical, or molecular diversity. The main reason is that there
are several metrics and properties for which molecules can be compared. These
metrics can be based in physical chemistry, bio-activity or molecular struc-
ture [32]. Diversity measures most commonly belong to one of the following
categories [33]:

• Distance-based diversity, based on the pairwise distances between the
molecules in a space spanned by the observed metrics or

• Cell-based diversity, where the chemical space is divided into distinct
regions and diversity is measured as number of occupied cells or,

• Variance-based diversity, where diversity is measured as the correla-
tion between the molecules in the chosen metrics.

Paper II in this thesis use a distance-based diversity. It uses Tanimoto
similarity [34], also known as the Jaccard index of the ECFP6 fingerprint to
define the pairwise similarity between molecules. Most library design methods
that optimize diversity based on a similarity metric attempt to find the minimal
average of similarities (minAvg), or the minimum of the maximal similarity for
each selected molecule [35] [36]. However, due to the number of alternatives in
a combinatorial design, brute force solutions are practically infeasible. Thus,
the common solution methods are either greedy if the sole objective is diversity,
or in the case of multi-objective library designs, based on simulated annealing
(SA) [37], or genetic algorithms (GA) [36] [35]. In Paper II however, the
diversity is instead measured as the logdeterminant of the pairwise similarities.
This kernel allows for the use of determinantal point processes (DPPs) to be
used as a sampling method (see 2.4.1).

2.4 Computational techniques

In this section, I will describe the determinatal point processes (DPPs). The
section then covers the machine learning architectures used in both papers,
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and some alternative models that can be used for the same tasks.

2.4.1 Determinantal Point Processes

The Determinantal Point Process is a probabilistic method originally used to
measure the repulsion between fermions [38]. The method has gained popularity
in the tasks of text summarization and diverse image selection, as it is capable
of modeling the trade-off between quality, such as the relevance of the text or
image, and the diversity [39]. They can be defined as follows: Let L ∈ Rn×n

be a positive semi-definite (PSD) kernel. A discrete DPP with kernel L is a
probability distribution µ : 2[n] → R+ defined by

µ (S) ∝ Det (LS) , ∀S ⊆ [n] , (2.1)

where LS is a principal submatrix of L indexed by the elements of S. If S
is the selection of molecules chosen for the library design, the rows of this
matrix are feature vectors that represent each molecule’s similarity to the other
molecules in the selection. The probability that the DPP would sample a
particular selection is proportional to the volume of the hull spanned by the
feature vectors. For library design we are interested in selections of a fixed size
k, and we condition the DPP such that only selections of size k have a non-zero
probability. This version of DPP is called a k -DPP. Gharan and Rezai [40]
showed that it was possible to draw samples from a k -DPP by using Gibbs
sampling [41] and transitioning from different selection states by exchanging one
element of S per step and moving with a probability proportional to Det (LS).
The time complexity per time step is O(k3)

2.4.2 Machine Learning architectures

For the processing of the used chemical representations there are a number
of machine learning models that can be used in the studied drug discovery
problems. The choice of model is another parameter that can be optimized just
as the hyper-parameters internally for the models. For a given representation
and fixed available data, the classification accuracy of two different architec-
tures is generally within a couple of percent of each other [42], [43]. Since the
research primarily focused on framework development, an exhaustive list of
machine learning models was not explored. The following models were used in
the framework:

Random Forest This is an ensemble learning method of multiple decision
trees that each are created on a random subset of the training data [44]. Each
individual decision tree is formed by the nodes of the tree representing an input
feature and the leaf nodes representing a classification or regression output.
The overall output of the random forest is decided by majority vote between
the trees. Random forests are applied in Paper II as QSAR models trained
on the ECFP6 featurization of the dopamine receptor D2 and also for reaction
prediction in Paper I. They can be substituted with deep neural networks,
but are generally faster to use in both training and prediction and if the test
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accuracy is satisfactory preferable to use in time-constrained settings.

Recurrent Neural Networks Recurrent neural networks (RNNs) were de-
signed to work with sequential data and have commonly been used in natural
language processing (NLP) tasks. The RNN uses a hidden state ht for each
time step t that the network learns to output which is given as input together
with the sequence input, (xt+1, ht) to the network in the following time step.
Thus, the RNN has some information of previous inputs in the sequence which
is used in the model predictions. Early RNNs tended to not perform well
as the sequences became too large however, and the model was succeeded
by the Gated Recurrent Unit [45] (GRU) and Long Short-Term Memory [46]
(LSTM) architectures. Several de novo design models use GRU and LSTM for
the generative task of suggesting new molecules. They perform the task by
training on SMILES structures and treating the rules of chemistry the same as
a language model treats grammatical rules.

Recently, the Transformer model [47] has been shown to train on the entire
sequence instead of processing each item individually, which has made huge
improvement for many NLP applications. It has been shown however [16],
that the LSTM models that exist already have the capability to generalize
well on the small molecule chemical space, as tested on the GDB-13 data set [48].

