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Abstract
There is widespread consensus that the omnipresent climate crisis demands humanity
to rapidly reduce global greenhouse gas (GHG) emissions. To allow for such a rapid
reduction, the industrial sector as a main contributor to GHG emissions needs to take
immediate actions. To mitigate GHG emissions from the industrial sector, increasing
energy efficiency as well as fuel and feedstock switching, such as increased use of biomass
and (green) electricity, are the options which can have most impact in the short- and
medium-term. Such mitigation options usually create a need for design of new or re-
design of existing processes such as the plant energy systems. The design and operation
of industrial plants and processes are usually subject to uncertainty, especially in the pro-
cess industry. This uncertainty can have different origins, e.g., process parameters such
as flow rates or transfer coefficients may vary (uncontrolled) or may not be known exactly.

This thesis proposes theoretical and methodological developments for designing and/or
redesigning chemical processes which are subject to uncertain operating conditions, with
a special focus on heat recovery systems such as heat exchanger networks. In this context,
this thesis contributes with theoretical development in the field of deterministic flexibility
analysis. More specifically, new approaches are presented to enhance the modelling of the
expected uncertainty space, i.e., the space in which the uncertain parameters are expected
to vary. Additionally, an approach is presented to perform (deterministic) flexibility anal-
ysis in situations when uncertain long-term development such as a switch in feedstocks
interferes with operational short-term disturbances. In this context, the thesis presents
an industrial case study to i) show the need for such a theoretical development, and ii)
illustrate the applicability.

Aside of advances in deterministic flexibility analysis, this thesis also explores the pos-
sibility to combine valuable designer input (e.g., non-quantifiable knowledge) with the
efficiency of mathematical programming when addressing a design under uncertainty prob-
lem. More specifically, this thesis proposes to divide the design under uncertainty problem
into a design synthesis step which allows direct input from the designer, and several subse-
quent steps which are summarized in a framework presented in this thesis. The proposed
framework combines different approaches from the literature with the theoretical devel-
opment presented in this thesis, and aims to identify the optimal design specifications
which also guarantee that the final design can operate at all expected operating condi-
tions. The design synthesis step and the framework are decoupled from each other which
allows the approach to be applied to large and complex industrial case studies with ac-
ceptable computational effort. Usage of the proposed framework is illustrated by means
of an industrial case study which presents a design under uncertainty problem.

Keywords: Design under Uncertainty, Flexibility Analysis, Uncertainty Space, Process
Design, Managing Variations, Process Integration.
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1
Introduction

Global emissions of greenhouse gases (GHG) have increased steadily since pre-industrial
times, reaching the highest levels in human history over the last decade [1]. The main
effect of the increasing GHG emissions has been the rise of the global average temperature
causing severe danger to the earth’s ecosystems. By signing the Paris Agreement in
2015, countries acknowledged the necessity of keeping the most severe climate change
risks in check by limiting the raise of the global average temperature to well below 2 ℃
and pursuing efforts to limit warming to 1.5 ℃ [3]. Both the sixth assessment report
(working group III) of the Intergovernmental Panel on Climate Change (IPCC) [1] as
well as the most recent World Energy Outlook of the International Energy Agency (IEA)
[4] point out that this requires rapid and sustained reduction of GHG emissions towards
net zero carbon dioxide (CO2) emissions well within the 21st century along with deep
reductions of non-CO2 (GHG) emissions. More specifically, based on the dataset provided
by Friedlingstein et al. [5], the IPCC report [1] concluded that the remaining CO2 budget
to limit warming to 1.5 ℃ (with a chance of 67%) is of similar magnitude as the total
amount of CO2 emitted during the last decade (see Figure 1.1). The challenges related
to achieving the necessary reduction of GHG emissions become even more obvious when
considering that 50% of the total GHG emissions shown in Figure 1.1 were emitted after
1970 which highlights the current high levels of GHG emissions [1].

0 500 1000 1500 2000 2500 3000 3500
Cumulative antropogenic CO2

emissions [Gt CO2]

Historic CO2 emissions

2 °C
budget

1.5 °C
budget

Future carbon budgets as of
1 January 2020

1850 - 1989

1400 Gt 620 Gt 410 Gt
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budget
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budget
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-

2009
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2009
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-

2019

2009
-
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1850 - 1989

Figure 1.1: Historic cumulative anthropogenic CO2 emissions for the periods 1850–1989,
1990–2009, and 2010–2019 as well as remaining future carbon budgets as of 1 January 2020 to
limit warming to 1.5 ℃ and to 2 ℃ at the 67th percentile of the transient climate response to
cumulative CO2 emissions. Data was taken from the sixth assessment report (working group III) of
the Intergovernmental Panel on Climate Change (IPCC) [1].
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1. Introduction

To gain a better understanding of the sources of current GHG emissions, Minx et al. [6]
allocated emissions to different sectors. The authors reported that in 2019 the industrial
sector was responsible for the second biggest share of all direct anthropogenic GHG emis-
sions, namely 24%, which originated from fuel combustion, process emissions, product
use and waste. Note that when including indirect emissions from power and heat genera-
tion, the share of emissions from the industrial sector increased to 34%, and was thereby
the biggest emitter of GHG in 2019 [1]. To mitigate GHG emissions from the industrial
sector, the IPCC report [1] points out several options. Additionally, the report presents
estimations regarding the mitigation potential as well as the approximate costs connected
with implementation of these options for the year 2030. An overview of these options in
shown in Figure 1.2.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Potential contribution to net emission reduction, 2030 [Gt CO2-eq/yr]

Reduction of non-CO2 emissions

Cementitious material substitution

Carbon capture with utilisation/storage (CCU/S)

Feedstock decarbonisation, process change

Fuel switching (electr, nat. gas, bio-energy, H2)

Enhanced recycling

Material efficiency

Energy efficiency

Mitigation options

Net lifetime cost of options:
0 - 20 (USD/tCO2-eq)
20 - 50 (USD/tCO2-eq)
50 - 100 (USD/tCO2-eq)
100 - 200 (USD/tCO2-eq)
Uncertainty range applies to the
total potential contribution to emission
reduction. The individual cost ranges
are also associated with uncertainty.

Figure 1.2: Overview of GHG mitigation options and their estimated ranges of costs and
potentials in 2030 for the industrial sector. Data was taken from the sixth assessment report
(working group III) of the Intergovernmental Panel on Climate Change (IPCC) [1].

Figure 1.2 shows that increasing energy efficiency by appropriate measures is an important
mitigation option as it offers the second largest mitigation potential with lowest expected
costs. On the other hand, there is indication that energy efficiency improvements have
been slowing down over the recent decades since the technological improvement has come
closer to the thermodynamic optimum [1, 7]. Nevertheless, studies such as Papapetrou
et al. [8] identified a waste heat potential of about 300 TWh/yr within the EU which corre-
sponds to about 10% of total energy use in the industrial sector. Additional options shown
in Figure 1.2 correspond to reducing primary production by increased material efficiency
or circular economy solutions boosted by enhanced recycling. Since primary production
will remain necessary, especially in the short-and medium-term, further GHG mitigation
options include switching to new processes and feedstocks such as biomass, increased use
of (green) electricity and hydrogen (highest mitigation potential until 2030 according to
the IPCC report [1]) as well as carbon capture and utilization/storage (CCU/S).

The different options for the mitigation of GHG emissions from industrial plants and value
chains typically create a need for design of new processes as well as redesign of existing

2



1. Introduction

processes. For example, the energy systems of industrial plants, such as heat recovery
systems, can be affected as a result of measures to ensure the energy efficient integration
of new technologies and systems. Additionally, the integration of new technologies and
systems as well as the adaption or redesign of the existing system are likely to influence
the operating conditions of the industrial plants. For example, a switch of feedstocks may
change process flow characteristics, such as flow rates and compositions, in unit processes
that are otherwise unchanged. Another example is the integration of an absorption-based
carbon capture unit which would introduce a significant new energy demand, e.g., in the
form of heat for absorbent regeneration. On the other hand, the quality and in the best
case also the quantity of the core product(s) of the production process should not be
affected by such measures, which sets restrictions and constraints when pursuing GHG
mitigation potentials in the industrial sector. For example, a carbon capture absorption
process could be driven by excess process heat which could also be delivered to a district
heating system.

Besides the restrictions resulting from product quality and quantity constraints, an ad-
ditional barrier for the implementation of new processes as well as the enhancement of
energy efficiency measures can be that industrial plants and processes are commonly
subject to uncertain operating conditions. Such uncertain operating conditions usually
result from uncertainty related to external process parameters such as feed stream char-
acteristics, utility streams, ambient conditions, or economic cost data. In addition, the
uncertain parameters can also be internal process parameters such as heat transfer coef-
ficients, reaction constants, equipment efficiencies, or physical properties. Consequently,
when designing new processes or redesigning existing plants to enhance energy efficiency,
such uncertainties should be accounted for. Hereafter, two examples are presented to
illustrate the challenges connected to enhancing energy efficiency as well as switching
feedstocks in industrial processes.

1.1 Motivational examples

1.1.1 Example 1 - Energy efficiency measure in a Swedish pulp
mill

Figure 1.3 shows the flowsheet of a subsystem of the secondary heating system of a
Swedish pulp mill. In this system, three cold process streams (combustion air, feed water
and district heating water) are heated to specified target temperatures by heat exchang-
ing with different heat sources, namely hot secondary heating water, excess hot water
and hot diluted process water. Although a substantial amount of heat can be recovered
by heat exchangers (HEX), steam is needed to ensure that the target temperatures of
the process streams are met. Figure 1.3 shows a possible retrofit of the subsystem that
reduces the demand for low and medium pressure steam by increased heat recovery. More
precisely, it is suggested to recover heat from a diluted black liquor stream. This case
study is presented in more detail in Paper VI. Note that in the presented case study, it
was assumed that the existing steam heaters must be replaced.

Figure 1.3 shows nine locations (marked in yellow) within the investigated system where
process conditions, more specifically heat capacity flow rates and/or (supply) temper-
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Figure 1.3: Process flow diagram of a subsystem of the secondary heating system of a Swedish
pulp mill including a suggested retrofit for increased heat recovery. Locations where process con-
ditions (heat capacity flow rates and/or supply temperatures) are determined outside the system’s
boundary are highlighted in yellow.

atures, are determined outside of the system’s boundary. Available measurement data
indicates that these process conditions do not remain constant during regular operation.
However, the operational target of the given subsystem which is to heat the three process
streams to their respective target temperatures needs to be met at all times during regu-
lar operation, regardless of the variation in the uncertain parameters. Consequently, the
designer needs to identify the optimal heat transfer areas of the different new HEX units
in order to ensure that the operational targets are always met while also considering both
investment cost as well as operational cost/revenue, i.e., the designer needs to identify
the optimal solution for a design under uncertainty problem.

1.1.2 Example 2 - Implications of switching to biomass feedstock
in a Swedish oil refinery

The second example explores possible consequences of the implementation of deep de-
carbonization strategies such as switching feedstocks in an oil refinery. The case study
involves three process streams in two different process units of a large Swedish oil refinery
(crude oil capacity of 11.5 million tons/year). Figure 1.4 presents the corresponding flow-
sheet. Streams 1 and 2 are located in the Naphtha Hydro Treatment Unit (NHTU) and
stream 3 is located in the Catalytic Reforming Unit (CRU). As in example 1 presented
in Section 1.1.1, certain process conditions (locations highlighted in yellow) are uncertain
since these conditions are determined outside of the system’s boundary. In addition, it is
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expected that the temperature at location 3 (highlighted in orange) needs to be adjusted
during operation to handle variations in the operating conditions of the subsequent reac-
tors. Consequently, the temperature at location 3 is also uncertain since it is determined
by operating conditions which cannot be influenced by the system. In Papers III &
IV, a scenario is discussed that assumes a future implementation of biomass co-process-
ing that affects the operation of the NHTU. The scenario is based on the possibility of
the NHTU being one potential feed-in point for pre-processed biomass feed in existing
refineries (see e.g., van Dyk et al. [9]). It is reasonable to assume that switching feed-
stocks would affect the process conditions, and in the appended papers it was assumed
that the nominal flow rates of the streams in the NHTU increase by 50 − 100%. It can
therefore be important to assess whether currently installed process equipment is able
to operate at these expected conditions taking into account that the operation requires
handling of short-term uncertainty such as variations in process conditions. Additionally,
if retrofitting of process equipment is considered before switching feedstocks, a designer
should be able to consider such planned modifications to avoid the additional need for
retrofitting at a later point in time.
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* Temperature depends on
temperature at location 3;
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Figure 1.4: Process flow diagram showing the heat integration between the Naphtha Hydro
Treatment Unit (NHTU) and the Catalytic Reforming Unit (CRU) in a Swedish oil refinery. The
process conditions highlighted in yellow and orange are expected to vary during (normal) operation,
and the shown values represent nominal operating conditions.

Both examples presented in Section 1.1 illustrate that implementing GHG mitigation op-
tions in existing industrial plants is complex due to the presence of uncertainties. The
following section presents a comprehensive literature review about design under uncer-
tainty for chemical processes/plants with a focus on heat recovery solutions.

1.2 Literature review
Traditionally, as reported in the literature [10–12], the approach to handle uncertainty in
process parameters when designing or redesigning chemical processes/plants is to consider
(only) nominal conditions, and use overdesign to compensate for the potential impact of
the uncertainty. Some of this overdesign may be unnecessary, resulting in design solutions
that are more expensive than necessary. To identify the optimal solution to such a prob-
lem, Grossmann and Sargent [13] defined the objective of the optimal design problem with
uncertain parameters to design processes “that are always able to meet the specifications
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for any feasible [or expected] values of the [uncertain] parameters and that, at the same
time, are optimum with respect to a [...] cost function”. Note that the authors explicitly
considered the uncertain parameters to be continuous (and bounded), i.e., the parameters
can take any value between a lower and an upper bound, and that the optimal process
design allows for feasible operation at any of these values. The authors concluded that
design under uncertainty is an infinite problem.

There exist two categories of approaches to solve such a problem, as pointed out by Steimel
and Engell [14], namely sampling-based approaches and parametric approaches. In para-
metric approaches, the sampling of the uncertainty space is not required, meaning that
the expected value of the objective function is obtained without approximation (see e.g.,
[15–17]). Difficulties may arise when the number of uncertain parameters increases due to
increased computational burden. Sampling-based approaches are commonly based on the
two-stage stochastic programming with recourse formulation and its transformation into
a discretized deterministic equivalent problem. Compared to parametric approaches, in
sampling-based approaches the expected value of the objective function is approximated
for a discrete set of realizations of the uncertain parameters. The interested reader is
referred to the work of Sahinidis [18] and Birge and Louveaux [19] for further information.

A major challenge with sampling-based approaches is that the number of samples neces-
sary for accurate estimation of the expected objective function value as well as guaranteed
feasibility strongly increases with the number of uncertain parameters. Several works in
the literature suggest strategies to reduce the number of samples while maintaining a
fair approximation of the expected objective value (see, e.g., [20–22]). In this context,
several recently published works present approaches based on machine learning and data
clustering to identify representative operating points/periods from a given distribution
of operating points (see e.g., [23–28]). In addition to the expected value of the objec-
tive function, the discretization needs to detect the minimum set of samples required to
guarantee steady-state flexible operation, i.e., feasible operation at any combination of
uncertain parameter values within the expected uncertainty space1. In this context, flex-
ibility analysis has evolved as a useful tool.

Flexibility analysis was introduced in the 1980s and aims to quantify a system’s ability to
cope with uncertainties. In this context, Halemane and Grossmann [29] formulated a flex-
ibility test problem for fixed design specifications which evaluates whether steady-state
flexible operation of a process is possible given an expected uncertainty space. The authors
further defined critical parameter values as those combinations of the uncertain parame-
ter values for which the feasible region of operation is the smallest. In this context, they
postulated that a design which meets its operational targets at these critical operating
points will also allow for steady-state flexible operation. To identify these critical op-
erating points for processes which can be described by convex constraints, the authors
adopted a procedure suggested by Grossmann and Sargent [13] which builds upon indi-
vidual maximization of each constraint assuming monotonicity. Based on the work by
Halemane and Grossmann, Pintarič and Kravanja [30] defined critical operating points as
those combinations of the uncertain parameter values that require the largest overdesign

1The term expected uncertainty space refers to the space in which the uncertain parameters are
expected to vary, i.e., the expected uncertainty space is defined by the expected disturbance range of
each uncertain parameter.

6



1. Introduction

of process units for the expected uncertainty space. Later, the same authors suggested
in two works [31, 32] several algorithms to identify these combinations of the uncertain
parameter values. Based on the suggested algorithms to identify critical operating points,
the authors developed frameworks for synthesis of chemical process design [33] and for
designing heat exchanger networks [34, 35] which are subject to uncertain operating data.

In order to quantify a system’s ability to cope with uncertainties, several quantitative
measures were suggested in the 1980s, including the resilience index suggested by Saboo
et al. [36] and the (deterministic) flexibility index developed by Swaney and Grossmann
[2]. The latter index has gained much attention in the literature, and is still subject to
research (see e.g., [37–39]). The flexibility index is a scalar value which expresses the share
of the expected uncertainty space which is feasible. More specifically, for each uncertain
parameter the flexibility index indicates the share of the expected disturbance range in
which the respective parameter may vary while still achieving feasible operation. For an
extensive review on flexibility analysis, the interested reader is referred to the reviews
by Grossmann et al. [11] and Zhang et al. [40]. Hereafter, an overview of some selected
literature is provided.

To determine the flexibility index, Swaney and Grossmann [2] proposed search procedures
for the special case of exclusively convex constraint functions. To overcome this limitation,
Grossmann and Floudas [41] reformulated the flexibility index problem following the idea
that the solution must be on the boundary of the feasible region. Detailed information on
the study by Grossmann and Floudas [41] and their Mixed-Integer (Non-)Linear Program
(MI(N)LP) formulation for the flexibility index is provided in Appendix A. Raspanti et al.
[42] used constraint aggregation functions (Kreisselmeier–Steinhaus a.k.a. KS functions)
and smoothing functions to reformulate the MI(N)LP formulation for the flexibility index
by Grossmann and Floudas [41] to a single non-linear programming problem (NLP). Li
et al. [43] suggested a framework to calculate an upper bound of the flexibility index by
means of an alternating direction matrix embedded in a Simulated Annealing algorithm.
Furthermore, the flexibility index was utilized in several (step-wise) frameworks to de-
sign or redesign chemical processes which are subject to uncertain parameters (see e.g.,
[34, 35, 44, 45]).

In the aforementioned frameworks on flexibility analysis, it is assumed that control vari-
ables can be manipulated to counteract variation in uncertain parameters which implies
that the uncertain parameters are measurable. In addition to these works, Rooney and
Biegler [17] as well as Ostrovsky et al. [46] also accounted for variation of unmeasured
uncertain parameters which cannot be counteracted by means of recourse actions (i.e.,
manipulation of control variables). Recently, Ochoa and Grossmann [12] reformulated
the MI(N)LP formulation by Grossmann and Floudas [41] to analyse the flexibility also
when unmeasured uncertain parameters are present. Based on their work on flexibility
analysis considering unmeasured uncertain parameters, Ochoa et al. [47] suggested novel
formulations to identify the operating range of controllable process parameters within a
design space.

