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Scattering of elastic waves by an anisotropic sphere
with cubic symmetry inside an isotropic medium
is studied. The waves in the isotropic surrounding
are expanded in the spherical vector wave functions.
Inside the sphere, the elastodynamic equations are
first transformed to spherical coordinates and the
displacement field is expanded in terms of the
vector spherical harmonics in the angular directions
and a power series in the radial direction. The
governing equations inside the sphere give recursion
relations among the expansion coefficients in the
power series. The boundary conditions on the
sphere then determine the expansion coefficients of
the scattered wave. This determines the transition
(T) matrix elements which are calculated explicitly
to the leading order for low frequencies. Using
the theory of Foldy, the T matrix elements of a
single sphere are used to study attenuation and
phase velocity of polycrystalline materials with
cubic symmetry, explicitly for low frequencies and
numerically for intermediate frequencies. Numerical
comparisons of the present method with previously
published results and recent finite element method
(FEM) results show a good correspondence for low
and intermediate frequencies. The present approach
shows a better agreement with FEM for strongly
anisotropic materials in comparison with other
published methods.
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1. Introduction
Scattering of elastic waves by a sphere started to receive attention from various disciplines of
engineering and physical science in the mid-twentieth century [1]. These studies were continued
with various applications, as in the investigation of dynamic stresses around cavities and rigid
inclusions, the study of the propagation of ultrasonic pulses in crystalline alloys, non-destructive
testing of different structures and geophysics. de Hoop [2] and Varadan et al. [3] present a
comprehensive overview of wave scattering in two and three dimensions, which is not limited
to elastic waves and covers electromagnetic and acoustic waves as well. These studies are limited
to isotropic materials; however, there exist many synthetic (e.g. fibre composites) and natural
(e.g. soils, rocks and grains in a metal) materials that are anisotropic. The governing equations of
anisotropic materials are more complicated than for isotropic ones, making many of the analytical
methods developed for isotropic materials not applicable anymore. Therefore, wave propagation
in anisotropic materials has mostly been studied for unbounded and semi-bounded media in
Cartesian and cylindrical coordinates. For finite obstacles, some authors have studied spherically
and cylindrically anisotropic obstacles [4–8]. For bounded obstacles with anisotropy in Cartesian
coordinates most studies have been performed for electromagnetic waves [9–11]. For mechanical
waves, Boström studied two-dimensional scattering of elastic waves by an anisotropic circle
[12,13]. In these studies, the displacement field inside the circle is expanded in trigonometric
functions and a power series in the angular and radial coordinates, respectively. The same
methodology is followed by Jafarzadeh et al. to study scattering by a transversely isotropic sphere,
both for the special axisymmetric case involving only SH waves [14] and for the general case [15].

The scattering by a single obstacle is a first step when the scattering by two or more obstacles
is investigated. Martin [16] presents an overview of different concepts followed by researchers
to investigate interaction of time harmonic waves with multiple obstacles. A simple theory to
study wave propagation through a medium having a distribution of obstacles is presented by
Foldy [17] with the objective of characterizing the composite medium. In this theory, the effective
wavenumber of the medium is estimated by the scattering coefficient of each obstacle, number
density of obstacles and the wavenumber of the medium in the absence of any obstacles. Foldy
developed this theory for scalar waves which, later on, was generalized to elastic waves [18,19].
Generalized Foldy theory, which is used by many authors to study wave propagation in an
isotropic medium with isotropic inclusions [20,21], can be used to characterize grainy materials
like polycrystalline materials [15].

Polycrystalline materials are solids consisting of many small crystals (the ‘grains’) which are
normally anisotropic. In single phase polycrystalline materials, the lattice arrangement of atoms
within each grain is nearly identical making the elastic constants identical for all grains. However,
the orientation of the lattice is different for each grain. If the grains are equiaxed and randomly
oriented in an infinite medium, the overall properties of the material become isotropic. The
grainy nature of polycrystalline materials causes scattering and thus attenuation of the waves.
To estimate the attenuation and the effective wave speed in polycrystals, these materials can be
modelled in different ways such as a collection of individual particles, a regular array of particles
and a stochastic process. Stanke & Kino [22] address different aspects of each geometrical model
and use a stochastic process to estimate the attenuation and the phase velocity of polycrystalline
materials with equiaxed anisotropic grains of cubic symmetry. Similar models of polycrystalline
materials are further developed by researchers in various aspects. Explicit expressions for
attenuation are presented using various approximate methods such as the Born approximation
[23] and the far-field approximation (FFA) [24]. Different geometrical properties of the grains
are captured for both equiaxed [24] and elongated [25] grains with a suitable introduction of a
spatial two point correlation (TPC) function . Also different crystallographic classes are studied
for crystals with hexagonal [26], orthorhombic [25] and triclinic [27] symmetry. It is shown that the
anisotropy factor, which is a combination of the elastic constants of the material, is representative
of the degree of anisotropy and the models lose their accuracy for materials with a high anisotropy
factor. On the other hand, Boström & Ruda [28] in two dimensions looked at the polycrystalline
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materials as a collection of individual grains in which each grain is considered to be surrounded
by a matrix with the overall properties of all other grains (which is isotropic for equiaxed and
randomly oriented grains). Using the explicit transition matrix for cubic materials presented by
Boström [13], explicit expressions for the attenuation are derived for polycrystalline materials
with cubic symmetry in two dimensions. With the same perspective, Jafarzadeh et al. [15] look
at the polycrystalline materials as a special case of a distribution of inclusions and use the Foldy
theory in combination with the T matrix of a single spherical obstacle to study attenuation and
phase velocity of polycrystalline materials with hexagonal symmetry in three dimensions. Such
an approach is only useful when the scattering by each grain is small, in particular for low
frequencies. On the other hand, there seems to be no limitation on the degree of anisotropy.

Besides these analytical methods, Van Pamel et al. [29,30] present a finite element method
(FEM) model for polycrystalline materials and investigate attenuation and phase velocity. This
model is further developed for better accuracy and different material properties, and it is used as
a reference for the development of analytical models [31–34].

The purpose of this paper is to find the T matrix elements for a spherical obstacle with cubic
anisotropy (in Cartesian coordinates) in an isotropic surrounding and use them to characterize
polycrystalline materials. The same methodology as for a spherical obstacle with transverse
isotropy [15] is followed, the present case being more complicated in that there is no rotational
symmetry any longer (leading to a coupling of different azimuthal orders). Stating the constitutive
equations for a cubic material in spherical coordinates shows the complexity of the governing
equations due to the appearance of explicit trigonometric functions in both the polar and
azimuthal coordinates. For the transversely isotropic sphere studied by Jafarzadeh et al. [15]
there is no trigonometric function in the azimuthal coordinate in the governing equations due
to the rotational symmetry of the material. Using vector spherical harmonics and power series
expansions in the angular and radial coordinates, respectively, the equations of motion lead
to recursion relations for the coefficients in the power series expansion. Then the boundary
conditions are applied and the T matrix elements for a single spherical obstacle are derived. These
elements are used in combination with Foldy theory, and the attenuation and phase velocity
of polycrystalline materials are calculated explicitly for low frequencies. Besides the explicit
expression, a numerical calculation is also carried out and the attenuation and phase velocities
are evaluated numerically for low and intermediate frequencies.

2. Statement of the problem
Scattering of elastic waves by an anisotropic sphere with radius a inside an infinite elastic
homogeneous medium (figure 1) is considered. The surrounding medium is assumed isotropic
with density ρ and Lamé parameters λ and μ. The material properties of the anisotropic sphere
are described in the next section. Only monochromatic waves are studied and the time harmonic
factor exp(−iωt), where ω is the angular frequency and t is time, is suppressed. The longitudinal
and transverse wave numbers of the infinite medium are k2

p = ρω2/(λ + 2μ) and k2
s = ρω2/μ,

respectively.
Based on the geometry of the inclusion it is natural to use spherical coordinates (r, θ , ϕ) and

describe the field quantities in the surrounding medium with the aid of the spherical vector wave
functions ψτσml introduced as [3]

ψ0
1σml(r, θ , ϕ) = 1√

l(l + 1)
∇ × (jl(ksr)Yσml(θ , ϕ)) = jl(ksr)A1σml(θ , ϕ), (2.1)

ψ0
2σml(r, θ , ϕ) = 1√

l(l + 1)

1
ks

∇ × ∇ × (jl(ksr)Yσml(θ , ϕ))

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 M

ay
 2

02
3 



4

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220476

..........................................................

z

y

a

x

uin

Figure 1. The cubic sphere with radius a and the incident wave uin.

