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Abstract
The aim of this thesis is to investigate how human driving behaviors can be
formally described in mathematical models intended for online personaliza-
tion of advanced driver assistance systems (ADAS) or offline virtual safety
evaluations. Both longitudinal (braking) and lateral (steering) behaviors in
routine driving and emergencies are addressed. Special attention is paid to
driver glance behavior in critical situations and the role of peripheral vision.

First, a hybrid framework based on autoregressive models with exogenous
input (ARX-models) is employed to predict and classify driver control in real
time. Two models are suggested, one targeting steering behavior and the
other longitudinal control behavior. Although the predictive performance is
unsatisfactory, both models can distinguish between different driving styles.

Moreover, a basic model for drivers’ brake initiation and modulation in crit-
ical longitudinal situations (specifically for rear-end conflicts) is constructed.
The model is based on a conceptual framework of noisy evidence accumu-
lation and predictive processing. Several model extensions related to gaze
behavior are also proposed and successfully fitted to real-world crashes and
near-crashes. The influence of gaze direction is further explored in a driv-
ing simulator study, showing glance response times to be independent of the
glance’s visual eccentricity, while brake response times increase for larger gaze
angles, as does the rate of missed target detections.

Finally, the potential of a set of metrics to quantify subjectively perceived
risk in lane departure situations to explain drivers’ recovery steering maneu-
vers was investigated. The most influential factors were the relative yaw angle
and splay angle error at steering initiation. Surprisingly, it was observed that
drivers often initiated the recovery steering maneuver while looking off-road.

To sum up, the proposed models in this thesis facilitate the development
of personalized ADASs and contribute to trustworthy virtual evaluations of
current, future, and conceptual safety systems. The insights and ideas con-
tribute to an enhanced, human-centric system development, verification, and
validation process. In the long term, this will likely lead to improved vehicle
safety and a reduced number of severe injuries and fatalities in traffic.

Keywords: Driver models, ADAS, safety benefit assessment, driver adap-
tation, visual attention, evidence accumulation, predictive processing, hybrid
dynamical systems, PrARX.
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CHAPTER 1

Introduction

Road injuries constitute the leading cause of death for children and adoles-
cents aged 5–29 years (World Health Organization, 2018). In 2021, almost
20,000 people in Europe, and approximately 1.3 million people worldwide,
were killed as a result of traffic accidents (in all age groups), and many more
were severely injured (World Health Organization, 2019). Apart from the
enormous distress and suffering caused to the victims and their families, road
crashes bring about considerable economic loss for society. In most countries,
the cost amounts to approximately 3 % of the gross domestic product (World
Health Organization, 2018). Common crash-causation mechanisms include
human factors, road conditions, vehicle failures, and light and weather condi-
tions; human factors are the dominating cause. The literature reports human
error to be the leading factor in approximately 90 % of all road traffic ac-
cidents (Castro, 2009; Dingus et al., 2016; Singh, 2018). Knowledge about
drivers’ behaviors, expectations, and performance limits is thus essential to
mitigate human errors and, as a consequence, improve road safety.

Road crash and injury rates have declined with the increasing presence of
advanced driving assistance systems (ADAS), such as lane-keeping systems
(LKS) and advanced emergency braking (AEB) systems, which are becoming
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Chapter 1 Introduction

standard in new cars. For example, on US roads, the number of fatalities
went down from 1.46 per 100,000 vehicle miles traveled (VMT) in 2005 to
1.11 in 2019, despite an increase in the number of vehicles on the roads (Na-
tional Center for Statistics and Analysis, 2022). Whereas a considerable part
of this decrease may be attributed to updated safety regulations, increased
seat belt usage, and better in-crash (passive) safety systems, the possible im-
pact of ADASs should not be overlooked (the effectiveness of ADASs for crash
frequency reduction is discussed in, e.g., Cicchino, 2017; Isaksson-Hellman &
Lindman, 2018, 2019; Masello et al., 2022). Crash rates are expected to con-
tinue to decline due to updated legislation, such as the EU regulation that
took effect in 2022 making LKS and AEB mandatory in new passenger cars
and light commercial vehicles (European Union, 2019). Additionally, improv-
ing road safety, saving lives, and reducing suffering align with the United
Nation’s sustainable development goals (SDG; target 3.6 and 11.2; United
Nations, 2015).

Understanding the driver-system interaction and how individual drivers can
be expected to respond to upcoming threats is necessary to optimize the real-
life efficiency of ADASs and evaluate to what extent the systems fulfill their
purposes. Mathematical representations of driver behavior (computational
driver models) enable virtual verification and validation of ADASs and au-
tomatic driving (AD) systems, thereby decreasing the need for real-world or
test-track testing using physical vehicles and human drivers. Furthermore,
driver models provide the possibility to adapt thresholds for ADAS warnings
and for control interventions to the current driver in real time. Personal-
izing ADASs can enable earlier system interventions for unskilled or novice
drivers without compromising more experienced drivers’ system acceptance.
Numerous models aiming to explain, identify, or mimic human driving control
have emerged during the last 70 years, often targeting specific driving tasks
or kinematic situations (e.g., car-following or lane-keeping; Markkula et al.,
2012a).

An important application of driver behavior models is as ADAS-integrated
models, to guide the shape of control interventions or adjust the timing of
potential warnings to each individual driver (Lin et al., 2014; Panou, 2018; Yi
et al., 2020). Individualized adaptation contribute to high system acceptance,
since warnings that are appropriate on a population level can be perceived as
disturbing by some (individual) drivers. Ill-timed warnings may also reduce

2



trust and create a reluctance to use the corresponding ADAS (Bliss & Acton,
2003; Cabrall et al., 2020; Coelingh et al., 2007). Attempts have been made
to minimize false warnings and interventions by allowing system activation as
soon as drivers exceed their comfort zone boundaries (CZB)—that is, when
the driver is unable to resolve the situation comfortably (Bärgman, Smith, &
Werneke, 2015; Ljung Aust & Engström, 2011; Sander, 2017; Summala, 2007;
X. Yang et al., 2022). The CZB can be defined as an individual driver’s max-
imum preferred steering and deceleration rates. A recent study demonstrated
that an AEB system with activation thresholds based on a predefined CZB
(estimated at a group level) has a much higher safety performance than a
conventional AEB system (X. Yang et al., 2022). However, as pointed out by
Bärgman, Smith, and Werneke (2015), there are considerable individual varia-
tions in CZBs, indicating that personalized ADASs with real-time adaptation
capabilities would provide still better safety performance.

A few attempts have been made to construct driver models intended for
ADAS integration and continuous (online) system adaptation. These models
include intent recognition models which predict upcoming driving maneu-
vers (Jain et al., 2015; I.-H. Kim et al., 2017; Kuge et al., 2000; McCall
& Trivedi, 2007; Oliver & Pentland, 2000; C. Wang et al., 2023), classifica-
tion models for estimating driving style and driver state (Akita et al., 2007b;
Augustynowicz, 2009; Fridman et al., 2017; Hsiao, 2008; G. Li et al., 2017;
Quintero M. et al., 2012), and models for time series estimation of steering
control or pedal operation (Angkititrakul et al., 2012; Hamada et al., 2016;
Mikami et al., 2010; Taguchi et al., 2009). To this end, machine learning (ML)
methods and other black-box models (based on, for example, artificial neu-
ral networks) are increasingly popular. However, these methods have obvious
drawbacks, due to the computational power required and the challenge of un-
derstanding the non-intuitive nature of the model mechanisms. (However, the
interpretability of ML-based models may improve with the recent advances in
explainable artificial intelligence; see, e.g., Linardatos et al., 2021.)

Simpler probabilistic models are a feasible alternative to black-box models.
Stochastic modeling based on hybrid dynamical systems (HDS; Akita et al.,
2007a) constitutes a promising approach to real-time prediction and classi-
fication of driving behavior, due to the combination of discrete events and
continuous dynamics in a single model. However, HDSs have previously been
applied mainly to car-following (Akita et al., 2007a; Ikami et al., 2011; Okuda,
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Ikami, et al., 2013); the necessary model complexity to achieve accurate pre-
dictions has not previously been studied.

This thesis demonstrates the applicability of a specific HDS family, hybrid
autoregressive models with exogenous input (hybrid ARX models), to the
lateral control domain by enabling real-time steering angle prediction and
classification of driving style. This work also explores drivers’ car-following
behavior and whether there is an actual benefit to using complex predition
models instead of simpler modeling alternatives.

Computational driver models intended for prospective virtual safety assess-
ment (which estimates the safety potential of a future system) have the benefit
of not requiring online model parameter estimation, thus enabling a higher
level of model complexity. Nevertheless, there is a strong tradition of using
simple threshold-based perception-reaction time models in this area (see, e.g.,
Green, 2000; Muttart, 2003, 2005). The driver behavior is then assumed to
follow a deterministic, information-processing sequence comprising detection,
cognitive processing, decision-making, and response execution (Engström et
al., 2022; Markkula et al., 2012a). Several attempts have been made to quan-
tify the perception-reaction time (Green, 2000; Olson, 1989), but the studies
have been criticized for not considering situational urgency (Summala, 2000).

More recent publications have taken inspiration from ecological psychol-
ogy acknowledging how the current kinematic situation influences response
times (Engström, Bärgman, et al., 2018; Markkula, 2014, 2015; Markkula et
al., 2016). Markkula (2014, 2015) outlines a conceptual driver model trying (in
a simplified manner) to mimic the cognitive and neurological processes under-
lying drivers’ decision-making. He suggests that drivers’ braking behaviors can
be described by noisy evidence accumulation of visual input (Boag et al., 2023;
Gold & Shadlen, 2007; Purcell et al., 2010; Ratcliff, 1978; Usher & McClel-
land, 2001). In other words, brake initiation is modeled as a decision-making
process acting on imperfect information (noisy evidence) collected over time.
Markkula (2014) also proposes a conceptual driver modeling framework based
on well-proven neuroscientific concepts, such as predictive processing (Clark,
2013, 2015), and the use of motor primitives (S. Giszter, 2009). A similar
framework targeting generic driver modeling is suggested by Engström et al.
(2022).

While conceptual driver modeling frameworks for virtual safety assessments
exist, there is a lack of computational driver models that are mature enough
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to be applied in simulations. This thesis meets this need by presenting
a kinematics-dependent computational model of driver brake initiation and
modulation, demonstrating how the model parameters can be estimated us-
ing real-world crash and near-crash data.