An alternative approach for flexibility analysis was suggested by Pistikopoulos and Maz-
zuchi [48] as well as Straub and Grossmann [49]. Both works suggest determining a
stochastic flexibility index which measures the probability that a given design (defined
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by linear constraint functions) remains feasible given the joint probability density func-
tion, p, of the uncertain parameters. The stochastic flexibility index can be obtained
directly by integrating p over the feasible region projected in the space of the uncertain
parameters [11]. This integration can be done using Monte Carlo Sampling and requires a
feasibility check of every sampled realization. Straub and Grossmann [50] later extended
the framework of the stochastic flexibility index also for systems described by non-linear
constraint functions. Since Monte Carlo Sampling can be computationally expensive due
to the large number of samples required to cover the expected uncertainty space, Pulsipher
and Zavala [51] suggested a mixed-integer conic program which can be used to compute
a lower bound for the stochastic flexibility index.

In addition to the deterministic and the stochastic flexibility indexes, a third flexibility
index has been proposed by Lai and Hui [52]: the volumetric flexibility index. The volu-
metric flexibility index quantifies the percentage of the expected uncertainty space that
can be feasibly handled. In a geometric sense, the volumetric flexibility index describes
the volumetric fraction of the hypervolume of the feasible uncertainty space, compared to
the hypervolume of expected uncertainty space. The authors concluded that the approxi-
mation of hypervolume of the feasible space is challenging, and, recently, Zheng et al. [53]
presented a novel approach to approximate the volumetric flexibility index based on the
symbolic computation method.

A common application addressed in the field of design under uncertainty is the design
and retrofit of heat recovery systems and heat exchanger networks (HENs). Typical
examples of uncertain parameters affecting HENs are the variation of input conditions,
i.e., temperatures and flow rates, but also uncertainty in design characteristics, such as
heat transfer coefficients of heat exchangers (HEXs). Additionally, HENs are (usually)
interconnected systems transferring heat between different process streams. Therefore,
uncertainty easily propagates through the entire system leading to difficult challenges
when designing HENs in such a way that target temperatures are met despite these
uncertainties. The following section presents a comprehensive overview of methodologies
to specifically design and retrofit HENs.

1.2.1 Design and retrofit of heat recovery systems
The recovery of excess process heat is an essential tool for increasing energy efficiency in
the industrial sector. Generally, approaches to design and retrofit HENs can be grouped
into graphical approaches based on Pinch Analysis, approaches based on mathemati-
cal programming, and hybrid approaches combining Pinch Analysis and mathematical
programming [54]. However, many of the published approaches neglect the presence of
uncertain parameters and instead assume only average operating conditions during the
design stage. A good overview on approaches which allow for considering uncertainty is
provided in the review paper on the synthesis of flexible HENs by Kang and Liu [55].
Some selected literature as well as recent development is discussed hereafter. For graph-
ical approaches, Kotjabasakis and Linnhoff [56] developed an approach to mitigate the
unwanted response of a HEN to variations based on sensitivity tables and systematic
utilization of downstream paths. Additionally, Hafizan et al. [57] utilized the plus-minus
principle, introduced by Linnhoff and Vredeveld [58], to visualize the impact of process
modifications on the minimum utility target, to derive heuristics for HEN design synthe-
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sis based on graphical methods if the respective HEN is subject to disturbances in inlet
temperatures.

Mathematical programming has great potential when dealing with variations and un-
certainty in operating data. In the 1980s, Floudas and Grossmann [59] developed an
automated approach to generate HEN configurations which can operate at multiple op-
erating points (multi-period operation). The authors suggested to solve the discretized
design under uncertainty problem for a multi-period superstructure to obtain the HEN
configuration which can operate feasibly at lowest cost at several discrete operating points.
In a later publication [44], the authors extended their approach by including flexibility
analysis sub-steps to ensure that the final design can operate not only at discrete op-
erating points, but also at all operating points within the expected uncertainty space
(i.e., steady-state flexible operation). In this context, the previously mentioned works
by Pintarič and Kravanja [34] and Zirngast et al. [35] also enable the synthesis of HENs
which allow for steady-state flexible operation. Several other authors have suggested
approaches to synthesize HEN configurations which can operate feasibly at multiple peri-
ods while steady-state flexible operation is not (rigorously) addressed. More specifically,
Aaltola [60] extended the (single-period) SYNHEAT model of Yee and Grossmann [61]
to multiple periods. Additionally, Verheyen and Zhang [62] as well as Short et al. [63]
improved the model of Aaltola [60] by considering more specific HEX design data. The
multi-period HEN synthesis strategy was further applied by Tveit et al. [64] to industrial
applications.

In addition to the approaches focusing on the synthesis of new HEN configurations, ap-
proaches for retrofitting existing configurations are also presented in the literature. An
overview of the different approaches is presented in the review papers by Sreepathi and
Rangaiah [54] and Čuček et al. [65]. Hereafter, retrofit approaches which allow for consid-
ering uncertainty are discussed. A common strategy to deal with variations in operating
conditions from a Pinch Analysis perspective is to develop different retrofit proposals for
a number of selected sets of operating conditions, e.g., annual, seasonal or monthly av-
erage values, as done by Persson and Berntsson [66]. The different design proposals are
then evaluated and may be combined to achieve an operable and energy-efficient retrofit
proposal, accounting for all considered operating points. Another strategy is to develop
different retrofit proposals by applying a graphical retrofitting methodology (e.g., method-
ologies based on temperature driving force curves [67] or identifying retrofit bridges [68])
for a specific nominal point and analyse the network’s response to variations in a separate
analysis step. Recently, Lal et al. [69] applied this approach to obtain insights and to
identify the best performing retrofit design proposal by means of Monte Carlo simulation.

Papalexandri and Pistikopoulos [45] suggested to obtain the cost-optimal retrofit of a
given HEN configuration by solving the discretized design under uncertainty problem
for a multi-period superstructure comprising all structural alternatives. The authors in-
cluded a flexibility analysis sub-problem to check if the achieved design solutions allow for
steady-state flexible operation, and they also suggested a strategy for handling cases where
steady-state flexible operation cannot be achieved. Since the quantification of investment
costs for all possible structural alternatives of a given HEN configuration (including re-se-
quencing of existing HEX units) can be challenging in real-world applications, Kang and
Liu [70] suggested an alternative approach for retrofitting HENs operating in multiple pe-
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riods which explicitly allows for re-sequencing of existing units. The authors suggested to
solve the multi-period HEN synthesis problem (e.g., by following the approach by Aaltola
[60]) to obtain a target for the retrofit followed by a strategy for re-sequencing existing
HEX units to satisfy heat transfer area demand revealed during the targeting step. They
further extended this method by suggesting different strategies to perform this matching
of heat transfer area, which was shown to be especially beneficial for large-scale HEN
retrofit problems [71]. Additionally, the authors presented a systematic strategy to in-
corporate multiple practical restrictions during the retrofitting process [72]. Recently,
Stampfli et al. [73] presented an evolutionary two-level algorithm for multi-period HEN
retrofit. The authors utilized a genetic algorithm to first optimize the structural layout
(topology) followed by the application of a differential evolution algorithm to identify the
heat loads of the different HEXs. Note that the approaches by Kang and Liu and Stampfli
et al. lead to retrofit options of HENs which allow for cost-optimal and feasible operation
at discrete operating points while steady-state flexible operation is not addressed.

1.2.2 Knowledge gap
As outlined in the previous sections, a variety of approaches can be found in the litera-
ture to address chemical processes design subject to uncertainty. In this context, several
approaches have been specifically formulated to design or redesign HENs which oper-
ate during multiple periods. However, steady-state flexible operation is not consistently
addressed, and, e.g., Aaltola [60] concluded that “the major difficulty in the proposed
framework is to guarantee the network feasibility”. In some of the aforementioned works
(e.g., [31–35, 44, 45]), concepts relating to deterministic flexibility analysis, e.g., the cal-
culation of the flexibility index or the identification of critical operating points are utilized
to ensure that the final design allows for steady-state flexible operation.

In deterministic flexibility analysis, a mathematical model is needed to express the ex-
pected uncertainty space, and a hyperbox representation based on expected upper and
lower bound values is commonly utilized. The hyperbox model has been proven to be
satisfactorily accurate if the expected distribution of the uncertain parameter values is
independent, i.e., no correlating trends between different uncertain parameters can be
observed. However, for real applications, this assumption is not always valid. For indus-
trial case studies particularly, it is likely that when defining the system boundaries and
thereby also the input parameters, which often are subject to some uncertainty, upstream
dependencies between (some of) these input parameters can be missed (due to size and
complexity of the underlying system). Several studies [41, 51, 74] have investigated the
impact of considering dependencies between uncertain parameters when modelling the ex-
pected uncertainty space for flexibility analysis. All these studies conclude that ignoring
dependencies may lead to the flexibility analysis metric underestimating the actual flex-
ibility of the process, sometimes even significantly, as a consequence of bad resemblance
between the modelled and the actual expected uncertainty space. Another consequence of
inexact modelling of the expected uncertainty space can be that identified critical operat-
ing points represent combinations of uncertain parameter values which are not expected
to occur, which in turn can result in unnecessary overdesign of the equipment. In this
context, Rooney and Biegler [75] reported differences in the obtained design parameter
values, i.e., equipment sizes, when solving the discretized design under uncertainty prob-
lem using realizations of uncertain parameters drawn from an independent distribution
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and from distributions which show a (positive or negative) correlation.

Consequently, further research is needed to specify situations in which the traditional hy-
perbox modelling approach is inaccurate to model the expected uncertainty space as well
as suggestions for alternative modelling strategies. Additionally, to the author’s knowl-
edge, no approaches have been published in the literature to address a situation such as
that described in Section 1.1.2, where operating conditions are expected to change due to
planned long-term development such as a switch of feedstock.

In terms of design and retrofit of HENs which are subject to uncertainty, the development
of graphical-insight based approaches has been limited when dealing with uncertain pa-
rameters. Such graphical approaches commonly rely to a large extent on time-consuming
procedures since different design proposals must be evaluated and combined manually.
Additionally, thorough strategies to ensure steady-state flexible operation have not been
incorporated in graphical approaches. On the other hand, graphical approaches offer sev-
eral benefits, especially when applied to large and complex case studies. For example,
Stampfli et al. [73] concluded that “one of the key advantages of such methods is the
efficient visualization of the problem [based on graphs], which allows stakeholder internal
communication and development of practical solutions based on the engineers inputs”.
Consequently, further research is needed to fully harness the benefits of graphical-insight
based approaches in combination with approaches based on mathematical programming
and flexibility analysis in hybrid frameworks.

1.3 Aim and scope
The aim of this thesis is to propose theoretical and methodological development for de-
signing and/or redesigning chemical processes which are subject to uncertain operating
conditions with a special focus on heat recovery systems such as HENs. In order to reach
this aim, specific research objectives were formulated which address some of the short-
comings of existing approaches:

O1: Develop a strategy to identify situations where the traditional approach using upper
and lower bound values to approximate the space in which uncertain parameters
are expected to vary can be inexact, and enhance the modelling of this expected
uncertainty space in the aforementioned situations that can be applied to concepts
relating to deterministic flexibility analysis, i.e., calculation of the deterministic
flexibility index and identification of critical operating points.

O2: Develop an approach to perform (deterministic) flexibility analysis in situations when
uncertain long-term development such as a switch of feedstock interferes with oper-
ational short-term disturbances (i.e., overlaying uncertainty sources) as exemplified
in Section 1.1.2.

O3: Facilitate the modelling of (complex) HENs commonly found in industry and char-
acterized by stream splitting and mixing, as well as recirculating streams and closed
circulation loops.

O4: Develop approaches whereby valuable designer input (e.g., non-quantifiable knowl-
edge, experience-based heuristics, etc.) can be combined with the efficiency of math-
ematical programming when addressing a design under uncertainty problem.
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The research objectives O1 and O2 refer to theoretical development in the field of deter-
ministic flexibility analysis whereas objectives O3 and O4 aim at methodological develop-
ment in the field of design under uncertainty. The theoretical and methodological develop-
ment resulting from these research objectives were utilized to develop a hybrid framework
which allows for combining graphical-insight based design approaches with mathematical
programming. The proposed framework can be utilized for designing and/or redesign-
ing chemical processes/plants which are subject to uncertainty, aiming to identify the
design/retrofit option which optimises a given objective (such as costs) while simultane-
ously guaranteeing steady-state flexible operation.

1.4 Appended papers
This thesis summarizes the work presented in six appended papers:

Paper I: Langner, C., Svensson, E., & Harvey, S. (2021). A computational tool for
guiding retrofit projects of industrial heat recovery systems subject to variation in
operating conditions. Applied Thermal Engineering, 182.

Paper II: Langner, C., Svensson, E., & Harvey, S. (2020). A framework for flexible and
cost-efficient retrofit measures of heat exchanger networks. Energies, 13(6).

Paper III: Marton, S., Langner, C., Svensson, E., & Harvey, S. (2021). Costs vs. flex-
ibility of process heat recovery solutions considering short-term process variability
and uncertain long-term development. Frontiers in Chemical Engineering.

Paper IV: Langner, C., Svensson, E., Papadokonstantakis, S., & Harvey, S. (2022).
Flexibility analysis of chemical processes considering overlaying uncertainty sources.
Computer Aided Chemical Engineering, 49, (Proceedings of 14th International Sym-
posium on Process Systems Engineering held in Kyoto, 2022).

Paper V: Langner, C., Svensson, E., Papadokonstantakis, S., & Harvey, S. (2023). Flex-
ibility analysis using boundary functions for considering dependencies in uncertain
parameters. Computers & Chemical Engineering, 108231.

Paper VI: Langner, C., Svensson, E., Papadokonstantakis, S., & Harvey, S. Novel re-
formulations for modelling uncertainty and variations in a framework for chemical
process design. submitted to Industrial & Engineering Chemistry Research

Figure 1.5 illustrates how the research objectives O1 to O4 are addressed in the different
papers, as well as the links between the different papers. In all appended papers, different
HEN applications were utilized as case studies to illustrate the theoretical findings.

As shown in Figure 1.5, two different principles were investigated to analyse the effect
of uncertain operating conditions on a suggested design or retrofit of a chemical process,
and to further identify measures to ensure feasible operation when operating conditions
vary. The two principles are sensitivity analysis and flexibility analysis. In Paper I,
an approach is presented which utilizes automated sensitivity analyses. A computational
analysis tool was developed which enables fast evaluation of the response of a HEN, i.e.,
temperatures and heat loads, when operating conditions change, design specifications
are modified and/or operational settings are manipulated. A systematic methodology
is presented for applying this type of sensitivity analyses in HEN retrofitting processes
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Figure 1.5: Overview of the links between the different papers appended to this thesis. Addi-
tionally, the research objectives O1 to O4 of the thesis are allocated to the different papers.

to evaluate the operability and energy efficiency of different retrofit proposals. How-
ever, since sensitivity analysis is based on the evaluation of discrete operating conditions,
steady-state flexible operation cannot be rigorously guaranteed. Therefore, concepts based
on sensitivity analysis were not pursued further, and this is further discussed in Chap-
ter 6. Note that in Paper I, a strategy was outlined to automatically derive the complete
set of equations necessary to describe the heat and mass balances as well as temperature
constraints of a given HEN. This approach enables automatic modelling of HENs of any
size, also taking into account the presence of common structural complexities such as
stream splitting and mixing as well as recirculating streams and closed circulation loops.
This strategy was adopted in the other papers to facilitate the mathematical modelling,
especially of large-scale HENs, and avoid error-prone manual definition of mathematical
constraints.

In Paper II, a step-wise framework was developed to achieve flexible and cost-efficient
retrofit measures of (industrial) HENs. The proposed framework combines different con-
cepts presented in the literature. Initially, different structural design proposals2 are col-
lected in a superstructure. These design proposals can be derived using graphical ap-
proaches enabling the incorporation of experience-based heuristics. Flexibility analysis is
then utilized to reduce the superstructure by discarding design proposals which do not

2A structural design proposal describes the structural layout of the process including the placement
of equipment while the design specifications, such as the size of the equipment, remain unspecified.
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allow for feasible operation when operating conditions vary, i.e., structurally infeasible de-
sign proposals are discarded. Additionally, those combinations of the uncertain parameter
values which require the largest equipment size and are thus critical for process operation
are identified. In the final step, the discretized design under uncertainty problem is solved
considering representative as well as the previously identified critical operating points to
identify the most cost-efficient design proposal within the reduced superstructure which
also allows for steady-state flexible operation.

In Paper II, it is assumed that the uncertain parameters vary around a mean value or
nominal operating point, which is a common assumption in the literature. In Paper III,
a new dimension of uncertainty was investigated, namely that the aforementioned uncer-
tain parameters are influenced by an uncertain singular/rare event. Examples for such
a singular/rare event are a permanent switch of feedstock (as presented in the motiva-
tional example in Section 1.1.2), a change of operational parameters required to comply
with new emission legislation and/or a change in the production rate, among others. All
these events may have a lasting effect on the operation of the process in question and a
possible consequence is that the nominal operating conditions change temporarily or even
permanently. In addition to the consequences of such planned/expected long-term devel-
opment, operational short-term disturbances which affect the process during operation (at
a distinct nominal operating point) are commonly present. Such short-term operational
disturbances are comparable to the traditional interpretation of uncertainty meaning that
they occur around a given nominal point. In Paper III, iterative evaluation of the de-
terministic flexibility index is proposed to identify if a process subject to both short-term
disturbances as well as long-term development can operate feasibly at all expected oper-
ating points (before and after the change). Additionally, the paper proposes a strategy
to enable consideration of planned long-term development in retrofitting projects. The
outlined strategy ensures that equipment size is sufficient to allow for steady-state flexible
operation at (different) nominal operating points.

Paper III describes situations where long-term development interferes with short-term
operational disturbances. In this context, the strategies presented in Paper III require
that the consequences of the long-term development need to be approximated with sat-
isfactory accuracy (i.e., the nominal operating conditions after the singular/rare event
need to be quantified) to perform flexibility analysis at the different nominal operating
points in an iterative fashion. In Paper IV, a new approach to deterministic flexibility
analysis is presented which allows for considering uncertainty related to the change of the
nominal operating conditions. The aim of this new approach is to identify the maximum
feasible change of the nominal operating conditions so that the process can cope with
the expected short-term operational disturbances after the nominal operating conditions
have changed. The new approach involves reformulations of the original flexibility index
problem presented by Swaney and Grossmann [2]. In this context, the presented refor-
mulations enable to identify if the installed process equipment in the second motivational
example (see Section 1.1.2) would allow for feasible operation also after the implementa-
tion of biomass co-processing.

In Papers II - IV, it is assumed that the variation of the uncertain parameters is indepen-
dent, i.e., no correlating trends can be observed between different uncertain parameters
in the operating data. Therefore, the expected uncertainty space was modelled using
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upper and lower values (traditional hyperbox approach) which reflects this assumption of
independent uncertain parameters. However, as mentioned in Section 1.2.2, this assump-
tion is not always valid. In Paper V, the literature was reviewed to identify approaches
which consider parameter dependencies when modelling the expected uncertainty space
to be utilized in deterministic flexibility analysis. One alternative approach compared
to the hyperbox modelling approach was identified. However, Paper V shows that the
flexibility index based on this alternative approach can overestimate the feasible variation
range of the uncertain parameters, i.e., variations which are considered to be feasible ac-
cording to the flexibility index are in fact not feasible. To avoid this overestimation while
allowing for a better representation compared to the hyperbox model, a novel approach
to model the expected uncertainty space is presented in Paper V. Additionally, a generic
mixed-integer (non-)linear program (MINLP) is presented to calculate the deterministic
flexibility index based on the presented approach.