=
(

j′l(ksr) + jl(ksr)
ksr

)
A2σml(θ , ϕ) +

√
l(l + 1)

jl(ksr)
ksr

A3σml(θ , ϕ) (2.2)

and ψ0
3σml(r, θ , ϕ) =

(
kp

ks

)3/2 1
kp

∇(jl(kpr)Yσml(θ , ϕ))

=
(

kp

ks

)3/2(
(j′l(kpr)A3σml(θ , ϕ) +

√
l(l + 1)

jl(kpr)
kpr

A2σml(θ , ϕ)
)

. (2.3)

The type of the wave function is specified by the first index τ = 1, 2, 3 for SH, SV and P waves,
respectively. The other indices are running through m = 0, 1, . . ., l = m, m + 1, . . . and σ = e (even)
and o (odd). l = 0 is only relevant for the P wavefunctions (τ = 3) and is not defined for the others.
The upper index ‘0’ on the wave functions denotes that they are regular and contain spherical
Bessel functions. The corresponding outgoing wave functions are denoted by the upper index
‘+’ and contain spherical Hankel functions to fulfil the radiation condition. Aτσml(θ , ϕ) are vector
spherical harmonics which constitute a complete orthonormal vector basis system on the unit
sphere for vector valued functions and are defined as

A1σml(θ , ϕ) = 1√
l(l + 1)

∇ × (rYσml(θ , ϕ))

= 1√
l(l + 1)

(
eθ

1
sin θ

∂

∂ϕ
Yσml(θ , ϕ) − eϕ

∂

∂θ
Yσml(θ , ϕ)

)
,

A2σml(θ , ϕ) = 1√
l(l + 1)

r∇Yσml(θ , ϕ)

= 1√
l(l + 1)

(
eθ

∂

∂θ
Yσml(θ , ϕ) + eϕ

1
sin θ

∂

∂ϕ
Yσml(θ , ϕ)

)

and A3σml(θ , ϕ) = erYσml(θ , ϕ),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.4)

in which Yσml(θ , ϕ) are spherical harmonics with the following definition

Yσml(θ , ϕ) =
√

εm(2l + 1)(l − m)!
4π (l + m)!

Pm
l (cos θ )

{
cos mϕ

sin mϕ

}
. (2.5)
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Here, Pm
l (cos θ ) is an associated Legendre function of order m and degree l. The Neumann factor

is εm with ε0 = 1 and εm = 2 for m = 1, 2, . . .. Also, σ = e is for the upper row which is even with
respect to ϕ and σ = o is for the lower row which is odd with respect to ϕ. The ϕ-dependence
of the wave functions is often expressed as the complex exponential eimϕ instead, but here it is
more convenient to use the trigonometric functions cos mϕ and sin mϕ as these are even and odd,
respectively, and this is useful for subdividing the scattering problem into parts depending on the
symmetries.

These wave functions are sufficient to describe the displacement field in an isotropic medium
in spherical coordinates. The radial traction on the boundary of the sphere is also needed for
the boundary conditions. It is convenient to introduce the radial traction operator in an isotropic
medium

t(r) = erλ∇ · u + μ

(
2
∂u
∂r

+ er × (∇ × u)
)

, (2.6)

and derive the corresponding traction for each of the vector wave functions as

t(r)(ψ0
1σml(r)) = μr

d
dr

(
jl(ksr)

r

)
A1σml(θ , ϕ), (2.7)

t(r)(ψ0
2σml(r)) = μ

[(
2ksj′′l (ksr) + 2j′l(ksr)

r
− 2jl(ksr)

ksr2 + ksjl(ksr)
)

A2σml(θ , ϕ)

+ 2
√

l(l + 1)
d
dr

(
jl(ksr)

ksr

)
A3σml(θ , ϕ)

]
(2.8)

and t(r)(ψ0
3σml(r)) = μ

(
kp

ks

)3/2
[

(2kpj′′l (kpr) +
2k2

p − k2
s

kp
jl(kpr)

)

× A3σml(θ , ϕ) + 2
√

l(l + 1)
d
dr

(
jl(kpr)

kpr

)
A2σml(θ , ϕ)

]
. (2.9)

Assuming that the sources of the incident wave are located outside the sphere, then close
enough to the sphere the incident displacement field can be expanded in terms of the regular
wave functions

uin(r) =
∑
τσml

bτσmlψ
0
τσml(r), (2.10)

where the indices run through τ = 1, 2, 3, σ = e, o, m = 0, 1, . . ., l = m, m + 1, . . ., and the expansion
coefficients of the incident wave bτσml are in principle known. The incident wave is scattered by
the sphere and this leads to an outgoing scattered wave. The scattered wave must satisfy radiation
conditions and can be expanded in terms of the outgoing wave functions

usc(r) =
∑
τσml

hτσmlψ
+
τσml(r). (2.11)

Here, hτσml are the unknown scattered wave coefficients which are to be determined. A general
way to represent the scattering by an obstacle is to determine the transition matrix (T matrix)
which gives the linear relation between the expansion coefficients of the incident and scattered
waves

hτσml =
∑

τ ′σ ′m′l′
Tτσml,τ ′σ ′m′l′ bτ ′σ ′m′l′ . (2.12)

This completes the necessary developments in the surrounding medium to solve the scattering
problem. In the following sections, the anisotropic sphere is described and the transition matrix
elements are derived.
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3. The cubic sphere
In this section, the material properties and governing equations of the anisotropic sphere are
discussed. The sphere has density ρ1 and is anisotropic with cubic properties. A cubic material can
be defined by three independent stiffness constants, here denoted C11, C12 and C44 in abbreviated
notation. The constitutive relations can then be expressed in Cartesian coordinates

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σyz

σzx

σxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0

0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 2C44

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

εyz

εzx

εxy

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

. (3.1)

Considering the geometry of the problem it is more convenient to express the stress–strain
relations in spherical coordinates. Transforming the constitutive relation in equation (3.1) to
spherical coordinates (see [15]) the stress–strain relations in spherical coordinates become

σrr = (α1 + 2α2)εrr + α1εθθ +
(

α1 − 3
4
β

)
εϕϕ

+ β

[
sin 4ϕ

(
(cos θ − cos 3θ )εθϕ + (3 sin θ − sin 3θ )εϕr

)

+ cos 4ϕ

(
3
4
εrr + 1

4
εθθ − εϕϕ + cos 2θ (εφφ − εrr)

+ 1
4

cos 4θ (εrr − εθθ ) +
(

sin 2θ − 1
2

sin 4θ

)
εrθ

)
+ cos 2θ (εrr − εϕϕ)

+ 7
4

cos 4θ (εrr − εθθ ) −
(

sin 2θ + 7
2

sin 4θ

)
εrθ

]
, (3.2)

σθθ = α1εrr + (α1 + 2α2)εθθ +
(

α1 − 3
4
β

)
εϕϕ

+ β

[
sin 4ϕ

(
(3 cos θ + cos 3θ )εθϕ + (sin θ + sin 3θ )εϕr

)

+ cos 4ϕ

(
1
4
εrr + 3

4
εθθ − εϕϕ − cos 2θ (εφφ − εθθ )

− 1
4

cos 4θ (εrr − εθθ ) +
(

sin 2θ + 1
2

sin 4θ

)
εrθ

)
− cos 2θ (εθθ − εϕϕ)

− 7
4

cos 4θ (εrr − εθθ ) −
(

sin 2θ − 7
2

sin 4θ

)
εrθ

]
, (3.3)

σϕϕ =
(

α1 − 3
4
β

)
εrr +

(
α1 − 3

4
β

)
εθθ +

(
α1 + 2α2 + 3

4
β

)
εϕϕ

+ β

[
cos 2θ (εθθ − εrr) + 2 sin 2θεrθ

+ cos 4ϕ(2εϕϕ − εrr − εθθ + cos 2θ (εrr − εθθ ) − 2 sin 2θεrθ )

+ 4 sin 4ϕ(cos θεθϕ + sin θεϕr)
]

, (3.4)

σrθ = (2α2)εrθ + 1
2
β

[
−7 cos 4θεrθ + sin 2θ (2εϕϕ − εrr − εθθ )

+ 7
2

sin 4θ (εθθ − εrr) + cos 4ϕ(εrθ − cos 4θεrθ
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+ sin 2θ (εrr + εθθ − 2εϕϕ) + 1
2

sin 4θ (εθθ − εrr)
)

− 2 sin 4ϕ((cos θ − cos 3θ )εϕr + (sin θ + sin 3θ )εθϕ)
]

, (3.5)

σθϕ =
(

2α2 − 3
2
β

)
εϕr + 2β

[
− cos 2θεϕr + sin 2θεθϕ

− cos 4ϕ((1 − cos 2θ )εϕr + sin 2θεθϕ) + 1
2

sin 4ϕ

(
(cos 3θ − cos θ )εrθ

+ sin θ

(
2εϕϕ − 3

2
εrr − 1

2
εθθ

)
+ 1

2
sin 3θ (εrr − εθθ )