Models of human braking behavior have generally reached a higher matu-
rity level than their counterparts in steering behavior. While multiple steering
models have been proposed to describe curve-taking or lane-keeping behavior
during routine driving, there is still no consensus on which perceptual quan-
tities drivers use to guide lateral control. Common modeling paradigms are
variations of the two-level steering model developed by Donges (1978). In this
model, steering is guided at a compensatory level of control by near-vehicle
information (e.g., lane position) and at an anticipatory level of control by in-
formation from further away (e.g., global optic flow). The control levels are
often quantified using one or several aim points ahead of the vehicle (Ben-
derius, 2014; Donges, 1978; Kondo & Ajimine, 1968; Salvucci & Gray, 2004;
Zhou et al., 2020). However, more research is needed to understand the details
of drivers’ sensory-motor processes, particularly to facilitate the modeling of
evasive steering.

Recently, alternative steering models based on perceptual input directly
available to the driver have been proposed (Lappi & Mole, 2018; Martínez-
García & Gordon, 2018; Martínez-García et al., 2016). Due to the brain’s
predisposition to detect and interpret angular information (Attneave, 1954;
Hubel & Wiesel, 1968; Loffler, 2008; Yacoub et al., 2008), the perceptual in-
put is often expressed in angles (Martínez-García & Gordon, 2018; Salvucci
& Gray, 2004). Furthermore, Goodridge et al. (2022) demonstrate that steer-
ing initiation can be described as a response to perceptual error accumula-
tion (i.e., the steering response times are better described by integrating the
perceptual error over time than by using a constant threshold on the percep-
tual input). Similarly, Markkula et al. (2018) outline a lane-keeping model
based on predictive processing and evidence accumulation. However, their
model is intended for routine driving, which is not necessarily generalizable
to critical situations. In fact, drivers’ emergency maneuvers appear to be in-
herently different from routine driving (Adams, 1994; Koppa & Hayes, 1976;
Markkula, 2015). Consequently, models of drivers’ steering responses to up-
coming threats, such as unintended lane departures, are still lacking. To close
this knowledge gap, potential model structures and appropriate perceptual
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Chapter 1 Introduction

quantities to guide steering control need investigation. This thesis takes an
initial step towards modeling drivers’ recovery maneuvers in unintended lane
departures by exploring the potential of a set of lane departure risk metrics,
quantifying the driver’s subjectively perceived risk of an imminent lane de-
parture for use as model input.

Last but not least, it must be mentioned that currently available compu-
tational models of driving control generally ignore visual distraction effects,
assuming the driver is constantly attentive (Johns & Cole, 2015; Kolekar et
al., 2017; Markkula et al., 2018; Salvucci & Gray, 2004). On the other hand,
models exist which assume the driver to be completely blind to road condi-
tions when directing the gaze away from the road (Bärgman, Lisovskaja, et
al., 2015; Bärgman et al., 2022; Michaud, 2018; H. H. Yang & Peng, 2010).
Neither of these assumptions is, of course, realistic. Although off-road glances
are associated with delayed control responses, it is still possible for the driver
to detect a threat and decide to brake or steer using peripheral vision (Lamble
et al., 1999; Summala et al., 1996, 1998). Peripheral vision has been proven
to play an essential role in driving (Higgins et al., 1998; Vater et al., 2022;
Wolfe et al., 2019); as such, future driver models should naturally allow the
simulated drivers to exhibit realistic human behavior patterns. This thesis
demonstrates how the glance’s visual eccentricity relative to the road ahead
influences threat detection and control behavior in critical lead vehicle sit-
uations, and integrates part of this knowledge into a brake response model.
This thesis also investigates the timing of corrective steering adjustments in
unintended lane departure situations relative to the last off-road glance.
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1.1 Aim and scope

1.1 Aim and scope
This thesis aims to investigate how human driving behavior can be described
through computational models—whether intended as an intrinsic part of ADAS
algorithms or for application in the development, verification, and validation
of ADASs. In particular, the thesis focuses on two main model application
areas which together span the entirety of the ADAS development-verification
chain: (1) online tuning of ADASs to the current driver (i.e., real-time system
adaptation); and (2) virtual safety benefit assessments by counterfactual sim-
ulations with the driver in the loop (including, but not limited to, prospective
evaluations of ADASs).

General research questions
The main research questions addressed in this thesis are:

1. How can driver behavior be estimated in real time to enable online
tuning of ADASs?

2. How can driver behavior in critical situations be computationally mod-
eled?

3. How does gaze direction influence the driver’s behavior in critical situ-
ations?

Papers 1–2 address the first research question; Papers 3, 4, and 6 concentrate
on the second research question, and Papers 4–6 contribute to answering the
third research question.

Specific research questions
The general research questions were broken down into a subset of more specific
questions targeted by the appended papers:

RQ 1.1: How can real-time driver identification suitable for tuning ADASs
be achieved? (Papers 1–2)

RQ 1.2: What level of model complexity is necessary to predict car-following
behavior in real time? (Paper 2)
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RQ 2.1: How can the predictive processing and noisy evidence accumula-
tion framework be leveraged to create a model of human braking
behavior? (Papers 3–4)

RQ 2.2: Which risk metrics are suited to the application of modeling steer-
ing amplitude in lane departure recovery maneuvers? (Paper 6)

RQ 3.1: How can the performance of a human braking initiation and mod-
ulation model be improved by considering glance direction? (Pa-
per 4)

RQ 3.2: How does the driver’s gaze eccentricity impact glance and brake
response times in critical lead vehicle scenarios? (Paper 5)

RQ 3.3: How is the initiation of the corrective steering maneuver related
to the driver’s gaze direction (on-/off-road) in unintended lane
departures? (Paper 6)

Thesis scope
In this thesis, driver behavior modeling is targeted in a relatively broad sense,
with potential applications to both routine driving and critical situations.
Models for both longitudinal (pedal operation) and lateral (steering) control
are suggested. Figure 1.1 provides an overview of how each appended paper
maps to the driving stages preceding a crash (i.e., routine driving or critical
situation), the different control modalities (i.e., longitudinal or lateral), and
whether driver glance behavior is considered or not. The longitudinal control
models (Papers 2– 4) are restricted to pure (critical and non-critical) lead
vehicle scenarios. In contrast, the lateral control models concentrate on curve-
taking behaviors (Paper 1 and unintended lane departure situations (Paper 6).
Two main frameworks were considered for the models: (1) hybrid ARX models
(Papers 1–2); and (2) predictive processing with noisy evidence accumulation
(Papers 3–4).

Both adopted frameworks in this thesis allow for relatively tractable and
easily interpretable model structures. Due to the difficulty of analyzing models
based on deep learning and neural networks, they are out of the scope of
this work. Moreover, this thesis does not target driver models specifically
intended for modeling crash-causation mechanisms (e.g., to generate baseline
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1.1 Aim and scope

CRASH

Paper 1

Paper 2

Paper 3 

Papers 4 & 5
Paper 6

Time

Exposure

Routine driving Critical situation Post�crashCrash

Figure 1.1: A schematic overview of each paper’s focus areas. The steering wheels
represent lateral control, and the pedals illustrate longitudinal control.
The eyes reveals that driver gaze behavior has been taken into consid-
eration.

cases in scenario-based safety assessment), road user interactions (taking into
account the mutual interaction between the driver and other road users), or
driver responses to infrastructure. Computational models intended for (multi-
agent) traffic simulations are also beyond the scope of this thesis. As for
the perceptual mechanisms considered, only visual information is expressly
included in the models; vestibular input, for example, is not.
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CHAPTER 2

Background

This chapter introduces computational driver behavior modeling for road
safety applications. It also provides an overview of how visual attention, quan-
tified by gaze direction, may influence driver behavior. Towards the end of the
chapter, the use of computational driver models is put into context through
the introduction of virtual-driver-in-the-loop simulations, focusing on one of
the most common application areas related to traffic safety: virtual safety
benefit assessment.

2.1 Computational driver behavior models

Computational driver behavior models are mathematical representations of
human driving behavior, usually concentrating on motor responses to cogni-
tive or neurobiological processes. These models have beneficial applications
in various fields; one of the most common is vehicle safety. Within the field
of vehicle safety, there are several sub-applications for which different kinds
of driver models are appropriate. These include, but are not restricted to:
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◦ Path tracking (Lazcano et al., 2021; Liu et al., 2022; Roy et al., 2009;
Taheri et al., 2012)

◦ Anomaly detection—for example, distraction or sleepiness detection (Al-
Gburi et al., 2023; Aljohani, 2023; J. H. Yang et al., 2009; M. Zhang
et al., 2017)

◦ Crash causation (Bärgman et al., 2022; Fries et al., 2022; Imberg et al.,
2022)

◦ Driver intent or maneuver recognition (Jain et al., 2015; I.-H. Kim et al.,
2017; Kuge et al., 2000; McCall & Trivedi, 2007; Oliver & Pentland, 2000;
C. Wang et al., 2023)

◦ Driving style classification (Akita et al., 2007b; Augustynowicz, 2009;
Fridman et al., 2017; Hsiao, 2008; G. Li et al., 2017; Quintero M. et al.,
2012)

◦ Behavior prediction (Angkititrakul et al., 2012; Hamada et al., 2016;
Mikami et al., 2010; Taguchi et al., 2009)

Most early driver models were based on control theoretical concepts and
focused on routine driving. They were mainly intended to control virtual
drivers in traffic flow simulations (e.g., to describe car-following dynamics;
Forbes, 1963; Gipps, 1981; McRuer & Weir, 1969; Newell, 1961; Pipes, 1953).
While computer simulation is still a dominating application area for driver
models, the focus has shifted towards virtual safety evaluation, where traffic
flow is just one of the possible components.

The use of virtual testing to study the effect of a specific ADAS is a cost-
efficient alternative, or a complement, to analyses of accident statistics (e.g.,
using insurance claims) or quantitative studies of real-world crash data (e.g.,
from in-vehicle event data recorders). Another clear advantage of simulation-
based assessment is the possibility of evaluating potential effects of future or
conceptual ADAS functionality, because the historic crashes needed to do a
retrospective statistical assessment are not yet available. However, prerequi-
sites for ecologically valid simulation results are sufficiently accurate represen-
tations of the driving environment, the vehicle dynamics, and, not the least,
the driver behavior.

As more ADASs become standard in new vehicles, the need to model drivers’
responses to warnings and system interventions increase. Likewise, there is a
growing demand for models that mimic or assess routine driving behavior for
integration into ADASs or AD systems. The increased interest in personalized
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ADASs is motivated by their improved efficiency over conventional systems,
which do not explicitly consider individual preferences (Lefèvre et al., 2015;
J. Wang et al., 2016; X. Yang, 2023; X. Yang et al., 2022).

