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Abstract 
 

Particle transport in microfluidic environments is often dominated by slow diffusion near 

interfaces. However, by inducing localized fluid flow, it is possible to actively transport 

suspended nano-objects in confined spaces. One promising method for achieving precise and 

dynamic control over fluid flow on the microscale is to use photothermal effects based on the 

illumination of plasmonic metal nanoparticles, which exhibit very high optical absorption for 

light wavelengths near resonance. The particles can thus be used as nanoscale heat sources that 

locally increase the temperature of the surrounding fluid, resulting in processes such as 

thermophoresis, convection, and vapor bubble generation. This thesis focuses on the latter 

effect and the associated bubble nucleation and thermal Marangoni convection processes. 

Marangoni flows result from the surface tension gradient that establishes on a 

thermoplasmonically induced vapor bubble at equilibrium. However, in addition to this, strong 

flow transients appear as a bubble is created and expands. Both phenomena lead to similar flow 

profiles. Here it is shown that the direction of these flows can be controlled by manipulating 

the temperature gradient on the surface of the bubble. Specifically, it is demonstrated that the 

direction of the strong transient flows around a nanobubble can be reverted by breaking the 

photothermal symmetry using two unequal nearby arrays of plasmonic nanoparticles. 

Furthermore, we investigate the possibility of remotely controlling the flow direction by 

turning the incident light polarization. The results are based on vectorial flow measurements 

using optical force microscopy supported by extensive flow profile simulations. 

 

Keywords: thermoplasmonics, microfluidics, Marangoni flow, microbubbles, optical force 

microscopy 
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Chapter 1 
 

Introduction 
 

 
The Marangoni flow, which was first reported by Giuseppe Matteo Marangoni in 1865, is the 

induced fluid flow along an interface due to an obtained surface tension gradient. As some 

simple examples, we can refer to tears of wine and self-propelled camphor disk boat that are 

described by this effect. In both cases, the spatial variation of a solute concentration (Alcohol 

or camphor) will create a surface tension gradient at the liquid interface, resulting in a flow 

from the alcohol/camphor-rich area to the water-rich area (Figure 1) [1].  

 

 
Figure 1. (a) Tears of wine form on a wine glass: Over time the alcohol in the wine evaporates from the surface 

at a rate higher than water, decreasing the concentration of alcohol in the meniscus. This creates a surface 

tension gradient that moves the meniscus up the walls of the glass leading to the formation of a film on the glass 

surface which is even more depleted of alcohol resulting in more wine getting pulled up. Finally, droplets will 

be formed, and the tears of wine will run down due to gravity. (b) self-propelled camphor disk boat: This 

vintage toy boat is propelled by a difference in surface tension. As the camphor mixes with water at the stern of 

the boat a gradient of surface tension is created pushing the boat forward. 

 

In addition to the concentration gradient, other mechanisms can establish a surface tension 

gradient including a temperature gradient. In this case, this effect is referred to as the 

thermocapillary effect. 

The spatial temperature variation at a liquid interface will lead to variations in surface tension, 

consequently creating unbalanced surface stress. This surface stress then will be compensated 

by a flow from the region with low surface tension (hot region) to the region with high surface 

tension (cold region) at the boundary. To conserve the fluid volume, for an incompressible 

fluid, the motion along the interface must be followed by the motion in the bulk. Therefore, the 

thermocapillary phenomenon induces a convective flow in the bulk of the heated fluid. Since 

the induced surface stress depends on the spatial temperature gradient and not on the value of 

the temperature, this effect can be very strong even for small changes in temperature, if the 

scale is small enough, making it a favorable mechanism to create flow in micro and nanoscale 

[2].  
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One of the most flexible and feasible platforms for achieving a desired temperature profile on 

the micro and nanoscale is plasmonic nanostructures [3]. Metallic nanostructures have shown 

great potential as local heat sources by enhanced absorption of light. The absorbed light excites 

collective electron motion in the metallic nanoparticle (i.e., plasmons), resulting in heat 

generation due to the Joule effect. Thus, the metallic nanoparticle will act as a hotspot that can 

locally increase the temperature of the surrounding fluid [4]. In addition, the polarization and 

chromatic dependence of the absorption cross-section of plasmonic nanostructures make them 

a great asset for achieving highly configurable temperature gradients [5-8]. Moreover, due to 

the enhanced light-matter interaction, these metallic nanostructures are able to rapidly 

superheat and vaporize the surrounding water into a microscopic bubble. The thermal surface 

tension gradient on the surface of this vapor bubble can in turn drive localized fluid flow due 

to the Marangoni effect [9-13], and provide an effective route toward optothermal manipulation 

at the micrometer scale. 

This thesis is about manipulating the temperature gradient on a microbubble surface using 

plasmonic nanoantennas with the aim of controlling the flow on the bulk and close to the 

surface.  

In Chapter 2, we will provide a brief overview of the physics underlying heat generation by 

plasmonic structures and the Marangoni flow. Additionally, we will review the equations that 

we employed to model and simulate these flows. 

In Chapter 3, we will discuss the methods we used experimentally to measure the induced 

flows. 

Finally, in Chapter 4 we will mention the remaining research questions and the possible 

outlooks. Finally, in Chapter 4, we will mention the remaining research questions and explore 

possible avenues for future research.  
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Chapter 2 
 
 

Thermoplasmonics and Marangoni flow  
 

 
In the past twenty years, there has been an increasing interest in the study of thermal processes 

driven by the heating of plasmonic nanoparticles, giving rise to the field of thermoplasmonics. 

Simple designs, biocompatibility, straightforward fabrication methods, and the ability to 

release heat on the nanoscale have made the plasmonic nanostructures the perfect heat sources 

that can be used for many applications including Photothermal therapy and cell biology, 

Photothermal and hot-electron chemistry, soft matters and fluids and solar light harvesting. In 

this chapter, we will mainly focus on the physics behind the plasmonic heat sources and their 

effect on a liquid medium. The spatial variation of temperature in liquids can drive many 

thermal processes, such as enhanced Brownian motion, thermo-viscous effects, thermo-

osmosis, thermophoresis, convection, and phase change. Among these, convection (Marangoni 

convection) and phase change (vapor bubble generation) are the main processes relevant to our 

experiments [14, 15].  
 

 
Figure 2:. Current research landscape in thermoplasmonics. 

 

2.1. Scattering and absorption of light by metallic nanostructures  

The scattering and absorption of light by plasmonic nanostructures, and the consequent 

temperature increase, are highly dependent on the shape and composition of the structures and 

the polarization and the wavelength of the incident light. To understand these dependencies 
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and how metallic structures can generate heat by absorption of light, we must first understand 

how light interacts with matter. In this section, we will discuss the simple case of elastic 

scattering and absorption of light by metallic nanoparticles, where nonlinear optical effects are 

not considered. So, we will consider a linear, nondispersive, homogenous medium in all cases.  

Light is an electromagnetic field, and it is described by two related vector fields that are a 

function of position and time: Electric field �⃗� (𝑟, 𝑡) and magnetic field �⃗⃗� (𝑟, 𝑡).  �⃗�  and �⃗⃗�  
oscillates in phase with one another and their direction of oscillation is orthogonal to one 

another and the direction of propagation. The relation between these two vector fields in any 

medium is governed by Maxwell’s equations. 