)]
(3.6)

and σϕr =
(

2α2 − 3
2
β

)
εθϕ + 2β

[
cos 2θεθϕ + sin 2θεϕr − cos 4ϕ((1 + cos 2θ )εθϕ + sin 2θεϕr)

+ 1
2

sin 4ϕ

(
cos θ

(
2εϕϕ − 1

2
εrr − 3

2
εθθ

)
+ 1

2
cos 3θ (εrr − εθθ ) − (sin θ + sin 3θ )εrθ

)]
,

(3.7)

where the strains in spherical coordinates are

εrr = ∂ur

∂r
, εϕϕ = 1

r sin θ

∂uϕ

∂ϕ
+ cot θ

r
uθ + ur

r
,

εθθ = 1
r

∂uθ

∂θ
+ ur

r
, εθϕ = 1

2r

(
∂uϕ

∂θ
− cot θuϕ + 1

sin θ

∂uθ

∂ϕ

)

εϕr = 1
2

(
1

r sin θ

∂ur

∂ϕ
+ ∂uϕ

∂r
− uϕ

r

)
, and εrθ = 1

2

(
∂uθ

∂r
− uθ

r
+ 1

r
∂ur

∂θ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.8)

Here, α1, α2 and β are new stiffness constants defined by

α1 = 1
32

(7C11 + 25C12 − 14C44), α2 = 1
32

(7C11 − 7C12 + 18C44)

and β = 1
8

(C11 − C12 − 2C44).

⎫⎪⎪⎬
⎪⎪⎭ (3.9)

In the isotropic limit, when C44 = (C11 − C12)/2, it can be observed that β = 0, α1 = λ1 and α2 = μ1,
where λ1 and μ1 are Lamé parameters of an isotropic sphere.

Besides the stress–strain relations inside the sphere, the governing equations can also be
expressed in spherical coordinates as

∂σrr

∂r
+ 1

r
∂σrθ

∂θ
+ 1

r sin θ

∂σϕr

∂ϕ
+ 1

r
(2σrr − σθθ − σϕr + cot θσrθ ) + ρω2ur = 0, (3.10)

∂σrθ

∂r
+ 1

r
∂σθθ

∂θ
+ 1

r sin θ

∂σθϕ

∂ϕ
+ 1

r
(cot θ (σθθ − σϕϕ) + 3σrθ ) + ρω2uθ = 0 (3.11)

and
∂σϕr

∂r
+ 1

r
∂σθϕ

∂θ
+ 1

r sin θ

∂σϕϕ

∂ϕ
+ 1

r
(3σϕr + 2 cot θσθϕ) + ρω2uϕ = 0. (3.12)

Of course, these governing equations can be expressed in terms of the displacements; however,
this leads to very large equations which are not given.

To solve the scattering problem, the scattered wave outside the sphere and the wave inside
the sphere need to be determined given the incident wave. In equation (2.11), the scattered wave
is expanded in terms of the spherical vector wave functions. However, these wave functions are
not a solution of the elastodynamic equations of an anisotropic medium expressed in equations
(3.10)–(3.12) and the displacement field inside the sphere cannot be expressed in terms of
these vector wave functions. However, the vector spherical harmonics constitute a complete
orthonormal vector basis system for vector valued functions which is suitable for the expansion of
the displacement inside the sphere since the displacement and stress fields outside the sphere are
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also in terms of the vector spherical harmonics and this facilitates the application of the boundary
conditions. Consequently, the displacement field u1 inside the sphere is expanded as

u1(r, θ , ϕ) =
∑
τσml

Fτσml(r)Aτσml(θ , ϕ), (3.13)

where l = 1, 2, . . . for τ = 1, 2 and l = 0, 1, . . . for τ = 3. The r-dependent coefficients Fτσml(r) are
expanded in power series in r. By considering the regularity condition at the centre of the sphere
when r → 0, these expansions are

F1σml(r) =
∞∑

j=l,l+2,...

f1σml,jr
j, (3.14)

F2σml(r) =
∞∑

j=l−1,l+1,...

f2σml,jr
j (3.15)

and F3σml(r) =
∞∑

j=l−1,l+1,...

f3σml,jr
j, (3.16)

in which f3σm0,−1 = 0. Here, fτσml,j are the unknown coefficients inside the sphere. The scattering
problem can be addressed as finding these coefficients together with the unknown coefficients of
the scattered wave hτσml. To do so, the governing equations (equations (3.10)–(3.12)) are used to
derive recursion relations among the unknown coefficients. Then the boundary conditions for the
displacement and traction are used to find all the rest of the unknown coefficients.

In order to find the recursion relations among the unknown coefficients the governing
equations (equations (3.10)–(3.12)) are considered as a vector valued function which is expanded
in terms of the vector spherical harmonics∑

τσml

Hτσml(r)Aτσml(θ , ϕ) = 0. (3.17)

The orthogonality of the vector spherical harmonics means that all the coefficients must vanish

Hτσml(r) = 0 for all τ , σ , m, l. (3.18)

These equations are power series in r, but as the powers of r are linearly independent, the
coefficient in front of every power of r must vanish and this provides recursion relations among
the unknown coefficients inside the sphere. The general explicit expression of the recursion
relations is complicated and is not given; however, it is enlightening to state how Hτσml depends
on the unknown expansion coefficients fτσml,j. In the isotropic case there is only coupling between
P and SV waves meaning that H1σml contains f1σml,j and Hτσml contains fτ ′σml,j where τ and
τ ′ can be 2 and 3. On the other hand, for a sphere with cubic symmetry, the trigonometric
functions of different orders with respect to θ and ϕ, which appear in the stress–strain relations
in spherical coordinates (equations (3.2)–(3.7)), lead to coupling between different values of m
and l. Specifically, H1σml may contain f1σm′l′,j where m′ can be m and |m ± 4|, and l′ can be l, l ± 2.
For P–SV waves Hτσml may contain fτ ′σm′l′,j where τ and τ ′ can be 2 and 3, m′ can be m and
|m ± 4| and l′ can be l, l ± 2 and l ± 4. Beside such coupling, there is also coupling between SH
waves and P–SV waves. Such coupling occurs with different parity of SH and P–SV waves with
respect to θ and ϕ (for l and σ values). This can be observed in equations (2.1)–(2.5) where the
displacement field has the same parity for all components if the SH waves (ψ1σml) have a different
parity compared to P–SV waves (ψ2σml and ψ3σml) with respect to θ (l values) and ϕ (σ values).
This means H1σml may contain fτσ ′m′l′,j and Hτσml may contain f1σ ′m′l′,j in which τ can be 2 and
3, σ �= σ ′, m′ can be m and |m ± 4| and l′ can be l ± 1 and l ± 3. The reason for the absolute value
in coupling between different m values is the fact that negative orders of trigonometric functions
and associated Legendre functions are essentially the same as the ones with positive orders. This
means that coupling between m = 1 and m = −3 is equivalent with coupling between m = 1 and
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Table 1. Table of coupling among partial waves in the Rayleigh limit.

P–SV

m σ l partial P waves partial SV waves partial SH waves sec.

0,4 ee A3e00,A3e02, (A3e04,A3e44) A2e02, (A2e04,A2e44) — 4(a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eo A3e01, (A3e03) A2e01, (A2e03) — 4(b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oe (A3o44) (A2o44) A1e01, (A1e03) 4(c)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oo — — A1e02 4(c)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1,3 ee A3e12, (A3e14,A3e34) A2e12, (A2e14,A2e34) A1o11, (A1o13,A1o33) 5(a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eo A3e11, (A3e13,A3e33) A2e11, (A2e13,A2e33) A1o12 5(b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oe A3o12, (A3o14,A3o34) A2o12, (A2o14,A2o34) A1e11, (A1e13,A1e33) 5(a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oo A3o11, (A3o13,A3o33) A2o11, (A2o13,A2o33) A1e12 5(b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 ee A3e22, (A3e24) A2e22, (A2e24) (A1o23) 6(a)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eo (A3e23) (A2e23) A1o22 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oe A3o22, (A3o24) A2o22, (A2o24) (A1e23) 6(b)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

oo (A3o23) (A2o23) A1e22 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m = 3, while l = 1 is not coupled with l = −1 and l = −3, since a negative degree of the associated
Legendre functions is not defined.