The structure of computational driver models, from simple linear models
to complex ML models, must be adapted to the intended application (Abuali
& Abou-Zeid, 2016; Markkula et al., 2012b). This thesis concentrates mainly
on tractable driver models, which are easy to understand and analyze while
representing driving behavior realistically.

Models used in real-life applications, such as continuous ADAS tuning, must
be relatively generic (i.e., valid for various driving situations) and have struc-
tures enabling online parameter estimation. Consequently, clear restrictions
on model complexity are imposed. However, such restrictions do not apply
to models intended for offline use, since cognitive plausibility and the ability
to replicate typical driver behavior in particular situations are most impor-
tant. Thus, the same modeling paradigm may not be suitable for both online
(real-time) and offline driver models—or the various sub-areas of application
within these model categories. There is, however, no absolute partition of
driver modeling methods, and much can be gained from taking inspiration
from several areas.

This thesis addresses two main modeling paradigms: The first, for online use
(e.g., ADAS tuning), comprises behavior prediction and classification models;
the second, for offline applications (e.g., virtual safety benefit assessment),
comprises cognitive driver models.

Behavior prediction and classification models
Time series prediction and classification of the individual driver’s current be-
havior enable real-time automatic tuning of ADASs. Thus, thresholds for
warning and control interventions can be adapted to the current driver state or
driver preferences, and settings related to comfort systems can be individually
modified. Complex (black-box) models (e.g., reinforcement learning models,
gaussian mixture models [GMMs] and hidden Markov models [HMMs]) dom-
inate the behavior prediction and classification literature (Jain et al., 2015;
Miyajima & Takeda, 2016; W. Wang, Xi, & Zhao, 2018; Zhao et al., 2022).
However, white-box (with full transparency) or gray-box models (with some
degree of interpretability) allow a more intuitive understanding. White-box
models also facilitate model analyses and real-time parameter estimation.
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Although black-box models are out of the scope of this thesis, it is warranted
to study the HMM structure in more detail due to its similarities with the
models applied in Papers 1–2. HMMs (see, e.g., Visser et al., 2009, for an in-
troduction) are particularly attractive for time-series prediction applications,
which predict a sequence of output values (e.g., the evolution of the steering
angle signal over time) based on current and previous values. This kind of
model describes the driving control sequence through the transition between
discrete states (modes), each associated with an observed output (e.g., the
steering angle may depend on the driver’s internal mood) and specific proba-
bilities of transitioning to the other discrete states in the model (e.g., as the
mood changes). Being inherently probabilistic, HMMs may also be suitable
to reflect the stochasticity in human behavior. However, the non-observability
of the internal modes (i.e., the states are hidden) compromises model inter-
pretability.

A more transparent alternative to HMMs, the hybrid dynamical system
(HDS) paradigm, has emerged as a useful tool in the construction of driver
models for behavior prediction and classification. Like HMMs, HDSs model
driver control through a set of modes associated with, for example, specific
maneuvers, driving styles, or comfort levels. However, in contrast to HMMs,
all HDS modes are observable and thus provide information about the driving
dynamics, which makes it easier to interpret the model. In brief, an HDS can
be considered a discrete-event system with continuous dynamics to model the
behavior corresponding to each discrete mode. As such, the models provide
information on both the drivers’ control behaviors and their decision-making
processes (Akita et al., 2007a, 2007b; Nwadiuto et al., 2021).

Moreover, the variability in human driving behavior can, using HDSs, be
reflected by online estimation of the mode-switching probabilities. For ex-
ample, suppose a model has one mode describing alert and attentive driving
and one describing sleepy and inattentive driving. A driver may start off the
journey being alert (i.e., the model estimates a high probability of operation
in the alert mode), but become more sleepy over time (i.e., the probability of
being in the alert mode gradually decreases, and the sleepy mode probability
increases). After stopping to rest, the driver may be identified as operating
in the alert mode again, and consequently, the probability of shifting to the
sleepy mode in the model decreases.

While pure driver behavior classification can be achieved using data mining
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techniques such as clustering and principal component analysis (PCA; Con-
stantinescu & Vladoiu, 2010; X. Song & Cao, 2022), the HDSs enable not only
classification based on the current mode affiliation but also simultaneous time
series prediction of driving control (e.g., steering angle or pedal operation).
Behavior classification can be used, for example, to identify the current driv-
ing style as belonging to one of several potential categories—or to judge which
kind of control strategy the driver is currently using (e.g., collision avoidance
or car-following; Akita et al., 2007a, 2007b; Mikami et al., 2010; Nwadiuto
et al., 2021).

There is a great flexibility in the choice of model to describe the dynamics
of each mode in the HDS. Multiple publications describe autoregressive mod-
els with exogenous input (ARX-models) for this purpose, resulting in models
referred to as hybrid ARX models in this thesis; see Section 3.2. Several
hybrid ARX models have been applied to driver modeling. The model vari-
ants differ mainly in their mode-switching characteristics: the switching could
be deterministic (e.g., piecewise ARX models, PWARX; Akita et al., 2007a,
2007b) or stochastic (e.g., stochastic switched ARX models, SSARX; Sekizawa
et al., 2007). In recent years, autoregressive models have been combined with
HMMs (i.e., approaching black-box modeling; Hamada et al., 2016).

The probabilistic ARX (PrARX) model is a stochastic hybrid ARX model
which allows the driver to operate in multiple modes simultaneously. More-
over, its structure allows for a computationally easy parameter estimation
process (Taguchi et al., 2009). The model output is calculated by weighting
the outputs of the ARX models of all modes, with weights corresponding to
the probabilities of the system being in each mode. Taguchi et al. (2009)
and Okuda, Tazaki, and Suzuki (2013) demonstrated the application of a
PrARX-model to describe longitudinal driving behavior for vehicle-following,
and Mikami et al. (2010) attempted to combine a similar model with a model
predictive control (MPC) algorithm integrated into a brake assist system.
Their algorithm was designed to minimize the time spent in modes where the
driver exhibited collision avoidance behavior. However, since the parameters
were only estimated offline, the model did not adapt to behavior variations
during driving (resulting from, for example, shifts in driver state or in the
driving environment).

Moreover, the concept of “decision entropy” for hybrid ARX models was
introduced by Taguchi et al. (2007). It quantifies the level of hesitance in the
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mode switching process by measuring how much time the model spends simul-
taneously in multiple modes (which corresponds to the transition phases be-
tween single modes). Low decision entropy results from instant mode switches
(i.e., the model operation is dominated by a single mode at a time). In con-
trast, hesitant mode-switching behavior yields high entropy values (i.e., a lot
of time is spent transitioning between modes). Decision-entropy has been used
in PrARX models to estimate the driver’s current distraction level (K. Kato
et al., 2013).

The potential benefits and applications of hybrid ARX models are further
investigated in Papers 1–2 of this thesis. Specifically, PrARX models are used
to predict and classify both longitudinal and lateral driving behavior.

Cognitive models
Cognitive models aim to represent the sensory processing and decision-making
processes in the human brain. In a car driving context, these representations
may yield a deeper understanding of the mechanisms influencing driving and
contribute to the creation of model outputs with high ecological validity. In
addition, psychologically plausible driver models may enable generalizations
to previously unseen kinematical situations.

Visual perception is the main information source which guides driving (Hills,
1980). Furthermore, reproducing other sensory modalities in the simulation
environments where the driver models will be applied may be challenging.
Therefore, most cognitive driver models are based on visually available input,
such as the perceived size change of an approaching lead vehicle (Engström
et al., 2022; Engström, Markkula, et al., 2018; R. Kiefer et al., 2003; Kondoh
et al., 2014; Markkula, 2014).

Constructing cognitive models requires in-depth knowledge of driver behav-
iors and how biological (neurological) processes influence these. As a result,
the models risk becoming very complex. On the other hand, the models are
easy to analyze and have high levels of generalizability. Possible application
areas include: describing the negotiation of highly critical situations, acting as
autonomous agents in microscopic traffic simulations (simulating routine driv-
ing), and planning suitable trajectories for AD system maneuvers. Depending
on the exact model structure, it could also be possible to use cognitive models
for behavior prediction or classification; this possibility is discussed in more
detail later in the thesis (see Section 5.4). Defining the exact stimulus that
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drivers react to, and the nature of the reaction, is, however, often challeng-
ing (see, e.g., Fajen & Devaney, 2006).

An increasingly popular cognitive driver modeling approach is (noisy) evi-
dence accumulation of perceptual input. Analogous to the neurological pro-
cesses of neuron action potential firing triggered by a certain (noisy) stim-
ulus (Purcell et al., 2010; Usher & McClelland, 2001), the accumulation
paradigm assumes that evidence for a specific action (or decision) is accumu-
lated over time (Gold & Shadlen, 2007; Usher & McClelland, 2001). Evidence
accumulation models, traditionally used to model human decision-making pro-
cesses, have been applied in experiments in which the respondents were asked
to choose between two responses depending on a visual stimulus (e.g., whether
a colored light is red or green; Usher & McClelland, 2001). Furthermore, it
has been used to model decision-making and response times in various appli-
cation areas—for example, by Neal and Kwantes (2009) for conflict detection
in air traffic control; by Sabanovic and Matuzevicius (2015) for image analy-
sis; and by Durso et al. (2015) for strategic threat-management in pediatric
intensive care. In the automotive domain, Ratcliff and colleagues (Ratcliff,
2015; Ratcliff & Strayer, 2014) used a drift-diffusion model (Ratcliff & Van
Dongen, 2011), which is a subtype of accumulation model acting on a sin-
gle continuous variable, to model driver response times to brake light onset.
In addition, Markkula (2015) was the first to suggest that a comprehensive
conceptual framework based on noisy evidence accumulation, in combination
with a prediction of sensory inputs, is a suitable approach for modeling human
driving behavior. Markkula’s work also assumed incremental vehicle control
using basic kinematic motor primitives (S. Giszter, 2009; S. F. Giszter, 2015),
such as braking in discrete steps (Markkula, 2014), or steering using intermit-
tent ballistic steering adjustments (Benderius & Markkula, 2014; S. Giszter,
2009; S. F. Giszter, 2015; Markkula et al., 2018; Martínez-García & Gordon,
2018).