Finally, in Paper VI, the framework presented in Paper II, was reworked to include
the development presented in Papers III - V. In this context, the proposed framework
includes strategies for considering parameter dependencies as well as the presence of mul-
tiple independent operating periods (a phenomenon which is connected to the findings
presented in Paper III) when modelling the expected uncertainty space. Additionally, a
novel algorithm is presented to identify critical operating points which is also applicable
when the uncertainty space is modelled using the previously presented strategies. The
framework presented in Paper VI is applicable to general chemical process design, and
further allows to be applied in both greenfield and retrofit cases.
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2
Theoretical background

2.1 Flexibility analysis
Flexibility analysis originates from the aspiration to avoid unnecessary overdesign of the
equipment while guaranteeing steady state flexible operation [11]. Flexibility analysis
denotes different concepts to evaluate the capability of a physical system to react towards
uncertainty (e.g., disturbances) in order to maintain feasible operation [11]. In this con-
text, feasible operation is achieved if the physical system with given equipment (sizes)
reaches pre-defined target values which can be formulated as mathematical constraints.
A well-established concept to quantify a system’s ability to cope with uncertainties (i.e.,
for performing flexibility analysis of chemical processes) is the deterministic flexibility
index which was introduced by Swaney and Grossmann [2]. The identification of critical
operating points which require the largest overdesign is also related to flexibility analysis.
Hereafter, the theoretical background of the deterministic flexibility index as well as the
identification of critical operating points are presented.

2.1.1 Deterministic flexibility index
The core idea of the flexibility index is to provide a scalar value ≥ 0 which scales a geo-
metric shape which is used to model the expected uncertainty space in the (hyper-)space
of the uncertain parameters. More specifically, the returned value of the flexibility index
problem is the scaling factor for which the scaled geometric shape intersects with the
boundary of the feasible region meaning that for any higher value of the scaling factor
parts of the shape would be outside the feasible region. The feasible region defines the
operation and the functional purpose of the (chemical) process, and can be expressed as
equality (2.1a) and inequality constraints (2.1b):

hi(d, x, z, θ) = 0; i ∈ I, (2.1a)

gj(d, x, z, θ) ≤ 0; j ∈ J. (2.1b)

In Eq. (2.1a) and Eq. (2.1b) the parameters which are uncertain are denoted by θ. Ad-
ditionally, d is the vector of design parameters, x corresponds to the state variables and
z is used the express the degrees of freedom or control variables of the process. In the
mathematical sense, control variables or degrees of freedom are present if the equation
system formed by the equality constraints, i ∈ I, as well as the union set of control and
state variables is under-determined, i.e., not all variables in the union set of control and
state variables are explicitly determined by the equation system.

Swaney and Grossmann [2] modelled the expected uncertainty space using the expected
extreme values, which they expressed as expected deviations, ∆θ− and ∆θ+, from a
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nominal or mean operating point, θN . Consequently, the modelled uncertainty space can
be imagined as a hyperbox, i.e., a multi-dimensional rectangle such as a cuboid for three
dimensions. This means that the flexibility index can be imagined as the ratio between
the largest scaled hyperbox within the feasible region and the hyperbox defined by the
expected extreme values. The mathematical formulation of the scaled hyperbox is given
in Eq. (2.2). Note that the scaling factor is denoted by δ.

Tbox(δ) =
{
θi | θi,N − δ∆θ−

i ≤ θi ≤ θi,N + δ∆θ+
i

}
∀ θi ∈ θ (2.2)

To obtain the flexibility index, Swaney and Grossmann [2] defined the flexibility index
problem. The aim of the problem is to identify the maximum value of δ for which none
of the constraint functions describing the process (i.e., Eq. (2.1a) and Eq. (2.1b)) is
violated, i.e., the maximum value of δ for which the operational targets of the process
are met given the (fixed) design specifications of the process. Consequently, if the index
is greater or equal to 1, the process can be operated for all expected variation. The
mathematical formulation of the flexibility index problem can be found in Appendix A.
For two uncertain parameters, this search for the largest scaled rectangle within the
feasible region (i.e. feasible uncertainty space) is illustrated in Figure 2.1. In Figure 2.1,
the feasible uncertainty space is smaller than the expected uncertainty space, i.e., the
rectangle corresponding to the expected variations. Thus, feasible operation with respect
to all expected variations cannot be guaranteed, i.e., the flexibility index is < 1. Note
that in Figure 2.1, a point has been marked as critical point. This is discussed further in
Section 2.1.3.

θmean

Feasible region
defined by constraints

Critical point Expected
uncertainty space

Feasible
uncertainty
space

θ1

θ1,N

∆θ1+

∆θ2+∆θ2-

δbox∆θ2-

δbox∆θ1+

∆θ1-

θ2,N θ2

Figure 2.1: Visualization of the flexibility index by Swaney and Grossmann [2] for two uncertain
parameters. The expected uncertainty space was modelled using a hyperbox model considering the
expected lower and upper bound values of the uncertain parameters which can be visualised as a
rectangle. The expected uncertainty space is scaled to identify the largest rectangle (with the same
aspect ratio) which can be inscribed in the feasible region.
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As mentioned in Section 1.2, different algorithms have been suggested to identify the
flexibility index for a given process subject to uncertain parameters, including the active
set approach based on an MI(N)LP formulation for the flexibility index problem proposed
by Grossmann and Floudas [41]. The advantage of the active set approach is that, unlike
other proposed approaches, an iterative evaluation of the vertices of the expected uncer-
tainty space can be avoided. More information of the active set approach as well as its
mathematical formulation is provided in Appendix A.

2.1.2 Flexibility analysis considering dependencies in the uncer-
tain parameters

As mentioned in Section 1.2.2, several studies in the literature [41, 51, 74] point out that
the deterministic flexibility index based on the hyperbox model potentially underesti-
mates the flexibility of a process if dependencies in the uncertain parameters are present.
In this context, the term “underestimation” refers to the phenomenon that the flexibility
index indicates only a small feasible interval [δbox∆θ−

i , δbox∆θ+
i ] while a larger share of the

expected operating points or expected realizations of the uncertain parameters are within
the feasible region. In Paper V, the literature was analysed to identify suitable ap-
proaches for modelling the expected uncertainty space when parameter dependencies are
present which are further applicable for deterministic flexibility analysis. One approach
[41] was identified from the literature review, and it is summarized hereafter. More de-
tailed information can be found in Paper V.

Grossmann and Floudas [41] proposed to express the dependent uncertain parameters
through algebraic equations, f(θ) = 0, which can be included as additional constraints in
the flexibility index problem (compare Problem (A.2)). Although not explicitly formu-
lated by the authors, the approach can be generalized by reformulating the mathematical
formulation for the hyperbox model, Tbox(δ). For this purpose, the uncertain parameters
are grouped into independent uncertain parameters, θind, and dependent uncertain pa-
rameters, θdep. The dependent uncertain parameters are then expressed by single equation
models. The generalized reformulation of the hyperbox model based on Grossmann and
Floudas [41] is given in Eq. (2.3).

Tcorr,box(δ) =


{
θi | θi,N − δ∆θ−

i ≤ θi ≤ θi,N + δ∆θ+
i

}
∀ θi in θind{

θj | fj(θind) = 0
}

∀ θj in θdep

(2.3)

An intuitive approach to express the dependent uncertain parameters is to utilize (linear)
regression models based on the independent uncertain parameters. A conceptual illus-
tration of the flexibility index for a linear single equation model in comparison to the
hyperbox model is shown in Figure 2.2.

In the two-dimensional case shown in Figure 2.2, the result of the flexibility index (the
scaling parameter δ) is different when the expected uncertainty space is modelled using a
single equation model compared to the hyperbox model. More specifically, δcorr is larger
than δbox which implies that the underestimation of the flexibility by means of the flexibil-
ity index based on the hyperbox model could possibly be decreased. On the other hand,
it is important to ensure that the larger value of δcorr compared to δbox is not the result
of an overestimation of the flexibility.
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Figure 2.2: Conceptual illustration of the deterministic flexibility index using a single equation
(regression) model to capture a dependency between the uncertain parameters. Note, the presence
of expected operating points in the red coloured area would indicate that the feasible interval
indicated by the flexibility index [δcorr∆T −

2 , δcorr∆T +
2 ] overestimates the flexibility since these

operating points would be within the feasible interval but are de facto infeasible.

When using single equation (regression) models, there is a high likelihood that expected
realizations of the uncertain parameters are not included in the modelled uncertainty
space, i.e., the modelled uncertainty space underestimates the actual uncertainty space.
This underestimation of the actual uncertainty space leads to the possibility that the flex-
ibility index based on single equation models overestimates the flexibility of a process. In
this context, overestimation of flexibility describes the observation that operating points
which should be feasible according to the analysis (i.e., the values of the independent
uncertain parameters are within the interval [δcorr∆θ−

ind,i, δcorr∆θ+
ind,i]) are indeed outside

of the feasible region and thereby not feasible. For the two-dimensional example shown
in Figure 2.2, this space of potential overestimation is shown in Figure 2.2. A numerical
example where the deterministic flexibility index based on a single equation model over-
estimates the flexibility of a given process is presented in Paper V.

The observations described in the previous paragraph relate to the main drawback of single
equation regression models, which is that they are only exact if the strongest possible
agreement exists between the correlated uncertain parameters. Commonly, correlated
uncertain parameters in chemical processes agree only to some extent, which means that
single equation regression models are able to capture the trend between these uncertain
parameters well while neglecting operating points which deviate from this trend (i.e.,
operating points caused by “other” sources of uncertainty). Note that overestimating
the flexibility of a process can have severe consequences since the infeasibility of certain
operating conditions may not be identified before actual operation. Consequently, (very)
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costly retrofits may be required which are likely to exceed the cost of (unnecessary)
overdesign which may occur as a result of underestimating the flexibility of the process.

2.1.3 Critical Operating Points
In Figures 2.1 and 2.2, the points at which the feasible uncertainty space coincides with
the boundary of the feasible region are marked as critical points1. These points define the
sizes of the feasible uncertainty spaces, i.e., the area of the rectangle in Figure 2.1 and
the length of the line in Figure 2.2. Note that at the marked critical points, feasible op-
eration is possible but even a small deviation from the critical parameter values may lead
to infeasibility. This observation is of special interest if some of the constraints forming
the feasible region are functions of some design parameters, d, which, e.g., can represent
the size of certain equipment. If the size of the feasible uncertainty space is limited by
constraint(s) depending on d, debottlenecking may be possible by manipulating the re-
spective design parameter(s), enabling a larger feasible uncertainty space (if desired, e.g.,
if the flexibility index is < 1). Note that in general not all constraint functions which form
the feasible region (i.e., Eq. (2.1a) and Eq. (2.1b)) are dependent on d. Those constraints,
which are dependent on d and therefore can be manipulated by increasing (or decreasing)
the equipment size, are hereafter denoted as design constraints.

When conducting so-called structural flexibility analysis, design constraints are discarded,
and only structural constraints are considered, i.e., unlimited equipment size is assumed
to be available (see, e.g., [76, 77]). This implies that the value of the structural flexibility
index is an upper bound for the general flexibility index, which also considers the design
constraints. This is illustrated by an example in Figure 2.3. For this example, the feasible
uncertainty space which is limited by structural constraints is larger than the expected
uncertainty space, i.e., the structural flexibility index is > 1. However, when including
the design constraint for the installed or planned equipment size, the feasible uncertainty
space is smaller than the expected uncertainty space resulting in a flexibility index which
is < 1.

Figure 2.3 shows that if design constraints are included in the flexibility analysis and
the resulting flexibility index is smaller than the structural flexibility index, the design
constraints and thereby the corresponding equipment size limit the value of the flexibility
index. In this context, Pintarič and Kravanja [31, 32] assumed that if, for a given struc-
tural design proposal, the structural flexibility index is > 1, it is possible to determine
at least one set of values for the design parameters which yields a (general) flexibility
index of exactly 1. To identify this set of values for the design parameters, Pintarič
and Kravanja proposed to identify those combinations of the uncertain parameter values
within the expected uncertainty space that require the largest overdesign of process units
in order to allow for steady-state flexible operation. Note that this idea is based on the
work by Halemane and Grossmann [29] who observed that if feasible operation at the
critical operating points can be guaranteed, the same applies for any other point within
the expected uncertainty space.

1The term critical operating points was introduced by Halemane and Grossmann [29] who defined
critical operating points as those combinations of the uncertain parameter values for which the feasible
region of operation is the smallest.
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Figure 2.3: A theoretical example to illustrate the difference between the structural flexibility
index where design constraints are discarded and the (general) flexibility index where design con-
straints are included.

In the example shown in Figure 2.3, the necessary change of the equipment size can be
identified graphically by parallel shifting the design constraint to the right, so that the
design constraint intersects with the upper right corner point of the expected uncertainty
space. This is possible since in this two-dimensional example, the identification of the
critical operating point (upper right corner point) is trivial. However, as Pintarič and
Kravanja [31, 32] also pointed out, in more complex cases, i.e., if more than two uncer-
tain parameters and/or more design parameters are present, several combinations for the
design parameter values may yield a flexibility index of 1 (when design constraints are
included). In such cases, the aim should be to identify the unique combination which si-
multaneously yields smallest cost and a flexibility index of 1. To achieve this, the authors
suggested to solve the bi-level optimization problem in which each design variable is indi-
vidually maximized while simultaneously minimizing a given cost function. Furthermore,
the authors suggested several algorithms to solve this bi-level optimization problem and
the interested reader is referred to their work for further information. Note that critical
operating points are dependent of the nature and placement of the equipment, i.e., for
each structural layout a unique set of critical operating points can be identified.

2.2 Design under Uncertainty
In this section, the generic problem formulation of the design under uncertainty prob-
lem is presented. Commonly, a design under uncertainty problem is addressed using the
stochastic two-stage with recourse formulation [14, 18]. The challenge connected with
a design under uncertainty problem is the numerical integration over the expected un-
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certainty space, i.e., the distribution of uncertainty. In sampling-based approaches, this
integration is performed by a discretization of the uncertainty space [14, 34]. This dis-
cretization enables to solve the discretized equivalent to the stochastic two-stage design
under uncertainty (with recourse) formulation which is given in Problem (2.4).

min
zs,d

G(d) +
∑
s∈S

[ws · Cs(d, zs, θs)]

s.t. hi(xs, zs, d, θs) = 0; i ∈ I

gj(xs, zs, d, θs) ≤ 0; j ∈ J

d ≥ 0
xs, zs, d, θs ∈ R


s ∈ S.

(2.4)

The objective function in Problem (2.4) consists of two parts. The first term G(d) de-
scribes the cost connected to investment in process units to provide the capacity necessary
for steady-state flexible operation - this selection of the design parameters d is referred to
as the first-stage decisions. The second term is the expected value of the operating costs
which is approximated via summation of the costs for discrete scenarios Cs multiplied by
the probabilities of the scenarios ws. The expected value of the operating costs is depen-
dent on the selection of the design parameters, d, and the second-stage decisions which
are the selection of the control variables, zs. The design problem is subject to equality
constraints, hi ∀ i ∈ I, which often result from the models of the process units and the
interconnections between them, and inequality constraints, gj ∀ j ∈ J , which commonly
arise from product property constraints and capacity specifications. Note that state vari-
ables, xs, are explicitly included in Problem (2.4).

Due to the discretization of the scenarios, s ∈ S, in Problem (2.4), the numerical in-
tegration over the expected uncertainty space to approximate the expected value of the
operating costs as well as the selection of the design parameter values can be done simul-
taneously. In Problem (2.4), the discrete choices of the uncertain parameters to represent
the discrete scenarios are explicitly denoted by θs. Problem (2.4) can consequently be seen
as a multi-period (Non-)Linear Program (NLP) which aims to minimize some objective
value (e.g. the total annualized cost, TAC) of the design or retrofit of a chemical process
considering its operation during discrete scenarios or operating periods.

When designing or retrofitting a chemical process which is subject to uncertainty, a suf-
ficient number of realizations of the uncertain parameters, i.e., scenarios, needs to be
considered to allow for steady-state flexible operation as well as a fair approximation of
the objective function value, e.g., TAC. To ensure steady-state flexible operation within
the expected uncertainty space, critical operating points (see Section 2.1.3) can be iden-
tified and included in the constraints of Problem (2.4) (i.e., hi ∀ i ∈ I and gj ∀ j ∈ J).
Note that critical operating points usually represent extreme operating conditions and not
typical conditions that occur during normal operation. Therefore, operation at the criti-
cal operating points should not be considered in the objective function of Problem (2.4),
i.e., critical operating points should not be considered when approximating the expected
value of the operating costs, Cs.

To obtain a good approximation of the objective function value, a common approach is
to identify the most representative scenarios for operation of the process, i.e., scenarios
that are expected to be a good representation of typical conditions that occur during
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normal operation. Such representative operating scenarios should represent the operating
conditions during specific time periods (e.g., different seasons or different production
campaigns), and should allow for adequate approximation of the expected objective value.
When denoting the set of representative scenarios with OP and the set of critical operating
points with CP , the operating costs, Cs, are calculated for all scenarios in OP while the
constraints of Problem (2.4) are evaluated at all scenarios/points in the union, OP ∪CP .

2.3 Heat Exchanger Network Modelling
As outlined in Section 1.2, Heat Exchanger Networks (HEN) are usually subject to un-
certainty in operating data which needs to be accounted for during the design process.
For applying the design under uncertainty approaches discussed in this thesis, mathemat-
ical modelling of the respective HEN is necessary, i.e., the definition of the mathematical
equations describing the physical constraints of a HEN such as energy and mass balances.
Such modelling can be burdensome and error-prone if conducted manually, especially
for large and complex industrial HENs. This thesis aims to facilitate the mathematical
modelling of HENs by an automated modelling strategy. Hereafter, the thermodynamic
fundamentals of HEN modelling are described.

A HEN is usually characterized by a number of fluid streams which interchange heat by
means of Heat Exchangers (HEXs). The heat exchange can be direct or indirect (i.e., by
means of a heat transfer medium). The network temperatures describe the temperature
change over the different streams due to heat exchange in HEXs, stream splits and mixing
of streams. This implies that the number of (unknown) network temperatures for a fixed
HEN structure can be calculated a priori [78]. For a network with N streams, nE process-
to-process HEXs, nS stream splits (1 stream splits into 2 streams), nM stream mixing
points and nU utility HEXs, the number of (unknown) network temperatures NT is:

NT = N + 2 · nE + 2 · nS + nM + nU . (2.5)

The number of (unknown) temperatures NT is reduced by N if the supply temperatures
for all streams are specified. The temperature change over the different streams can be
described by a set of equations which depend on the physical components present in the
HEN. Common physical components are:

• Heat Exchangers (HEXs):
– direct process-to-process HEXs,
– indirect process-to-(heat transfer medium) HEXs,
– utility HEXs (e.g., steam heaters or coolers),

• Splitters, and
• Mixers.

Other physical components such as reactors can be found in HENs, but these components
were not considered explicitly in this thesis. On the other hand, components such as
reactors can be modelled implicitly by means of identity changes of process streams.
Switch models were used to model these identity changes of process streams and further
explanation can be found in Section 2.3.3.
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2.3.1 Heat Exchanger Modelling
A common approach to model HEXs in HENs is formulating energy balances on the hot
and cold stream side of each HEX. Additionally, heat transport equations are used to
account for the design characteristics of a HEX since the heat exchange in a HEX is
constrained by the available surface area. This is formulated in Equations 2.6a to 2.6c:

QHEX = CPh · (Th,in − Th,out), (2.6a)

QHEX = CPc · (Tc,out − Tc,in), (2.6b)

QHEX = UHEX · AHEX · ∆TLM . (2.6c)

In Equations 2.6a to 2.6c, the index h is used for hot process (or secondary) streams
and the index c is used for cold process (or secondary) streams. Consequently, QHEX

is positive if heat is transferred from the hot stream to the cold stream connected by
means of the HEX. In several mathematical HEN models, this is an additional constraint
(i.e., QHEX ≥ 0). In order to model specific HEX types such as shell-and-tube HEXs or
plate HEXs, standard methods such as the P-NTU method can be used (see e.g., [79, 80]).