Finally, to find the remaining unknown coefficients inside the sphere (fτσml,j) and the unknown
scattered wave expansion coefficients outside the sphere (hτσml), the boundary conditions must
be applied. For a welded spherical obstacle this can be stated as continuity of the displacement
and normal traction on the surface of the sphere r = a. Having the displacement field in terms of
the vector spherical harmonics makes it straightforward to apply continuity of the displacement.
To apply the traction boundary condition it is necessary to express the traction inside the sphere
in terms of the vector spherical harmonics as well

t(r)
1 (a, θ , ϕ) =

∑
τσml

GτσmlAτσml(θ , ϕ), (3.19)

where t(r)
1 is the traction in the r direction inside the sphere. Here, Gτσml has the same coupling

among the coefficients fτσml,j as in Hτσml(r).
Equations (3.13)–(3.19) give all the necessary relations inside the sphere to apply boundary

conditions and solve the scattering problem. Explicit expressions for these equations are not stated
here, but it is possible to use such an approach and to solve the scattering problem numerically
for low and intermediate frequencies. In the following explicit expressions are provided in the
low frequency limit and some numerical calculations are performed for intermediate frequencies.

In the low frequency limit, it is sufficient to expand the displacement field to power 3 in r.
Based on equations (3.14)–(3.16), this truncation leads to 64 partial waves for the displacement
field inside the sphere which are listed in table 1. The continuity condition of the displacement
and traction for each vector spherical harmonic leads to a large system of equations to be solved.
Using the already discussed couplings, such a large system of equations is reduced to 12 sets of
decoupled systems of equations as listed in table 1. These systems of equations can be reduced
more by considering that in the low frequency limit it is sufficient to take only l = 0, 1 and 2.
This means that no incident wave of orders l ≥ 3 needs to be taken into account. Consequently,
all partial waves with order l ≥ 3 inside the sphere (which are mentioned in parentheses in
table 1) must vanish due to the displacement continuity condition. In the following sections,
the calculation of the T matrix elements are discussed for each set of coupling in the low
frequency limit.
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4. Low frequency T matrix elements form= 0
For the m = 0 case the spherical harmonics are ϕ-independent (see equation (2.5)) and only the
even parts (σ = e) exist. In the low frequency limit, since there is no coupling between m = 0,
m = 1 and m = 2, this means that all displacement and traction fields are ϕ-independent. This
means that no coupling occurs between SH waves and P–SV waves and these can be studied
separately. In general, however, there is coupling between m = 0 and m = 4 which leads to
ϕ-dependent fields and coupling between P–SV and SH waves as shown in table 1. The problem
can also be decoupled into the even and odd values of l and there exist four decoupled problems,
as in table 1, which are studied in the following.

(a) Even–even P–SV waves
First, consider the P–SV case for even values of l. The following ansatz can be made for the
displacement field based on equation (3.13)

u1(r, θ , ϕ) = F2e02(r)A2e02(θ , ϕ) + F3e00(r)A3e00(θ , ϕ) + F3e02(r)A3e02(θ , ϕ), (4.1)

where the r-dependent coefficients are expanded into powers of r according to equations (3.15)
and (3.16) as

F2e02(r) = f2e02,1r + f2e02,3r3, F3e00(r) = f3e00,1r + f3e00,3r3

and F3e02(r) = f3e02,1r + f3e02,3r3.

⎫⎬
⎭ (4.2)

As discussed earlier, in equations (4.1) and (4.2) only terms with power 3 of r and order 2 of l or
lower are included since these are sufficient in the low frequency limit, but there is no particular
problem in expanding the displacement field to higher orders.

Substituting the expansion of the displacement into the equations of motion and then
expanding the equations of motion in terms of the vector spherical harmonics as explained in
equation (3.17) lead to the following r-dependent coefficients

H3e00 =
((

10α1 + 20α2 − 9
2
β

)
f3e00,3 + ρ1ω

2f3e00,1

)
r3 = 0,

H3e02 = 1
42

(√
6f2e02,1 − 3f3e02,1

)
(84α2 − 19β)r +

(
ρ1ω

2f3e02,1

+ 2(5α1 + 7α2 + 3β)f3e02,3 +
√

2
3

(−4α1 + 7β)f2e02,3

)
r3 = 0

and H2e02 = −1
3

(
2f2e02,1 −

√
6f3e02,1

)
(9α1 + 15α2 − 2β)r +

(
ρ1ω

2f2e02,1

+
√

6(5α1 + 7α2 + 3β)f3e02,3 +
(

−6α1 + 21
2

β

)
f2e02,3

)
r3 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

These coefficients are the only ones that only contain the fτσml explicitly shown in equation (4.2).
The linear independence of the powers of r gives the recursion relations among the expansion
coefficients

f2e02,1 =
√

3
2

f3e02,1, f3e00,3 = −2
(20α1 + 40α2 − 9β)

ρ1ω
2f3e00,1

and f2e02,3 =
√

2√
3(4α1 − 7β)

(2(5α1 + 7α2 + 3β)f3e02,3 + ρ1ω
2f3e02,1).

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.4)

It can be observed that there is no coupling between the l = 0 and l = 2 coefficients. This is an
exception for l = 0 and l = 2, while for higher values of l there is coupling between l and l ± 2.
These recursion relations reduce the number of coefficients inside the sphere for this case to three.
In general, only one unknown coefficient remains for each vector spherical harmonics inside the
sphere. Besides the displacement ansatz expressed in equation (4.1) the traction expansion can
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also be derived according to equation (3.19); however, these are large expressions and are not
presented.

In the surrounding medium, the expansion coefficients of the scattered wave for even–even
P–SV waves are h2e02, h3e00 and h3e02 and the unknowns inside the sphere are f3e00,1, f3e02,1, f3e02,3.
These six unknown coefficients are found by applying continuity of the displacement and traction
for τ = 2 with l = 2 and τ = 3 with l = 0, 2. This leads to a system of six equations in six unknowns
and an expansion in the sphere radius a then leads to the following dominating T matrix elements
for low frequencies

T3e00,3e00 = −i(kpa)3
(

1
3

− λ + 2μ

C11 + 2C12 + 4μ

)
,

T2e02,2e02 = −i(ksa)3 (λ + 2μ)(C11 − C12 − 2μ)
2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

,

T3e02,2e02 = T2e02,3e02 = −i

√
2kp

3ks
(ksa)3 μ(C11 − C12 − 2μ)

2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

and T3e02,3e02 = −i
2
3

(kpa)3 μ(C11 − C12 − 2μ)
2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

Since there is no coupling between l = 0 and l = 2 for m = 0, the following T matrix elements are
zero for low frequencies

T2e02,3e00 = T3e00,2e02 = T3e02,3e00 = T3e00,3e02 = 0. (4.6)

In the isotropic limit when C44 = (C11 − C12)/2, the T matrix elements become the same as those
of the isotropic case (given by Boström [35]).

(b) Even–odd P–SV waves
For the case with odd values of l for P–SV waves, the low frequency displacement field expansion
is

u1(r, θ , ϕ) = F2e01(r)A2e01(θ , ϕ) + F3e01(r)A3e01(θ , ϕ), (4.7)

where

F2e01(r) = f2e01,0 + f2e01,2r2 and F3e01(r) = f3e01,0 + f3e01,2r2. (4.8)

As in the previous subsection the equations of motion lead to the following recursion relations

f2e01,0 =
√

2f3e01,0 and f2e01,2 = (8α1 + 12α2 − 3β)f3e01,2 + 2ρ1ω
2f3e01,0

2
√

2(α1 − α2)
. (4.9)

Thus, two unknowns remain inside the sphere and the unknowns outside the sphere are h2e01 and
h3e01. These are found by considering continuity of the displacement and traction for τ = 2 and
τ = 3 with l = 1, and the T matrix elements are derived as

T2e01,2e01 = −2
9

i(ksa)3
(

1 − ρ1

ρ

)
,

T3e01,2e01 = T2e01,3e01 = −
√

2
9

i
√

k3
pk3

s a3
(

1 − ρ1

ρ

)

and T3e01,3e01 = −1
9

i(kpa)3
(

1 − ρ1

ρ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

It can be observed that the T matrix elements only depend on the density of the sphere and not its
elastic properties. This is reasonable since the l = 1 case for low frequencies is related to the rigid
body translation. Since the stiffness constants of the sphere are not important, these elements are
the same for any type of spherical inclusion.
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(c) Even–odd SH waves
The first possible order for the even SH waves with m = 0 is l = 1, and the displacement field
expansion for this case is

u1(r, θ , ϕ) = F1e01(r)A1e01(θ , ϕ). (4.11)

The r-dependent coefficient is expanded into powers of r based on equation (3.14) as

F1e01(r) = f1e01,1r + f1e01,3r3. (4.12)

The governing equation inside the sphere yields

f1e01,3 = 2ρ1ω
2

20α2 − 3β
f1e01,1. (4.13)

Therefore, only one unknown remains inside the sphere which together with the expansion
coefficient of the scattered wave for m = 0, l = 1 (h1e01) give two unknowns. Using the continuity
of the displacement and traction for τ = 1 l = 1, the following T matrix element is derived

T1e01,1e01 = − 1
45

i(ksa)5
(

1 − ρ1

ρ

)
. (4.14)

This element depends only on the density of the sphere and corresponds to a rigid body rotation
of the sphere at low frequencies due to an incident torsional wave. As seen this element has
leading order (ka)5. Other T matrix elements involving SH waves (including even–even SH waves
for the m = 0 case) have the same leading order ((ka)5) which is higher than the leading order of
the P–SV case ((ka)3) and thus are not presented here.