With the assumption that drivers act upon the perceived difference be-
tween expected and actual sensory stimuli rather than the actual input per se,
Markkula’s framework fits well with the predictive processing theory (Clark,
2013, 2015). The predictive processing paradigm is derived from Friston’s free
energy principle (Friston, 2009, 2010), which assumes that any self-organized
system (such as the brain; Singer, 2009) must minimize the difference between
their internal representation of the world and the perceived sensory informa-
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tion, the free energy, to maintain equilibrium. The paradigm is a formal
mathematical framework which considers the mind to be a predictive dynam-
ical system (similar to the “Bayesian brain” introduced by Doya et al., 2011).
All motor actions are assumed to strive to suppress perceptual prediction er-
rors (where the predictions may be updated over time) through a combined
perception-action process called active inference (Friston et al., 2017; Parr et
al., 2022). To minimize prediction errors (which under simplified conditions
are equivalent to free energy; Friston, 2009), the brain can update its current
beliefs to match what is perceived (e.g.,when approaching a car ahead, the
belief changes from “I am driving at a constant time headway” to “My time
headway is decreasing”). Alternatively, the brain can elicit a motor action to
generate perceptual input which is consistent with the beliefs (e.g., brake in
order to reattain the constant time headway when approaching the car ahead;
Clark, 2013; Friston et al., 2017). A thorough attempt to conceptually employ
predictive processing and Friston’s principles to understand human factors in
automobile driving was presented by Engström, Bärgman, et al. (2018). The
authors showed that mismatched driver expectations (predictions) may lead
to critical situations. The discussion was subsequently advanced by Engström
et al. (2022), who propose a novel modeling framework based on active infer-
ence and the information-theory concept of surprise (defined as the negative
logarithm of an outcome probability, which is similar to prediction error; Fris-
ton, 2009, 2010; Itti & Baldi, 2009). Engström et al. (2022) demonstrate
the properties of the framework in an example of a simple brake initiation
model incorporating an ML-based generative model to estimate driver expec-
tations. Active inference has also been used to model emergency responses to
automation failure (Wei et al., 2022). Furthermore, Wei et al. (2023) showed
that an active inference-based car-following model, the Active Inference Driv-
ing Agent (AIDA), had an accuracy comparable with neural network-based
models, while providing superior interpretability and cognitive plausibility.

In this thesis, the predictive processing framework and noisy evidence ac-
cumulation are further explored (although not on the free energy or active
inference level) and applied to modeling drivers’ evasive brake responses to
critical lead vehicle situations (Papers 3–4).
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2.2 Vision and attention in driving

Attention may refer to a wide range of human states—for example, arousal
(Raskin, 1973), consciousness (Posner, 1994), or effort (Kahneman, 1973).
Here, it is defined in contrast to its opposite: inattention, which somehow im-
pairs the driver’s situation awareness or alertness level. Some examples that
result in inattention include sleepiness, cognitive distraction, and inappro-
priate off-road glances. While attention may be governed by many different
cognitive processes and sensory modalities, this thesis’ main focus is on vi-
sual attention, quantified by the driver’s gaze direction. Visual attention can
be considered a selection mechanism that filters the enormous amount of in-
formation entering the visual field and finds what is relevant to the task at
hand (see, e.g., Lamme, 2005). Thus, drivers must constantly scan the en-
vironment and use their attention to identify what information to act upon.
Since the visual field is limited in both acuity and field of view, drivers must
divert their gaze (and sometimes also move their head and torso) from the
road ahead to, for example, the side mirrors or the speedometer. Safe driving
relies on these necessary off-road glances (Kircher et al., 2020).

While some off-road glances are inherent to safe driving, many arise from the
driver’s desire to perform tasks secondary to driving. With the ever-increasing
number of mobile devices and in-vehicle systems, drivers are continuously
tempted to divert their attention from the road ahead (e.g., by tuning the
radio or texting on the phone). Unfortunately, the secondary tasks compete
with the principal driving task for visual and attentional resources, and may
thus deteriorate driving performance (Engström, 2011). In fact, US studies
show that distraction has a prominent role in more than 20 % of all crashes,
with fatalities both inside and outside the vehicle (S. Klauer et al., 2006; Yue
et al., 2020). In addition, even though drivers often wait until low-complexity
driving situations to initiate secondary tasks (Tivesten & Dozza, 2014), studies
associate long glances away from the road with an increased crash risk (Horrey
& Wickens, 2007; S. G. Klauer et al., 2014; T. Victor et al., 2014).

It is essential to understand the attention allocation processes and the fac-
tors influencing attention duration to understand and model the drivers’ ac-
tions (and thus potential mistakes). Although cortical areas controlling eye
movements overlap with those controlling attention (Corbetta, 1998), what
drivers see is not always the same as what they attend to (Salvucci, 2000).
The driver may be looking at something without paying attention due to cog-
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nitive distraction (e.g., caused by a conversation with passengers) or looking
away from something while still (at least partly) attending to it with their pe-
ripheral vision. In fact, cognitively distracted drivers tend to keep their gaze
more concentrated on the forward roadway than attentive drivers, a counter-
intuitive finding often referred to as the gaze concentration effect (Nilsson,
2022; Recarte & Nunes, 2003; T. Victor, 2005; Y. Wang et al., 2014). On
the other hand, it is well established that drivers are able to perform certain
tasks, such as lane keeping and threat detection, using peripheral visual in-
formation exclusively (Huestegge & Böckler, 2016; N. G. Kim, 2013; Lamble
et al., 1999; Lehtonen et al., 2018; Summala et al., 1996). These aspects of
driver attention, rarely included in computational driver models, could poten-
tially improve model performance. A better understanding of how to model
drivers’ (visual) attention and its relation to peripheral vision would eventu-
ally contribute to preventing (or at least reducing) crashes caused by visual
distraction, by integrating the knowledge into models used for the develop-
ment and verification of ADASs.

2.3 Virtual safety benefit estimation and
prospective safety assessment

Safety benefit estimation aims to investigate and quantify the effects that a
specific ADAS, or other safety measure, has on the overall road safety. The
assessment can be retrospective, analyzing the effect of already available, well-
established ADASs. Retrospective assessments generally rely on statistical
methods and data provided by insurance companies (Cicchino, 2017; Fildes et
al., 2015; Isaksson-Hellman & Lindman, 2018, 2019; Zangmeister et al., 2016).
Correctly performed, these assessments can provide estimates very close to the
truth (Sander, 2018). Alternatively, the assessment can be prospective, esti-
mating the potential future benefit of a not yet realized system (Alvarez et
al., 2017; Gschwendtner et al., 2014; International Organization for Standard-
ization, 2019; Jeppsson et al., 2018; Kovaceva et al., 2020; Sander, 2018).
However, this type of evaluation cannot, in general, be performed with the
above-mentioned retrospective assessment methods, because there is insuffi-
cient real-world crash data from vehicles equipped with the system under test
(SUT) in addition to the crash data from vehicles without the SUT.

In recent years, computer simulation has emerged as a cost-efficient and
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flexible approach to prospective safety assessments. It has a decent history in
the development and verification of passive safety systems (such as airbags or
mechanical structures targeting injury prevention; see, e.g., Wågström et al.,
2019). Virtual evaluations require accurate mathematical representations of
all relevant components: in the passive safety domain the required compo-
nents are mainly finite element models of the vehicle, driver, and possibly
occupants. In contrast, the pre-crash (ADAS) domain requires realistic, dy-
namic models of the driver, vehicle, and environment. Accurate driver models,
used to create a baseline for safety evaluations, play an essential role in the
generation of crashes (Bärgman et al., 2022; Fries et al., 2022; Imberg et al.,
2022). These models also provide the possibility to study driver responses
to different kinematic situations, as well as to ADAS warnings and interven-
tions (Bärgman, Boda, & Dozza, 2017; Bärgman, Lisovskaja, et al., 2015;
Haus et al., 2019; Rosén, 2013; Seacrist et al., 2020; X. Yang et al., 2022).
In the future, advanced simulation environments may also make it possible to
predict the effects of changes in infrastructure, policy, and even the proportion
of automated driving systems in a mixed traffic environment. Certainly, ac-
curate predictions require a reliable assessment of exposure to safety-relevant
situations (e.g., number of registered vehicles or vehicle mileage; Dozza, 2017;
Hauer, 1995; Sander, 2018), which remains a main methodological issue. Re-
cent initiatives have been undertaken to standardize virtual safety assessment
methods (Alvarez et al., 2017; International Organization for Standardiza-
tion, 2021; Page et al., 2015; V4SAFETY, n.d.) in order to create a common,
comprehensive assessment framework which would facilitate comparison of
simulation outcomes from tests performed at different places and by different
persons.

There are several ways to perform virtual benefit assessments: Scenario-
based simulations concentrate on groups of specific kinematic situations that
may be encountered in traffic, such as lead vehicle collisions (Riedmaier et al.,
2020). Each scenario-based simulation is typically short (from a few seconds
up to half a minute); the SUT is exposed to a specific critical situation, possi-
bly with a virtual driver in the loop. An other possibility is to run multi-agent
traffic simulations, mimicking a complex traffic system with multiple road
users. Multi-agent traffic simulations can be used to analyze traffic at various
levels: single vehicles (microscopic simulation), groups of vehicles (mesoscopic
simulation), and general traffic flow (macroscopic simulation) (Ferrara et al.,
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2018). Microscopic simulations are commonly used for safety assessments,
since these focus on the behaviors of a specific (subject) vehicle rather than
high-level road user interactions. However, validation of multi-agent simula-
tion as a safety evaluation tool is much needed, particularly since it may be
difficult to estimate how well the simulated kinematics and incidence rates of
the generated crashes represent what can be observed on real roads.

Commercial simulation tools, such as IPG CarMaker (IPG Automotive,
n.d.) or Simcenter Prescan (Siemens, n.d.), are readily available for perform-
ing virtual tests in a realistic environment. They include advanced vehicle
dynamics models and, in some cases, even simple driver models. The driver
models are mainly trajectory-following models, which can be tweaked to gen-
erate various driving styles (e.g., careful or aggressive driving). However, the
flexibility to include one’s own technological solutions, such as conceptual
ADASs, varies between tools. An alternative to commercial tools is to use
open-source software, such as Environment Simulator Minimalistic (“Esmini”,
n.d.) and OpenPASS (“OpenPASS Working Group”, n.d.), to set up scenario-
based evaluations. Some manufacturers have even chosen to implement sim-
ulation platforms tailored to their own vehicles, to have control over all parts
of the simulation chain and achieve maximum flexibility (Hallerbach et al.,
2018; Q. Song et al., 2021).