When light propagates through a source-free nonmagnetic conductive medium, Maxwell’s 

equations in the differential form are written as: 

∇ × �⃗⃗� =
∂

∂𝑡
�⃗⃗�  +  𝐽 , 2-1 

∇ × �⃗� = −
∂

∂𝑡
�⃗� , 2-2 

∇ ⋅ (𝜖𝑟𝜖0�⃗� ) = 0, 2-3 

∇ ⋅ (𝜇𝑟𝜇0�⃗⃗� ) = 0, 2-4 

 

where �⃗⃗� (𝑟, 𝑡), �⃗� (𝑟, 𝑡), and 𝐽 (𝑟, 𝑡) are the electric displacement (electric flux density), magnetic 

flux density and electric current density and 𝜖0, 𝜖𝑟, 𝜇0 and 𝜇𝑟 are permittivity of free space, 

relative permittivity, the permeability of free space, and relative permeability respectively.  

Here, we will restrict our discussion to the interaction of electric field �⃗� (𝑟, 𝑡) and the medium. 

As a result, we only need to focus on equation 2-1. But first, let’s consider the simple case of 

having a dielectric medium instead of a conductive one, in the other word  𝐽 = 0 [16].  

The electric displacement, �⃗⃗� (𝑟, 𝑡), is the response of a material to an external electric field, 

and it is determined by the macroscopic polarization density �⃗� .   

�⃗⃗� = 𝜖0�⃗� + �⃗� , 2-5 

the vectors �⃗�  and �⃗�  at every position and time are parallel and related as: 

�⃗� = 𝜖0𝜒�⃗� , 2-6 

where 𝜒  is called the electric susceptibility. By substituting 2-6 in 2-5 we will have: 

�⃗⃗� = 𝜖0�⃗� + 𝜖0𝜒�⃗� = 𝜖0(1 + 𝜒)�⃗� , 2-7 

where (1 + 𝜒) is called the relative permittivity, 𝜖𝑟. 

Now, if we consider a conductive medium such as metals, with linear conductive properties. 

We can define 𝐽   as:  

𝐽 = 𝜎�⃗� , 2-8 

where 𝜎 is the conductivity. In this case, for a monochromatic wave of angular frequency 𝜔, 

we can rewrite the equation 2-1 as: 

∇ × �⃗⃗� = 𝑗𝜔𝜖0𝜖𝑟�⃗� + 𝜎�⃗� = 𝑗𝜔 𝜖𝑐�⃗�  , 2-9 

where 𝜖𝑐 is the effective electric permittivity defined as: 

𝜖𝑐 = 𝜖0𝜖𝑟 +
𝜎

j𝜔
= 𝜖0𝜖𝑟(1 +

𝜎

𝑗𝜔𝜖0𝜖𝑟

) 2-10 

The effective permittivity is a complex, frequency-dependent parameter [16].  

Since conductive metals have a slow response to an applied electric field at optical frequencies, 

we must consider a complex, frequency-dependent conductivity for them. One approach to do 

this is using the Drude model [16]. 
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In the Drude model, we consider the conduction band electrons as an ideal gas of independent 

particles that move freely between scattering events, resulting in a frequency-dependent 

complex conductivity [16]: 

𝜎 =  
𝜎0

1+𝑗𝜔𝜏
 , 

2-11 

where 𝜎0 is low-frequency conductivity and 𝜏 is the scattering time (or the relaxation time of 

the free electron gas) [16]. For a medium that has free-space-like dielectric properties with no 

other losses (𝜖 = 𝜖0), from 2-10 and 2-11 we get the Drude relative effective permittivity as: 

𝜖𝑑𝑟𝑢𝑑𝑒 = 1 + 
𝜔𝑝

2

−𝜔2+𝑗𝜔Γ
 , 2-12 

Where Γ is the damping factor and 𝜔𝑝 = √
𝜎0

𝜖0𝜏
 is the plasma frequency. By defining 𝜎0 =

𝑛𝑒2𝜏

𝑚𝑒
, 

we will have: 

𝜔𝑝 = √
𝑛𝑒2

𝜖0𝑚𝑒
 , 2-13 

where 𝑛 is the charge density and 𝑚𝑒 is the effective electron mass [16]. 

Now, for adding the effect of intraband transitions, we can consider the Drude-Lorentz model: 

𝜖Drude−Lorentz = 1 + ∑  𝑚
𝑖=1

𝑓𝑖𝜔𝑝
2

𝜔0𝑖
2 −𝜔2+𝑗Γ𝑖𝜔

 , 2-14 

where 𝜔0𝑖, Γ𝑖, 𝑓𝑖  are the resonance frequency, damping frequency, and oscillator strength. This 

model is used to describe the complex permittivity of gold in all of the simulations done in this 

thesis with parameters according to ref. [17]. 

If the radius of the plasmonic structure, 𝑎, is much smaller than the wavelength of the incident 

light in the surrounding medium, 𝜆𝑚 = 𝜆0/𝑛𝑚 (where 𝜆0 is the wavelength of light in free 

space and 𝑛𝑚 is the refractive index of the surrounding medium), we can use the quasi-static 

approximation to determine the scattering and absorption cross sections. This is referred to as 

“Rayleigh” theory. According to Rayleigh theory, the scattering and absorption cross section 

of a spherical particle in a homogenous dielectric medium is defined as [18, 19]: 

𝜎𝑠𝑐𝑎 =
2

3𝜋

(2𝜋𝑎)6

𝜆𝑚
4 |

�̃�−1

�̃�+2
|
2

=
8𝜋4

3𝜆𝑚
4

|𝛼(𝜔)|2, 2-15 

𝜎𝑎𝑏𝑠 =
−(2𝜋𝑎)3

𝜋𝜆𝑚
Im (

�̃�−1

�̃�+2
) = 

2𝜋

𝜆𝑚
Im {𝛼(𝜔)}, 2-16 

where 𝜖̃ =
𝜖r

𝜖m
  is the ratio of complex relative permittivity of the metallic medium to the real 

relative permittivity of the dielectric medium and 𝛼(𝜔) = 4𝜋𝑎3 �̃�−1

�̃�+2
  is the polarizability. 

Based on 2-15 and 2-16 we can conclude that the absorption cross section is proportional to 

𝜆𝑚
−1 and 𝑎3 and scattering cross section is proportional to 𝜆𝑚

−4 and 𝑎6 respectively. Unless the 

condition 𝜖̃ = −2 is satisfied, in which the localized surface plasmon resonance will occur. For 

noble metals, the wavelength in which this condition is satisfied is in visible and near-infrared 

region. 

One property of these plasmonic resonances is absorption enhancement, which will result in a 

temperature increase.  

But, before discussing the heat generation by metallic nanostructures, we must explain that 

although the analytical solution for scattering an absorption given by Rayleigh theory gives us 

a good insight into how and why these properties change with size and wavelength and why an 

enhancement occurs, obtaining the cross sections of particles with arbitrary shapes is beyond 

the ability of Rayleigh or Mie solution. For these structures numerical methods such as the 

Finite-Difference Time-Domain method (FDTD) [20], and Finite Element Method (FEM) [21], 
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must be used for obtaining the scattering and absorption cross sections. Here, we have used a 

commercial FEM solver, COMSOL Multiphysics, to numerically calculate the absorption 

spectra of circular and ellipsoidal gold nanodisks. 

One last thing that should be discussed in this section is the polarization dependency of the 

absorption cross section in elongated metallic nanostructures.  

In contrast to symmetrical nanostructures, the absorption spectrum of elongated nanostructures 

has two plasmon bands that correspond to electron oscillations along their length (longitudinal 

mode) and across their section (transverse mode).  