5. Low frequency T matrix elements form= 1
For the m = 1 case, waves may be even or odd with respect to ϕ (σ values) and as discussed in §3
the P–SV and SH waves are coupled with different parities. The problem can still be decoupled for
even and odd values of σ and l. This means that there are four decoupled problems, even–even,
even–odd, odd–even and odd–odd. In the m = 1 case, different parity with respect to ϕ means
choosing between cos ϕ and sin ϕ, but this corresponds to a rotation by π/2 around the z axis and
as the cubic material is unaffected by such a rotation the T matrix elements should be the same for
the even and odd cases. Thus, even–even and odd–even cases are identical as well as even–odd
and odd–odd cases. This means that it is enough to study two decoupled problems.

(a) Even–even P–SV waves and odd–odd SH waves
First the even–even case is studied. The even–even P–SV waves are coupled with the odd–odd
SH waves and the ansatz for the displacement is

u1(r, θ , ϕ) = F1o11(r)A1o11(θ , ϕ) + F2e12(r)A2e12(θ , ϕ) + F3e12(r)A3e12(θ , ϕ), (5.1)

where F1o13(r), F1o33(r), F2e14(r) and F3e14(r) are considered to be zero since there are no incoming
waves of order l > 2. The r-dependent coefficients are expanded to power 3 in r as

F1o11(r) = f1o11,1r + f1o11,3r3,

F2e12(r) = f2e12,1r + f2e12,3r3

and F3e12(r) = f3e12,1r + f3e12,3r3.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.2)
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Using the equations of motion the relations among these unknown coefficients become

f1o11,1 = −1
2ρ1ω2 (20α2 − 3β)f1o11,3, f2e12,1 =

√
3
2

f3e12,1

and f2e12,3 =
√

6
12α1 + 11β

(
2(5α1 + 7α2 − 5β)f3e12,3 +

√
6ρ1ωf3e12,1

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.3)

The SH waves coefficients are independent of the ones for P–SV waves which is a special
case happening only for the lowest order. This means that the P–SV waves and SH waves are
decoupled for the leading order T matrix elements and thus can be studied separately. Knowing
that the T matrix elements of the SH case are of higher order in comparison with the P–SV
case, only the T matrix elements of the P–SV waves are derived. After applying the boundary
conditions these become

T2σ12,2σ12 = −i(ksa)3 (λ + 2μ)(2C44 − 2μ)
2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

,

T3σ12,2σ12 = T2σ12,3σ12 = −i

√
2kp

3ks
(ksa)3 μ(2C44 − 2μ)

2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

and T3σ12,3σ12 = −i
2
3

(kpa)3 μ(2C44 − 2μ)
2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.4)

where σ may be e (even) or o (odd) as the T matrix elements are the same for these two cases. Of
course, these elements of the T matrix are also the same as in the isotropic case in the isotropic
limit.

(b) Odd–odd P–SV waves even–even SH waves
The odd–odd P–SV waves which are coupled with even–even SH waves are next studied.
Truncating the displacement ansatz in the same manner as in the previous sections, the
appropriate displacement expansion is

u(r, θ , ϕ) = F1e12(r)A1e12(θ , ϕ) + F2o11(r)A2o11(θ , ϕ) + F3o11(r)A3o11(θ , ϕ), (5.5)

where
F1e12(r) = f1e12,2r2,

F2o11(r) = f2o11,0 + f2o11,2r2

and F3o11(r) = f3o11,0 + f3o11,2r2.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.6)

Using the equations of motion the recursion relations among the unknown coefficients are
obtained as

f2o11,0 =
√

2f3o11,0

and f2o11,2 = 1

2
√

2(α1 − α2)
((8α1 + 12α2 − 3β)f3o11,2 + 2ρ1ω

2f3o11,0),
(5.7)

where there is no coupling between P–SV and SH waves to lowest order. The T matrix elements
for the P–SV waves become

T2σ11,2σ11 = −2
9

i(ksa)3
(

1 − ρ1

ρ

)
,

T3σ11,2σ11 = T2σ11,3σ11 = −
√

2
9

i
√

k3
pk3

s a3
(

1 − ρ1

ρ

)

and T3σ11,3σ11 = −1
9

i(kpa)3
(

1 − ρ1

ρ

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)
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Here again σ = e or o. As is to be expected these elements only depend on the density of the sphere
since l = 1 for low frequencies corresponds to rigid body translation. In fact these elements are the
same as the T matrix elements for m = 0 and l = 1 given in equations (4.10) and (5.8).

6. Low frequency T matrix elements form= 2
For the m = 2 case, the problem can be decoupled in the same way as in §5 for m = 1, which means
there are four decoupled problems with even–even, even–odd, odd–even and odd–odd parities
of the P–SV waves. However, the even and odd cases with respect to ϕ may differ. By considering
the condition l ≥ m for the vector spherical harmonics, the only necessary l value for the low
frequency study is l = 2. Therefore, it is sufficient to consider only even waves with respect to θ

which means P–SV waves with l = 2, and SH waves with l = 2 without any coupling. Considering
the fact that the T matrix elements for the SH waves are of order (ksa)5 or higher only the P–SV
waves are studied here. The P–SV waves for l = 2 may be even or odd with respect to ϕ and these
two cases are sufficient for the leading order T matrix elements of this study.

(a) Even–even P–SV waves
The displacement ansatz for the even–even P–SV waves can be truncated for low frequencies as

u1(r, θ , ϕ) = F2e22(r)A2e22(θ , ϕ) + F3e22(r)A3e22(θ , ϕ), (6.1)

where
F2e22(r) = f2e22,1r + f2e22,3r3

and F3e22(r) = f3e22,1r + f3e22,3r3.

⎫⎬
⎭ (6.2)

The recurrence relations follow in the usual way

f2e22,1 =
√

3
2

f3e22,1

and f2e22,3 =
√

2√
3(4α1 − 7β)

(2(5α1 + 7α2 + 3β)f3e22,3 + ρ1ω
2f3e22,1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.3)

Finally, applying continuity of the displacement and traction for l = 2, τ = 2 and τ = 3, the
following T matrix elements are derived

T2e22,2e22 = −i(ksa)3 (λ + 2μ)(C11 − C12 − 2μ)
2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

,

T3e22,2e22 = T2e22,3e22 = −i

√
2kp

3ks
(ksa)3 μ(C11 − C12 − 2μ)

2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

and T3e22,3e22 = −i
2
3

(kpa)3 μ(C11 − C12 − 2μ)
2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.4)

These T matrix elements are identical with those for m = 0.

(b) Odd–even P–SV waves
Similarly, the displacement ansatz for the odd–even P–SV waves for low frequencies is

u1(r, θ , ϕ) = F2o22(r)A2o22(θ , ϕ) + F3o22(r)A3o22(θ , ϕ), (6.5)

where
F2o22(r) = f2o22,1r + f2o22,3r3

and F3o22(r) = f3o22,1r + f3o22,3r3.

⎫⎬
⎭ (6.6)
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For these coefficients the recursion relations become

f2o22,1 =
√

3
2

f3o22,1

and f2o22,3 =
√

6
(12α1 + 11β)

(2(5α1 + 7α2 − 5β)f3o22,3 + ρ1ω
2f3o22,1).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(6.7)

Finally, applying the boundary conditions, the following T matrix elements are derived

T2o22,2o22 = −i(ksa)3 (λ + 2μ)(2C44 − 2μ)
2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

,

T3o22,2o22 = T2o22,3o22 = −i

√
2kp

3ks
(ksa)3 μ(2C44 − 2μ)

2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

and T3o22,3o22 = −i
2
3

(kpa)3 μ(2C44 − 2μ)
2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6.8)

which are the same as the T matrix elements for m = 1.

7. Polycrystalline materials
In this section, wave propagation in single phase polycrystalline materials is studied. The
grains are equiaxed, anisotropic and randomly oriented which make the polycrystalline material
macroscopically isotropic and homogeneous [22]. In these materials, the geometry of the grains
can be modelled in various ways, in a stochastic way or as individual grains. Here the stochastic
approach, which is followed in much of the literature, is reviewed briefly. On the other hand, the
present approach follows the individual grain perspective, specifically for the low frequency limit.
Thus, the effective wave numbers are derived based on single grain T matrix elements studied in
§§4–6.