In industrial HENs, bypasses are usually present around HEXs for control purposes. These
bypasses can be modelled explicitly (see e.g., Appendix B.1 of [81]). However, as explicit
modelling introduces additional non-linearities, alternative modelling approaches have
been investigated. One possibility commonly found in the literature (e.g., in [44]) is
to relax the equality sign in Equation 2.6c by an inequality (≤) for those HEXs which
feature a bypass. This way, it is assumed that the effective area of a HEX can be smaller
than the installed area which gives a similar result as a bypass. Additionally, physical
operating constraints for the temperatures must be defined. For a counter-current HEX,
these operating constraints are given in Equations 2.7a and 2.7b:

Th,in − Tc,out ≥ ∆Tmin, (2.7a)

Th,out − Tc,in ≥ ∆Tmin. (2.7b)

In Equations 2.7a and 2.7b, ∆Tmin must be larger or equal to 0 if heat is transferred
from the hot to the cold stream. Additionally, in comparison to available mathematical
HEN models in the literature, in this thesis it was considered that Equations 2.7a and
2.7b cannot be evaluated independently of Equations 2.6a to 2.6c. If, for example, a
HEX is entirely bypassed (i.e., QHEX = 0), the physical operating constraints 2.7a and
2.7b must not be strictly obeyed as the HEX is out of operation. In order to model this
mathematically, Equations 2.7a and 2.7b can be multiplied by the temperature difference
given on the right-hand side of either Equation 2.6a or Equation 2.6b2. This way, it
is ensured that the physical operating constraints only are meaningful if the HEX is
transferring heat.

2.3.2 Modelling of Stream Splitting and Mixing
Besides HEXs, splitters and mixers are components commonly present in HENs. To model
stream splitting and mixing, energy and mass balances are important to consider. In the

2Note that such a strategy leads to (additional) non-linearities in a HEN model which may be unde-
sirable.
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case of stream splitting, isothermal splitting can usually be assumed. Therefore, for a
split of one stream into n streams, the energy balance can be simplified:

Tout,1 = Tout,n = Tin. (2.8)

The mass balance for a split of one stream into n streams is:
n∑

i=1
ṁout,i = ṁin. (2.9)

In the case of mixing n input streams to one output stream, mass and energy balances
are given in the following (assuming mixing of ideal fluids):

n∑
i=1

(ṁin,i · cpin,i · Tin,i) = ṁout · cpout · Tout, (2.10a)

n∑
i=1

ṁin,i = ṁout. (2.10b)

2.3.3 Modelling of Identity Changes
In this thesis, the identity of a stream is defined by whether the stream releases heat (hot
stream) or receives heat (cold stream) in the HEXs connected to the stream. Consequently,
an identity change implies that a stream changes from being identified as cold to hot or
vice versa. These identity changes may occur in (industrial) HENs, e.g., when streams are
re-circulated or in closed circulation loops. Figure 2.4 visualizes the identity change of a)
a re-circulating stream and b) a closed circulation loop by means of switches. In order to
model an identity change, one solution is to model a new stream for each identity change.
However, inlet conditions to these new streams are defined by the conditions prior to the
identity change (see Figure 2.4). Therefore, (trivial) pairs of equations describing the
relation between the temperatures, Tout,i and Tin,i, as well as the CP-values, CPout,i and
CPin,i, over the identity change i ∈ IC can be derived.

Switch

(a) Identity change in a
re-circulating stream

Switch 2Switch 1

(b) Identity changes in a
closed circulation loop

Figure 2.4: Visualization of the identity change of a stream (i.e., a hot stream becomes a cold
stream or vice versa).
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3
Theoretical Development

3.1 Enhanced modelling of the expected uncertainty
space for deterministic flexibility analysis

For deterministic flexibility analysis, the expected uncertainty space needs to be mod-
elled. This modelled expected uncertainty space should represent the actual expected
uncertainty space as accurately as possible. Traditionally, as outlined in Section 2.1,
the expected lower and upper bound values of the uncertain parameters are utilized to
model the expected uncertainty space as a hyperbox. For independent distributions of
uncertainty such a hyperbox shape is satisfactorily accurate. On the other hand, if depen-
dencies are expected in the uncertain parameters, it was shown in the literature that the
hyperbox approach to model the expected uncertainty space can be inaccurate due to a
bad resemblance with the actual uncertainty space. However, as outlined in Section 2.1.2,
the alternative approach to model the expected uncertainty space for deterministic flex-
ibility analysis if parameter dependencies are present (i.e., single equation models) has
significant shortcomings. More specifically, the value of the flexibility index may over-
estimate the flexibility of a process which can have severe consequences. Therefore, in
Section 3.1.1, a novel approach to model the expected uncertainty space is presented.

Furthermore, this thesis aims to provide strategies to identify situations where the afore-
mentioned bad resemblance between the hyperbox model and the actual uncertainty space
may occur. To identify such strategies, the influence of parameter dependencies on the
expected uncertainty space was investigated in more detail. For illustrative purposes,
the available measurement values of the uncertain parameters penetrating the pulp mill
subsystem described in Section 1.1.1 were analysed for parameter dependencies using the
correlation coefficient of Pearson1. In Figure 3.1, the measured operating points are shown
in the space of the flow rates of streams 3 and 2 (Figure 3.1a) as well as in the space of
the flow rates of streams 8 and 1 (Figure 3.1b). Note that Pearson’s correlation coefficient
was identified to be 0.15 for the measured flow rates of streams 3 and 2, and 0.58 for the
measured flow rates of streams 8 and 1.

In addition to the measured operating points, Figures 3.1a and 3.1b show the rectangle
defined by the respective minimum and maximum measured values. Figure 3.1a confirms
that the hyperbox approach, here resulting in a rectangular shape, reflects the actual
uncertainty space with good accuracy if the (linear) relationship between two uncertain

1Pearson’s correlation coefficient, ρ(X, Y ), determines the strength and the direction of the linear
relationship between two random variables, X and Y , with 0 ≤ |ρ(X, Y )| ≤ 1 (see e.g., [82]). Note
that larger absolute values indicate stronger correlations and that the sign indicates the direction of the
correlation (correlated/anti-correlated).
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Figure 3.1: Operating points measured for the pulp mill subsystem described in Section 1.1.1 in
the space of the flow rates of streams 3 and 2 (a) as well as in the space of the flow rates of streams
8 and 1 (b). Additionally, the rectangular shape defined by the hyperbox approach to model the
expected uncertainty set is shown for both cases in light blue.

parameters is weak. Additionally, Figure 3.1b confirms the opposite if the (linear) re-
lationship between two uncertain parameters is stronger. In this context, Figures 3.1a
and 3.1b show that the hyperbox model overestimates the actual uncertainty space while
this overestimation is significantly bigger if the (linear) relationship between two un-
certain parameters is stronger. The problem connected with overestimating the actual
uncertainty space is that combinations of the uncertain parameter values are included
in the modelled uncertainty space which are not expected to occur. Consequently, in
such cases operating conditions which are not expected to occur may limit the scaling of
the expected uncertainty space resulting in wrong conclusions drawn from the flexibility
analysis. More specifically:

• as outlined in Section 2.1, the obtained value for the flexibility index may underes-
timate the feasible variation range in which uncertain parameters may vary, and

• the identified critical operating points may indeed not be expected to occur.

The findings gained from Figure 3.1 can be generalized resulting in a strategy to identify
situations where modelling the expected uncertainty space by means of (overall) expected
upper and lower bound values can be inaccurate resulting in the aforelisted consequences.
More precisely, this thesis proposes to investigate, prior to modelling the uncertainty
space, if there is an indication that certain combinations of the (individually expected)
uncertain parameter values are not expected to occur.

Based on this strategy, another situation was identified where a single hyperbox model
may be an oversimplified representation of the expected uncertainty space. More specif-
ically, flexibility analysis may be conducted based on time-dependent data, e.g., historic
operating data, and such data may reveal that certain combinations of the uncertain pa-
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rameters may only occur during certain periods of the time-horizon considered for the
flexibility analysis. For example, Figure 3.2 shows the inlet temperature of the air used
for drying at a Swedish pulp mill over a three-year period. The operating data shows
both irregular fluctuations as well as a regular seasonal trend. To highlight this seasonal
trend, the operating data was divided into seasonal periods of three months each2. In ad-
dition to the overall mean value and the maximum and minimum temperature measured
over the three-year period, Figure 3.2 shows the seasonal mean values as well as and the
respective maximum and minimum values. Figure 3.2 shows that (during the respective
seasonal periods) the deviations from the seasonal mean values are significantly smaller
compared to the deviation from the overall mean value to the (overall) maximum and
minimum temperature.
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Figure 3.2: Measurement data of the inlet temperature of the drying air flow at a Swedish pulp
mill over a period of three years 2017 − 2019.

Figure 3.2 illustrates that operating data may be structured into different independent
operating periods, and this thesis proposes to model an individual uncertainty space
for each independent operating period. By means of a theoretical example presented in
Section 3.1.2, it is demonstrated that, in case of independent operating periods, the actual
uncertainty space may be overestimated if the expected uncertainty space is modelled
using a single hyperbox.

2Note that this division is an illustration and neither a recommendation nor a suggestion to (always)
divide operating data according to calendar seasons
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3.1.1 Novel approach to consider parameter dependencies for
deterministic flexibility analysis

As an alternative to single equation models, this thesis proposes to model the expected
uncertainty space by means of upper and lower boundary functions to capture dependen-
cies in the uncertain parameters. Based on the grouping of the uncertain parameters into
independent uncertain parameters, θind, and dependent uncertain parameters, θdep, (see
Section 2.1.2), a reformulation of the hyperbox model to Eq. (3.1) is proposed.

Tboundary(δ) =


{
θi | θi,N − δ∆θ−

i ≤ θi ≤ θi,N + δ∆θ+
i

}
∀ θi in θind{

θj | fL(θind) ≤ θj ≤ fU(θind)} ∀ θj in θdep

(3.1)

A conceptual illustration of the flexibility index based on upper and lower boundary func-
tions in comparison to the hyperbox uncertainty space is shown in Figure 3.3. Figure 3.3
shows that the feasible uncertainty space based on boundary functions is smaller than
the expected uncertainty space (a similar result was obtained for the hyperbox model).
However, Figure 3.3 shows that the scaling factor of the expected uncertainty space (value
of the flexibility index) is closer to 1 for the model based on boundary functions compared
to the hyperbox model.

Feasible region
defined by constraints

θmean

Critical point for
box

representation Upper boundary
function fU(θ2)

Lower boundary
function fL(θ2)

θ1

θ2

θmeanθ1,N

∆θ1+
δbox∆θ1+

∆θ1-

∆θ2+∆θ2- θ2,N

δboundary∆θ2-

δbox∆θ2-
feasible uncertainty space
expected uncertainty

space+

Critical point for
fL(θ2) ≤ θ1 ≤ fU(θ2)

Figure 3.3: Visualization of the flexibility index for the case where two uncertain parameters
show a dependency. Reformulated model of the uncertainty space based on boundary functions to
capture a dependency between the two uncertain parameters.

In comparison to the hyperbox model, incorporating boundary functions transforms the
model of the expected uncertainty space into an irregular square (see Figure 3.3) which
can be imagined as hyperpolygon in higher dimensions. This transformation excludes
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irrelevant sub-spaces of the hyperbox model, i.e., sub-spaces in which no operation is
expected. Note that the geometric shape of the model of the expected uncertainty space
shown in Figure 3.3 is defined by the extreme values of the independent parameter, θ2
and the boundary functions. When assuming that the boundary functions in Figure 3.3
enclose all expected realizations of the uncertain parameters θ1 and θ2, Figure 3.3 shows
such subsets (not coloured parts of the rectangle). Note that the extreme values (max-
imum and minimum values of the uncertain parameters, θ1 and θ2) are similar for both
models of the expected uncertainty space while not all possible combinations are expected
to occur in the model based on boundary functions. Consequently, the proposed approach
offers additional degrees of freedom when modelling the expected uncertainty space which
allow for excluding regions or sub-spaces of the hyperbox model in which no operating
points are expected. To summarize this paragraph, boundary functions can allow for a
better resemblance between the modelled uncertainty space and the real uncertainty space
which helps decreasing the risk for underestimating the feasible variation range when cal-
culating the deterministic flexibility index.

The advantage of boundary functions in comparison to single equation (regression) models
is that the dimensionality of the uncertainty set is not reduced. Boundary functions allow
uncertainty to be considered even in the dependent parameters since this uncertainty is
expressed as the space between the upper and lower boundary function(s) (see coloured
irregular square in Figure 3.3). Due to the additional uncertainty in the dependent pa-
rameters, the overestimation of the flexibility can be avoided (compare Figures 2.2 and
3.3). More specifically, the boundary functions can be chosen in such a way that all ex-
pected realizations of the uncertain parameters are enclosed by the modelled uncertainty
space.

In Paper V, a mixed-integer formulation for the deterministic flexibility index based
on boundary functions is derived. The derived formulation can be solved by means of
the active constraint strategy developed by Grossmann and Floudas [41] and allows for
the generic application of boundary functions when performing deterministic flexibility
analysis. Additionally, Paper V presents an algorithm to automate the definition of
boundary functions in such a way that the expected uncertainty space is represented as
accurately as possible. Such a task can be solved manually but such a manual definition
may be burdensome and error-prone, especially for multi-dimensional dependencies. The
proposed algorithm is based on the polygon convex hull enabling the effective identifi-
cation of multiple upper and lower boundary functions. Consequently, the number of
degrees of freedom increases even more (in contrast to single upper and lower boundary
functions) which means that the expected uncertainty space can be approximated with a
high accuracy as long as a tight convex hull representation can be found.

3.1.2 Deterministic flexibility analysis considering independent
operating periods

When formulating the flexibility index problem, the uncertainty space should reflect all
operating conditions expected during the life-time of the process. Usually, these different
realizations of the uncertain parameters are aggregated in a single model/representation,
e.g., a hyperbox for independent uncertain parameters or a hyperpolygon when consid-
ering parameter dependencies. The modelled uncertainty space is, thus, independent of
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time, potentially ignoring that certain realizations of the uncertain parameters may only
occur during certain periods of the expected life-time.

However, as shown in Figure 3.2, the seasonal variation of operating conditions over a year
represents a situation where certain realizations of the uncertain parameters only occur
during certain periods over a year. Another example is differences between day-time and
night-time operation. In these two examples (some of) the uncertain parameters show a
systematic pattern which is also known as seasonality [83]. Note that seasonality can be
observed in available data (retrofit problem) while it can also be anticipated (greenfield
problems). Since seasonality occurs with a certain frequency (which may be known or
anticipated) it allows the data to be divided into several (independent) intervals as shown
in Figure 3.2. The aforementioned phenomenon can also occur if the system of interest
is part of a plant which is adjusted to produce different products, e.g., during different
production campaigns.

When modelling the expected uncertainty space, such independent operating periods
should be considered. In this context, Papers III & IV propose to divide the time-
horizon of the analysis into several instances representing the different independent op-
erating periods. The expected combinations of the uncertain parameter values can then
be allocated to the respective (independent) operating periods defining an individual un-
certainty space for each period. Another theoretical example (see Figure 3.4) illustrates
how the structuring of data into independent operating periods, e.g., due to seasonality,
can impact the result of flexibility analysis, i.e., the flexibility index. In Figure 3.4a, the
feasible uncertainty space of the theoretical example is determined using the expected
uncertainty space as defined over all operating periods (modelled as a rectangle). On
the other hand, in Figure 3.4b, this overall uncertainty space is divided into three inde-
pendent (or uncoupled) uncertainty spaces resulting from independent operating periods.
Note, that the overall extreme values (maximum and minimum values of the uncertain
parameters, θ1 and θ2) are still expected to occur also for the representation of uncer-
tainty shown in Figure 3.4b, but their occurrences are expected in different periods. It
should also be noted that similarly to the boundary function approach for modelling the
expected uncertainty space in the presence of parameter dependencies (see Section 3.1.1),
the approach shown in Figure 3.4b excludes sub-spaces in the overall uncertainty space
in which no operation is expected.

Generally, different approaches can be chosen to model the expected uncertainty spaces of
independent operating periods, e.g., hyperbox or hyperpolygon models. For simplicity, in
Figure 3.4b each of the three uncertainty spaces is modelled using the hyperbox approach.
Note, that operation of the process would be feasible for all expected variations in two
of the three periods while for the period around θmean,1, the feasible uncertainty space is
smaller than the expected uncertainty space.

In a case such as that illustrated in Figure 3.4b, the flexibility can be assessed by first
determining the flexibility index for each independent operating period and then calculat-
ing the overall flexibility index as proposed in Paper III. For N independent operating
periods, the overall flexibility index is found by:

FI = min(FIn) ∀ n ∈ 1, 2, ..., N. (3.2)
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Figure 3.4: Visualization of the flexibility index for two uncertain parameters considering a single
overall expected uncertainty space (a) and three independent operating periods observed within the
overall expected uncertainty space (b). Note that the (hyper-)rectangle approach was used to model
the expected uncertainty space(s). Further note that the exact number and the placement of the
different uncertainty spaces in (b) are case-dependent.

To summarize this section, it was established that certain realizations of the uncertain
parameters may only occur during certain periods of the time-horizon considered for
the flexibility analysis. By allocating realizations of the uncertain parameters to differ-
ent independent operating periods and modelling those periods as individual uncertainty
spaces, some time-dependency can be enabled in the flexibility analysis. However, this
time-dependency should not be mistaken for the dynamic flexibility analysis of processes
that have an inherently dynamic nature and/or are subject to dynamic uncertainty and
feasibility conditions (see e.g., Dimitriadis and Pistikopoulos [84]). Flexibility of dynamic
processes, often called resilience, is beyond the scope of this thesis.

3.1.3 Novel developments for identifying critical operating points
For identifying the critical operating point(s) of a structural design proposal, the ex-
pected uncertainty space must be modelled, i.e., the search space needs to be specified.
Traditionally, the hyperbox approach was utilized (see e.g., Halemane and Grossmann
[29] or Pintarič and Kravanja [32]). In the previous sections, situations were outlined
where the hyperbox approach can be an inexact representation of the expected uncer-
tainty space. Two novel approaches for modelling the expected uncertainty space were
presented, and Figures 3.3 and 3.4 show examples where the combination(s) of uncertain
parameter values which are identified to be the critical operating point(s) strongly depend
on the chosen model of the expected uncertainty space. Ignoring factors such as param-
eter dependencies and independent operating periods when identifying critical operating
points could imply that, at a later stage, equipment is designed for combinations of un-
certain parameter values which are not expected to occur. In particular, conservative and
oversimplified modelling of the expected uncertainty space may result in equipment being
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oversized. To avoid such problems, this thesis presents a new strategy for identifying
critical operating points. The proposed strategy is part of the design under uncertainty
framework presented in Paper VI and comprises three steps which are outlined hereafter.