This shape effect can be simply described by using an anisotropic dynamical polarizability 

matrix:  

𝛼(𝜔) = {

𝛼⊥(𝜔) 0 0

0 𝛼∥(𝜔) 0

0 0 𝛼⊥(𝜔)

} 2-17 

For example, in the case of an ellipsoidal disk shown in the inset of figure 3, 𝛼∥(𝜔) and 𝛼⊥(𝜔) 

are the polarizability along the major (OY) and minor (OY) axes resulting in two peaks in the 

absorption spectrum. This property can be used for controlling heat generation by turning the 

incident polarization [22, 23].  

 
 

 
Figure 3: Absorption spectra of gold nanodisks (red, diameter 50 nm, height 60 nm) and nano ellipsoids (long 

axis diameter 100 nm, short axis diameter 50 nm, height 60 nm) for incident polarization parallel (blue) and 

perpendicular (green) to the long axis. 

 

2.2. Heat generation by metallic nanostructures  

As shown in section 2.1, metallic nanostructures are able to enhance the scattering and 

absorption of light at specific wavelengths in the visible and near-infrared regions due to their 

localized surface plasmon resonances. When metallic nanostructures are excited by light, the 

energy of incident photons will excite the collective oscillation of electrons which drives a 

current within the metal. Owing to the lossy nature of the metallic structures in optical 

frequencies, resistive heat will be generated in them. The delivered power by the nanostructure 

can be expressed either by the absorption cross section [4, 14]: 

𝑞(𝑟) =  𝜎𝑎𝑏𝑠𝐼 𝑉⁄ , 2-18 

where 𝐼 is the irradiance of the incident light, and 𝑉 is the volume of the nanostructure, or the 

oscillating current [4, 14]: 



2.2. Heat generation by metallic nanostructures   

 

 

7 

𝑞(𝑟, 𝑡) =  𝐽 (𝑟, 𝑡). �⃗� (𝑟, 𝑡). 2-19 

Since the thermal processes happen during the continuous wave illumination are much slower 

than the electric field oscillations, we can use the averaged heat source density over the period 

of electromagnetic wave defined as [4, 14]: 

𝑞(𝑟) =
𝜔

2
𝜖0𝐼𝑚{𝜖𝑟(𝜔)}|�⃗� (𝑟)|

2
. 2-20 

In our simulations, equation 2-18 is used to calculate the generated heat by nanostructures.  

After the generated heat (absorbed power) is calculated, it is possible to calculate the heat 

dissipation within the nanoparticle and the surrounding medium. To do so, we can consider 

two main heat transfer mechanisms: conduction and convection. The model that can be used 

for heat transfer is [24-27]: 

(𝜌𝐶𝑝

∂𝑇

∂𝑡
− 𝑘∇2𝑇) + 𝜌𝐶𝑝𝐮 ⋅ ∇𝑇 = 𝑞, 2-21 

where 𝜌, 𝐶𝑝, 𝑘 are the material density, the material heat capacity at constant pressure, and the 

material thermal conductivity, and 𝑞 is the calculated heat source density [24-27]. 

The first term in equation 2-21 models the conduction heat transfer. Conduction is the process 

of thermal energy transition via collisions between neighboring atoms/molecules. 𝜌 and 𝐶𝑝 

determine how much energy is required to increase the temperature of the material, and 𝑘 

describes the relation between the heat flux vector and the temperature gradient, in other words, 

it describes the ability of the material to conduct heat.  

The second term in equation 2-21 models the convection heat transfer. In this mechanism, 

thermal energy transition is due to the transport of the hot fluid molecules, and it is governed 

by the fluid velocity field, 𝐮. We will talk more about the heat induced fluid flows in section 

2.3.  

It should be mentioned that, in addition to convection and conduction, radiation is the third 

fundamental heat transfer mechanism. However, this mechanism is generally inefficient in 

plasmonic systems. As a result, it has been neglected in all of the simulations done in this thesis 

[27].  

Also, according to our simulations, it was observed that the induced fluid flow does not have a 

significant effect on heat dissipation and the resulting temperature profile, making conduction 

the dominant mechanism for heat dissipation in our system. 

Before finishing this section, we will discuss the thermoplasmonic vapor bubbles.  

Naturally, when the temperature of the water increases, above a certain temperature, a vapor 

bubble will nucleate. Surprisingly, this very simple phenomenon that we have observed so 

many times in macro scales, while boiling water for example, has a very complicated 

mechanism in the microscale which has been the subject of many studies.  

Here, we will only focus on the bubble formation, growth, and dissipation under continuous 

wave illumination in water via a thermoplasmonic system.  

So many thermoplasmonic systems have been designed for generating and studying 

microbubbles. We can divide these systems into two categories: continuous and isolated 

structures. In continuous structures, such as continuous plasmonic films or distributed arrays 

of metallic nanostructures, the size of the bubble is determined by the laser focal spot size [11, 

28-30]. Meanwhile, in isolated structures the size is determined by the size of the structure [10, 

31, 32]. Therefore, it is possible to heat several isolated structures separately, using a single 

large laser beam without being worried about creating one giant bubble. 
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Figure 4: Left: Generated bubble on top of an isolated plasmonic structure. In this case, the size of the bubble is 

controlled by the size of the structure. Right:  Generated bubble on top of a continuous plasmonic structure. In 

this case, the size of the bubble is controlled with the laser focal spot size. 

Regardless of the structure, in thermoplasmonic systems, the surface in which the bubble is 

generated is smooth and clean. As a result, no nucleation site, or cavities, exists on the surface. 

According to trapped vapor theory, these air-filled cavities make the water boil at 100℃, which 

is the known water boiling point [33]. But, for smooth surfaces, the temperature in which the 

phase transition actually happens is between 100℃ and water spinodal temperature. Spinodal 

temperature, is the temperature in which the liquid cannot remain in a liquid state anymore. 

The next stage is bubble growth. It has been explained that the growth of the thermoplasmonic 

bubble has two phases. The first phase includes the nucleation and growth of the bubble due to 

the direct vaporization of superheated water. The second phase is the growth of the bubble due 

to the diffusion of the dissolved gas molecules from the superheated water into the bubble. 

Since the second phase is almost continuous, the generated bubble can be enlarged to hundreds 

of micrometres [34].  

The last stage is bubble dissipation. In most applications, we are more interested in creating 

small bubbles (with a diameter of less than 2μm) that can dissipate fast (less than 1ms). It has 

been shown that the presence of the dissolved gas in the bubble is the main reason for its slow 

dissipation, and the dissipation rate depends on the initial bubble size [35, 36]. 

One solution to decrease the bubble lifetime is utilizing degassed water [11, 12, 28, 29]. In this 

case, the second phase of growth will be prohibited. Although this method is very useful for 

the case of continuous structures, it might not be feasible in many applications, both due to the 

complex and time-consuming preparation of degassed water and the inevitable re-dissolving 

of air into water over time [34, 37]. However, in the case of isolated structures, the bubble size 

is decreased due to the spatial extension of the metallic structure. In this case, due to the 

reduction of the volume of heated water, the bubble size will decrease to a few micrometres, 

which can dissipate very quickly [31]. This makes the isolated structures a better candidate for 

applications in which we need to have dynamic control over bubble nucleation and dissipation. 

So far, Namura et al. reported the emergence of plasmonic bubbles using both continuous (Gold 

nanofilms) [11, 12, 28, 29], and isolated plasmonic structures (Gold micropetals) [10] in 

degassed water with sizes around 5~10 μm. 