Stochastic models treat the medium as a whole in terms of the geometric statistics of the grains
which directly reflect the macroscopic properties of the polycrystalline material [22]. In these
models, the elastic medium is described by a local elastic stiffness tensor which is a random
function of the spatial coordinates. The fluctuations with respect to the mean elastic tensor
(normally the Voigt average) are considered to be small and described by a TPC function, giving
the probability of two points lying in the same grain. The TPC function can also be defined in a
way to capture various volume distributions of grains or even non-equiaxed grains. These models
are accurate when the second order degree of inhomogeneity is small and hence are called the
second order approximation (SOA). With such a definition of the medium, the elastodynamic
equations governing the polycrystalline material are a system of partial differential equations
with random coefficients which is not solvable in general. Instead, the mean perturbed field
is studied using volume integral equations and some perturbation methods. The SOA model
involves Cauchy integral equations which need to be solved numerically. The FFA, introduced
by Rokhlin et al. [24], can be made to eliminate the complex calculation of the Cauchy integrals.
These methods (SOA and FFA) normally do not lead to a closed form solution for the perturbed
wave number K unless by considering more assumptions like the Rayleigh asymptote (valid for
low frequencies), or the stochastic asymptote (valid for high frequencies). Closed form solutions
of the effective wavenumber valid for all frequencies are also derived by invoking the Born
approximation for the SOA and FFA models [24,32,34]. An overview of these models with a
comparison of the various approximations is covered by Sha et al. [32]. Since the calculations
of the present approach are carried out in the low frequency range, the closed form expressions of
the attenuation and phase velocity (which are the imaginary and real part of the complex effective
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wave number, respectively) with the Rayleigh asymptote in polycrystalline materials with cubic
symmetry calculated by Sha et al. [32] are expressed here for comparison purposes

αp = 128π3β2f 4V

ρ2c3
p

(
�1

c5
p

+ �2

c5
s

)
,

cp

Cp
= 1 + 2

(
4β

ρcp

)2
(

�1

c2
p

+ �2

c2
s

)

and αs = 128π3β2f 4V

ρ2c3
s

(
�3

c5
p

+ �4

c5
s

)
,

cs

Cs
= 1 + 2

(
4β

ρcs

)2
(

�3

c2
p

+ �4

c2
s

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.1)

Here, αp and αs are longitudinal and transverse attenuation coefficients, respectively, cp and cs

are the unperturbed medium longitudinal and transverse wave velocities, respectively, Cp and
Cs are the effective longitudinal and transverse wave velocities, respectively, V is the effective
grain volume calculated based on the TPC function, and �1 = 8/375, �2 = 4/125, �3 = 2/125 and
�4 = 3/125.

In the present approach, a polycrystalline material is viewed as a special case of a distribution
of inclusions. Accordingly, the scattering by each grain of the polycrystal is regarded as taking
place in the effective, homogeneous and isotropic medium of all the other grains (ignoring
attenuation in the material). An approach to study the effective wavenumber in materials with
a distribution of inclusions is developed by Foldy [17], where each inclusion is treated as if it
were a single scatterer in the unperturbed medium. The wavenumber of the perturbed medium
is related to the scattering coefficient of each inclusion together with the wave number of the
unperturbed medium (matrix) and the distribution of the inclusions. The effective wave number
of the perturbed medium is thus derived as [19]

K2
i = k2

i + 4πNf̄i, (7.2)

where the index i can be p or s for longitudinal and transverse waves, respectively, ki is the wave
number of the matrix, N is the number density of inclusions, f̄i is the average (over all orientations
of the grains) forward scattering amplitude. Foldy theory is valid for dilute concentration of
inclusions, typically d < 0.05, where d is the relative density of the grains.

In the present approach, the grains in the polycrystalline material are considered to be spheres
with the same radius a. This is a reasonable approximation for low frequencies, for which the
scattering is mainly a volume effect. As crystals in a polycrystalline material fill the volume, the
number density of inclusions can be put to d = 1, meaning that the spheres must be partially
overlapping. Although this high density of inclusions violates the bound that is usually expected
for the Foldy approach, this should be reasonable as the scattering by each sphere is extremely
small, and consequently multiple scattering is even smaller and can be neglected. Therefore, the
average forward scattering amplitudes in terms of the T matrix elements calculated in previous
sections are [21]

f̄p = − i
kp

∑
σml

T3σml,3σml

and f̄s = − i
2ks

∑
τσml
τ=1,2

Tτσml,τσml.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7.3)

The effective wave numbers then become(
Kp

kp

)2
= 1 − 4π id

Vk3
p

∑
σml

T3σml,3σml

and
(

Ks

ks

)2
= 1 − 2π id

Vk3
s

∑
τσml
τ=1,2

Tτσml,τσml,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.4)

where V = 4πa3/3 is the volume of a single grain and Ki, i = p, s are the polycrystalline effective
wave numbers. The resulting complex effective wave number describes the attenuation and phase
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velocity of the composite medium as

αi

ki
= Im

Ki

ki

and
Ci

ci
= Re

ki

Ki
,

⎫⎪⎪⎬
⎪⎪⎭ (7.5)

where αi is the attenuation, ci is the phase velocity in the matrix and Ci is the effective phase
velocity.

Looking at the T matrix elements calculated in §§4–6, the leading order in the low frequency
limit are all imaginary which leads to a real effective wavenumber. To obtain attenuation, the
leading order real parts of the T matrix elements are also needed. Using the ‘Hermitian’ property
of the T matrix [36]

T†T = −ReT, (7.6)

the leading order real parts of T matrix elements are obtained.
Collecting everything, the leading order real and imaginary parts of the effective wave

numbers Ki become

(
Kp

kp

)2
= 1 + Ap + Bpi

and
(

Ks

ks

)2
= 1 + As + Bsi,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.7)

where the coefficients are real and given by

Ap = 3(λ + 2μ)
C11 + 2C12 + 4μ

− 6μ(2C44 − 2μ)
2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

− 4μ(C11 − C12 − 2μ)
2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

+ ρ1 − ρ

ρ
− 1,

Bp = (kpa)3

9

[
3
(

3(λ + 2μ)
C11 + 2C12 + 4μ

− 1
)2

+
(

1 + 2
k3

s

k3
p

)(
ρ1 − ρ

ρ

)2

+ 18

(
2 + 3

k5
s

k5
p

)(
μ(2C44 − 2μ)

2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

)2

+ 12

(
2 + 3

k5
s

k5
p

)(
μ(C11 − C12 − 2μ)

2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

)2
]

,

As = − 9(λ + 2μ)(2C44 − 2μ)
4μ(8C44 + 7μ) + 6λ(2C44 + 3μ)

− 3(λ + 2μ)(C11 − C12 − 2μ)
2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

+ ρ1 − ρ

ρ

and Bs = (ksa)3

9

[
27
2

(
3 + 2

k5
p

k5
s

)(
(λ + 2μ)(2C44 − 2μ)

2μ(8C44 + 7μ) + 3λ(2C44 + 3μ)

)2

+ 9

(
3 + 2

k5
p

k5
s

)(
(λ + 2μ)(C11 − C12 − 2μ)

2μ(4C11 − 4C12 + 7μ) + 3λ(C11 − C12 + 3μ)

)2

+
(

2 +
k3

p

k3
s

)(
ρ1 − ρ

ρ

)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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Since in the low frequency limit the parameters Ai and Bi are small, the normalized attenuation
and phase velocity can be approximated with good accuracy as

αi

ki
= Bi

2

and
ci

Ci
= 1 + Ai

2
.

⎫⎪⎪⎬
⎪⎪⎭ (7.9)

These relations confirm the frequency dependence of attenuation and phase velocity at low
frequencies where the phase velocity is independent of frequency and the attenuation depends
on the fourth power of the frequency (or wavenumber).

8. Numerical results for polycrystalline materials
In this section, some numerical results are given for polycrystalline materials with cubic
symmetry. To verify the present approach and to highlight its strengths and limitations, the results
are compared with the closed form expressions of the effective wave numbers using the Born
approximation of the FFA model (as expressed in [34]) and the Rayleigh asymptote of the SOA
method for low frequencies (as in equation (7.1) [32]). These are also compared with the numerical
calculations of the SOA and FEMs presented by Huang et al. [34]. To compare the analytical
methods with FEM, a suitable adaptation of the geometrical model considered in the analytical
methods with the one developed in the FEM model is necessary.

As in the analytical methods, single phase polycrystals with randomly oriented
crystallographic axes are considered in FEM [30]. The methodology of FEM is described in
detail by Van Pamel et al. [30], where different aspects regarding background theory, medium
generation, FE spatial discretization, material model, loading and boundary conditions for the
FEM are addressed. The adaptation of the stochastic models (SOA and Born) with the model
developed in FEM can be done by a suitable definition of the TPC function. An appropriate
TPC function according to the geometrical model generated by Van Pamel et al. [29] for FE
calculations is defined by Sha et al. [32] and is called the generalized TPC function (as opposed to
the exponential TPC function initially used in the literature).