Step 1: Critical operating points in the presence of independent operating periods
In the first step, one of the independent operating periods is selected for which in the
following the critical operating points are identified. Note that the critical points need
to be identified for each independent operating period in an iterative procedure. The
reason for this can be explained using Figure 3.4b. Figure 3.4b shows three individual
uncertainty spaces which represent different independent operating periods, and their
consideration allows for excluding sub-spaces of the overall hyperbox uncertainty space in
which no operation is expected. This implies that process equipment only needs to allow
for steady-state flexible operating within these three uncertainty spaces or independent
operating periods to guarantee that the final process design can operate feasibly at all
expected operating conditions. Consequently, critical operating points identified for the
overall uncertainty space may represent combinations of uncertain parameter values which
are not expected to occur, and are thereby not relevant. Since each uncertainty space is
independent, it is necessary to identify the critical operating points for each independent
operating period/uncertainty space, individually (as further described in Steps 2 and 3).
Note that the different sets of critical operating points (identified for the different indepen-
dent operating periods) must be considered simultaneously when eventually solving the
design problem to guarantee steady-state flexible operation for all independent operating
periods. Further note that this step can be omitted if the expected operating conditions
are captured in (just) one representation of the uncertainty space.

Step 2: Critical operating points for hyperbox representation
In the second step, the expected uncertainty space of each independent operating period
is modelled as a hyperbox for identifying the critical operating point(s). Thus, at this
stage, potential parameter dependencies are ignored. Note that parameter dependencies
can be considered by means of Step 3 which is outlined at a later point in this section.
This intermediate Step 2 allows for utilizing the existing strategies to identify critical op-
erating points, if these strategies are applicable, e.g., the strategy outlined by Halemane
and Grossmann [29] is applicable for design proposals described by convex constraints,
only. In this context, Paper II reports difficulties when utilizing the algorithms sug-
gested by Pintarič and Kravanja [31, 32]. More specifically, it was identified that the
complexity of a structural design proposal can be an essential barrier for the successful
application of these algorithms. In this context, different structural design proposals for
a HEN were investigated in Paper II, and the main difference was the number of HEX
units while additional complexities such as stream splitting were not investigated. Since
it is expected that such additional complexities are present in relevant case studies (see,
e.g., Section 1.1.1), Paper VI proposes a new approach to identify the critical operating
points within a hyperbox uncertainty space which is outlined hereafter.

The proposed approach is a two-stage iterative algorithm which builds upon the theory
of critical operating points described in Section 2.1.3. More specifically, for the exam-
ple shown in Figure 2.3, the solution of the flexibility index problem, θ∗, considering
an initial equipment size (installed or estimated) and the critical operating point, θc,
(demanding the necessary change in equipment size) are on the same diagonal of the
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rectangular expected uncertainty space. Consequently, it would be possible to identify θc

by projecting θ∗ from the feasible uncertainty space (given the initial equipment size) to
the expected uncertainty space, i.e., following the aforementioned diagonal or direction
from the feasible to the expected uncertainty space. The proposed two-stage algorithm
exploits this relationship between θ∗ obtained for specific design specifications and θc.
More precisely, in the first stage, preliminary design specifications are identified solving a
simplified design under uncertainty problem considering a list of candidates for the critical
operating points3. In the second stage, the flexibility index problem is solved considering
the identified design specifications. If the obtained design specifications do not allow for
steady-state flexible operation within the (entire) expected uncertainty space (flexibility
index < 1), it can be concluded that the list of candidates is incomplete, i.e., not all
critical operating points have been identified. If the list of candidates is incomplete, θ∗

(solution of the flexibility index problem) is projected to the expected uncertainty space
to update/extend the list of candidates and the algorithm returns to the first stage.

Multiple critical operating points can be expected in multi-dimensional examples, i.e.,
examples with more than two uncertain parameters and/or more than one design pa-
rameter/constraint. To illustrate such a case, a modification of the aforementioned theo-
retical example is shown in Figure 3.5. In the modified theoretical example, two design
constraints are present and Figure 3.5 shows that the design parameters of both design
constraints need to be manipulated to enable steady-state flexible operation. When fol-
lowing the proposed algorithm, after the first iteration, critical point A would have been
identified which would ensure that design constraint 1 is shifted. However, the feasible
uncertainty space is still smaller than the expected uncertainty space since it is limited
also by the initial equipment size implied by design constraint 2. Therefore, a second
iteration is necessary which results in the identification of critical point B. Note that the
number of design constraints does not necessarily correspond to the number of critical
operating points. More detailed information on the mathematical formulations to project
θ∗ from the feasible to the expected uncertainty space is provided in Paper VI.

Step 3: Critical operating points for boundary function models
In the third step, the proposed strategy suggests to update the critical operating points
identified for the hyperbox representation considering previously identified parameter de-
pendencies. The proposed updating scheme is an iterative algorithm which aims to de-
termine if the previously identified critical operating points are within the hyperpolygon
model of the expected uncertainty space (i.e., the model of the expected uncertainty space
defined by the extreme values of the independent parameters and the boundary functions).
If the previously identified critical operating points represent combinations of uncertain
parameter values which are outside of the hyperpolygon model, the critical values of (at
least) some uncertain parameters must be adjusted/updated. For this adjustment, it is
assumed that the actual critical operating points represent uncertain parameter values on
the boundary of the hyperpolygon. Note that in multi-dimensional cases, not all inde-
pendent uncertain parameters, θind, are expected to be utilized when defining boundary
function models. Thus, it can be assumed that updating/adjusting of the critical param-
eter values is only required for those uncertain parameters (dependent and independent)
which show correlating trends.

3The proposed simplified design under uncertainty problem searches for the set of optimal design
parameters with respect to the investment cost while operating cost are not included in the problem.
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Figure 3.5: A theoretical example with two design constraints to illustrate the identification of
two critical operating points using the proposed approach. During the first iteration, θ∗

1 is identified
(solution of flexibility index problem) which can be projected using direction A to identify critical
point A, θc,A. A second iteration is necessary to first identify θ∗

2 , which can be projected using
direction B to identify critical point B, θc,B .

The necessary adjustment of the critical parameter values of some uncertain parameters
can be visualized using the theoretical example shown in Figure 2.3. When assuming a
dependency (with a negative correlation coefficient) between the uncertain parameters θ1
and θ2, Figure 3.6a illustrates how the critical operating point for the box representation
and the critical operating point for boundary functions relate to each other. More pre-
cisely, Figure 3.6a shows that the critical parameter value of θ1 needs to be adjusted in
order to identify the critical operating point for the uncertainty space defined by bound-
ary functions. On the other hand, Figure 3.6b shows a slight modification of the same
theoretical example where the slope of the design constraint is different. Due to this mod-
ification, the critical parameter value of θ2 (and not θ1) needs to be adjusted. To identify
which critical parameter values need to be adjusted, the proposed updating algorithm
starts with the assumption that the critical parameter values of the dependent uncertain
parameters, θdep, need to be adjusted (scenario shown in Figure 3.6a). This assumption
is tested using the (aforementioned) simplified design under uncertainty problem in com-
bination with the flexibility index problem4. The solution of the flexibility index problem
indicates if the made assumption was correct, or provides insights regarding which correc-
tive measures (adjustment of critical values of some independent parameters) should be
taken to eventually identify the updated critical operating points in an iterative procedure.

4Note that the flexibility index problem must be defined for the expected uncertainty space modelled
using boundary functions, i.e., the MI(N)LP mentioned in Section 3.1.1.
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Figure 3.6: Examples to illustrate how the critical parameter values for the box representation
can be updated to achieve the critical parameter values for the boundary functions representation.

To summarize this section, a strategy comprising three steps has been outlined to identify
critical operating points when independent operating periods and/or parameter depen-
dencies are expected. Additionally, a new approach was presented to identify the critical
operating points of a hyperbox uncertainty space. The proposed strategy including the
new approach were successfully applied to identify the critical operating points of the in-
dustrial case study presented in Section 1.1.1 and the results are presented in Paper VI.
Note that a rigorous comparison of the proposed approach to identify the critical operat-
ing points of a hyperbox uncertainty space with the available approaches in the literature
remains for future work.

3.2 Flexibility analysis considering uncertain long-
term development

In Section 1.1.2, a situation is described where the nominal operating conditions of an
industrial heat recovery system are expected to change due to a planned switch in feed-
stocks. Further examples for such planned long-term development are a change of oper-
ational parameters required to comply with new emission legislation and/or a change in
the production rate. All these events may have a lasting effect on the operation of the
process in question and a possible consequence is that the nominal operating conditions
change temporarily or even permanently. Section 1.1.2 further illustrates that operational
disturbances around the nominal point (current and future) may also be expected. Such
operational disturbances are comparable to the traditional interpretation of uncertainty
which, e.g., Swaney and Grossmann [2] aimed to analyse by means of the flexibility index.

The situation resulting from planned long-term development is comparable to the pres-
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ence of independent operating periods (compare Section 3.1.2), meaning that such a future
event divides the time-horizon of the flexibility analysis into two independent operating
periods. If the expected uncertainty space before and after the change can be quantified
with high certainty, the flexibility of the respective process can be evaluated as described
in Section 3.1.2, i.e., by calculating the flexibility index for each individual uncertainty
space to eventually determine the overall flexibility index following Eq. (3.2). In Pa-
per III such an approach was utilized to analyse if currently installed process equipment
of the industrial case study presented in Section 1.1.2 is able to operate at the expected
conditions after the implementation of biomass co-processing.

On the other hand, such (planned) long-term development usually comes with high levels
of uncertainty, and the impact on both the nominal operating conditions as well as the
expected uncertainty space before and after the change must be estimated. Consequently,
(planned) long-term development introduces a new dimension of uncertainty which inter-
feres with the (traditional) operational uncertainty in the short-term5. To illustrate this,
Figure 3.7 shows a situation in which the nominal value of one of two uncertain param-
eters of a theoretical example is expected to change. The new nominal value after the
implementation of the long-term development is uncertain but it is expected that the
change has an upper bound - indicated in Figure 3.7 as the expected maximum change.
Furthermore, Figure 3.7 shows that the expected uncertainty space for the short-term
operational disturbances around the current nominal point is within the feasible region,
i.e., steady-state flexible operation is possible at the current nominal operating point. On
the other hand, the change of the nominal value can result in a situation where the process
cannot handle the expected short-term operational disturbances if the (absolute) devia-
tions, ∆θ− and ∆θ+, remain constant even when the nominal operating point changes.
In this context, Figure 3.7 shows the maximum feasible change of the nominal value such
that all expected short-term operational disturbances are (exactly) feasible.
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θ1
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Figure 3.7: A theoretical example illustrating the situation when (planned) long-term develop-
ment interferes with short-term operational disturbances.

5Note that in Paper IV this phenomenon is denoted as overlaying uncertainty sources.
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As shown in Figure 3.7, when uncertainty in long-term development interferes with oper-
ational short-term uncertainty, this can lead to situations where feasible operation is no
longer possible. The (traditional) flexibility index as defined by Swaney and Grossmann
[2], can be utilized to identify if steady-state flexible operation is possible at the current
nominal operating point. However, it is not well-defined how to apply this traditional
formulation of the flexibility index if also aiming to consider uncertainty due to long-term
development. In Section 3.2.1, strategies to consider uncertain long-term development
in the original formulation of the flexibility index are investigated (the original formu-
lation is given in Problem (A.1) in the Appendix). However, these strategies present
several shortcomings which include wrong conclusions as well as ineffective iterative pro-
cedures. To overcome these shortcomings, this thesis proposes novel reformulations which
are presented in Section 3.2.2. For readability, hereafter, the different uncertainty sources
(short-term, long-term) are classified as shown in Table 3.1.

Table 3.1: Different classes of uncertainty based on the source or origin of the uncertainty.

Conventional operational disturbances
(included in the original flexibility index formulation) Uncertainty class A

Uncertainty due to (planned) long-term development
(i.e., nominal operating point varies or changes) Uncertainty class B

3.2.1 Original flexibility index formulation and overlaying un-
certainty sources

It may be intuitive to include (additional) uncertainty sources (of any kind and nature)
in a similar fashion to that proposed for uncertainty class A by Swaney and Grossmann
[2] (see Problem (A.1)). Thus, the uncertain parameters are grouped with respect to the
uncertainty classes given in Table 3.1 (class A and class B: θclass A and θclass B) and the
scalable expected uncertainty space can be formulated using the hyperbox approach or the
approach based on boundary functions. Note that a physical uncertain parameter (e.g.,
an uncertain temperature) may be present in both sets, θclass A and θclass B, while the
expected variation range or change, ∆θ+ and ∆θ−, differs for each class. In the example
shown in Figure 3.7, θ1 belongs to θclass A while θ2 is present in θclass A and θclass B.
Furthermore, the expected variation range for class A is given by the light blue rectangle
around the current nominal point (for both, θ1 and θ2, short-term operational disturbances
are expected) while the expected variation or change for class B is the maximum expected
change of the nominal value of θ2

6. To exemplify this strategy, Eq. (3.3) shows the scalable
uncertainty space based on the hyperbox approach considering θclass A and θclass B.

Tbox(δ) =


{
θi | θi,N − δ∆θ−

i,A ≤ θi ≤ θi,N + δ∆θ+
i,A

}
∀ θi in θclass A{

θk | θk,N − δ∆θ−
k,B ≤ θk ≤ θk,N + δ∆θ+

k,B

}
∀ θk in θclass B

(3.3)

This strategy yields the single scalar, δ, which expresses the maximum feasible varia-
tion/change for each uncertain parameter in θclass A and θclass B. However, with such
a strategy it is not possible to gain information about the feasibility of operational
short-term disturbances (class A) after the nominal operating point has changed from

6When assuming dummy values for the example shown in Figure 3.7, the following could be true:
∆θ+

1,A = ∆θ−
1,A = 5, ∆θ+

2,A = ∆θ−
2,A = 10, ∆θ+

2,B = 40 and ∆θ−
2,B = 0
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its original value (class B). For example, in the example shown in Figure 3.7, the value of
the flexibility index achieved with this strategy would be > 1 since both the short-term
disturbances around the current nominal point as well as the change from the current
nominal point to the new nominal point (without considering the short-term variations)
are within the feasible region. The reason for this is that this strategy does not include
the possibility to consider the (rectangular) uncertainty space (in Figure 3.7) representing
the short-term operational disturbances at the new nominal operating point.

The conclusions drawn from the previous paragraph illustrate that the traditional defini-
tion of deterministic flexibility analysis to evaluate the ability to cope with (operational
short-term) uncertainty is insufficient if uncertainty due to long-term development is ex-
pected. More specifically, a strategy is needed to identify the maximum feasible change
of the nominal values such that all expected short-term operational disturbances are
(exactly) feasible. To address this challenge, the flexibility index problem needs to be
formulated for different discrete values within the expected uncertainty space of class B,
e.g., discrete points on the line illustrating the expected (maximum) change of the nom-
inal value of θ2 in Figure 3.7, and the resulting formulations can then be solved in an
iterative scheme. If sufficiently many points are tested, such a strategy should eventu-
ally reveal an acceptable approximation of the maximum feasible change of the uncertain
parameters belonging to class B while ensuring that the expected variation of the uncer-
tain parameters belonging to class A is exactly feasible. However, this iterative scheme
can be impractical and time-consuming; thus, in the next section, this thesis proposes
reformulations of the original deterministic flexibility index problem.

3.2.2 Proposed reformulations of the deterministic flexibility in-
dex problem

In line with Figure 3.7, the proposed reformulations aim to find the maximum feasible
variation/change for uncertain parameters of class B which guarantees that a pre-defined
flexibility target of the uncertain parameters of class A (operational short-term distur-
bances) is feasible, e.g., the expected variations of the uncertain parameters of class A are
exactly feasible. Thus, an explicit distinction is made between the two uncertainty classes
and the proposed reformulation of the flexibility index problem is given in Problem (3.4).

FI = max δB

s.t. max
θ∈T (δA,δB)

min
z

max
j∈J

fj(d, z, θclass A, θclass B) ≤ 0

Tbox(δA, δB) =


{
θi | θi,N − δA∆θ−

i ≤ θi ≤ θi,N + δA∆θ+
i

}
∀ θi ∈ θclass A{

θk | ζk − δA∆θ−
k,A ≤ θk ≤ ζk + δA∆θ+

k,A

}{
θk | θk,N − δB∆θ−

k,B ≤ ζk ≤ θk,N + δB∆θ+
k,B

} ∀ θk ∈ θclass B

δA = specific target

δB ≥ 0
(3.4)

Problem (3.4) includes several reformulations compared to the original flexibility index
problem (Problem (A.1)). When distinguishing between uncertain parameters of class A
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and of class B, the maximum feasible variation/change for each class is respected indi-
vidually by defining a scalar, δ, for each class (δA, δB). As aforementioned, this thesis
proposes searching for the maximum feasible variation/change for uncertain parameters
of class B which allows for a pre-defined flexibility target of the uncertain parameters of
class A. Consequently, the constraint δA = specific target is included in Problem (3.4)
while searching for the maximum value of δB is formulated as the objective function.
Furthermore, the uncertainty of the nominal value(s) for the uncertain parameters of
class B is respected by defining the variables ζk ∀ θk ∈ θclass B. Consequently, the first
and the second line in Tbox(δA, δB) guarantee that expected short-term disturbances re-
main feasible when the nominal operating point varies or changes. The maximum feasible
variation/change of the nominal operating point is found by including the third line in
Tbox(δA, δB).

Problem (3.4) was formulated using the traditionally established hyperbox approach. If
parameter dependencies are expected, these can be modelled using boundary functions
or single equation models. Note that parameter dependencies can influence the expected
uncertainty space of class A as well as class B. For example, the expected change of the
nominal values of two (or more) uncertain parameters due to uncertain long-term develop-
ment could be dependent in some way. In this context, Paper IV presents a theoretical
example where the expected change of the nominal values of two uncertain parameters is
correlated, and a single equation model is used to express this dependency.

For solving Problem (3.4), the active constraint strategy can be utilized which was pro-
posed for solving the original flexibility index problem (Problem (A.1)) by Grossmann and
Floudas [41]. This requires that an upper bound for the operational flexibility target value
(δA = specific target) is pre-defined. This upper bound can be obtained in a first step
by considering only the uncertain parameters of class A and thus formulating and solving
the original flexibility index problem (Problem (A.1)). In a second step, the uncertain
parameters of class B are added, and Problem (3.4) can be formulated and solved (for a
flexibility target value for δA which is lower or equal than the identified upper bound).

If the expected variation range of operational uncertainty (class A) is itself expected
to change (when the nominal operating point varies/changes), ∆θ−

k,A and ∆θ+
k,A can be

defined as functions depending on the nominal operating point ζk. A probable scenario
could be that the expected variation range of short-term disturbances is expected to be
a percentual share of the nominal operating point, such as ±5%. By means of a second
theoretical example, the flexibility analysis of such a scenario where the expected variation
range of short-term disturbances is expected to be a percentual share of the nominal
operating point is presented in Paper IV. Finally, the industrial case study presented
in Section 1.1.2 is also investigated in Paper IV and selected results are presented in
Section 5.2.
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4.1 Automated heat exchanger network modelling
As illustrated by the motivational examples presented in Section 1.1, industrial HENs
can be of very different size and complexity. One issue with (industrial) HENs is that
the mathematical modelling can be time-consuming and also error-prone, especially when
conducted manually. On the other hand, as outlined in Section 2.3, the variety of physical
components commonly present in a HEN is limited while the arrangement (i.e., the exis-
tence and the position) of these physical components can differ substantially. To model
a HEN, this arrangement of the physical components in a HEN needs to be described1.
In this thesis, a generic methodology is proposed to describe the topology of any given
HEN in a straightforward way. The proposed methodology includes routines to describe
stream splits, re-circulation of streams and closed circulation loops.