In addition, Jones et al. have shown that it is possible to increase the temperature locally by 

utilizing spatially isolated plasmonic nanoantennas (Circular gold nanodisks) for heat 

generation in air-equilibrated water. They were able to decrease the bubble size to less than 

1μm, which could dissipate very quickly, making it an excellent tool for achieving rapid 

dynamic control [31].  
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2.3. Heat induced flows  

2.3.1. Persistent flow  

Here we will concentrate on the fluid velocity fields, 𝐮, that are driven by the buoyancy effect 

or surface tension created by thermal effects. 

The buoyancy driven flow is generated due to the decreasing of the fluid density with 

increasing temperature. In most materials the density changes linearly with temperature : 

𝜌 = 𝜌0 − 𝛽𝜌0(𝑇 − 𝑇0) 2-22 

Where 𝛽 is the thermal expansion coefficient. Thus, the heated fluid will rise into the cooler 

region and the cooler fluid from the surroundings will flow into the heated region.  

The surface tension driven flow is generated due to the decrease of surface tension with 

increasing temperature on a boundary. Similar to density, surface tension, 𝛾, also changes 

linearly with temperature, 𝑇 [2]: 

𝑑𝛾

𝑑𝑇
=  𝛾𝑇 2-23 

Where 𝛾𝑇 is the surface tension coefficient. In the following, we will see that 𝛾𝑇 can be used 

to relate the normal component of the shear stress to the tangential derivative of the 

temperature. 

The velocity of buoyancy or surface tension driven flows is usually small; therefore, the fluid 

motion can be described by the Boussinesq approximation of the Navier-Stokes equations for 

an incompressible fluid (∇. 𝒖 = 0) [38]: 

𝜕𝒖

𝜕𝑡
+ (𝒖. ∇)𝑢 =  −

1

𝜌
∇𝑝 + 𝜈∇2𝒖 + 𝑔𝛽𝑇𝑒𝑧⃗⃗  ⃗ 2-24 

Where 𝜈 is the kinematic viscosity and is equal to dynamic viscosity 𝜇, divided by the density. 

𝑝 is the fluid pressure, and we assume a homogenous gravity field 𝑔 = −𝑔𝑒𝑧⃗⃗  ⃗.  
To consider the thermal Marangoni effect the following boundary condition that acts at the free 

surface of the fluid (typically a gas-liquid interface) must be considered [38]: 

[−𝑝𝐼 + 𝜇(𝛻𝒖 + (𝛻𝒖)𝑇)]�̂� = 𝛾(𝛻𝑡 ⋅ �̂�)�̂� − 𝛻𝑡𝛾 

 
2-25 

By replacing the 2-23 into 2-25, we will have: 

[−𝑝𝐼 + 𝜇(𝛻𝒖 + (𝛻𝒖)𝑇)]�̂� = 𝛾(𝛻𝑡 ⋅ �̂�)�̂� − 𝛾𝑇𝛻𝑡𝑇, 

 
2-26 

where, �̂� is the outward directed unit normal vector to the air/water (bubble) interface. The first 

term on the right side of equation 2-26 is the Laplace pressure and represents the normal forces 

that create the curvature of the interface. The second term, however, represents the tangential 

forces that are created due to the temperature gradient [38].  

We have used equations 2-21, 2-24, and 2-26 to simulate the fluid velocity field, u, and the 

heat transfer in our system.  

At this point, we have realized that the induced flow pattern created due to the Marangoni effect 

is proportional to the tangential derivative of the temperature on the air/water (bubble) 

interface. This means that for the case of a single bubble nucleated on top of a heat source 

demonstrated in figure 5.a, the flow on the bubble surface will be from the bottom to the top, 

which then will be followed by two symmetrical vortices in the bulk and finally an induced 

flow on the substrate surface which is directed toward the heat source. This induced flow on 
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the substrate (water/glass interface) is so important since due to the no slip boundary condition 

we expect almost zero velocity close to the surface.  

Considering this argument, one straightforward way for controlling the flow close to the 

substrate is to manipulate the temperature gradient on the bubble surface. This can be easily 

done by adding another heat source on one side of the preliminary heat source and breaking 

the symmetry of the temperature profile. In this way in addition to the out-of-plane temperature 

gradient, we will also have an in-plane temperature gradient. This will induce a flow from the 

warmer side of the bubble to the colder side of it (from the right to the left for the example 

illustrated in figure 5.b.  
 

 
Figure 5: Expected Marangoni flow induced by a) Case I: a single bubble with a temperature gradient normal 

to the interface and b) Case II: a single bubble with temperature gradients both perpendicular and parallel to 

the surface c) Case III: by two unequal nearby bubbles with an additional temperature gradient parallel to the 

surface. (d) to (f) FEM simulations of Marangoni flows induced by the same structures in (a) to (c). 

 

Now, if the temperature induced by the second heat source was enough to vaporize the 

surrounding water, another bubble will appear. This will result in much more complicated flow 

patterns that depend on the size of the bubbles, the temperature of the heat sources, and more 

interestingly, the position of the bubbles.  

The induced flow due to the Marangoni effect, can also displace the bubble from its initial 

position. Figure 6 shows the displacement of a 6𝜇𝑚 bubble with the flow. The structure here 

consists of a primary array of isolated nanoantennas with 19 circular nanodisks and a secondary 

array of isolated nanoantennas with 7 circular nanodisks, and the heating laser is modulated 

with 𝑓𝑚 = 5 hz. The setup and the structures will be explained in detail in the experimental 

methods section.  

This displacement can intensify the effect of the inplane temperature gradient since one side of 

the bubble will get closer to the heat source.  
 

 
Figure 6. The displacement of a 6𝜇𝑚 bubble with the flow. The blue circles indicate the position and the size of 

the bubble within time. The yellow circle on the left is the position of the primary array of isolated 

nanoantennas with 19 circular nanodisks and on the right is the secondary array of isolated nanoantennas with 

7 circular nanodisks. The heating laser is modulated with 𝑓𝑚 = 5 ℎ𝑧. 
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Figure 5.c shows the induced flow when each of the generated bubbles is pushed away in the 

direction parallel to the temperature gradient existing on their surfaces.  

Figure 5.d to e shows the FEM simulations of the three situations explained above.  

Finally, although we have not used the concentration gradient to create the Marangoni flow in 

our simulations, the effect can be simply taken into account by adding the 𝛾𝑐𝛻𝑡𝐶  to the right 

side of the 2.25. 𝛾𝑐 is the surface tension coefficient that relates the normal component of the 

shear stress to the tangential derivative of the concentration and 𝐶 is the concentration. In some 

cases, the concentration, 𝐶 also depends on the temperature itself (for example in a 

water/alcohol solution). In this case, the existing temperature gradient on the bubble surface 

can induce both thermal and concentrational Marangoni flows.  It has been reported by Namura 

et al. that the direction of the flow around a vapor bubble can be reversed by generating vapor 

bubbles in alcohol/water mixtures instead of water. In this case, a gradient of the alcohol 

molecular population will be induced on the bubble's surface, which will create reverse surface 

tension and flow. 