Counterfactual simulation
Counterfactual simulation is a valuable tool in scenario-based virtual assess-
ments (Bärgman, Boda, & Dozza, 2017; Bärgman, Lisovskaja, et al., 2015;
Davis et al., 2011; Haus et al., 2019; Leledakis, Lindman, et al., 2021; McLaugh-
lin et al., 2008; Rosén, 2013; Scanlon et al., 2021; Seacrist et al., 2020; X. Yang
et al., 2022). In essence, the safety performances in specific pre-crash config-
urations (i.e., kinematics a few seconds before a critical event) are compared
between vehicles with and without a particular safety measure (known as
treatment and baseline conditions, respectively). The main aim of counterfac-
tual simulations is to answer the question, “’What if?” (Bärgman, Lisovskaja,
et al., 2015) as in, What if the following vehicle in a lead vehicle scenario had
an AEB system which intervened? What if the vehicle did not? The perfor-
mance metrics usually include the proportion of crashes in a specific (possibly
synthetically generated) data set, but are sometimes more detailed and include
information about change in impact speeds or injury risk (X. Yang, 2023).
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The original pre-crash configurations, comprising the baseline data, may
be based on synthetically generated scenarios from statistical observations of
relevant crash mechanisms. These scenarios might include a crash causation
driver model (Bärgman et al., 2022; Fries et al., 2022; Imberg et al., 2022), or
reflect the kinematics from an actual critical situation (Rosén, 2013; Sander
& Lubbe, 2018). In the latter case, the crash data used are often either
recorded (e.g., from a naturalistic driving study such as Strategic Highway
Research Program 2 [SHRP2]) or reconstructed (e.g., from a crash database
such as the German In-Depth Accident Study; Schubert et al., 2012). A simple
driver response model might be included to describe the evasive action (if
any) and some variations of the parameters in each reconstructed situation—
to account for uncertainties and generate a more extensive set of baseline
kinematics (Alvarez et al., 2017). Data from near-crashes and routine driving
events (e.g., lead vehicle braking events) may also be applicable. However, care
should be taken when using non-crash data in simulations since the scenario
kinematics may be substatially different from what is typically observed in
crashes (Olleja et al., 2022).

Virtual-driver-in-the-loop simulations
Two main types of driver models can be used in counterfactual simulations:
one for scenario generation (typically, a model that can reproduce trajectories
and crash kinematics) and one for the driver response, to be applied in the
generated scenarios (Alvarez et al., 2017; Bärgman, Boda, & Dozza, 2017).
Scenario-generating models are, however, not necessary when using individual
and unmodified cases of recorded crash data.

The purpose of the driver response model is to describe the (potential)
perceptual-motor actions effectuated by the driver, in response to the per-
ceived urgency of a situation or to warnings and interventions issued by an
ADAS (Bärgman, Boda, & Dozza, 2017; Seyedi et al., 2021; Sugimoto &
Sauer, 2005, see also Paper 3). It is possible to perform simulations with-
out a driver response model in the loop, but the realism of the output may be
compromised (e.g., it would not make sense to evaluate a warning system with-
out including a driver’s reaction to it). Traditionally, simple statistical driver
models based on perception-reaction time distributions and predefined evasive
maneuvers have been used (Green, 2000; Muttart, 2003, 2005). However, re-
cent research has demonstrated that the choice of driver model is essential and

23



Chapter 2 Background

can affect the results even when all other variables are unchanged (Bärgman,
Boda, & Dozza, 2017). Thus, caution should be used in the model selection.
Unfortunately, the choice of validated driver models is still very limited.

Multi-agent microscopic traffic simulations
In contrast to scenario-based simulations, virtual-driver-in-the-loop simula-
tions are sometimes performed using the more complex multi-agent micro-
scopic traffic simulation platforms. Driver models intended for critical situa-
tions can be used in this kind of simulation environment as well, if comple-
mented with models of routine driving behavior (e.g., the widely used Intel-
ligent Driver Model introduced by Treiber et al., 2000). Microscopic traffic
simulation is not dependent on previously collected data since it can inde-
pendently generate critical scenarios using driver error induction methods or
crash causation algorithms (Hallerbach et al., 2018; H. H. Yang & Peng, 2010).
Two challenges with this approach are to ensure the representativeness of the
generated crashes (by comparing them to field statistics) and to estimate ex-
posure. Nonetheless, traffic simulation has the advantage of supporting the
creation and simulation of entirely new kinds of crashes—which may, for ex-
ample, arise in the future as vehicles with high levels of automation not yet
on public roads achieve high penetration (Hallerbach et al., 2018; Jeong et al.,
2017). In the same way, however, the approach may create completely unreal-
istic crashes (either in terms of exposure or crash characteristics) that do not
represent real-world crashes.
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Method

This chapter presents the methods and tools that constitute the basis of the
driver behavior modeling work in this thesis. Accurate models require repre-
sentative data of sufficient quality, and the first section provides an overview
of the different data collection options that have been explored. Subsequently,
high-level descriptions of the main modeling frameworks and parameter esti-
mation methods are provided. A brief look at the practicalities when applying
driver models in a virtual simulation environment concludes the chapter.

3.1 Data collection
Since no model is better than the data on which it is based, it is imperative to
use data which are as representative and non-biased as possible. The papers
appended to this thesis use a wide range of data sets collected from different
sources, all with their own benefits and drawbacks. All applied data collection
methods and their implications for driver modeling are discussed below. First,
descriptions of general data collection methods for driver-vehicle interaction
and their respective driving environments are provided. Then, currently avail-
able methods for collecting glance data are addressed.
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Driver-vehicle interaction

Detailed and unbiased recordings of driver behavior are scarce, particularly of
behaviors associated with critical situations. Real-world crash and near-crash
data, available through extensive databases, must thus often be complemented
with data from controlled experiments (e.g., driving simulator or test-track
studies). Targeted evaluations of a specific ADAS, for example, may be per-
formed using field operational tests (FOT). Critical situations are rare in such
tests, but the data may be used to gain insight into routine driving behaviors.

In recent years, large amounts of naturalistic driving data (NDD) have
been recorded, annotated, and stored in massive databases through projects
such as the “European naturalistic driving and riding for infrastructure and
vehicle safety and environment database” (UDrive; Bärgman, van Nes, et al.,
2017), SHRP2 (National Academies of Sciences, Engineering, and Medicine,
n.d.), and the 100-car naturalistic driving study (Dingus et al., 2006). In
these studies, hundreds of privately owned cars were equipped with logging
equipment, including cameras, and all trips were recorded during an extended
period (more than a year). The drivers did not receive any specific driving
instructions, and their behaviors were thus presumably representative of their
ordinary driving. This kind of large-scale data collection is, of course, very
costly and requires a lot of storage capacity and annotation work (e.g., manual
coding of event characteristics or driver behavior; Hankey et al., 2016; Jansen
et al., 2021). However, with data collection efforts of that magnitude, the
probability of recording at least some safety-relevant events, including severe
crashes, is high. Papers 3–4 used lead vehicle crash and near-crash data
collected in SHRP2 to parameterize and validate driver models of evasive
braking. Additionally, Paper 6 considered, in part, a few of the critical lane
departure events captured in the SHRP2 study.

As with NDD, FOT data are collected from real vehicles driving on real
roads. However, unlike most NDD, the aim is usually to test the performance
of a specific safety measure. Evaluations of driver-state-focused ADASs, such
as sleepiness and distraction warning systems or comfort systems (like ACC),
are appropriate for FOTs. However, true positive tests of ADASs targeting
highly critical situations are not (since these situations are rare). The general
FOT setup includes both baseline driving, with no ADAS active, and driving
with an activated ADAS (the SUT). Depending on the intended model appli-
cation, both data sets can be used for driver modeling. Paper 6 partly based
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the analysis of lane departure events extracted from baseline data collected
in the Eyes On Road FOT, which contains data collected in ten cars driven
by Volvo cars employees around the Gothenburg area (Karlsson et al., 2016).
This relatively small data set did not include any severely critical events.

Apart from being scarce, the crashes in NDD (or FOT) represent a wide
range of kinematics and environments, complicating the subsequent analyses.
Therefore, controlled experiments may be an appealing option for studying
specific aspects of driving behavior. Controlled tests are affordable (compared
to NDD and FOTs), flexible, and offer a high level of repeatability. The
realism, however, is compromised. Drivers’ behaviors may be altered by the
standardized or artificial driving environment and by the expectancy that
something out of the ordinary may occur. Driver expectancy also makes
repeated exposures to critical events problematic, requiring the recruitment
of a high number of test participants (Eriksson et al., 2018; J. D. Lee et al.,
2002; Ljung Aust et al., 2013). Moreover, each test participant must be given
the opportunity to get confident with the vehicle and the driving environment
and drive for a while before the critical event occurs, thus increasing the time
required to conduct the study.

The two most common environments for controlled tests are driving simula-
tors and test tracks. Experiments may also be performed in real traffic, though
without the benefits of exact repeatability or the possibility of inducing critical
events. High-fidelity driving simulators were used in Papers 2, 5, and 6 of this
thesis. The two latter papers included critical event exposures (in Paper 5,
a longitudinal lead vehicle event; in Paper 6, a lane departure event). Using
state-of-the-art driving simulators ensured a realistic rendering of important
visual quantities (such as the position and size of surrounding vehicles) and
valid vehicle dynamics. Both these features are essential since inaccurate vi-
sual or haptic cues may impact the authenticity of drivers’ control behaviors.
In particular, differences have been observed in drivers’ brake modulation be-
tween driving simulator data and data collected in corresponding situations
on a test track or real roads (Boda et al., 2018; Hoffman et al., 2002).

In contrast to driving simulator experiments, test track studies have the
advantage of being performed in real vehicles, in which visual and haptic
cues are identical (or at least very close) to those experienced in a real-world
situation. Unfortunately, test track studies offer less flexibility than driving
simulator studies in terms of what is possible or suitable (e.g., safe). For
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example, critical lane departures may be very difficult to induce safely. Driver
reactions may also be affected by the use of balloon cars or inflatable dolls,
which do not necessarily represent other road users very realistically (Chrysler
et al., 2015). An increased level of realism may be achieved by combining
real-vehicle driving with virtual or augmented reality, although this is still
uncommon (Hartmann et al., 2017; Uchida et al., 2017). In this thesis, a
small test track study was performed to demonstrate the potential of the
driver model presented in Paper 1.

Driver glance behavior
Knowing where the drivers allocate their visual attention is essential to deter-
mine and analyze the reason for specific driving behaviors. Gaze direction has
been used as a surrogate for visual attention in most of the work in this thesis.
However, as discussed in Papers 4–6, the use of peripheral vision allows for
partial visual processing during off-road glances. Since peripheral vision en-
ables quick gist perception (a rapid, overall impression of a scene or situation)
and is used to plan shifts in attention and gaze, it is essential to information
acquisition in driving (Wolfe et al., 2022).