In a first step, each stream of the HEN is numbered. To handle stream splits, re-circulation
of streams, closed circulation loops, etc., streams are numbered with respect to their
CP-values and identities. This means that a stream in the modelling sense needs to have
a constant CP-value and fixed identity. For example, a stream split where one stream
is split into two streams is counted as three individual streams. If the two split streams
are mixed back together, a fourth stream is counted. For re-circulation of streams, closed
circulation loops, or other components which cause changes in the identities of streams,
switches are used which define the locations where the identity of a stream changes (see
Section 2.3.3). Consequently, with each switch a new stream is counted. To illustrate the
proposed methodology, a theoretical HEN example was developed which requires the ap-
plication of all developed modelling routines. The example HEN comprises stream splits
as well as the re-circulation of a stream. Figure 4.1 shows the classical grid representation
of this example network. A switch model is used to describe the stream re-circulation.
The streams are numbered according to the proposed numbering procedure. Furthermore,
all (unknown) network temperatures with respect to Eq. (2.5) are marked.

Besides stream numbering, a generalized way to refer to the location of a specific process-
to-process HEX (P2P) or utility HEX (utility) is needed. Basically, this includes the
(process) streams which are exchanging heat by means of the HEX as well as the location
of the specific HEX on those streams. For this reason, a system to specify the position
of the HEXs was developed which is based on the stream numbering. For each HEX, the
hot and cold stream as well as the position of the HEX on these streams must be known.
For utility HEXs, a target temperature is specified in order to calculate the duty of each

1The arrangement of the physical components in a HEN is also known as the structural layout or the
network topology.
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Figure 4.1: An example heat exchanger network illustrating the stream numbering and (un-
known) network temperatures.

utility HEX (see Section 2.3.1). For the HEN depicted in Figure 4.1, the location matrix
for the HEXs is given in Table 4.1.

Table 4.1: Exchanger location matrix of the example HEN for defining the position of all
process-to-process (P2P) and utility exchangers and the target temperatures of streams with utility
exchangers.

Hot streams Cold streams Only for type
“utility”

Ex-
changer
(HEX)

UA Stream
number

HEX
number
on
stream

Stream
number

HEX
number
on
stream

Type
(P2P or
utility)

Target
temperature
(after
exchanger)

1 UA1 5 1 11 2 P2P
2 UA2 2 1 11 3 P2P
3 UA3 3 1 8 1 P2P
4 UA4 5 2 9 2 P2P
5 UA5 4 1 11 4 P2P
6 UA6 6 1 7 1 P2P
7 5 3 utility Ttarget,5
8 6 2 utility Ttarget,6
9 9 1 utility Ttarget,9
10 11 1 utility Ttarget,11

In Table 4.1 and Figure 4.1, the position of the HEXs is determined by reading from left to
right which in this case is the grid flow direction of the hot streams. In general, different
ways are possible and can be implemented in the modelling strategy. A similar positioning
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system is used to describe the location of stream splits and mixing of streams. It is also
based on the introduced stream numbering system. Table 4.2 presents the location matrix
for the stream splits and mixes for the example HEN shown in Figure 4.1.

Table 4.2: Split/mix location matrix describing the position of all stream splits and mixes of
the example network.

Split streams Mix streams
Index In Out1 Out2 In1 In2 Out
1 1 2 3 2 3 4
2 7 8 9 8 9 10

To describe the location of switches, the ingoing and the outgoing streams must be spec-
ified, and a similar location matrix can be derived. Table 4.3 shows the location matrix
for switches of the example HEN shown in Figure 4.1.

Table 4.3: Switch location matrix describing the position of all switches of the example network.

Switches
Index In Out
1 11 6

Based on the exchanger location matrix, the split/mix location matrix and the switch
location matrix, the vector of the (unknown) network temperatures, T , can be sorted in a
data structure called temperature matrix. In this data structure, the (unknown) network
temperatures are allocated to the process streams. The allocation process is automated
in the proposed modelling strategy. The basis for this automatization is Eq. (2.5). More
specifically, one element of T is allocated to a stream if the stream is connected to a HEX
(P2P or utility). Furthermore, one element of T is allocated to each stream resulting from
a split, mix or switch. This way, all (unknown) network temperatures can be allocated
to the different streams. Therefore, one dimension in the temperature matrix represents
the streams present in the HEN.

The temperature matrix for the example HEN is shown in Table 4.4. As mentioned pre-
viously, the rows of the temperature matrix represent the different process streams (row
number equivalent to stream number in Figure 4.1), while the number of columns repre-
sent the number of (unknown) network temperatures of the corresponding process stream.
As the number of (unknown) network temperatures may be different for the individual
process streams, a data structure which accounts for this must be used (e.g., “Cell Array”
in MATLAB or “List of Lists” in PYTHON).

The temperature matrix is the basis for the automated HEN modelling strategy as it en-
ables the allocation of the elements of T (unknown network temperatures, see Figure 4.1)
to specific HEXs (P2P and utility), stream splits, mixing points and switches. The allo-
cation of the (unknown) network temperatures is essential to be able to derive the set of
energy and mass balances presented in Section 2.3 automatically with the correct elements
of T . This is illustrated by means of HEX 1 of the example network shown in Figure 4.1:
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Based on the exchanger location matrix (Table 4.1), the two process streams which
are connected by HEX 1 are hot stream 5 and cold stream 11. Additionally, the
position of HEX 1 on these two streams is specified in the exchanger location
matrix. For hot stream 5, HEX 1 is the first exchanger (counting from left to
right) on this stream. Thus, the hot stream inlet temperature of HEX 1 is the
inlet temperature of stream 5, Tin,5, while the hot stream outlet temperature of
HEX 1 is T7 (elements 1 and 2 for stream 5 in the temperature matrix, Table
4.4). For cold stream 11, HEX 1 is the second exchanger on this stream. Thus,
the cold stream outlet temperature of HEX 1 is T22 while the cold stream inlet
temperature of HEX 1 is T21 (elements 2 and 3 for stream 11 in the temperature
matrix, Table 4.4). Consequently, the unique elements of T which are necessary
to calculate the logarithmic mean temperature difference for HEX 1 can be identified.

As the example for HEX 1 shows, by means of the exchanger location matrix and the
temperature matrix, specific elements of T are allocated to each HEX. Similar allocations
can be achieved by means of the split/mix or the switch location matrix to allocate
(unknown) network temperatures to the corresponding split, mix or switch. Consequently,
the set of equations to describe the heat and mass balances for an arbitrary HEN (see
Section 2.3) can be derived automatically.

Table 4.4: Temperature matrix to allocate (unknown) network temperatures of the example
network to specific exchangers (process-to-process and utility), stream splits, mixing points and
switches.

Stream (Unknown) network temperatures
1 Tin,1

2 T1 T2
3 T3 T4
4 T5 T6
5 Tin,5 T7 T8 T9
6 T10 T11 T12
7 T13 Tin,7

8 T15 T14
9 T18 T17 T16
10 T19
11 T23 T22 T21 T20 Tin,11

4.2 A framework for guiding design under uncertainty
problems

As outlined in Section 1.2.2, a major difficulty in design under uncertainty is to guarantee
that the final (process) design guarantees steady-state flexible operation within the ex-
pected uncertainty space. Therefore, the majority of the available approaches to solve a
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design under uncertainty problem guarantee the lowest investment as well as feasible and
cost optimal operation for pre-defined discrete operating points while feasible operation
at the remaining expected operating points is not addressed. A possible explanation for
this shortcoming is that the rigorous assurance of steady-state flexible operation is com-
putationally burdensome which limits the application in large and complex case studies.
To avoid such computational burdens when dealing with design under uncertainty, this
thesis proposes to divide the design process into two steps which are decoupled from each
other.

In the first step, different structural design proposals of the process in question are devel-
oped. When following the proposed approach, it is worth mentioning that steady-state
flexible operation does not need to be addressed during the definition of structural de-
sign proposals. Thus, it is possible to utilize proven design synthesis methodologies to
generate the basic structure of the design. Note that methodologies based on graphical-
insights or other design synthesis approaches considering only a single or a low number of
steady-state operating point(s) are also applicable. Furthermore, this setup allows incor-
poration of non-quantifiable knowledge such as experience-based heuristics in the design
proposals, which can be advantageous for complex industrial cases. The different struc-
tural design proposals can be collected in a superstructure which comprises all structural
alternatives. For the second step, this thesis proposes a step-wise framework to evaluate
the structural design proposals collected in the superstructure to identify:

• if any of the structural design proposals is not structurally feasible,
• the most cost-efficient overdesign of equipment size required to guarantee steady-

state flexible operation (for each structurally feasible design proposal), and
• a basis to compare the different structural design proposals with respect to a given

objective.

The framework proposed in this work can be seen as a tool to analyse the results of early
design stage screening processes for chemical processes subject to uncertain parameters.
Since the (structural) design proposals are defined prior to the application of the frame-
work, the framework can be utilized to guide both greenfield and retrofit design projects.
The different steps of the framework are presented in Figure 4.2. The framework was
initially presented in Paper II as a tool to guide HEN retrofit projects. An extended
version of the framework which is applicable to both greenfield and retrofit design prob-
lems of chemical processes was later presented in Paper VI. In the following sections, a
comprehensive overview of the individual steps of the framework is provided.

4.2.1 Identification of uncertain parameters
In this work, uncertainty in the input parameters of a given process or system is consid-
ered. Since these parameters are determined outside the system’s boundary, they cannot
be affected by measures within the system. However, recourse actions can be taken to
ensure that the operational target of the system of interest is met. These recourse actions
are limited by the structure of a design and/or by the size/capacity of the equipment.
Note that uncertain parameters which are not measurable cannot be addressed by means
of the presented framework, since recourse action is not possible in such cases. Once the
uncertain parameters are identified, the expected uncertainty space needs to be modelled,
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Figure 4.2: Proposed framework for addressing design under uncertainty problems when design-
ing or redesigning chemical processes/plants.
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i.e., the space in which all possible combinations of operating values for these parameters
are expected. As shown in Section 3.1, dependencies in the uncertain parameters as well
as independent operating periods should be considered to ensure a good resemblance be-
tween the modelled and the actual uncertainty space. Therefore, additional data analysis
is necessary to model the uncertainty space with good accuracy, i.e., checking for such
dependencies and independent operating periods.

4.2.2 Analysis for independent operating periods
In this step the existence of potential independent operating periods is identified. These
independent operating periods can be identified manually by analysing if (potential)
causes for independent operating periods are present such as:

• seasonality in the operating data (e.g., differences between day-time and night-time
operation or seasonal variation),

• different production campaigns,
• uncertain long-term development resulting in changes in the nominal operating con-

ditions (overlaying uncertainty sources).

Additionally, automated approaches such as data clustering may be utilized to identify
if the operating points can be divided into separate subsets. Note that automated ap-
proaches rely to a larger extent on the availability of (good-quality) operating data, i.e.,
measurements of the uncertain parameters which is often only the case in retrofit projects.
On the other hand, anticipating different operating cases such as those described in the
list above is commonly done for greenfield design projects where no historic operating data
is available. In such cases, the expected disturbance ranges of the different (presumably)
uncertain parameters must also be anticipated.

Since the identified operating periods or data clusters are (ideally) independent of each
other, a separate uncertainty space should be defined for each period/cluster, e.g., as
shown in Figure 3.4b. The following steps of the framework (Steps 3-6) are then performed
for each identified uncertainty space.

4.2.3 Analysis for dependencies among uncertain parameters
For each identified uncertainty space (overall, or for each individual independent operating
period), the shape of the uncertainty space needs to be approximated. If the uncertain
parameters are non-correlated, the shape can be described by the expected lower and
upper bound values yielding several hyperbox spaces in the overall space of uncertainty2.
If dependencies (correlations) are observed or expected, the real uncertainty space would
be smaller than the space approximated by the hyperbox representation, since regions
will exist within the hyperbox in which no operating points are expected. By consider-
ing dependencies when modelling the uncertainty (sub-)spaces, such ’empty’ regions may
be identified and removed, achieving a more accurate approximation of the actual un-
certainty (sub-)spaces. To identify dependencies between different uncertain parameters,

2As previously mentioned, this step can be performed relying on historic operating data or by antici-
pating the uncertainty space.
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Paper VI proposes two alternative approaches.

Once there is an indication that a dependency exists between two or more uncertain pa-
rameters, it has to be determined if the dependency should be considered when modelling
the uncertainty space3. Such a decision can be made based on different criteria, e.g.,
the strength of the dependency. Next, for each identified pair of uncertain parameters
(which show a dependency/correlation), there is a need to determine which of the two
parameters is to be classified as dependent and independent parameter4. This decision
can sometimes be enhanced by background knowledge about the process to identify the
origin of the dependencies. Finally, the identified dependencies which should be consid-
ered when modelling the expected uncertainty space can be formulated in the following
general form:

θj = f(θi,1, θi,2, ...), θi ∈ θind, θj ∈ θdep. (4.1)

4.2.4 Structural flexibility analysis
The next step analyses whether the structural layout of each design proposal allows for
steady-state flexible operation. As previously outlined, this can be done by calculating
the flexibility index discarding all design constraints and considering only structural con-
straints. If design proposals can be identified that are structurally infeasible for at least
some operating points within the expected uncertainty space (i.e., structural flexibility
index smaller than 1), these design proposals are discarded.

If independent operating periods and/or dependencies in the uncertain parameters are
identified in Steps 2 and 3, it is necessary to adjust the calculation procedure of the
flexibility index, compared to the conventional procedure based on a single hyperbox
uncertainty space. In order to assess the structural feasibility in the presence of inde-
pendent operating periods, the identified uncertainty spaces of the different periods need
to be analysed individually (as discussed in Section 3.1.2) to eventually determine the
overall flexibility index following Eq. (3.2). In the special case that uncertain long-term
development is expected to lead to permanent or temporary changes in the nominal oper-
ating conditions there is an inevitable need for assumptions regarding the future change
of operation (see also Section 3.2). If the change of the nominal operating point and
short-term disturbances around the new nominal operating point can be predicted with
high certainty, the situation is similar to the other cases of independent operating peri-
ods, and the overall flexibility index can be calculated according to Eq. (3.2). However,
if there is a high level of uncertainty with respect to how the nominal operating point
and/or the short-term disturbances are affected by the uncertain long-term development,
it may be desirable to identify the maximum change of the nominal operating point which
is structurally feasible (compare Section 3.2 and Figure 3.7).

If parameter dependencies (correlations between uncertain parameters) have been identi-
fied in the previous step of the framework (see Section 4.2.3), they should be considered

3Note that considering a parameter dependency requires (more) advanced modelling which means that
(simply) considering all identified parameter dependencies may increase the problem complexity of the
subsequent flexibility index problem and the identification of critical operating points.

4Note that the dependent parameter is modelled in terms of the other (independent) parameter, e.g.,
by using boundary functions which are formulated based on the independent parameters.
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when calculating the structural flexibility index. Considering parameter dependencies by
means of boundary functions requires more advanced modelling of the uncertainty space
compared to the hyperbox approach (see Section 3.1.1), which can lead to more complex
problems to solve. Therefore, it can be advantageous to know beforehand whether con-
sidering a given dependency when computing the (structural) flexibility index is likely
to have an influence on the results. Such knowledge is usually very much dependent on
the process, but it is possible to establish guidelines for specific types of processes. Such
guidelines are presented for heat exchanger networks in Paper VI.

4.2.5 Identification of critical operating points
For each of the remaining structural design proposals, the framework proposes to identify
the respective critical operating points. Considering the critical operating points in the
discretized design under uncertainty problem (i.e., Problem (2.4), see also Section 2.2)
ensures that each piece of equipment is of sufficient size to allow for steady-state flexible
operation within the entire expected uncertainty space. As outlined in Section 3.1.3, the
combinations of uncertain parameter values which are identified to be the critical oper-
ating points depend on how the expected uncertainty space is modelled. If independent
operating periods and/or parameter dependencies are expected, Section 3.1.3 presents an
approach which comprises three steps, as shown in Figure 4.2:

Step 1: Select one uncertainty space representing an independent operating period for
which the critical operating points should be identified (if no independent operating
periods have been identified, this step can be omitted).

Step 2: Identify the critical operating points for the respective uncertainty space when
modelled as a hyperbox.

Step 3: Update or adjust the critical parameter values of those uncertain parameters
which show correlating trends5.

If different sets of critical operating points were identified due to the presence of indepen-
dent operating periods, these sets must be considered simultaneously in the discretized
design under uncertainty problem (see Section 4.2.7).

4.2.6 Identification of representative operating points
To decrease the number of scenarios or operating periods considered in the discretized de-
sign under uncertainty problem, (i.e., Problem (2.4)), the framework proposes to identify
representative operating points. As mentioned in Section 2.2, the motivation for defining
representative operating points is to enable a fair approximation of the objective function
value (compared to considering all operating conditions) while avoiding issues with prob-
lem complexity.

Note that the identification of representative operating points is not equivalent to the iden-
tification of independent operating periods, even though the methodological approaches
show similarities (see next paragraph). There is a fundamental difference concerning the

5Note that the critical parameter values of independent and/or dependent parameter may need to be
adjusted while the critical parameter values of uncertain parameters which are not involved in a boundary
function model remain unchanged (see Section 3.1.3 for further details).
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origin and the objective of independent operating periods on the one hand and representa-
tive operating points on the other hand. More specifically, when identifying representative
operating points, the probability that certain operating conditions will occur is the es-
sential criteria - for example the mean operating point is the most trivial interpretation
of a representative operating point since it represents the mean value of all operating
conditions. This means that operating conditions with high probability are to be repre-
sented while operating conditions with low probability are omitted. On the other hand,
when defining independent operating periods, the aim is to approximate the actual (i.e.,
expected or observed) uncertainty space as accurately as possible (see Section 4.2.2).
Commonly, this uncertainty space is influenced or even defined by extreme operating con-
ditions with (usually) low occurrence over the entire operating period and thereby low
probability. Therefore, for defining independent operating periods, the essential criterion
is that all expected/observed combinations of uncertain parameter values are captured
(independent of probability) while all other combinations are excluded. Further explana-
tion can be found in the Appendix of Paper VI.

To identify representative operating points, clustering algorithms such as Lloyd’s clus-
tering algorithm [85] commonly known as K-means can be utilized to identify centroids
among all the operating points (for further information see, e.g., Jin and Han [86]). Alter-
natively, mean values for certain time-periods (daily, monthly, etc.) may be considered.
If uncertain long-term development is expected to affect (future) operation, assumptions
regarding how the operating conditions change are necessary. In this context, note that
also the exact time-point of the implementation of the long-term development may be
uncertain. Consequently, if cost for the entire life-time is to be considered in the final
design problem, e.g., Total annualized cost, TAC, further assumptions are necessary. In
this context, Paper III presents a strategy based on different extreme scenarios which
can be utilized to obtain a lower and upper bound for the expected objective function
value.

4.2.7 Design problem
After the critical operating points, CP , as well as the representative operating points are
identified, OP , the discretized design under uncertainty problem (i.e., Problem (2.4)) can
be solved for the remaining structural design proposals6. The solution yields the optimal
design parameter values as well as an approximation of the expected objective function
value, usually TAC, by optimizing the settings for the control variables. In this context,
data for the investment and installation cost of the equipment as well as data for the
operating costs for the process and the maintenance costs of the equipment are necessary.
Additionally, possible cash flows generated by selling products or by avoiding expenses
need to be considered.