 

2.3.2. Transient flow  

In addition to the persistent flow explained in the previous section, it has been demonstrated 

by Jones et al. that the microbubbles nucleated on isolated plasmonic nanostructures are able 

to induce strong transient flows with velocities >1 mm/s [32]. The direction of this induced 

fluid flow is ascribed to the Marangoni force and therefore depends on the temperature gradient 

on the bubble surface. The origin of the transient is not completely understood, but it may be 

attributed to transient pressure waves emitted by vapor bubble generation. It has been 

demonstrated that the emission of this strong transient pressure wave is due to the fast 

formation of a vapor/liquid interface under the very high temperature gradients generated at 

the nanoparticle/water interface [36]. To model the pressure wave emitted by the generation 

and expansion of the bubble, we are not allowed to use the Boussinesq approximation anymore, 

and we have to use the Navier-Stokes equation for a compressible fluid (∇. 𝒖 ≠ 0). This means 

that the term −2
3⁄ 𝜈(∇. 𝒖) will be added to the right side of equation 2-24. Moreover, we have 

to add the term −𝑙(𝑟)∇. 𝒖 to equation 2-21 in which −𝑙(𝑟) is the Clapeyron coefficient and 

represent the flow velocity field induced due to the vaporization of the liquid [39]. 

Since it has been experimentally shown that the profile of the transient flows is the same as the 

Marangoni flow, we have only simulated the Marangoni flow in this thesis.  

2.4. Stokeslet Approximation  

The solution for the flow velocity around a microscopic bubble nucleated on a no-slip interface 

can be obtained by embedding a singular point force (Stokeslet) at the distance (+ℎ) from a 

stationary no-slip plane boundary in an infinite viscous fluid (𝑉), and its image (Stokeslet 

image) at the distance (−ℎ) form the boundary [40]. 

Figure 7 shows the image system and its relevant vectors. Here,  𝑋 = (𝑋1, 𝑋2, 𝑋3) is the 

coordinate of the point (𝑃) in which we want to calculate the velocity, 𝑦 = (𝑦1, 𝑦2, ℎ) and 𝑦′⃗⃗  ⃗ =
(𝑦′

1
, 𝑦′

2
, −ℎ) are the coordinates of the Stokeslet and Stokeslet image, and the translated 

coordinates 𝑟 = (𝑟1, 𝑟2, 𝑟3), and �⃗� = (𝑅1, 𝑅2, 𝑅3) are defined as (𝑋 − 𝑦 ) and (𝑋 − 𝑦′⃗⃗  ⃗), 

respectively [40]. 
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Figure.6: The position of stokeslet and image, and relevant vectors 𝑋 , 𝑟 and �⃗� . 

The velocity vector can be calculated by: 

𝑢𝑖 = 𝐹𝑗𝐺𝑖
𝑗
 2-27 

Where 𝐹𝑗 is the amplitude of the Stokeslet in the 𝑗 direction and 𝐺𝑖
𝑗
 is the Green’s function. So, 

all we have to do is to construct the green function. Here, 

𝐺𝑖
𝑗
= 𝑢𝑖

𝑗
+ 𝑣𝑖

𝑗
 2-28 

Where, 𝑢𝑖
𝑗
 and 𝑣𝑖

𝑗
 are the fundamental singular solutions due to the Stokeslet and Stokeslet 

image, respectively [40]. 

Let’s start with 𝑢𝑖
𝑗
. To obtain 𝑢𝑖

𝑗
, we need to solve the equation 2-24, considering the point 

source as a unit vector in 𝑗 direction at 𝑋 = 𝑦 . Lucky for us, we are able of making the problem 

much simpler by following assumptions [40-42]: 

1- We will only consider the steady state flows (
𝜕𝑢

𝜕𝑡
= 0). 

2- Since the inertial forces are very small in comparison to the viscous forces, we will consider 
(𝑢. ∇)𝑢 ≈ 0. 

3- We will consider the image as point force of equal magnitude, but of opposite sign. 

4- We consider the plane boundary to be 𝑥3 = 0 (𝑢 = 0 𝑜𝑛 𝑥3 = 0). 

5- And finally, we ignore any other external forces including gravity. 

Considering these assumptions, equation 2-24 can be written as: 

∇𝒑𝒋 =  𝜇∇2𝒖𝒋 + 𝒆𝒋𝛿(𝑋 − 𝑦) 2-29 

The solution to this equation can be obtained by implementing a three-dimensional Fourier 

transform with suitable conditions at infinity. This results in the following velocity 

components: 
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𝑢𝑖
𝑗
= 

1

8𝜋𝜇
[
𝛿𝑖𝑗

𝑟
+

𝑟𝑖𝑟𝑗

𝑟3
], 

 

2-30 

in which, 𝑟 = √(𝑟1
2 + 𝑟2

2 + 𝑟3
2)

2
 is the distance between the Stokeslet and the point (𝑃). 

Now, we turn to the problem of obtaining complementary solution 𝑣𝑖
𝑗
. The Navier-Stokes 

equation can be written as: 

∇𝒒𝒋 =  𝜇∇2𝒗𝒋 − 𝒆𝒋𝛿(𝑋 − 𝑦′), 2-31 

where 𝒒𝒋, and 𝒗𝒋 are the complementary pressure and velocity singularities. To solve this 

equation, we have to consider the following boundary condition: 

𝒗𝒋(𝑆) = −𝒖𝒋(𝑆), 2-32 

where 𝑆 defines the set of points on the plane boundary. This will guarantee the no-slip 

condition on the boundary.  

Considering this condition and by implementing a two-dimensional Fourier transform the 

solution for 𝑣𝑖
𝑗
 is: 

𝑣𝑖
𝑗
= 

1

8𝜋𝜇
[− [

𝛿𝑖𝑗

𝑅
+

𝑅𝑖𝑅𝑗

𝑅3
] + 2ℎ(𝛿𝑗𝛼𝛿𝛼𝑘 − 𝛿𝑗3𝛿3𝑘)

𝜕

𝜕𝑅𝑘
{
ℎ𝑅𝑖

𝑅3
− [

𝛿𝑖3

𝑅
+

𝑅𝑖𝑅3

𝑅3
]}] 

 

2-33 

Where 𝛼 = 1,2, and 𝛿𝑖𝑗 signifies the Kronecker delta while the tensor (𝛿𝑗𝛼𝛿𝛼𝑘 − 𝛿𝑗3𝛿3𝑘) is 

non-zero only when 𝑗 = 𝑘 and equal to +1 for 𝑗 = 1 or 2, and -1 for 𝑗 = 3, and  𝑅 =

√(𝑅1
2 + 𝑅2

2 + 𝑅3
2)

2
 is the distance between the Stokeslet image and the point (𝑃) [42]. 

Finally, by substituting 2-32 and 2-33 in 2-28, 𝑢𝑖 will be defined as: 

𝑢𝑖 = 
𝐹𝑗

8𝜋𝜇
[[

𝛿𝑖𝑗

𝑟
+

𝑟𝑖𝑟𝑗

𝑟3
] − [

𝛿𝑖𝑗

𝑅
+

𝑅𝑖𝑅𝑗

𝑅3
]

+ 2ℎ(𝛿𝑗𝛼𝛿𝛼𝑘 − 𝛿𝑗3𝛿3𝑘)
𝜕

𝜕𝑅𝑘
{
ℎ𝑅𝑖

𝑅3
− [

𝛿𝑖3

𝑅
+

𝑅𝑖𝑅3

𝑅3
]}] 

 

2–34 

 

Figure 8 shows the stokeslet simulations for three cases introduced in section 2.3.1. To model 

case I, it’s enough to assume one stokeslet, 𝑆1 = (0, 0, 𝐹3), on (0, 0, ℎ1). However, for case II, 

we should add a force pointing in x direction in order to model the temperature gradient in that 

direction. This will result in a tilted stokeslet, 𝑆2 = (𝐹1, 0, 𝐹3), on  (0, 0, ℎ1). Finally, for Case 

III, we assumed two tilted Stokeslets in opposite directions, 𝑆3 and 𝑆4 to model the two bubbles 

with opposing in plane temperature gradients. 
 