2.4.3 Active Learning

Active learning is a machine learning approach where the algorithm interacts
with a human expert or a labeling oracle to actively select which samples to
annotate for training [13]. In traditional supervised learning, a large labeled
data set is needed to train a model. However, in active learning, the algorithm
starts with a small set of labeled samples and iteratively selects the most
informative samples for the expert to label.

The goal of active learning is to maximize the learning efficiency of a model
by focusing on the most informative samples, while minimizing the labeling
effort and cost. This is particularly useful in situations where labeling data is
expensive, time-consuming, or difficult to obtain.

This is analogous to the setting in discovery chemistry, as the set of known
molecules (experimentally) in a subset domain of the chemical space is negligibly
small compared to the total number of possible molecules that are enumerable.

In Paper I, we use active learning with an acquisition strategy for adding
new data points known as Margin [13]. Margin queries the data point x∗ based
on the smallest difference in classification probability between the labels

x∗ = argminx[Pθ (ŷ1| x)− Pθ (ŷ2| x)], (2.2)

where Pθ(ŷi|x) is the probability that the model assigns to data point x for
having label yi. If the labels are binary and modelled as Bernoulli random
variables, then acquisition functions based on maximal variance will select the
same points as Margin.
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2.5 Research Questions

In this section, we list research questions that were yet to be answered by
existing literature that guided the research in this thesis.

Research Question 1: Does the amount of initial data affect the
performance gain of active learning for reaction yield prediction
models?
In some settings, the amount of initial data that a model has before any points
are added through active learning can affect the effectiveness of the active
learning model [49], [50]. There has not been a study for active learning in
reaction yield prediction that has investigated whether low initial data will
cause active learning to provide a different performance gain compared to a
case when more data is already available.

Research Question 2: How should de novo designed building blocks
be treated in library design?
As synthesis on demand of building blocks is limited to a success rate of 76%
[12], it would be naive to presume that all suggestions of a de novo design
generative model can be synthesized in practice. There is a need for a protocol
for how the different building blocks should be intepreted.

Research Question 3: How should an actor without access to a
large collection of building blocks utilize de novo designed building
blocks when designing libraries?
In practice an actor, such as a pharmaceutical company, will be operating under
a limited budget without access to all synthetically feasible building blocks.
Currently, there is little literature on how de novo design models can assist
in decision making between using available building blocks and purchasing or
synthesizing the building blocks suggested by the de novo designed libraries.



Chapter 3

Summary of Included
Papers

3.1 Paper I: Using active learning to develop
machine learning models for reaction yield
prediction

In Paper I we conducted a retrospective analysis on two publicly available data
sets of chemical reaction experiments to test the robustness of active learning
when the initial conditions changed [51], [52]. We also examine the effect of
active learning on different machine learning architectures.

Problem

AI-driven synthesis prediction models share the problem of limited access to
good reaction data with standardized format. One suggested way to generate
new data is to conduct High-Throughput experiments (HTE) to produce
thousands of experiments per day [53], [54]. For a constrained combinatorial
space in studying reaction conditions, it is possible that redundant experiments
are conducted and that the space could have been modeled with a fraction
of the experimental data. Active learning is a frequently applied method for
sequentially improving a machine learning model by letting the model estimate
which data points are expected to yield the most information. Previous studies
have shown that active learning is effective for predicting yield [55], but there
has been an underlying assumption that active learning performs poorly if
the initial amount of known data is low. Furthermore, these studies showed
improvements using a single model architecture but demonstrated no indication
that the benefit of active learning could be generalized to more architectures.

13
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Contribution

Our study show that

• models trained using active learning to acquire more data improve at least
as much as random acquisition even at starting data set configurations
of 10 data points in a space of size 4608, and propose that

• the reaction yield prediction task can be simplified to a classification
problem for discovery chemistry, and finally that

• the benefit of active learning is consistent across multiple machine learning
models for the binary classification task of predicting reaction success.

Methodology

Two neural networks of different levels of complexity were tested against a
random forest model and a matrix factorization model [56] to predict the
outcome of the chemical reactions on two publicly available combinatorial data
sets as a classification task. We chose to view the problem as a classification
task where the reaction was labelled as being successful if the reaction yield
was greater than 0.20.

We studied the models starting with 10, 100 and 1000 known reactions each
with 5 randomly training subsets of the total data. For each model and starting
data set, 5 runs of active learning were run using the uncertainty based strategy
margin as acquisition function. Margin selects data points where the model
probability for both labels are as close to 0.5 as possible, indicating that the
model is indecisive. Figure 3.1 illustrates how the model during initialization
have data points which have probabilities of exactly 0.5, and that the models
become more decisive as more data is added.

The active learning strategy was benchmarked against random sampling by
examining how many data points where needed to achieve different thresholds of
target model performance on a test set of 20% of the total data. The thresholds
of AUROC studied were 0.8, 0.85, 0.9, 0.95 and 0.975. We let the acquisition
functions add one data point per iteration step and ran all experiments from
initial data set until all possible data of the 80% training set had been added.