Visual time-sharing between the road in front, other areas of interest (AOIs)
relevant to the driving task (e.g., side and rear-view mirrors)—and sometimes
AOIs secondary to the driving task (e.g., the center stack)—is integral to all
driving. The gaze direction at a given time can be automatically estimated
with eye-tracking equipment (e.g., using glasses or a system of driver-facing
cameras) or by manually examining video recordings. A drawback of eye
tracking (however determined) is that only the foveal gaze direction is consid-
ered. Thus, information about what the driver perceives in the extra-foveal
and peripheral view is not available.

Moreover, the importance of context in gaze analysis should be empha-
sized (Ahlström et al., 2021). Contrary to what is often assumed, off-road
glances are not necessarily detrimental to safety or an indication of driver dis-
traction but may, in fact, be required for safe driving (Ahlström et al., 2021;
Kircher et al., 2020). For example, when preparing for an overtaking maneu-
ver, the driver needs to look in the side and rear-view mirrors and check for
cars in the adjacent lane: in this situation, an on-road glance is not necessarily
safer than an off-road glance. For this reason, Ahlström et al. (2021) propose
to use a purposed-based approach to evaluate driver attention, assessing the
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driver’s gaze pattern (in terms of timing and duration) in relation to visual
sampling areas relevant to the current driving situation.

For offline applications (e.g., posterior glance analysis), manual frame-by-
frame annotation of video recordings from one or more driver-facing cameras—
where the driver’s eyes are clearly visible—is often employed (Jansen et al.,
2021). However, Jansen et al. (2021) question the accuracy of this method,
noting it depends on the number of annotation regions (AOIs) and the pur-
pose of the gaze direction analysis. Manual annotation is, moreover, a time-
consuming, tedious process, and several annotators should cover the same
sequence to minimize the effects of subjective judgment. Methods to auto-
mate the annotation process exist (Fridman et al., 2016; Tawari & Trivedi,
2014; Vora et al., 2017) but suffer from a lack of reliable ground-truth data
on which the algorithms can be trained (Jansen et al., 2021). Overall, frame-
by-frame annotation based on video recordings is not suitable for long driving
sequences. Instead, it may be a feasible alternative for studies of, for example,
drivers’ interactions with a (time-limited) secondary task or drivers’ responses
to induced critical events in a controlled study.

The use of automatic eye trackers may be attractive since they minimize
the amount of manual work required to annotate even short driving sequences.
However, the accuracy of the eye-tracker estimations can vary considerably
between drivers, and the equipment is commonly vulnerable to incorrect cali-
bration (Feit et al., 2017; Khan & Lee, 2019). Another major drawback is the
system’s limited reliability in naturalistic driving settings, due to, for exam-
ple, shifting illumination conditions and vehicle vibrations (Holmqvist et al.,
2012; Jansen et al., 2021; Khan & Lee, 2019). If data quality can be ensured,
automatic eye trackers may be useful for real-time monitoring of the driver’s
gaze behavior, providing ADASs with information about the driver’s current
level of visual distraction or sleepiness (Fridman et al., 2017; Halin et al., 2021;
Hayley et al., 2021; Ma et al., 2019). In fact, sleepiness and distraction sys-
tems (although not necessarily camera-based) are already mandatory within
the EU (European Union, 2019). Further, the European New Car Assess-
ment Programme, Euro NCAP (2022), encourages driver monitoring systems
(DMS) in all new vehicles, with points awarded to vehicles in which the DMS
can successfully detect distracted, sleepy, or unresponsive drivers.

Most glance data used in this thesis (Papers 3–6) were manually coded
by at least two independent annotators. However, automatic eye tracking
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by a system of multiple driver-facing cameras was used in the run-off-road
simulator study presented in Paper 6.

3.2 Modeling frameworks
The intended application area is one of the main considerations in the mod-
eling framework selection. Two appropriate frameworks were applied in this
thesis: (1) the hybrid ARX framework, which is suitable for online parameter
estimation, and (2) the predictive processing framework with noisy evidence
accumulation, which is appropriate for offline applications (e.g., ADAS eval-
uation). Additionally, Bayesian regression models were used to explore risk
metrics suitable for modeling driver behavior in critical lateral situations (lane
departures). The regression models constitute a first step toward more com-
plex models based, for example, on the predictive processing framework.

Hybrid ARX models
Papers 1–2 use hybrid ARX models to model and classify driving behavior
in both the lateral (Paper 1) and longitudinal (Paper 2) domains. The main
modeling structure is a PrARX model, as described by Taguchi et al. (2009).
PrARX models cluster driving behavior into discrete modes Si (i = 1, . . . , s,
with s being the number of modes), and the behavior corresponding to each
mode is described by ARX models. The ARX model output yt at time t can
be calculated as:

yt = a1yt−1 +a2yt−2 + · · ·+anyt−n +b0ut +b1ut−1 + · · ·+bmut−m +et, (3.1)

where et is an error term, and a1, a2, . . . , an and b0, b1, . . . , bm are the model
parameters; n and m are the orders of the ARX model. Assuming a pa-
rameter vector θ = [a1, a2, . . . , an, b0, b1, . . . , bm]T and a regression vector
ϕt = [yt−1, yt−2, . . . , yt−n, ut, ut−1, . . . , ut−m]T , the ARX model can be writ-
ten in compact form as:

yt = θT ϕt + et. (3.2)

The probability that the driver operates according to the ARX model in mode
Si is expressed by a softmax function with switching parameters ηi:

Pi(ϕt) = enT
i ϕt∑s

j=1 enT
i

ϕt
, (3.3)
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where a higher value of ni corresponds to mode i having more impact on
the total model output. This softmax formulation makes the PrARX model
convenient for online parameter estimation, since both the sub-model (ARX)
parameters θi and the switching parameters ηi can be simultaneously esti-
mated. The total PrARX model output will be the weighted sum of the
behavior in all modes:

yt =
s∑

i=1
Pi(ϕt)θT

i ϕt + ei,t. (3.4)

A schematic representation of the PrARX model structure can be found in
Figure 3.1.

PrARX models can be used for driver behavior classification by assuming
that driver behavior in each instant belongs to the operating mode with the
highest probability Pi(ϕt). Each mode corresponds to a certain driving style
or behavior. In Paper 1, online parameter estimation of PrARX models is
used to classify the driving behavior as either aggressive (mode 1) or non-
aggressive (mode 2). In contrast, Paper 2 uses discrete model modes to judge
whether drivers are within their comfort zone (mode 1), which is associated
with a sense of being in complete control of the situation, or not (mode 2).

Mode 1 Mode 2

. . .

Mode s

Figure 3.1: A schematic representation of the PrARX model structure.
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Predictive processing and noisy evidence accumulation
Offline driver model applications, such as virtual safety benefit assessments,
allow higher flexibility in the model structures, since fast and efficient pa-
rameter estimation methods are secondary to model accuracy. Here, evidence
accumulation (Boag et al., 2023; Gold & Shadlen, 2007; Usher & McClelland,
2001), a concept originating from cognitive science, has been combined with
the predictive processing concept from neuroscience to describe driving con-
trol using kinematic motor primitives (S. Giszter, 2009; S. F. Giszter, 2015),
which are guided by the prediction of sensory outcomes (Crapse & Sommer,
2008). In particular, the work in Papers 3–4 is based on the computational
framework for driver modeling suggested by Markkula (2014) and Markkula
et al. (2018), revolving around four basic principles:

1. Noisy evidence accumulation

2. Generation of motor primitives as intermittent control actions

3. Prediction of future perceptual inputs

4. Control adjustment magnitude tuned to the perceptual prediction error

While these principles are generic and can be applied to many different traffic
situations, the work in this thesis focuses on kinematics-dependent models
for braking in critical lead vehicle situations. Such situations are defined by
the presence of a slower or stationary vehicle in front of the subject vehicle,
causing the driver to brake (or steer) to avoid a collision; see Figure 3.2 for
an illustration. The perceptual quantity used in these models is looming,
which is (at least for small angles) a visually perceivable equivalent to time
to collision (TTC). The looming describes the angular growth of the image of
the lead car projected onto the observer’s retina (D. N. Lee, 1976). Following
the definition by D. N. Lee (1976), looming is defined here as:

τ−1 = θ̇

θ
, (3.5)

where θ is the optical width of the lead vehicle (but could, in principle, be the
angle between any two simultaneously observable points on the vehicle). Due
to the equivalence with TTC, τ−1 is a well-established measure of looming in
critical driving situations (Boda et al., 2020; Kondoh et al., 2014; Markkula

32



3.2 Modeling frameworks

et al., 2016; Morando et al., 2016; Summala et al., 1998; Terry et al., 2008;
Xue et al., 2022). Notably, other looming definitions such as θ̇ (Liebermann
et al., 1995; Mortimer, 1990) and v

τ (Fajen, 2005; R. J. Kiefer et al., 2005;
R. Kiefer et al., 2003) have been used as well (though the latter appears to be
more suitable to describing routine driving than critical situations; Markkula
et al., 2016).

The driver is assumed to collect evidence (i.e., looming) of braking over
time. This evidence is continuously compared to the driver’s prediction about
how the sensory input will develop over time (i.e., prediction of future sensory
input), with the difference forming a perceptual prediction error. Noise is
added to the prediction error, and the resulting quantity is accumulated until
an arbitrary activation threshold is reached. Surpassing the threshold triggers
(1) a reset of the accumulated error, (2) the onset of an adjusting control
action, and (3) an update of the (low-level) prediction of sensory inputs based
on the control action. The magnitude of the control action is scaled to the
situational urgency as a multiple of the prediction error. In the suggested
braking models, the scaling corresponds to the brake jerk’s adaptation to the
judged severity of the situation (i.e., braking harder the more critical the
situation is perceived to be, causing a faster deceleration ramp-up).

Figure 3.2: An illustration of a critical lead vehicle situation. The modeled driver
is in the teal-colored car. The red lead car is stationary or decelerating,
which eventually causes the modeled driver to brake.

The generic framework also allows the inclusion of other evidence for or
against a control action; see Figure 3.3. Additional evidence could, for exam-
ple, be the driver’s internal expectations about the upcoming traffic situation
or the onset of a forward collision warning. In the braking model presented
in Paper 3, a constant gating factor is subtracted from the predictor error,
representing (in a simplified manner) all non-looming evidence.
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ACCUMULATOR New adjustment trigger

Prediction of future sensory input

Prediction error

Control action

NoiseEvidence for the
need of a control
action

Evidence against
the need of a
control action

Figure 3.3: An overview of the computational model framework based on predic-
tive processing and noisy evidence accumulation.