 
Figure.8: Stokeslet simulations of Marangoni flow induced by a) Case I: a single bubble with a temperature 

gradient normal to the interface and b) Case II: a single bubble with temperature gradients both perpendicular 

and parallel to the surface c) Case III: by two unequal nearby bubbles with an additional temperature gradient 

parallel to the surface.  
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Chapter 3 

 

 

Research Methods  
     

In this chapter, we will review the research methods used in our experiments. 

3.1. Holographic optical tweezing 

As its name suggests, optical tweezers use optical forces to tweeze an object. So, to realize how 

optical tweezers work, one must first understand what optical forces are. 

It was first predicted by Maxwell and Bartoli in the 1870s that radiation pressure exists due to 

the momentum of light [43]. One specific example to illustrate this momentum is the case of 

plane-wave light normally incident onto a flat, perfect mirror. The magnitude of the momentum 

that each photon carries is equal to  ℎ 𝜆⁄ , and its direction is in the direction of light propagation. 

However, when the light gets reflected (not transmitted), the magnitude of the momentum 

remains the same, but its direction is reversed. This will result in a 2ℎ 𝜆⁄  net change of 

momentum per photon, which will impart a force on the mirror due to the conservation of 

momentum. This force is called the radiation pressure force and acts to push particles in the 

direction of incident light [43].  

In more general terms, phenomena such as scattering, and absorption can stop the transmission 

of light. The total power not transmitted by the particle due to these phenomena must convey 

a force upon the particle, which is calculated by: 

𝐹𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 =
𝑛𝑚

𝑐0
𝑃𝑒𝑥𝑡𝑖𝑛𝑐𝑡,  3-1 

in which, 𝑛𝑚 is the refractive index of the particle and 𝑃𝑒𝑥𝑡𝑖𝑛𝑐𝑡 is the total power lost due to the 

extinction of transmitted light: 

𝑃𝑒𝑥𝑡𝑖𝑛𝑐𝑡 = (𝜎𝑠𝑐𝑎 + 𝜎𝑎𝑏)𝐼0,  3-2 

where, 𝐼0 is the intensity of incident light, and 𝜎𝑠𝑐𝑎 and 𝜎𝑎𝑏𝑠 are defined in chapter 2. 

Another important optical force, which is the main force in optical tweezing, is the gradient 

force. The gradient force is due to the gradient of the intensity of incident light, and it pulls the 

particle into regions of higher electric field intensity [44].  

When a sub-wavelength particle is illuminated by linearly polarized monochromatic light, it 

will act as a dipole. The dipole moment of the particle is calculated by [44]: 

𝑝 = 𝜖0𝜖m𝛼�⃗� ,  3-3 
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where 𝛼(𝜔) is the polarizability that we defined in Chapter 2. The induced force due to the 

interaction of this dipole and the external electromagnetic field (Lorentz force) can be written 

as: 

𝐹 Lorentz = (𝑝 ⋅ ∇)�⃗� +
𝑑𝑝 

𝑑𝑡
× �⃗� = 𝜖0𝜖m𝛼 ((�⃗� ⋅ ∇)�⃗� +

𝜕�⃗� 

𝜕𝑡
× �⃗� )  

 

3-4 

By using the vector identity ∇(𝐴 1 ⋅ 𝐴 2) = 𝐴 1 × (∇ × 𝐴 2) + 𝐴 2 × (∇ × 𝐴 1) + (𝐴 1. ∇)𝐴 2 +

(𝐴 2. ∇)𝐴 1 with 𝐴 1 = 𝐴 2 = �⃗� ,  we will have: 

(�⃗� . ∇)�⃗� =
1

2
∇|𝐸|2 − �⃗� × (∇ × �⃗� ) 3-5 

By replacing 3-5 into 3-4 and using the Faraday’s law (∇ × �⃗� = −𝜕𝑡�⃗� ), we will have: 

𝐹 Lorentz =
1

2
𝜖0𝜖m𝛼∇|𝐸|2 + 𝜖0𝜖m𝛼

𝜕

𝜕𝑡
(�⃗� × �⃗� )  

 
3-6 

Taking the time average of 3-6, we will have: 

𝐹 gradient = 〈𝐹 Lorentz 〉𝑡 =
1

4
𝜖0𝜖m𝛼∇|𝐸|2 + 𝜖0𝜖m𝛼𝜇0

𝜕𝐼0

𝜕𝑡
,  

 
3-7 

where 𝜇0 is the permeability of free space. Finally, if we assume a time-constant electric field 

intensity, the optical gradient force will be defined as: 

𝐹 gradient =
1

4
𝜖0𝜖m𝛼∇|𝐸|2  

 
3-8 

As can be observed from equation 3-8, for positive polarizability, the gradient force pulls the 

particles along the electric field intensity gradient. 

One way to achieve very strong electric field gradient is by focusing a laser beam using a high 

numerical aperture objective. One practical approach to gain a better understanding of how a 

focused laser beam can trap a particle is the ray-optics approximation illustrated in figure 9.b. 

In case I, since the particle is positioned at the focal spot, the momentum of the transmitted 

light will be same as the incident light, therefore no gradient force will act on the particle. 

However, when the particle is lightly displaced from the focal point (case II to case IV), then 

the transmitted light momentum will change, and this change of momentum will result in 

exerting a force upon the particle and pulling it back to the focal spot. For small displacements 

from the equilibrium position, the restoring optical force change linearly with the displacement 

along each axis, making the restoring force Hookean: 

𝐹 i,gradient = 𝐾𝑖∆𝑟𝑖  3-9 

In which, 𝐾𝑖 and ∆𝑟𝑖  are the spring constant and the displacement along the 𝑖 axis, respectively. 
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Figure.9: Ray optic illustration of (a) Radiation pressure force act on a perfect mirror. (b) gradient forces act 

on a dielectric sphere when case I: the particle is at the focal spot (no gradient force). Case II to case IV: the 

particle is slightly displaced from the focal spot. 

Now, if we are able to move the focal spot of the laser, we can use it to transport the trapped 

particle. One way to do this is to utilize a 4-f correlator. Figure 10 shows how the changes in 

direction and convergence of light at conjugate Fourier plane, will change the position of the 

laser focal spot at the trapping objective image plane.  

So, the question now is how we can control the direction and convergence of light at the 

conjugate Fourier plane?  

One approach to achieve this is the holographic optical tweezing technique. In this technique 

a Spatial Light Modulator (SLM) is used to control the light phase profile at a specific plane. 

In our experiments we have used a “liquid crystal on silicon”-SLM which consists of a 2D 

array of liquid crystal cells on top of a reflective silicon mirror. Each element in this array can 

be controlled by an applied voltage, which changes the orientation of the liquid crystal 

molecules. As a result, the reflected beam phase profile can be controlled by creating a specific 

optical path length for each pixel in the 2D array. Therefore, by placing the SLM at a conjugate 

Fourier plane, it is possible to control the spatial distribution of �⃗�  .  

 
Figure.10: An SLM and a 4-f correlator used to control the position of the trapping laser focal spot. Three cases 

are shown: nominal beam path (bright purple), deflected beam path (dark purple), deflected and convergent 

beam path (pink). 
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3.2. Optical force microscopy   

3.2.1. Quadrant Photo Diode 

As mentioned in the previous section, any perturbation in the position of the trapped particle 

position will cause a change in the direction of the transmitted light. These small changes can 

be measured to determine any external forces (Marangoni or transient flow for example) that 

may have caused this displacement. To do so we can collect the intensity distribution of 

transmitted light, using a Quadrant Photo Diode (QPD) at the conjugate Fourier plane. The 

QPD consists of four photodiodes arranged in a 2X2 array shown in figure 11. The voltage 

output signals of the QPD are the difference between the intensity of light detected by the top 

and bottom rows (∆𝐵𝑇), left and right columns (∆𝐿𝑅), and sum of all four quadrants (∑).  