4.2.8 Feasibility check
The final step of the framework is a feasibility assessment to check that the obtained values
for the design parameters allow for steady-state flexible operation within the expected un-
certainty space, i.e., a final validation of the previously identified critical operating points.

6Note that the critical operating points which were identified for different independent operating
periods must be combined to one set to be included in Problem (2.4).
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In this context, the flexibility index including design constraints may be utilized consid-
ering the identified independent operating periods and possible parameter dependencies.
Alternatively, the optimal operation problem (see Problem (4.2)) may be solved for dis-
crete operating points (OPall). These operating points may be generated by means of
sampling methods. Also, historical measurement data may be utilized, if available. Prob-
lem (4.2) is a single-period optimization problem to identify the optimal control variable
settings for fixed design parameter values.

min
zs

Cs(d, zs, θs)

s.t. hi(xs, zs, d, θs) = 0; i ∈ I

gj(xs, zs, d, θs) ≤ 0; j ∈ J

xs, zs, d, θs ∈ R


s ∈ OPall. (4.2)

In general, the (N)LP defined in Problem (4.2) is significantly easier to solve compared
to the discretized design under uncertainty problem (i.e., Problem (2.4)) since the design
specifications are fixed, i.e., the number of optimization variables is lower. If a feasible
solution, Cs(d, zs, θs) ∈ R, can be identified for each operating point, s ∈ OPall, the
design parameters derived in step 8 allow for operation at all expected/observed operat-
ing points. If the final feasibility check reveals that operation is not possible at certain
operating points, i.e., that parts of the uncertainty space(s) are outside of the feasible
region, the previously identified set of critical operating points is incomplete. In such a
case, the infeasible operating points need to be added to the previously identified set of
critical operating points, and steps 8 and 9 need to be repeated until a final indication of
feasibility of the design is achieved.

Note, that a feasibility check based on solving Problem (4.2) for a discrete number of
operating points cannot guarantee that the derived values for the design parameters are
feasible for all possible operating points within the expected uncertainty space. Such a
proof can only be obtained by solving the flexibility index problem, including design con-
straints. However, for the case study presented in Paper VI, it was observed that the
flexibility index problem for the final feasibility check can be significantly more computa-
tionally burdensome compared to the flexibility index problem in the two-stage algorithm
for identifying critical operating points. In this context, other work in the field which is
based on the identification of critical operating points, e.g., Pintarič and Kravanja [34],
suggests to conduct the final feasibility check based on Monte-Carlo process simulation
for discrete operating points. Note, that the validity of the suggested feasibility check
based on the evaluation of discrete operating points increases with the number of discrete
operating points considered.
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5
Selected results from the

motivational examples

5.1 Motivational example 1
The structural layout of a retrofit proposal for increased heat recovery in a Swedish pulp
mill was presented in Section 1.1.1. The retrofit proposal involves several new HEX units
and Figure 5.1 shows a selected part of the process flow diagram presented in Section 1.1.1
which shows the proposed placement of the new HEX units. The identification of the
optimal heat transfer areas of the different new HEX units in this heat recovery system is
a design under uncertainty problem. The framework presented in Section 4.2 was utilized
to identify the optimal solution to this problem, i.e., the solution that guarantees that
the operational targets of the respective heat recovery system are met at all expected
operating points while minimizing both investment cost as well as operational cost. A
detailed documentation of the solution process and the results can be found in Paper VI.
An overview of the most important results is provided hereafter.

Steam

Steam

Combustion
air flow from
HEX 2

Feed
water
from
HEX 3

District
heating
from
HEX 4HEX A

HEX
B

HEX C

Warm water
55 °C

Hot water
85 °C

Diluted
black liquor

HEX D

Steam
165 °C

72 °C

Existing heat exchanger to
be replaced

New heat exchanger to
be installed

Feed water
tank
125 °C

Figure 5.1: Selected part of the process flow diagram of the case study presented in Section 1.1.1
which shows the proposed placement of the new heat exchanger units according to the suggested
retrofit for increased heat recovery.

In total, 15 uncertain parameters were identified, and their respective (measurement)
locations are indicated in Figure 1.3. After filtering, 3415 historic operating points rep-
resenting measurement values with hourly resolution were retained for the analysis. The
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mill in question produces softwood and hardwood pulp in campaigns according to a regu-
lar schedule. Consequently, each operating point was allocated to one of two independent
operating periods, corresponding to one of the production campaigns. Furthermore, an
analysis of the available measurement data revealed that two parameter dependencies
can be expected during softwood campaigns, while during hardwood campaigns an ad-
ditional third parameter dependency can be expected. A structural flexibility analysis
revealed that the design proposal of the retrofit is structurally feasible. The critical oper-
ating points for the two independent operating periods were identified using the approach
presented in Section 3.1.3. Note that the critical operating points were identified when
modelling the expected uncertainty spaces as hyperboxes but also when modelling the
expected uncertainty spaces using boundary functions.

The discretized design under uncertainty problem (i.e., Problem (2.4)) was solved con-
sidering different numbers of representative operating points, namely 1 (mean value), 5,
25, 50 and 75 which were identified using the K-means clustering algorithm. For each set
of representative operating points, three different cases which differ with respect to the
critical operating points included in the problem formulation were considered:

Case 1: No critical operating points and only representative operating points.
Case 2: Critical operating points of uncertainty space modelled as hyperbox as well as

representative operating points.
Case 3: Critical operating points of uncertainty space modelled as hyperpolygon using

boundary functions as well as representative operating points.

The numerical results indicate that including critical operating points in the design prob-
lem significantly reduces the number of representative operating points that need to be
considered to obtain a fair approximation of the expected objective function value. More
precisely, for cases 2 and 3, a set of 25 representative operating points is sufficient to
achieve a good approximation of the expected total annual cost (TAC). For case 1, the
results indicate that the expected TAC obtained for the largest set of representative op-
erating points considered in this work (75 points) may not be representative, i.e., the
expected TAC may change significantly when considering sets with more than 75 repre-
sentative operating points. Since higher numbers of representative operating points lead
to increasing problem complexity, the additional effort for identifying critical operating
points can be justified.

Furthermore, the results confirm that considering (only) representative operating points
in Problem (2.4) (i.e., case 1) is problematic when aiming for steady-state flexible oper-
ation. Table 5.1 shows the results of the final feasibility check (see Section 4.2.8). More
specifically, Table 5.1 shows the share of the 3415 expected operating points at which
feasible operation was possible when solving Problem (2.4) for the investigated case study
considering the different cases. The results indicate that steady-state flexible operation
can only be guaranteed when considering the identified critical operating points in the
constraints of the design problem (cases 2 and 3). When considering only representative
operating points (i.e., case 1), feasible steady-state operation for all expected operating
points was not possible for the investigated sets of representative operating points. Note
that the absolute number of operating points at which feasible steady-state operation is
not possible is bigger than the number of representative operating points - also for the
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largest set investigated (75 points)1.

Table 5.1: Percentage share of the 3415 expected operating points at which feasible operation
was possible when solving Problem (2.4) for the investigated case study considering the different
cases (case 1: only representative operating points; case 2: representative and critical operating
points for hyperbox approach; case 3: representative and critical operating points for hyperpolygon
approach).

Feasibility
share [%]

Number of representative operating
points considered in Problem (2.4)
1 5 25 50 75

Case 1 20 45 92 95 96
Case 2 100 100 100 100 100
Case 3 100 100 100 100 100

Moreover, the expected TAC as well as the optimized design specifications which were ob-
tained for cases 2 and 3 were analysed and compared. Differences between cases 2 and 3 are
of special interest since such differences originate from the different approaches to model
the uncertainty space. Note that the final feasibility check revealed that steady-state flex-
ible operation is possible for both cases independently of the chosen set of representative
operating points (see Table 5.1). Table 5.2 presents the results obtained for cases 2 and 3
for the set of 25 representative operating points. The numbers show that the total opti-
mized heat transfer area is lower when the uncertainty space is modelled as hyperpolygon
(case 3) compared to the hyperbox approach (case 2). Additionally, the total heat transfer
area is distributed differently among the different HEX units for cases 2 and 3.

Table 5.2: Comparison of optimal design specifications and expected total annualized cost, TAC,
when modelling the expected uncertainty space as a hyperpolygon (case 3) or as hyperbox (case 2).
Results obtained with 25 representative operating points.

Heat transfer area [m2] Case 2 Case 3 abs(Difference)
HEX A 1099 1195 96
HEX B 603 0 603
HEX C 0 0 0
HEX D 361 319 42
Feed water heater 1108 1035 73
District heating water heater 136 136 0
Combustion air heater 11 974 11 847 127
Total heat transfer area 15 281 14 532 749
Expected TAC [€] 6 484 349 6 313 190 171 159

Table 5.2 shows a 5% lower requirement of total heat transfer area as well as a 3% decrease
in the expected TAC when boundary functions are used to model the uncertainty space(s),
compared to results obtained for the hyperbox approach. These findings support the as-
sumption that a more accurate model of the uncertainty space guarantees steady-state
flexible operation with less overdesign and reduced cost. Note that the difference in the
expected TAC is relatively small in this specific case. However, the difference may be

1Therefore, the strategy outlined in Section 4.2.8 may be considered ineffective since it proposes to
include all operating points at which feasible operation was not possible as critical operating points in
Problem (2.4).
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significantly more pronounced for other cases studies.

Finally, as mentioned in Section 1.2, the traditional approach for dealing with uncertainty
in (chemical) process design is to approximate the design specifications for a single op-
erating point, such as the mean operating point, and apply empirical overdesign factors
to these values. For illustrative purposes, this procedure was investigated. The design
obtained by solving Problem (2.4) considering (only) the mean operating point was used
as a basis. The obtained design specifications suggest the installation of HEX A and HEX
D as well as steam heaters for the feed water and the combustion air (compare the process
flow diagram of the suggested retrofit in Figure 5.1). Based on these design specifications,
different overdesign factors were investigated. Note that only the initially suggested heat
exchanger units were considered. The resulting share of operating points at which feasible
operation can be obtained are presented in Table 5.3. The results show clearly that even
when the heat transfer areas of the suggested HEX units are increased by additional 50%,
steady-state operation at all expected operating points is not feasible.

Table 5.3: Impact of different overdesign factors on the feasibility share (share of the total
operating points at which feasible operation is possible) as well as the TAC. The design obtained
by solving Problem (2.4) considering (only) the mean operating point was used as a basis. Note
that only the initially suggested heat exchanger units were considered.

Overdesign
factor 20% 30% 40% 50%

Feasibility
share [%] 59 67 76 83

∆ TAC
(to case 1) [%] 15 23 30 38

∆ TAC
(to case 3) [%] -4 3 9 15

Table 5.3 also reports the difference in the expected TAC for a design based on overdesign
factors compared to the expected TAC for a design with no overdesign (and no critical
operating points, i.e., case 1, for one representative operating point) as well as compared
to a design obtained by considering critical operating points (case 3, for one represen-
tative operating point). The results show that considering overdesign factors leads to a
significant increase in the expected TAC which can be higher than the expected TAC
for case 3 (overdesign factor ≥ 30%) while steady-state flexible operation still cannot
be achieved. This illustrates the potential ineffectiveness of overdesign factors for design
under uncertainty problems.

5.2 Motivational example 2
The case study presented in Section 1.1.2 illustrates the challenges that arise when
planned but uncertain long-term development interferes with short-term operational dis-
turbances. More specifically, with the currently installed process equipment, it is uncertain
if steady-state operation will be feasible at all expected operating points after the nominal
values change due to long-term development. For the analysis conducted in Paper IV, it
was assumed that the UA-value2 of HEX units HX 1 − 1 and 1 − 2 is 850 kW/K and 110

2The UA-value is the product of the heat transfer area, A, and the overall heat transfer coefficient, U .
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kW/K for HEX unit HX 2. With the assumed design data and the variation data given
in Table 1 in Paper III, the flexibility index for the operation at the current nominal
operating point (values given in Figure 1.4) was calculated to be δA,max = 1.38.

As mentioned in Section 1.1.2, a future implementation of biomass feedstock co-processing
is considered by the refinery operating company, which represents an example for planned
long-term development with uncertain consequences. More specifically, introducing biomass
feedstock in the oil refinery is expected to cause a substantial increase of the nominal flow
rates of streams 1 and 2 (see Figure 1.4). While it was assumed in Paper III that the
exact values of the nominal flow rates after the feedstock switch can be predicted with
good accuracy, in Paper IV it was assumed that the exact increase is uncertain. More
specifically, in Paper IV, it was assumed that the nominal value of the flow rates of
streams 1 and 2 may increase by up to 100% compared to current operation. When
applying the reformulations of the flexibility index problem proposed in Section 3.2, a
solution value of 0.5 is obtained for δB. This result was obtained when requiring that the
expected operational short-term disturbances are (exactly) feasible (assuming that these
expected short-term disturbances are not affected by the implementation of the biomass
co-processing). Consequently, it can be concluded that the process configuration would
be able to handle an increase of 50% in the flow rates while for any larger increase in flow
rates the expected operational short-term disturbances may result in infeasible operating
conditions.

59



5. Selected results from the motivational examples

60



6
Discussion

In this chapter, some of the assumptions, terminology and methodological choices under-
lying the contributions presented in this thesis are discussed.

Availability and quality of data for modelling the expected uncertainty space
In Section 3.1, it is proposed to analyse, prior to modelling the uncertainty space, if there
are indications that certain combinations of the (individually expected) uncertain param-
eter values are not expected to occur. Based on this strategy, two cases were identified,
namely the presence of dependencies in the uncertain parameters as well as the presence of
independent operating periods. In both cases, combinations of the individually expected
uncertain parameter values are not expected to occur, meaning that the hypervolume of
the actual uncertainty space can be significantly smaller than the hypervolume of the
hyperbox defined by the expected lower and upper bound values. For both cases, an
approach was presented to model the expected uncertainty space aiming to enhance the
resemblance with the actual uncertainty space compared to the hyperbox model.

The presented modelling approaches rely upon availability of good-quality data, especially
data related to parameter dependencies. The availability of such data is commonly lim-
ited, especially for the greenfield design of chemical plants. If high-quality operating data
is available, it should be noted that such data usually represents historic measurements.
Thus, there is uncertainty regarding the extent to which such historic data also represents
future operating conditions. However, even if no historic operating data is available, it
is usually possible to assume that certain independent operating periods occur, such as
differing operating conditions during summer and winter time (typical example of season-
ality). Nevertheless, in certain projects, a rough estimation of the uncertainty space such
as upper and lower bound values for the uncertain parameters for the entire expected
operating period may be the best approximation possible at the early design planning
stage.

Definition of uncertainty
This thesis aims to propose theoretical development in the field of deterministic flexibility
analysis and methodological development in the field of design under uncertainty. For
example, the framework proposed in Section 4.2 allows uncertainties to be considered
when identifying the optimal design specifications for structural design proposals. These
uncertainties may result from uncertain parameters which are defined outside the system
boundary and can thereby not be affected by the respective system, while recourse action
is possible to counteract changes in the uncertain parameters. The proposed development
does not cover uncertain parameters which are not measurable, since recourse action is
not possible in such cases. Future work may address such uncertainties based on the work
of, e.g., Ostrovsky et al. [46] as well as Ochoa and Grossmann [12].
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Usage of the terminology critical (operating) points
In each of the Figures, 2.1, 2.2, 2.3, 3.3, 3.4a, 3.4b and 3.7 the points at which the fea-
sible uncertainty space coincides with the boundary of the feasible region are marked as
critical points. Each of these points represents the solution point of a flexibility index
problem, and it is common practise to denote such a point as critical point (compare,
e.g., Ochoa and Grossmann [12] or Grossmann et al. [11]). This practise goes back to the
work by Halemane and Grossmann [29] who defined critical points as those combinations
of the uncertain parameter values for which the feasible region of operation is the smallest.

As outlined in Section 2.1.3, the terminology critical (operating) points was also used by
Pintarič and Kravanja [32] to denote those combinations of the uncertain parameter val-
ues within the expected uncertainty space which demand the largest overdesign. However,
the solution point(s) of the flexibility index problem must not necessarily be the point(s)
demanding the largest overdesign. In fact, if the structural constraints of a process do
not allow for feasible steady-state operation at all operating points within the expected
uncertainty space, a critical point with respect to the definition by Pintarič and Kravanja
[32] does not exist1. When steady-state operation is feasible with respect to the structural
constraints, equipment (size) may limit the operation. Such a situation is visualized in
Figure 2.3. Note that the point marked as critical point in Figure 2.3 is the solution
point for the flexibility index considering a specific design parameter value (e.g., equip-
ment size). However, this design parameter value does not allow for feasible steady-state
operation at all operating points within the expected uncertainty space which is why the
feasible uncertainty space is smaller than the expected uncertainty space. Therefore, the
marked critical point does not match the definition by Pintarič and Kravanja. However,
as outlined in Section 3.1.3, the solution point of the flexibility index (marked point in
Figure 2.3), can be utilized to identify the critical point with respect to the definition by
Pintarič and Kravanja. More specifically, the direction from the mean operating point
to the marked critical point in Figure 2.3 also points to the point Pintarič and Kravanja
defined as critical point. In fact, this linkage between the two points is utilized in the
proposed approach to identify the critical operating points of a structural design proposal
which demand the largest overdesign (see Section 3.1.3). In summary, the usage of the
terminology critical operating points is not rigorously consistent (also in this work) while
the context usually makes the intended meaning clear.

Sensitivity analysis vs. flexibility analysis
As mentioned in Section 1.4, in Paper I a systematic methodology is presented for
applying automated sensitivity analyses in HEN retrofitting processes to evaluate the op-
erability and energy efficiency of different retrofit proposals. The methodology is based
on the idea that sensitivity analysis can be utilized to identify the influence of changes in
the control settings on the operational target(s). The methodology aims to identify con-
trol settings which optimize an objective function such as energy efficiency or cost while
maintaining feasible operation when operating conditions vary. It was further proposed in
Paper I that the influence of (minor) design changes can be analysed by means of sensi-
tivity analyses. The automated sensitivity analysis is based on (Monte Carlo) simulation
for discrete operating conditions and/or (minor) design changes. If sufficiently many
discrete simulation runs are conducted, an indication can be obtained about whether a

1Note that for this reason, structural feasibility is a premise for identifying critical points as defined
by Pintarič and Kravanja [32].
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process/plant can achieve steady-state flexible operation, i.e., if feasible steady-state op-
eration can be maintained/achieved for all expected operating points by adjusting the
control settings and/or investing in design changes. However, it is not possible to rigor-
ously confirm that a process/plant can achieve steady-state flexible operation by means of
(automated) sensitivity analyses which is why such strategies were not further pursued in
this thesis. As an alternative to (automated) sensitivity analyses, flexibility analysis can
be exploited to rigorously confirm that a process/plant can achieve steady-state flexible
operation. In comparison to (automated) sensitivity analyses based on (Monte Carlo)
simulation, flexibility analysis can lead to problem formulations which are computational
burdensome to solve. For this reason, flexibility analysis may be of limited use, particu-
larly for large-scale industrial applications. However, it was demonstrated in this thesis
that flexibility analysis can also be applied for industrial case studies (see, e.g., the indus-
trial case studies in Papers III - VI).