Contributions

Simon Viet Johansson and Hampus Gummesson Svenson equally performed
the main work, and the project was jointly supervised by Esben Bjerrum,
Alexander Schliep, Morteza Hagir Chehreghani, Christan Tyrchan and Ola
Engkvist.
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Figure 3.1: The margin between the two labels become increases as points are
added. This is shown for the models (a) Matrix factorization, (b) Random
forest, (c) Complex NN and (d) Simple NN. Figure extracted, with permission,
from original work by [43]
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3.2 Paper II: de novo generated combinatorial
library design

Problem

Combinatorial chemical library design is a method for procuring large amount
of chemical data in a materially efficient matter. AI and generative models
offer an alternative method to the popular virtual screening for finding hits in
drug discovery by generating molecules in a targeted space and can be tuned
towards the same goals. However, current generative models only procure
building blocks rather than a full combinatorial design [28], [57] [58], while
methods for combinatorial design offer no verification step that the generated
building blocks can actually be synthesized.

Contribution

In this paper we introduce a framework for combinatorial library design, which

• evaluates building blocks generated by de novo design and respect if the
building blocks are accessible to the chemist, whereas previous studies
used existing virtual libraries or building block catalogues – assuming
that the building blocks in the these databases were always available, and
which

• can be used by actors with a limited stock of building blocks to estimate
the marginal gain in quality of the chemical library they can expect if
they were to expand their stock.

For the studied library design, we demonstrated that approximately optimal
proposals with the scoring function were possible to make with commercially
available building blocks, without further chemical synthesis.

Methodology

Our framework combines the use of the generative model LibINVENT [28]
with the retrosynthesis model AiZynthFinder [59] to first generate building
blocks and subsequentally evaluate how available they are given the stock of all
purchaseable building blocks [60]. LibINVENT was set to train for 1,000 epochs
with a batch size of 128 to generate compounds active towards the Dopamine
receptor D2 (DRD2) under the constraint that one building block needed to
use the Buchwald-Hartwig reaction [61] and the other building block a Amide
coupling [62]. After training, 104,991 valid molecules were produced and, after
filtering out molecules with an estimated QSAR value of ≤ 0.8 and discarding
molecules not following the reaction constraints, 45,928 products remained,
from which 32,159 unique carboxylic acids and 2,084 unique aromatic halides
were identified.
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Figure 3.2: Flowchart of the framework used in the paper.

These were then run through AiZynthfinder and the distribution of estimated
availability was computed. Building blocks available in 4 reactions or less were
kept as candidates for the library, which totalled around 88.7% of the carboxylic
acids and 98.3% of the aromatic halides.

The library optimization was performed using k -DPPs, which for this case
could be sampled using a Gibbs sampling scheme strictly performing exchange
operations. The scoring function used for the decision making process was the
average QSAR value from the DRD2 model, the average QED score of the
selection and the determinant of the pairwise Tanimoto similarities between
the ECFP6 fingerprints. A simulated case for an actor without access to all
commercial molecules was conducted by limiting the assumed stock of baseline-
available building blocks to a 3% subset of the full dataset, and running
AiZynthfinder on this subset to provide a new distribution of availability. A
flowchart of the full framework is shown in Figure 3.2.

Contributions

Simon Viet Johansson performed the main work, and the project was jointly
supervised by Morteza Hagir Chehreghani, Ola Engkvist and Alexander Schliep.
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Chapter 4

Concluding remarks and
future direction

In this thesis we have examined two different cases of data acquisition used in
drug design.

In Paper I we covered the use of active learning to accelerate the improve-
ment of machine learning models, and concluded for the studied combinatorial
data sets, that active learning always performed at least as good, if not better,
than random selection regardless of the initial amount of known data and the
model selection.

In Paper II, we studied the design of combinatorial chemical libraries as
a process from generative modeling to multi-objective optimization of subset
selection. We also simulated the case of an actor with limited access to building
blocks and demonstrated the how the framework could be used to estimate the
marginal gain in library score from extending the pool of available resources to
include building blocks through reaction synthesis.

4.0.1 Future Direction

Since the results of Paper II are for a fixed size k, the intuitive extension
of the research is to investigate the case of generating multiple libraries and
problem of optimizing simultaneously for the ’internal’ diversity of the new
selection, and the ’global’ diversity of all generated libraries. In particular,
as library design can be used both for model building and for optimization,
it is of relevance to integrate the knowledge learnt from Paper I and apply
active learning to the library design. Research questions that still need to
be answered include the optimal acquisition strategy for building e.g. QSAR
models on the library data: given only the data generated from the library
design, whether the model performance improve faster from data generated
through an ’explore’ strategy focused on diversity. Furthermore, if the QSAR
model trained is used in the de novo generation, the quality of building blocks
might improve more if an ’exploit’ strategy is used in the library optimization,

19
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but it could also lead to model collapse. It is also possible that QSAR models
trained on diverse libraries create a more robust generative model.
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