Figure 11.b illustrates how, for the cases discussed and plotted in figure 9.b, the intensity 

distribution of the transmitted light changes on QPD plane. 

In order to be able to use this method to measure the particle displacement, we have to make 

sure that a linear change in the voltage signal corresponds to a linear change in the particle 

position. In another word, a linear change in the particle position must result in a linear change 

in the transmitted light momentum (a.k.a �⃗�  vector distribution), guaranteeing that the restoring 

force is Hookean. To check this condition, an adhered bead on microscope slide was scanned 

in front of the trapping focal spot by moving a piezo stage with a known velocity along each 

principal axis, which confirmed that we are operating within the linear regime. 

 

 
Figure.11: a) Overview of the experimental setup used for measuring trapped particle displacement via 

transmitted light.  The back focal plane (Fourier plane) of the collection objective is imaged onto a QPD. b) 

How particle displacement in the cases discussed and plotted in figure 9.b changes the intensity distribution on 

QPD. 
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Figure.12: Left: Overview of the experimental setup used for testing that particle displacements are within the 

linear regime. A 2 𝜇𝑚 microsphere is attached to a glass slide and scanned through the laser focal spot along 

each coordinate axis. Right: The lines show the QPD response vs the bead displacement from its nominal 

position.  

Finally, in order to convert the collected data from signals in volt to displacement in meters, 

we need to calibrate our QPD response. A trapped object, within the linear regime, can be 

approximated as a Brownian particle in a harmonic potential. To gain a better insight of this 

approximation, and how we can use it for our calibration, we should first briefly discuss 

Brownian motion. 

 

3.2.2. Brownian motion 

 

Brownian motion arises from the random kinetic impulses exerted by adjacent fluid molecules. 

The Langevin equation can be used to model how these random kinetic impulses affect the 

motion of a particle in a fluid. 

Given that we used spherical microbeads in our experiments, we modeled the particle in our 

study as a rigid sphere in a viscous medium. The kinetic impulses exerted by the adjacent fluid 

molecules were represented by the stochastic force, 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙. Lastly, it is important to note that 

we are considering a free particle moving in one direction (𝑥), and that the system is in thermal 

equilibrium. 

𝑚�̈�(𝑡) + 𝛾0�̇� = 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 3-10 

Here, 𝑚�̈�(𝑡) is the inertial term and 𝑚 is the mass of the particle, 𝛾0�̇� is the drag force and 𝛾0 

is the Stokes drag coefficient. For a spherical particle with radius 𝑎, the Stokes drag force is 

equal to 6𝜋𝜂𝑎. Where 𝜂 is the viscosity of the medium.  

Let’s start with multiplying both side of 3-10 by 𝑥, and take the ensemble average: 

𝑚⟨𝑥�̈�⟩ + 𝛾0⟨𝑥�̈�⟩ = 〈𝑥𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙〉 

 
3-11 

Since there is no correlation between the thermal force and the position and considering the 

random nature of the force with a mean of zero, the term on the right-hand side of the equation 

will be zero. Also, by considering 
𝑑

𝑑𝑡
⟨𝑥�̇�⟩ = ⟨𝑥�̈�⟩ + ⟨�̇�2⟩, equation 3-11 will turn into: 
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𝑚(
𝑑

𝑑𝑡
⟨𝑥�̇�⟩ − ⟨�̇�2⟩) + 𝛾0⟨𝑥�̇�⟩ = 0 

 

3-12 

We know based on the equipartition theory, that in thermal equilibrium, the thermal energy is 

equally shared among all degrees of freedom, so for a spherical particle moving in one 

dimension, the average kinetic energy is 
1

2
𝑚⟨�̇�2⟩ =

1

2
𝑘𝐵𝑇,  where 𝑘𝐵 is Boltzmann constant, 

and 𝑇 is the absolute temperature. As a result, equation 3-12 can be written as: 

𝑑

𝑑𝑡
⟨𝑥�̇�⟩ =

𝑘𝐵𝑇

𝑚
−

𝛾0

𝑚
⟨𝑥�̇�⟩ 
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If we take the ansatz ⟨𝑥�̇�⟩ = 𝐴0𝑒
−𝛾0

𝑡

𝑚 + 𝐴1 (where 𝐴0 and 𝐴1 are constants), and insert it into 

equation 3-13, we realize that 𝐴1 must be equal to 
𝑘𝐵𝑇

𝛾0
⁄ . So we can write ⟨𝑥�̇�⟩ as: 

⟨𝑥�̇�⟩ = 𝐴0𝑒
−𝛾0

𝑡
𝑚 +

𝑘𝐵𝑇
𝛾0

⁄  3-14 

Now, if we take the limit as 𝑡 → ∞ for 3-14: 

lim
𝑡→∞

⟨𝑥�̇�⟩ =
𝑘𝐵𝑇

𝛾0
⁄  3-15 

Considering that  
𝑑

𝑑𝑡
⟨𝑥2⟩ = 2⟨𝑥�̇�⟩ and solving for ⟨𝑥2⟩|𝑡→∞ gives: 

⟨𝑥2⟩ =
2𝑘𝐵𝑇

𝛾0
𝑡 = 2𝐷𝑡 3-16 

The term ⟨𝑥2⟩ is referred to as the Mean Squared Displacement (MSD) and is useful for 

characterizing the diffusion of Brownian particles. As we can observe, MSD has a linear 

dependence on time, with a proportionality constant, 𝐷, which is commonly referred to as the 

diffusivity. 

Now, let’s define the thermal force as 𝐹𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝜚𝜉(𝑡), where 𝜚 is the amplitude of the 

Brownian motion, and 𝜉(𝑡) is a Gaussian random variable that accounts for the stochastic 

nature of the thermal force. We can discard the inertial term in the Langevin equation in the 

long-time limit and simplify it to only include the drag force and thermal force. 

�̇� =
𝜚

𝛾0
𝜉 →  𝑥 − 𝑥0 =

𝜚

𝛾0
∫ 𝜉(𝑡′)𝑑𝑡′𝑡

0
, 
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Where 𝑥0 is the value of 𝑥 at 𝑡 = 0.  

Now, if we consider 𝑥0 = 0, by squaring both side of the equation and take the ensemble 

average: 

⟨𝑥2⟩ =
𝜚2

𝛾0
2 ∫  

𝑡

0

⟨𝜉2⟩𝑑𝑡 3-18 

Since ⟨𝜉2⟩ = 1, we will have: 

⟨𝑥2⟩ =
𝜚2

𝛾0
2 𝑡 + 𝐶0 3-19 

Since we considered 𝑥0 is equal to zero, then 𝐶0 must also be zero. By comparing equations 3-

16 and 3-19, we get: 
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𝜚 = √2𝑘𝐵𝑇𝛾0 3-20 

This equation shows the dependency of Brownian motion to the drag force. 