Outsourcing of design synthesis - smart move or ineffective procedure?
In Section 4.2, it is proposed to divide the design process of a design under uncertainty
problem into two steps which are decoupled from each other. In the first step, different
structural design proposals are developed for the process in question. Since steady-state
flexible operation does not need to be rigorously addressed in this step, it is possible
to utilize methodologies based on graphical-insights or other design synthesis approaches
considering only a single or a low number of steady-state operating point(s). Thereafter,
the different structural design proposals can be collected in a superstructure. For the
second step, this thesis proposes a step-wise framework which helps identifying the best
design proposal from the superstructure ensuring steady-state flexible operation.

Since the design synthesis step is not included in the framework proposed in this thesis, it
can be used for both retrofit (re-design) as well as greenfield design problems. However,
the proposed strategy also relies on the application of existing methodologies for gener-
ating good-quality structural design proposals. It should be noted that when following
the different steps of the framework, the optimal solution with respect to a defined ob-
jective can (only) be found among the design proposals considered in the superstructure.
Additionally, since the design synthesis and the framework are decoupled, there exist no
feedback loops to modify a structural design based on results obtained during the analysis
steps of the framework. It is the author’s assumption that such feedback loops cause the
computational burdens which limit the application of design synthesis approaches which
rigorously address steady-state flexible operation during the design process.

Parameter dependencies - higher or lower deterministic flexibility index?
As illustrated by the numerical examples and the industrial case study presented in Pa-
per V, dependencies between (some) of the uncertain parameters can have a significant
influence on the deterministic flexibility index if the respective dependency is satisfac-
torily captured by means of a mathematical model. Grossmann and Floudas [41] also
assumed that dependencies between (some of) the uncertain parameters should have a
significant influence on the flexibility index calculated for a process. More precisely, the
authors assumed that considering parameter dependencies in the model of the expected
uncertainty space results in a higher flexibility index, compared to the flexibility index
calculated for the hyperbox approach.
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As mentioned in Section 2.1.2, Grossmann and Floudas [41] suggested to utilize single
equation models for modelling the expected uncertainty space in the presence of param-
eter dependencies. To illustrate this, the authors presented a HEN example where one
uncertain temperature (here: for simplicity TB) was expressed as a linear function of an-
other uncertain temperature (here: for simplicity TA) (compare [41]). When including
this linear equation, the authors reported that compared to the hyperbox approach (where
TA and TB are assumed to vary independently by ±10 K), the flexibility index increased
by 0.08824. However, as outlined in Paper V, it can easily be identified that due to
the assumed linear equation, the (absolute) expected disturbance range of the dependent
parameter, TB, decreased from ±10 K to ±8 K, i.e., for the case that TA is 10 K higher
than the nominal value, the linear equation returns a value for TB which is not 10 K but
only 8 K higher than the nominal value. Consequently, to allow a fair comparison, the
flexibility index obtained for the linear equation needs to be compared to the flexibility
index obtained for a modified hyperbox model of the expected uncertainty space. More
specifically, for this modified hyperbox, TA and TB are assumed to vary independently
but variations of ±10 K are assumed for TA whereas variations of ±8 K are assumed for
TB. Paper V reports that for the modified hyperbox model, the flexibility index is also
0.08824 higher compared to the flexibility index calculated for the initial hyperbox model,
i.e., the case where both parameters vary independently by ±10 K. Therefore, it can be
concluded that the example presented in Grossmann and Floudas [41] illustrates how
changes in the maximum and minimum extreme values influence the result of the flexibil-
ity analysis. On the other hand, the same value for the flexibility index was obtained when:

1. including the linear equation to model a dependency between the uncertain param-
eters TA and TB,

2. assuming independent variation of TA and TB while adjusting the expected maxi-
mum and minimum extreme values of TB (modified hyperbox uncertainty space).

Consequently, the linear equation did not help to exclude subsets of the hyperbox uncer-
tainty space which limit the flexibility metric but within which no operating points are
expected/observed. In fact, the consequence of including the linear equation is a reduc-
tion of the expected extreme values of the uncertain parameters. However, the absolute
extreme values of the uncertain parameters are independent of possible parameter depen-
dencies since a parameter dependency (only) describes the relation between the extreme
values, e.g., if they occur at the same time point(s). Based on these results, it was con-
cluded in Paper V that the example of Grossmann and Floudas [41] does not explicitly
show the impact on the results of the flexibility analysis when subsets of the hyperbox
model of the uncertainty pace which limit the flexibility metric (e.g. flexibility index) are
excluded since no operating points are expected/observed in these subsets.

As mentioned in the previous paragraph, Grossmann and Floudas [41] assumed that
considering dependencies in the uncertain parameters when modelling the uncertainty
space results in a higher flexibility index, compared to the flexibility index calculated for
a hyperbox model. This assumption is intuitive and was shared by other authors in the
field, such as Pulsipher and Zavala [51] as well as Rooney and Biegler [75]. However, in
Paper V, and in an additional conference contribution [74], it was demonstrated that
when considering dependencies (by means of boundary functions) the flexibility index can
be lower compared to the flexibility index calculated using a hyperbox uncertainty space:
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1. Langner et al. [74]: a case was identified for which δ(Tboundary) = 0.27 is smaller
than δ(Tbox) = 0.36,

2. Paper V presents a case for the industrial case study where the δ(Tboundary) = 0.55
is smaller than δ(Tbox) = 0.64

These observations contradict the intuitive assumption that considering parameter de-
pendencies when modelling the expected uncertainty space results in a higher flexibility
index, compared to the flexibility index based on the hyperbox model. In this context,
Paper V concluded that in certain cases, the proposed usage of boundary functions to
model the expected uncertainty space in the presence of parameter dependencies can bias
the result of the flexibility analysis to put more emphasis on the (previously) selected de-
pendent parameters. Note, that in certain situations this bias may be desirable, e.g., when
the feasibility towards the uncertainty of selected parameters is prioritized. In case the
bias should be avoided, the identified dependencies can be excluded (as, e.g., done in the
industrial case study presented in Paper V) or a different approach needs to be utilized
to model the expected uncertainty space. In this context, single equation models should,
however, be avoided due to the risk of overestimating the flexibility (see Section 2.1.2).
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Conclusion and Outlook

The purpose of this thesis was to present theoretical development in the field of determin-
istic flexibility analysis as well as methodological development in the field of design under
uncertainty. Four research objectives were formulated, and hereafter concluding remarks
are provided with respect to each of the objectives.

Modelling of the uncertainty space for deterministic flexibility analysis (Re-
search Objective 1):
In this thesis, a strategy was defined to identify situations where a single hyperbox model
of the uncertainty space can be inaccurate. The main idea is to investigate, prior to
modelling the uncertainty space, if there are indications that certain combinations of the
individual expected uncertain parameter values (i.e., values within the respective lower
and upper bounds) are not expected to occur. Two situations were identified which po-
tentially lead to such an occurrence:

• (some of) the uncertain parameters show correlating trends,
• (some) parameter values are only expected during certain operating periods (inde-

pendent operating periods).

Several approaches were outlined to identify these situations and to build upon these in-
sights when modelling the uncertainty space.

It was shown that existing approaches to model the expected uncertainty space when
parameter dependencies are expected have significant shortcomings. More precisely, the
value of the deterministic flexibility index can over- or underestimate the feasible distur-
bance range in which uncertain parameters may vary while feasible operation is achieved
when using aforementioned approaches. It was concluded that overestimation of the fea-
sible disturbance range occurs when the expected uncertainty space is underestimated
using the selected model. Conversely, underestimation of the feasible disturbance range
can occur when the expected uncertainty space is overestimated. An important insight of
this work is that overestimating the flexibility of a process can have severe consequences
since the infeasibility of certain operating conditions may not be identified before actual
operation, and (very) costly retrofits may be required.

A new strategy was outlined to model the expected uncertainty space in the presence
of parameter dependencies based on the definition of boundary functions utilizing the
polygon convex hull of the expected uncertainty space. The proposed strategy allows
irrelevant sub-spaces of the hyperbox model to be excluded, i.e., sub-spaces in which no
operation is expected. It was concluded that the resulting shape of the modelled uncer-
tainty space can be represented as a hyperpolygon (or irregular square in two dimensions).
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A generic MI(N)LP formulation for the flexibility index problem was derived adopting the
suggested strategy. It was concluded that overestimation of the feasible variation range
can be avoided since all expected operating conditions are included in the analysis. At
the same time, it should be noted that underestimation is inherent in any approach where
geometrical shapes are used to approximate the actual uncertainty space. However, by
adopting the proposed strategy, the level of underestimation is likely to be lower com-
pared to existing approaches as long as a tight convex hull representation can be found,
since in such cases the resemblance of the modelled uncertainty space with the expected
uncertainty space should be satisfactory.

In addition to parameter dependencies, the occurrence of independent operating periods
was investigated when modelling the expected uncertainty space. Independent operating
periods were defined based on the observation that certain realizations of the uncertain
parameters only occur during certain periods of the time-horizon considered for the flex-
ibility analysis. It was shown that the overall uncertainty space which is defined by all
expected operating conditions can be divided into several sub-spaces representing the
different independent operating periods. It was further shown that this structuring of op-
erating conditions into individual uncertainty spaces can exclude sub-spaces of the overall
uncertainty space. These excluded sub-spaces represent combinations of the uncertain
parameter values that are not expected, leading to a more accurate modelling of the
expected uncertainty space. Possible causes for independent operating periods were pre-
sented, such as:

• seasonality in the operating data (e.g., differences between day-time and night-time
operation or seasonal variation)

• different production campaigns

It was concluded that by allocating realizations of the uncertain parameters to differ-
ent independent operating periods and modelling those periods as individual uncertainty
spaces, some time-dependency can be enabled in the flexibility analysis.

If parameter dependencies and/or independent operating periods are present, modelling
the expected uncertainty space as a single hyperbox can lead to situations in which iden-
tified critical operating points correspond to combinations of uncertain parameter values
which are not expected to occur. To avoid such problems, a new strategy for identifying
critical operating points was presented. The proposed strategy was used to identify the
critical operating points for the industrial case study presented in Section 1.1.1. The
results show that different combinations of uncertain parameter values constitute critical
operating points when modelling the expected uncertainty space as a hyperbox or using
boundary functions. While steady-state flexible operation of the respective process de-
sign was achieved for both cases, the critical operating points identified for the hyperbox
model demanded more heat transfer area, resulting in higher projected total annualized
cost. Consequently, it can be concluded that an overly simplified model of the uncertainty
space may lead to overdesign and unnecessary costs.

Deterministic flexibility analysis considering uncertain long-term development
(Research Objective 2):
In this thesis, situations were outlined in which planned long-term development of pro-
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cesses interferes with short-term operational disturbances. It was shown that such in-
stances can be interpreted as special cases of independent operating periods. In such
cases, it can be concluded that the traditional definition of flexible processes, i.e., al-
lowing for steady-state flexible operation around a single nominal operating point, can
be insufficient. Planned long-term development can result in temporary or permanent
changes of the nominal operating conditions. Consequently, it may be relevant to identify
which changes in the nominal operating conditions connected to long-term development
are feasible, i.e., allowing for feasible operation considering short-term operational distur-
bances. In line with this conclusion, a new approach was outlined to perform flexibility
analysis when long-term development interferes with operational short-term disturbances.
The presented approach was utilized to analyse the industrial case study presented in Sec-
tion 1.1.2.

Automated HEN modelling (Research Objective 3):
In this thesis, an automated HEN modelling strategy was proposed which can be imple-
mented in any high-level programming language. The modelling strategy builds upon
the observation that HENs are usually based on similar sets of equations which implies
that large parts of the modelling process can be automated. The proposed strategy can
handle complexities commonly present in industrial HENs such as stream splits, closed
loops or re-circulation. A table-based representation of the HEN was proposed, which
can be applied directly to a process flowsheet and a transformation to the commonly used
but limited grid-diagram representation is not necessary. As a result, error-prone manual
definition of mathematical constraints can be avoided easing the mathematical modelling,
especially of large-scale HENs.

A framework combining valuable designer input with the efficiency of math-
ematical programming for design under uncertainty problems (Research Ob-
jective 4):
In this thesis, a framework was presented which aims to support designers in (early) design
stage screening processes when dealing with chemical process design under uncertainty.
The framework is a step-wise approach which identifies:

• whether structural design proposals are structurally feasible,
• the most cost-efficient overdesign of equipment size required to guarantee steady-state

flexible operation,
• a basis to compare different structural design proposals with respect to a given ob-

jective.

The proposed framework can be used to evaluate and improve one or several structural
design proposals which are provided by the designer. In this way, it is possible to uti-
lize proven design methodologies available for single steady-state operating conditions to
generate the basic structure of the design. This setup also enables incorporating non-
quantifiable knowledge such as experience-based heuristics in the design proposals, which
can be advantageous for complex industrial case studies. Since the (structural) design
proposals are defined prior to the application of the framework, the framework can be
utilized to guide both greenfield and retrofit design projects. As steady-state flexible op-
eration is difficult to address using the aforementioned design synthesis methodologies,
the framework comprises several steps based on deterministic flexibility analysis, i.e., cal-
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culation of the flexibility index and the identification of critical operating points. In this
context, the proposed framework evaluates if dependencies in the uncertain parameters
as well as independent operating periods are present to adapt the modelling of the ex-
pected uncertainty space accordingly. The proposed framework was utilized to identify
the cost-optimal solution for the retrofit proposal presented in Section 1.1.1. More specif-
ically, the proposed framework was used to identify the optimal heat transfer areas of the
different new HEX units that always meet the operational target at the lowest cost.

7.1 Considerations for future work
In Section 3.1, two situations were identified for which there are indications that certain
combinations of the individually expected uncertain parameter values (i.e., values within
the respective lower and upper bounds) are not expected to occur, namely parameter
dependencies and independent operating periods. In future work, it would be valuable to
identify additional situations, which may also be case-specific.

Furthermore, in Section 3.1, two approaches were presented to enhance the modelling of
the expected uncertainty space for deterministic flexibility analysis when parameter de-
pendencies and/or independent operating periods are expected. As these approaches allow
for a better resemblance with the actual expected uncertainty space, the approaches may
be considered for other tasks which demand a model of the expected uncertainty space,
such as the volumetric flexibility index proposed by Lai and Hui [52].

Section 3.2 outlined a new approach to perform deterministic flexibility analysis when
planned but uncertain long-term development interferes with operational short-term dis-
turbances. To the author’s knowledge such overlaying uncertainty sources have not been
considered in any work connected to flexibility analysis, and future work is needed to
explore if such considerations are of relevance even for stochastic [48, 49] or volumetric
flexibility analysis [52].

This thesis proposed theoretical development in the field of deterministic flexibility anal-
ysis applicable to cases with measurable uncertain parameters. However, uncertain pa-
rameters which are not measurable were not addressed since in such cases recourse action
is not possible. Future work may address such uncertainties based on the work of, e.g.,
Ostrovsky et al. [46] as well as Ochoa and Grossmann [12].

Finally, the design strategy presented in Section 4.2 proposed to divide a design under
uncertainty problem into a design synthesis step which enables direct input from the
designer, followed by a number of subsequent steps which are summarized in a framework
presented in this thesis. The proposed framework and the design synthesis step are
decoupled from each other considering no feedback loops since the author assumes that
such feedback loops may limit the application to small scale examples. Future work
may identify straight-forward procedures to allow feedback from the analysis steps to be
translated into design modifications while maintaining the computational effort within
acceptable limits.
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A
Theory on the deterministic

flexibility index

The problem formulation of the flexibility index for a hyperbox uncertainty space is given
in Problem (A.1) as derived by Swaney and Grossmann [2]. Note that in Problem (A.1),
the uncertainty space is scaled with the scalar δ, Tbox(δ). In Problem (A.1), Swaney and
Grossmann [2] included a max min max constraint which is known as the feasibility con-
straint to find the largest value for the scaling parameter, δ so that all constraint functions
are feasible, fj(d, z, θ) ≤ 0, while accounting for recursive actions, i.e., adjustments of the
control variables z. Since the uncertainty space is scaled, Tbox(δ) can be interpreted as
the largest scaled hyperbox which can be inscribed in the feasible region.

FI = max δ
s.t. max

θ∈T
min

z
max
j∈J

fj(d, z, θ) ≤ 0

Tbox(δ) =
{
θi | θi,N − δ∆θ−

i ≤ θi ≤ θi,N + δ∆θ+
i

}
∀ θi ∈ θ

δ ≥ 0

(A.1)

To determine the flexibility index, Swaney and Grossmann [2] proposed search procedures
for the special case of exclusively convex constraint functions, fj(d, z, θ), in which the
solution of (A.1) corresponds to vertices of Tbox(δ). To overcome the limitations of vertex
exploration (exponential number of vertices, 2θ, and convexity of constraint functions
fj(d, z, θ)), Grossmann and Floudas [41] proposed a reformulation of Problem (A.1) to
solve the feasibility constraint explicitly without relying on the assumption of critical
points corresponding to vertices of the hyperbox uncertainty space. They reformulated
the feasibility constraint in Problem (A.1) to explicitly search for the solution on the
boundary of the feasible region, ψ(d, θ) = 0, yielding the bi-level optimization problem
given in Problem (A.2).

FI = min δ
s.t. ψ(d, θ) = 0

ψ(d, θ) = min
z,u

u

s.t. fj(d, z, θ) ≤ u, j ∈ J

Tbox(δ) =
{
θi | θi,N − δ∆θ−

i ≤ θi ≤ θi,N + δ∆θ+
i

}
∀ θi ∈ θ

δ ≥ 0

(A.2)

The advantage of Problem (A.2) is that the feasibility constraint can be solved explicitly
by replacing the lower-level optimization problem, ψ(d, θ) = min u, by its Karush-Kuhn-
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Tucker (KKT) optimality conditions. Consequently, a single-level non-linear program
(NLP) for the deterministic flexibility index is obtained. Grossmann and Floudas [41]
further identified that if the gradients, ∂fj/∂z, are linearly independent, there will be
nz + 1 active inequality constraints at the solution. Based on this observation, the au-
thors formulated a search strategy, the active constraint strategy, which sequentially cal-
culates the flexibility index for each active set, and eventually returns the smallest solution
value found during the search1. To implement the active constraint strategy, the authors
simplified the complementarity conditions with mixed-integer constraints. Later, Biegler
et al. [87] found that if linear independence of the gradients, ∂fj/∂z, cannot be guar-
anteed, the number of active inequality constraints can be relaxed. The mixed-integer
representation of the KKT-conditions and the relaxed constraint on the number of active
inequality constraints is given by Eq. (A.3a) to Eq. (A.3g). Note that the Big − M pa-
rameter in Eq. (A.3d) represents an upper bound to the slack variables of the inequality
constraints. Furthermore, it can be noted that the resulting mixed-integer linear/non-
linear program (MI(N)LP) does not require strict convexity of the constraint functions,
fj(x, z, θ) ≤ 0, j ∈ J , and thereby does not rely on the assumption of critical points corre-
sponding to vertices. To also be able to solve non-convex system formulations in general,
the active constraint strategy was later extended by Floudas et al. [88] to a global solution
algorithm.

∑
j∈J

λj = 1 (A.3a)

fj(d, z, θ) + sj = 0, j ∈ J (A.3b)∑
j∈J

λj
∂fj

∂z
= 0 (A.3c)

sj −M(1 − yj) ≤ 0, j ∈ J (A.3d)
λj − yj ≤ 0, j ∈ J (A.3e)∑

j∈J

yj ≤ nz + 1 (A.3f)

sj ≥ 0, λj ≥ 0, yj ∈ 0, 1 j ∈ J (A.3g)

1Note that the number of potential active sets is limited by the constraint that exactly nz +1 inequality
constraints must be active at the solution.
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