On the other hand, the geometrical model in the present method is spherical grains with the
same radius a. In the low frequency range, which is the target range of the present approach,
the important geometrical property of the grains, which determines the scattering, is the average
grain volume. Thus, a proper adaptation is having the same average grain volume (V = 4πa3/3)
in the present approach with the effective grain volume of the stochastic models derived based
on the generalized TPC function. For the generalized TPC function, based on the FEM grain size
distribution [32], the effective grain volume in the SOA method is V = 0.1459 mm3, thus the radius
of the grains in the present model is chosen as a = 0.3266 mm which is used as the normalization
radius in the following calculations.

Another important aspect in the analytical calculations of the polycrystalline materials’
effective wave numbers (Kp and Ks) is the material properties of the macroscopically
homogeneous and isotropic material. This is the surrounding isotropic medium of each grain
in the present approach and the unperturbed medium in the stochastic models (for brevity in
the following it is called the matrix properties). In the single phase polycrystalline medium,
the density is the same everywhere and the matrix has the same density as each grain, thus
ρ = ρ1. Then some terms in the explicit expressions of the present method giving the attenuation
and phase velocity (equation (7.9)) vanish. The other matrix properties can be given by the
longitudinal and transverse wave numbers (kp and ks). It is customary in this context to use
the Voigt average as an approximation of the matrix properties and calculate the matrix wave
numbers as k2

p = ρω2/(λ + 2μ) and k2
s = ρω2/μ, where the Voigt average of the Lamé constants for
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Table 2. Table of materials properties [34].

material properties

stiffness constants density anisotropy Voigt average present average

(Gpa) (g cm−3) factor (Gpa) (Gpa)

C11 C12 C44 ρ A λ μ λ μ

Al 103.4 57.10 28.60 2700 1.24 54.92 26.42 55.00 26.29
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In 234.6 145.4 126.2 8260 2.83 112.8 93.56 119.1 84.11
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cu 169.6 122.4 74.00 8935 3.14 102.2 53.84 106.3 47.68
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Li 13.40 11.30 9.600 534.0 9.14 7.880 6.180 9.118 4.322
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

materials with cubic symmetry are

λ = 1
5

(C11 + 4C12 − 2C44)

and μ = 1
5

(C11 − C12 + 3C44).

⎫⎪⎪⎬
⎪⎪⎭ (8.1)

It is noted that this estimation can be improved by taking an iterative procedure and consider
the calculated effective wavenumber (Ki) as the wave number of the matrix (ki) and iterate the
calculations. Of course, since the effective wave number is a complex number with frequency
dependence, the iterated calculations are more complicated. This complication can be avoided
by considering only the real part of the effective wavenumber at low frequencies. Here this is
called the effective quasi-static phase velocity (Cq−s

i ) and is given in equation (7.9) for the present

method. The phase velocity ci of the matrix can be estimated by putting ci = Cq−s
i which gives Ai =

0 (see equation (7.9)). Simplifying Ai = 0 leads to the following two relations among the average
Lamé constants

λ = 1
12

(12α1 + 8α2 − 3β − 8μ), (8.2)

where μ is the positive real root of the following polynomial of order 3

(4α2 − 7β)(12α1 + 8α2 − 3β)(4α2 + 9β) + 2(4α2 − 7β)(12α1 + 56α2 + 105β)μ

− 8(36α1 + 40α2 + 27β)μ2 − 256μ3 = 0. (8.3)

Such a procedure for estimating matrix properties is not applicable in the SOA methods since the
normalized phase velocity Cp/cp is an increasing function of the phase velocities cp and cs of the
matrix with an upper limit of one (equations (7.1)). Thus, the effective quasi-static phase velocity
in the SOA method always becomes smaller than any estimated phase velocity of the matrix.

In the following, the attenuation and phase velocity are calculated with both the Voigt and
present averages for four different materials with cubic symmetry and different degrees of
anisotropy. The degree of anisotropy is measured by the Zener anisotropy index

A = 2C44

C11 − C12
. (8.4)

A material has a higher degree of anisotropy as A increases and in the case of isotropy A = 1.
Table 2 shows the elasticity properties and anisotropy indices together with the Voigt and present
averages of the Lamé constants of aluminium, inconel, copper and lithium as given by Huang
et al. [34].

Longitudinal attenuation and phase velocity for these materials are computed using the
present, SOA and Born approximation of the FFA methods and are compared with FEM.
Calculations for the present method are performed using equations (7.5) and (7.4), first with the
explicit expressions of the T matrix elements in low frequency limit (which is referred to as the
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Rayleigh asymptote of the present method (R–P)), then with the numerical computations carried
out with truncations at lmax = mmax = 6, and jmax = 7 (referred as N–P). For the SOA method both
the explicit expression using the Rayleigh asymptote expressed in equation (7.1) (referred to as R–
SOA) and numerical calculations for all the frequency range evaluated by Huang et al. [34] using
the generalized TPC function (referred as SOA) are considered. For the Born approximation of the
FFA method, the explicit expressions expressed in [24,32,34] are used (referred as Born). In these
methods, both the Voigt and present averages for the matrix properties are studied (except for the
SOA method since the numerical results are only available for the Voigt average). Finally, these
results are compared with the results of FEM presented by Huang et al. [34]

Figure 2 shows (a) normalized longitudinal phase velocity Cp/cp and (b) normalized
longitudinal attenuation αpa versus normalized frequency kpa in the four cubic polycrystals with
anisotropy factors A > 1 and the Voigt average for the matrix properties as stated in table 2. For
each material, the phase velocity and attenuation are calculated with the R–P method (dashed
black lines), the N–P method (solid bule lines), the R–SOA method (dash-dotted black lines),
the SOA method (solid red lines), and the Born method (dashed green lines) and compared
with the FEM results (solid black lines). The quasi-static phase velocities of the FE calculations
are also depicted with solid black points in the leftmost of figure 2a. Correspondence of these
methods with FEM in the calculation of the attenuation is then quantified by defining the error as
(|α − αFEM|/αFEM) in percent, and showing it versus normalized frequency kpa in figure 2c. The
FEM results are of course not exact, both because of modelling issues (size of sample, generation
of grains) and numerical issues (discretization errors, etc.). An indication of the inaccuracies in
the FEM results are given by the fact that the FE curves in figure 2 have a jump of 1–5% at
kpa = 0.45 − 0.8, depending on the material. This is due to a change of mesh in the FE calculations
for low frequencies [33], so the inaccuracies in the FEM results are expected to be at least of this
order.

It is seen that for aluminium, with a low anisotropy index, the calculated phase velocity
and attenuation by all methods are in agreement with FEM. However, as expected, the explicit
expressions of the Rayleigh asymptote (both the present (R–P) and SOA (R–SOA) [32] methods)
are valid only for low frequencies (roughly ka < 0.4) while the numerical calculations with the
present method (N–P) are valid for higher frequencies (to about ka = 1). Figure 2c for aluminium
shows that the attenuation errors for the present and stochastic methods are below 10% in
their expected frequency range of validity. Going to the graphs in figure 2 for inconel and
copper with higher anisotropy factors, the SOA and Born models lose their accuracy in the
low and intermediate frequencies (around 30% error for the attenuation), while both the explicit
expression and the numerical calculation of the present approach have a good agreement with
FEM in the expected frequency ranges (roughly less than 10% error for the attenuation). This
indicates the advantage of the present method for high anisotropic polycrystals in comparison
with the other analytical methods, which seem to be limited to more or less low anisotropy. For
lithium, which is extremely anisotropic, figure 2 shows that the present method gives a better
agreement with the FE calculation in comparison with the SOA and Born models, but there is still
not a good agreement between the results.

For the transverse phase velocity and attenuation, since the numerical calculations of the
SOA and FEMs are carried out only for longitudinal waves in the literature, only the R–SOA
and Born methods are compared with the present method (both the R–P and N–P methods).
Figure 3 shows (a) normalized transverse phase velocity Cs/cs and (b) normalized transverse
attenuation αsa versus normalized frequency ksa for aluminium, inconel, copper and lithium,
evaluated using the R–P method (dashed black lines), the N–P method (solid blue lines), the
R–SOA method (dash-dotted black lines) and the Born method (dashed green lines). Similarly as
in figure 2, for aluminium with a low anisotropy factor, the present and stochastic methods are in
agreement with each other, while by increasing the degree of anisotropy the difference becomes
substantial.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

25
 M

ay
 2

02
3 



21

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A479:20220476

..........................................................