As we mentioned in the previous section, a trapped object, within the linear regime can be 

approximated as a Brownian particle in a harmonic potential. To add the harmonic potential to 

our model, we simply should add the restoring Hookean force. In this case, the Langevin 

equation can be expressed as follows, while still discarding the inertial term: 

𝛾0�̇� + 𝐾𝑥 = √2𝑘𝐵𝑇𝛾0 𝜉(𝑡) 3-21 

Now, if we take the Fourier transform of this equation, we will have: 

�̃� =
√2𝑘𝐵𝑇𝛾0 𝜉

𝐾 − 𝑖𝜔𝛾0
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Finally, if we obtain the Power Spectral Density (PSD) in the long-time limit, using equation 

3-22, we will get: 

𝑃𝑆𝐷 =
2𝑘𝐵𝑇𝛾0

𝐾2 + 𝜔2𝛾0
2
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By defining a characteristic frequency 𝑓𝑐 = 𝐾 2𝜋𝛾0⁄ , we will have: 

𝑃𝑆𝐷 =
𝐷

2𝜋2(𝑓𝑐2 + 𝑓2)
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3.2.3. QPD calibration 

 

Now, for calibrating the QPD signal, first, we trap a probe particle and collect the time series 

obtained by the QPD for a limited time, then we convert this time series to PSD, and fit it with 

equation 3-23, and extract the diffusivity, 𝐷𝑖(
𝑉2

𝐻𝑧⁄ ) along 𝑖 direction (𝑖 = 1 ,2, 𝑎𝑛𝑑 3). Then 

we calculate the conversion factor, 𝛽𝑖(
𝑚

𝑉⁄ ) by: 

𝛽𝑖 = √
𝐷𝑖(ℎ)

𝐷𝑖
, 3-25 

where, ℎ is the distance from the boundary, and 𝐷𝑖(ℎ)(𝑚
2

𝐻𝑧⁄ ) is equal to 𝑘𝐵𝑇 𝛾𝑖(ℎ)⁄ . Where, 

𝛾𝑖(ℎ) is the is Stokes’ drag coefficient for the probe particle, corrected for boundary effects 

using Faxén’s law.  

𝛾∥ = 𝛾0 [1 −
9

8

𝑎

2ℎ
+ (

𝑎

2ℎ
)
3

+
45

16
(

𝑎

2ℎ
)
4

− 2(
𝑎

2ℎ
)
5

]

−1
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𝛾⊥ = 𝛾0 [
4

3
sinh (𝛽) ∑ {

𝑛(𝑛 + 1)

(2𝑛 − 1)(2𝑛 + 3)

∞

𝑛=1

× (
2 sinh(Β(2𝑛 + 1)) + (2𝑛 + 1) sinh(2Β)

4𝑠𝑖𝑛ℎ2(Β (𝑛 +
1
2) − (2𝑛 + 1)2𝑠𝑖𝑛ℎ2(Β))

− 1)}], 

3-27 

 

where, 𝛾∥ and 𝛾⊥ are the drag coefficients for directions parallel and perpendicular to the 

boundary, respectively, and Β is equal to cosh−1(
ℎ

𝑎
).   

Then, by multiplying the time series by the conversion factor, we will convert our signal to the 

particle displacement in meter.  

In our experiments, we typically perform the calibration step at the beginning of each 

measurement before inducing any flow in the system. This involves collecting the QPD signal 

of a trapped particle for one second and following the steps outlined above to extract the 

conversion factor.  

 

3.2.4. Measurement of Marangoni and transient forces  

 

To measure the external forces exerted on the trapped particle by the Marangoni and the 
transient flow, we employed the following equation: 

𝐹𝑒𝑥,𝑖 = 𝐾𝑖𝑥𝑖 + 𝛾𝑖(ℎ)
𝑑𝑥𝑖

𝑑𝑡
 3-28 

In this equation, 𝑥𝑖  represents the displacement along each axis after inducing a flow, 𝐾𝑖 is 
equal to 2𝜋𝛾𝑖(𝑧)𝑓𝑐,𝑖, where 𝑓𝑐,𝑖 is extracted by fitting the PSD of 𝑥𝑖  with equation 3-23, and 

𝛾𝑖(ℎ) is calculated using 3-26 and 3-27. To calculate the velocity, we simply divide the equation 
above by 𝛾𝑖(ℎ). 

 

3.3. Thermoplamonic bubble generation and detection  

 

The physical mechanism for bubble generation was explained in Chapter two. In this section, 
we will briefly describe the structures and setup used for bubble generation and detection.  

To create a temperature gradient parallel to the substrate surface, we employed two arrays of 
isolated nanoantennas placed next to each other, and we investigated two different 
arrangements of gold nanoantenna arrays. 

In the first arrangement, both arrays consisted of circular nanoantennas, and a 532nm laser 
was used as a heating laser. In the second arrangement, one of the arrays had disks replaced 
by ellipsoidal nanoantennas, which have a polarization-dependent absorption cross-section. 
For this arrangement, we used a 660nm laser as a heating laser to create a more significant 
difference in light absorption at different polarizations. In both cases, the primary array was 
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made up of 19 gold circular nanodisks with a diameter of 100 nm, and the heating laser was 
focused on this array. Meanwhile, the secondary array comprised 7 circular and 39 ellipsoidal 
gold nanodisks in the first and second arrangement. The major and minor axes of the 
ellipsoidal disks were 100 nm and 50 nm, respectively, and the distance between the two 
arrays was 2000 nm. 

The selected sizes and arrangement of the plasmonic nanoantennas facilitated the production 

of small bubbles in air-equilibrated water, which dissipated rapidly after the heating laser was 

turned off. Additionally, the distance between the two structures was significant enough to 

prevent the formation of a single large bubble over both arrays. The heating laser used in the 

experiments had a wavelength of either 532 or 660 nm and was modulated in a square wave 

temporal profile with a duty cycle of 50% and frequency 𝑓𝑚. In the first arrangement, changes 

in the intensity of the bubble detection laser (633 nm), which was also focused on the primary 

array, were used to detect bubble generation in air-equilibrated water. However, in the second 

arrangement, the wavelengths of the bubble detection laser and heating laser were close, 

making it impossible to detect the bubbles. Finally, a 1064 nm laser was used for both 

holographic optical tweezing and optical force microscopy. Figure 13 shows the schematic 

drawing of the experimental setup. 

 

Figure.13: Schematic drawing of the experimental setup.  
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Chapter 4 

 

 

Conclusion and outlook  
 

The concepts discussed in this thesis demonstrate that thermoplasmonic bubbles can be used 

for creating local flows which can be remotely controlled. Especially, it was shown that it is 

possible to actively create and control the direction of the flows close to an interface where no-

slip condition exists.  

The flexibility of plasmonic heat sources, and the dependency of the amplitude and the 

direction of these flows to the temperature gradient on the bubble surface, makes it possible to 

achieve a desired flow profile by engineering the plasmonic nanostructures.  

Furthermore, it was shown that it is possible to simulate these flows using both the Stokeslet 

approximation and FEM, which can be used as an extra tool to design and predict the flow 

patterns induced by plasmonic structures.  

Here, we have shown how the flow profile changes when we use two closely spaced dissimilar 

arrays of plasmonic nanoantennae. So, one question raised here is what will happen if we 

increase the number of these antennas and change the distance between them? Is it possible to 

design a periodic array of absorbing elements, and engineer the absorption of each element 

based on the rotation or size of the element? In other words, is it possible to design a 

thermoplasmonic metasuraface?   

Another question worth investigating is whether it is possible to create micro bubbles using 

dielectric structures or dielectric metasurfaces. 

And finally, the most significant unanswered question here is the nature of the flow transients. 

While we have discussed the emission of shock waves due to bubble generation, even if we 

accept that the origin of these flow transients is the emission of pressure waves, we still need 

to answer the question of why the flow profile of this flow is the same as the Marangoni flow.  
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