Bayesian linear regression
The Bayesian statistical framework is becoming increasingly popular. One of
the reasons is the advancement of simulation methods which do not require
closed-form analytical expressions for the posterior distributions. Bayesian
statistics is based on Baye’s theorem, which states the probability of an event
given previous knowledge. Consequently, a key difference between frequentist
and Bayesian statistics is the possibility to incorporate prior beliefs into the
models (see, e.g., Koch, 2007 or Lambert, 2018 for an introduction to Bayesian
statistics).

In contrast to frequentist analysis, Bayesian statistics represents an intuitive
interpretation of statistical concepts. It may also be less prone to misinterpre-
tation (e.g., the interpretation of the frequentist p-value is widely disputed in
the literature; see the discussion by J. Kim & Bang, 2016). Although similar
to traditional regression methods (especially with the use of non-informative
or vague priors, representing no, or very little, prior knowledge), Bayesian re-
gression provides the posterior distributions of the predictor parameter values.
These distributions are much more informative than the mere single numeri-
cal estimate (possibly with a confidence interval and p-value) yielded by the
frequentist approach (Lambert, 2018).

The Bayesian regression techniques used in Papers 4 and 6 are based on
two main assumptions: (1) the prior distributions of predictor coefficients are
normal and non-informative, (2) the posterior distribution of the model output
is normal, with the mean as a linear combination of the predictor variables.
The posterior distribution of the model parameters is generated by a Markov
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chain and Monte Carlo simulations, using the Markov Chain Monte Carlo
(MCMC) computational method (Koch, 2007). Each posterior parameter
distribution is associated with a highest posterior density (HPD) interval,
corresponding to the shortest interval covering a certain percentage of the total
probability density (in this thesis, 95 %; see Figure 3.4). If an HPD interval
does not overlap with zero or with a predefined region of practical equivalence
(ROPE; see Figure 3.4), the corresponding parameter can be considered to
contribute significantly to the model fit (Hespanhol et al., 2019). The use of a
ROPE is optional, but it allows significance to be defined more conservatively,
since it considers a whole range of values to be practically equivalent to the
null value (Kruschke, 2018). A ROPE was used in Paper 4 but disregarded in
the model selection process of Paper 6.

95 % HPD

ROPE

Figure 3.4: Illustration of a posterior distribution. The blue area depicts the 95 %
HPD interval; the ROPE lies between the two dashed lines. Note that
the ROPE is not necessarily symmetric around zero (yellow, dotted
line).

3.3 Parameter estimation
Once the basic model structure is set, accurate estimations of the model pa-
rameters are essential for satisfactory model performance. In some cases, using
different parameter sets for different model application areas may be benefi-
cial, or even necessary. For example, one set of parameters may be applied
to an evasive-braking model to evaluate the average driver performance in a
virtual safety benefit assessment. On the other hand, a completely different
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parameter set may be appropriate when the same model is used to describe
the braking behavior of an alert and attentive driver in order to set safety
targets for AD vehicles. For most use cases, offline estimation can be used
a priori to determine the optimal model parameters. However, the parame-
ter values must continuously be updated using online (recursive) parameter
identification methods when the objective is to tune an ADAS to the current
driver.

Offline parameter estimation
Offline parameter estimation methods assume all data to be known, and thus,
at each sample, they consider both previously observed and upcoming (yet
to be seen) data. Consequently, the resulting parameter set is optimized to
reflect the average data trends. The choice of estimation method depends on
the model structure and its complexity. This thesis used both conventional
prediction error methods and stochastic optimization methods, as described
below.

Prediction Error Method (PEM)

The PEM (see, e.g., Ljung, 1999) estimates the predictive performance of a
model and is applicable to both offline and online parameter estimation. In
its general form, PEM solves the following problem:

θ̂ = arg min
θ

ϵ (θ) ,

ϵ (θ) = 1
N

N∑
k=1

l (yk − ŷk (θ)) ,
(3.6)

where yk is the observed data, and ŷk(θ) is the model estimate at the kth

sample, calculated using the parameter set θ. In this thesis, l (yk − ŷk (θ)) =
(yk − ŷk (θ))2, which corresponds to least squares estimation (Ljung, 1999).

Particle Swarm Optimization (PSO)

Due to the complexity of the computational driver models discussed in this
thesis, the conditions ensuring that conventional optimization methods (the
gradient descent algorithm, for example) converge to a global optimum are
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rarely fulfilled. Instead, stochastic optimization methods, such as the population-
based PSO method (see, e.g., Wahde, 2008; Y. Zhang et al., 2015), may be
more appropriate. Stochastic optimization methods are particularly suited for
searching vast solution spaces. Although these methods also cannot guarantee
global optimality of the estimated parameters, the optimization performance
is generally sufficient for driver model applications.

In the PSO method, a swarm of particles searches the solution space to
find the optimal solution to a parameter identification problem. Each particle
corresponds to a potential model parameter set. The particle velocities are
updated in each iteration, and each particle accelerates towards a linear com-
bination of its best position from previous iterations and the global best po-
sition (the hitherto best position of any particle in the swarm). Performance-
dependent fitness values are assigned to each particle to guide the search. The
fitness values are usually based on the difference between the observed data
and the model output (which what obtained by applying the parameter set
corresponding to the current particle position in the search space).

Maximum likelihood estimation (MLE) through kernel density estimation
(KDE)

Estimating the parameter values of driver models that include a stochastic-
ity component (noise) adds a level of complexity compared to estimating the
parameter values of deterministic models, since the output will vary for the
same set of parameters. A feasible approach to manage the added complex-
ity is resorting to Monte Carlo simulations to generate a distribution of the
model performance corresponding to each parameter set, instead of a single
performance measure. Likelihood-based methods can then be used to com-
pare the performance distributions and find the best parameter set (see, e.g.,
Rice, 2007, for a fuller explanation).

MLE identifies the model parameter set θ̂ which maximizes the likelihood
L(θ | y) that the given model generated the observed data points y:

θ̂ = arg max
θ

L (θ | y) . (3.7)

Since a multivariate probability distribution (pdf) of the chosen performance
measures is generated (in Paper 4, a distribution of brake initiation times and
brake jerk levels), the total likelihood of the Monte Carlo simulations can be
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evaluated. Consequently, MLE can be used to estimate the model parameters.
When no closed form of the pdf is available, and only a limited set of actual
observations are made, the pdf can be approximated using KDE (see, e.g.,
Wȩglarczyk, 2018). KDE uses data smoothing of a finite data set, by apply-
ing potentially overlapping kernel functions (in Paper 4, Gaussian functions)
to the observed data points. The performance measures can be weighted ac-
cording to their relative importance using separate kernel standard deviations
for each dimension.

Online parameter estimation

Online parameter estimation identifies model parameters by recursively in-
cluding newly observed data samples into the dataset. The available data
points can be unevenly weighted to favor newer data over old data and thus
accurately represent the current driving behavior (rather than the behavior
reflected in the old observations). In this thesis, a sliding window continu-
ously updates the estimated parameter values based on only the most recent
data samples (thus completely discarding old samples). At the time t of each
new observation, a weighting factor β(t, k) is assigned to all past observations
k = 1, 2, ..., nt. The weighting factor is assigned a binary value:

β(t, k) =
{

0, tk < t − τ

1, tk >= t − τ,
(3.8)

where τ is the length (in time) of the sliding window.
In this thesis, online parameter estimation is performed by combining a

sliding window with PEM (see Section 3.3). The following problem is solved
for each new discrete observation at time t:

θ̂ = arg min
θ

ϵ (t, θ) ,

ϵ (t, θ) = 1
Nτ

t∑
k=t−τ

(yk − ŷk (θ))2
,

(3.9)

where Nτ is the number of samples in the sliding window. Note that reli-
able parameter estimates require excitation of the model-relevant signals, a
condition not fulfilled at all instants during driving. This problem can be
overcome by using kinematics-dependent window lengths or by disregarding
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low-excitation data. Paper 1 adopts the latter approach.

Levenberg-Marquardt (LM) algorithm

The LM algorithm (Levenberg, 1944; Marquardt, 1963) is a stable, efficient
method for solving non-linear least squares problems and is thus a suitable
choice to solve the PEM problem formulated in Equation 3.9 when the model
is non-linear. It is a numerical, iterative optimization algorithm similar to
the Gauss-Newton algorithm (Levenberg, 1944). Given an initial guess for
the parameter vector θ, the LM algorithm incrementally updates the param-
eter estimates by adding an increment δ. In contrast to the Gauss-Newton
algorithm, a damping parameter λ scales the gradient according to the cur-
rent curvature (i.e., larger increments for small gradients). The increment δ

is found by solving the following equation (Fletcher, 1971):(
JT J + λdiag

(
JT J

))
δ = JT [y − ŷ (θ)] , (3.10)

where J is the Jacobian matrix of (y − ŷ (θ)), y is the vector of observed data
points, and ŷ (θ) is the estimated model output using the parameter vector θ.
The damping factor is dynamic and may be updated during the optimization
process. A small damping value corresponds to a Gauss-Newton parameter
update, while a large value results in a parameter update according to the
steepest descent method (Fletcher, 1971).

3.4 Driver model application in simulation
Computational driver behavior models constitute an essential part of virtual
safety assessments. However, the accuracy of the final results are also heav-
ily dependent on the rest of the simulation environment. Essential parts of
the simulation environment include, for example, how the vehicle dynamics
are modeled, how accurate and representative the simulated scenarios are (in
scenario-based assessments), and how realistic the traffic environment setup
is, in terms of both infrastructure and the behavior of other road users.

The driver models in Papers 3 and 4 have been applied in scenario-based
counterfactual simulations. A simulation tool with basic vehicle dynamics was
used to recreate the dynamics of crashes and near-crashes present in NDD
from SHRP2 in a virtual environment (Paper 4) and to evaluate the driving
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performance in standardized lead vehicle scenarios created by Euro NCAP
(Paper 3). Paper 4 uses NDD with recorded driver behavior to estimate the
parameters of a set of driver models. The model performance is compared to
the observed human behavior in the same situation (in the NDD). Removal
of the human evasive maneuver in the recorded data before the driver model
application was necessary to separate the actual human behavior from the
model-generated control output. One way to remove the maneuver is by first
identifying its start and then assuming that the driver keeps a constant speed
until the driver model starts braking (Bärgman, Boda, & Dozza, 2017), as
illustrated in Figure 3.5.