(c)

er
ro

r 
(%

)

error (%)

(b)

α p
a

attenuation

(a)
Voigt average

C
p/
c p

phase velocity

kpa kpa kpa kpa

1.04

1.02

1.00

0.98

0.96

0.94

0.92

1

10

10–2

10–3

10–4

10–5

10–6

100

80

60

40

20

0
0.1 0.2 0.5 1.0 2.0 0.1 0.2 0.5 1.0 2.0 0.1 0.2 0.5 1.0 2.0 0.1 0.2 0.5 1.0 2.0

Al In Cu Li

Al In Cu Li

Al In Cu Li

R–P

N–P

R–SOA

SOA

Born

FEM

R–P

N–P

R–SOA

SOA

Born

FEM

R–P

N–P

R–SOA

SOA

Born

Figure 2. (a) Normalized phase velocity Cp/cp, (b) normalized attenuation αpa versus normalized frequency kpa for
longitudinalwaves evaluated by the Rayleigh asymptote of the presentmethod, R–P (dashed black lines), numerical evaluation
of the presentmethod, N–P (solid blue lines), the Rayleigh asymptote of the SOAmethod, R–SOA (dash-dotted black lines) and
the Born approximation of the FFAmethod, Born (dashed green lines), compared with numerical FEM results (solid black lines)
in four cubic polycrystals with A> 1 in the order of anisotropy degree (Al, In, Cu and Li) and with the present average for the
matrix properties. The correspondence with FEM for all methods are shown in (c) as attenuation error (%) with respect to FEM
results (|α − αFEM|/αFEM) as a function of normalized frequency. Also, the leftmost solid black points in (a) are quasi-static
FEM results.

Looking at figures 2 and 3a, it can be observed that for aluminium polycrystal the normalized
phase velocities at low frequencies (normalized quasi-static phase velocity) are equal to unity
with an accuracy better than 0.1%, and this indicates that the matrix phase velocity calculated
by the Voigt average (Voigt phase velocity) is a good estimation of the quasi-static effective phase
velocity for aluminium polycrystals. In inconel and copper with a higher degree of anisotropy, the
difference between the quasi-static effective phase velocity and the Voigt phase velocity increases
to nearly 2% and 5% for the longitudinal and transverse phase velocities, respectively. This
difference increases to nearly 5% and 12% for the longitudinal and transverse phase velocities
of lithium, respectively. This is an indication that the Voigt average is not a proper estimation
of the matrix properties of strongly anisotropic polycrystals, specifically for lithium with such a
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Figure 3. (a) Normalized phase velocity Cs/cs and (b) normalized attenuation αsa versus normalized frequency ksa for
transverse waves evaluated by the Rayleigh asymptote of the present method, R–P (dashed black lines), numerical evaluation
of the present method, N–P (solid blue lines), the Rayleigh asymptote of the SOA method, R–SOA (dash-dotted black lines)
and the Born approximation of the FFA method, Born (dashed green lines), for four cubic polycrystals with A> 1 in the order
of anisotropy degree (Al, In, Cu and Li) and with the Voigt average for the matrix properties.

high degree of anisotropy. Therefore, the effective phase velocity and attenuation are studied by
considering the present average for the matrix properties.

As in figure 2, figure 4 shows (a) normalized longitudinal phase velocity Cp/cp, (b) normalized
longitudinal attenuation αpa and (c) error of the attenuation with respect to FE results versus
normalized frequency kpa for the four cubic polycrystals, this time with the present average for
the matrix properties as stated in table 2. For each material, the phase velocity and attenuation
are calculated with the R–P method (dashed black lines), the N–P method (solid blue lines),
the R–SOA method (dash-dotted black lines), and the Born method (dashed green lines) and
compared with FEM results (solid black lines and the leftmost solid black points in (a)). In
figure 4a, it can be observed that the normalized quasi-static phase velocity for the present
method is equal to unity as this was the criterion for defining the present average for the matrix
properties.

A comparison of figures 2 and 4 shows the effect of the matrix properties on the attenuation
and phase velocity of the polycrystalline materials. For the presents N–P and R–P methods there
is a strong increase in the accuracy of both the phase velocity and attenuation as compared to
FEM, except that the Rayleigh method (R–P) is only valid for low enough frequencies. Thus the
errors in attenuation are reduced at the lowest frequencies from about 40% to less than 10%.
However, for the R–SOA and Born methods the accuracy of the attenuation is strongly increased,
whereas the phase velocity loses accuracy. These results are somewhat contradictory in that it
is expected that the errors in phase velocity and attenuation should follow a similar trend. It
thus seems that it is not a good idea to use the present average with the R–SOA and Born
methods.

For the transverse waves, figure 5a shows normalized transverse phase velocity Cs/cs and
normalized transverse attenuation (figure 5b) αsa versus normalized frequency ksa for aluminium,
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Figure 4. (a) Normalized phase velocity Cp/cp, (b) normalized attenuation αpa versus normalized frequency kpa for
longitudinalwaves evaluated by the Rayleigh asymptote of the presentmethod, R–P (dashed black lines), numerical evaluation
of the presentmethod, N–P (solid blue lines), the Rayleigh asymptote of the SOAmethod, R–SOA (dash-dotted black lines), and
the Born approximation of the FFAmethod, Born (dashed green lines), compared with numerical FEM results (solid black lines)
in four cubic polycrystals with A> 1 in the order of anisotropy degree (Al, In, Cu and Li) and with the present average for the
matrix properties. The correspondence with FEM for all methods are shown in (c) as attenuation error (%) with respect to FEM
results (|α − αFEM|/αFEM) as a function of normalized frequency. Also, the leftmost solid black points in (a) are quasi-static
FEM results.

inconel, copper and lithium, evaluated using the present average for the matrix, by the R–P
method (dashed black lines), the N–P method (solid blue lines), the R–SOA method (dash-dotted
black lines) and the Born method (dashed green lines). As discussed for the longitudinal waves,
the R–SOA and Born calculations of the phase velocity are unreliable using the present average
(see figure 5a). But, with the present average, the attenuation calculated by the present, R–SOA
and Born methods are in agreement with each other for all materials (see figure 5b).

9. Concluding remarks
In the present paper, the elastic wave scattering by an anisotropic sphere with cubic symmetry
in an isotropic surrounding is investigated. Using spherical coordinates, expansions in vector
spherical harmonics in the angular coordinates and powers in the radial coordinate lead to
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Figure 5. (a) Normalized phase velocity Cs/cs, (b) normalized attenuationαsa versus normalized frequency ksa for transverse
waves evaluated by the Rayleigh asymptote of the present method, R–P (dashed black lines), numerical evaluation of the
present method, N–P (solid blue lines), the Rayleigh asymptote of the SOA method, R–SOA (dashdotted black lines), and
the Born approximation of the FFA method, Born (dashed green lines), for four cubic polycrystals with A> 1 in the order of
anisotropy degree (Al, In, Cu and Li), and with the present average for the matrix properties.

recursion relations among the expansion coefficients. The boundary conditions on the sphere then
lead to the determination of the elements of the transition (T) matrix. In the low frequency limit
the leading order elements are given explicitly in simple form. Monopole, dipole and quadrupole
elements all contribute and the dipole elements only depend on the density of the sphere and are,
in fact, the same as for an isotropic sphere. The monopole and quadrupole elements, on the other
hand, only depend on the elasticity of the sphere.

As an application the attenuation and phase velocity of single phase polycrystalline materials
with grains with cubic anisotropy are calculated using the simple Foldy theory and explicit
expressions are given for low frequencies. In the literature, the Voight average has mostly been
employed to determine the unperturbed elasticity constants of the material, but it is shown
that for highly anisotropic materials, e.g. lithium, this does not work very well. Instead a new
approach is introduced which is shown to work much better. Comparisons are performed with
other theories and with numerical FEM computations from the literature and for low frequencies
and high anisotropy it is seen that the present method gives a much better agreement with FEM
than the other methods. Some of the other methods, on the other hand, are not limited to low
frequencies.

The present method is limited to low frequencies due to several factors. The explicit form
of the T matrix elements used are only accurate for low frequencies, although it is shown that
a numerical computation of more T matrix elements extends the frequency range somewhat,
but at the cost of a much more complicated approach. Use of the Foldy theory is a limitation,
but this might possibly be improved if more refined multiple scattering theories are used. The
present approach is limited to spherical grains and this is adequate for low frequencies where the
scattering is predominantly a volume effect, but is otherwise questionable.
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The present methods can be extended in several ways. Other classes of anisotropy can be
investigated, orthotropic materials are of particular interest. Only spheres of the same size are
used in the present approach but within the Foldy approach it should be straightforward to
consider a distribution in size of the spheres. It should also be possible to consider spheres of
two or more different materials, e.g. a duplex material.
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