In addition to being used in parameter estimation, evasive maneuver re-
moval is an efficient tool in scenario-based prospective safety assessments,
when a driver model replaces the original driver reaction in a certain scenario
(e.g., to evaluate the potential effect of a warning system (Bärgman, Boda, &
Dozza, 2017; Seyedi et al., 2021; Sugimoto & Sauer, 2005). However, this ap-
proach is not necessary in multi-agent traffic simulations since those are based
entirely on virtual drivers (instead of recorded or reconstructed crash data),
with all the benefits and drawbacks associated with that way of generating
safety-critical situations.
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Figure 3.5: Example of speed profiles before and after removing the original evasive
(braking) maneuver. The blue, dotted lines mark the start and end
(i.e., the crash point) of the original evasive maneuver. The maneuver
is removed by extrapolating the subject-vehicle’s prior speed (orange
line). Note that the lead vehicle speed (green line) is extrapolated
after the crash point in case the counterfactual simulation results in a
scenario that is longer than the original.
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CHAPTER 4

Summary of included papers

This chapter provides a summary of the included papers.

4.1 Paper 1

Online driver behavior classification using probabilistic ARX
models
Malin Sundbom, Paulo Falcone, and Jonas Sjöberg (2013).

Background: In-vehicle ADASs are generally not adapting their intervention
and warning thresholds to the individual drivers. Hybrid models are promis-
ing for capturing drivers’ capabilities and predicting driver behavior in real
time.

Aim: This study used the hybrid ARX driver modeling framework with the
main aim of classifying the driver’s current driving style and predicting the
driver’s steering behavior.
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Method: A two-mode PrARX model for steering was suggested: (1) nor-
mal driving and (2) aggressive driving. The model parameters were estimated
online through a prediction error method using particle swarm optimization
and the Levenberg-Marquardt algorithm to set the initial parameter values.
The model was validated on data collected from a small test track study.

Results: The suggested driver model showed good performance in distin-
guishing between normal and aggressive driving on curved road segments (the
relevant sensitivity and specificity were approximately 90 %). Moreover, it
could accurately predict the driver’s steering angle one time step ahead. Lat-
eral acceleration and movement in the lane had the most substantial influence
on the model predictions.

Discussion: Incorporating the suggested driver model into the threat as-
sessment and decision-making layer of an ADAS would allow the system to
adapt to the current driver. For example, lane departure warnings could be
suppressed more than usual for drivers exhibiting an aggressive driving style.
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4.2 Paper 2

A study of appropriate model complexity for estimation of
car-following behavior
Malin Sundbom and Jonas Sjöberg (2015).

Background: Driver models of routine car-following behavior could be used
to automatically adapt a forward collision warning and avoidance system to
individual drivers. However, routine driving may not contain enough infor-
mative data to motivate high-complexity models.

Aim: This paper aimed to investigate possible model structures for predicting
and classifying drivers’ car-following behaviors and to analyze to what extent
complex models could be justified.

Method: Dynamical longitudinal control models based on the hybrid ARX
framework were systematically investigated and compared to simpler model
structures. The models predicted the drivers’ pedal operation during car-
following and classified whether the drivers were in a “safe” or “dangerous”
driving mode (with the dangerous mode indicating that the current driver
usually would have braked in the given kinematic situation). The models
were applied to data from a driving simulator experiment with five partici-
pants performing a car-following task on an expressway. A prediction error
method was used for the parameter estimation.

Results: Complex model structures could not be justified for long predic-
tion horizons (more than one time step), since the predictive performance was
not better than for simpler model structures. However, the complex models
could be used to accurately classify whether the driver sensed an upcoming
need to brake. Simple classification models were not as precise.

Discussion: Car-following driver models with simple structures may per-
form better than their complex counterparts. More informative data (i.e., not
just from highway driving) would be necessary to justify complex models.
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4.3 Paper 3

A quantitative driver model of pre-crash brake onset and
control
Malin Svärd, Gustav Markkula, Johan Engström, Fredrik Granum, and
Jonas Bärgman (2017).

Background: Understanding drivers’ responses in critical situations is essen-
tial for road safety benefit estimation. Many traditional emergency braking
models focus on probability distributions of reaction times and assume pre-
defined braking profiles. A model framework based on ideas from ecological
psychology may lead to models that are more generic and (neurologically)
accurate.

Aim: The aim of this paper was to apply a previously suggested compu-
tation framework for driver control behavior to create a model of drivers’
braking behaviors in critical lead vehicle scenarios.

Method: A computational framework based on predicitve processing and
noisy evidence accumulation was used to design a driver model for emergency
braking. The manually tuned model was combined with a glance behavior
distribution and used to simulate a set of lead vehicle scenarios designed by
Euro NCAP. The outcomes, in terms of brake initiation time and brake jerk,
were compared to naturalistic driving data (SHRP2).

Results: A comparison of the simulation output and naturalistic driving
data led to the conclusion that the suggested driver model produced quali-
tatively realistic, kinematics-dependent brake initiation times and brake jerk
values.

Discussion: The computational driver modeling framework used in this pa-
per is generic and can be adapted to other situations than lead vehicle critical
scenarios. It is also possible to include driver expectancy in the models, form-
ing a solid base to build models describing driver behavior in relation to, for
example, failing automation systems.
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4.4 Paper 4

Computational modeling of driver pre-crash brake response,
with and without off-road glances: Parameterization using
real-world crashes and near-crashes
Malin Svärd, Gustav Markkula, Jonas Bärgman, and Trent Victor (2021).

Background: Sufficiently validated computational driver models for brake
modulation which take driver eye movements into account are currently lack-
ing. Capturing how specific traffic situations and gaze patterns influence the
driver’s response process would be valuable for virtual safety benefit estima-
tions.

Aim: The main aim of this work was to determine how off-road glance be-
havior could be included in a driver model for critical longitudinal scenarios.
Another aim was to thoroughly parameterize a driver model using naturalistic
data from real-world crashes and near-crashes for the first time.

Method: An existing model for driver brake initiation and modulation was
extended and fitted to naturalistic driving data, using a stringent method for
parameterization and model selection based on particle swarm optimization
and maximum likelihood estimation. The model parameters were calculated
on four partly overlapping data sets of progressively more severe lead vehicle
events.

Results: The results indicate that drivers have partial perception of looming
while looking off-road, and that reduced responsiveness to looming may be an
important crash-causation factor. Moreover, the results showed that models
parameterized on less-critical data could successfully reproduce driver behav-
ior in highly critical events.

Discussion: This paper successfully demonstrate how to fit a driver behav-
ior model to real-world crash and near-crash data, considering that evidence
accumulation can occur also during off-road glances. Using this kind of model
in virtual safety evaluations ensures a high level of representativeness in the
results.
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4.5 Paper 5

Detection and response to critical lead vehicle deceleration
events with peripheral vision: Glance response times are
independent of visual eccentricity
Malin Svärd, Jonas Bärgman, and Trent Victor (2021).

Background: An essential part of preventing crashes caused by visual dis-
traction is understanding drivers’ use of peripheral vision to detect and react
to threats. This area is often overlooked in driver behavior models.

Aim: The main aim of this work was to quantify the driver’s use of peripheral
vision to accumulate perceptual evidence of a decelerating lead vehicle, which
then contributes to the computational modeling of driver response processes
in critical lead vehicle scenarios.

Method: A between-group experiment with 83 participants was performed
in a high-fidelity, moving-base simulator. The participants were exposed to
the sudden, severe braking of a lead vehicle on a two-lane, divided highway
while performing a distraction task. The effects of horizontal visual eccen-
tricity angle (12°, 40°, or 60°) on threat detection, glance, and brake response
times were analyzed.

Results: Drivers’ glance response times were independent of the visual ec-
centricity angle. However, the brake response times increased with increasing
eccentricity of the distraction task. Moreover, large angles were associated
with low threat-detection rates and frequent on-road check glances.

Discussion: The results indicate that drivers use peripheral vision to col-
lect evidence for braking during off-road glances. This insight may be used
to extend existing models of human braking behavior in critical scenarios in
order to improve the representativeness of virtual simulation results.
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4.6 Paper 6

Using naturalistic and driving simulator data to model driver
responses to unintentional lane departures
Malin Svärd, Gustav Markkula, Mikael Ljung Aust, and Jonas Bärgman (sub-
mitted).

Background: Computational models of drivers’ responses to critical lane
departure events are a prerequisite for performing realistic virtual safety eval-
uations involving such events. However, models of this kind are currently
lacking.

Aim: This work aimed to investigate and model drivers’ corrective steer-
ing responses during unintended lane departure events. The driver repsonse
was assessed in terms of steering amplitude and timing.

Method: Steering responses from three different lane departure data sets
were investigated, with steering quantified as yaw rate relative to the road
heading. Steering initiation times were reported as response time distributions
in relation to the last off-road glance before the steering initiation. Steering
amplitude models based on a set of lane departure risk metrics were fitted to
the data using Bayesian linear regression.

Results: In many cases, the corrective steering adjustment was initiated
before, or at the same time as, the driver’s glance was redirected to the for-
ward roadway. The correction amplitude was successfully modeled using a
polynomial model of the relative yaw angle at steering initiation. The model
outperformed alternative models based on more complex risk metrics. How-
ever, for the naturalistic data sets, the change in splay error was a better
predictor than the relative yaw angle.

Discussion: The results indicate that drivers can use peripheral visual infor-
mation to guide their steering responses. However, further studies to investi-
gate influences on the steering amplitude, and how these may differ depending
on the data source, would be warranted.
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CHAPTER 5

Discussion

This chapter addresses the most critical aspects of the appended papers and
gives an overview of the practical implications of the findings. Sections 5.1–
5.3 frame the main results in relation to the general research questions, as
formulated in Section 1.1. This is followed by some brief remarks on the
potential of using cognitive models for ADAS tuning. Finally, the major
limitations of the thesis work are highlighted, together with an outlook on
future research needs in the area of computational driver modeling.

5.1 Real-time estimation of driving behavior for
online tuning of ADAS

Real-time, continuously updated computational driver models show great po-
tential to improve ADAS performance by reducing the number of undesired
warnings, and, possibly, increasing number of the warnings for unskilled or
novice drivers. Two main approaches for improving ADASs have been iden-
tified: time-series prediction of driver behavior and driver behavior classifica-
tion. Both approaches are discussed in more detail below.
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Online prediction of driving behavior

The results in Paper 1 and Paper 2 suggest that prediction models based on a
hybrid ARX framework can be used to measure or detect variability in driver
behavior over time, as long as proper signal excitation is ensured. PrARX
models were shown to make accurate time series predictions of both steering
control and pedal usage during routine driving.

In Paper 1, lateral control was modeled using the vehicle’s lateral accelera-
tion and yaw rate, the absolute value of the lateral movement in the lane, and
the absolute value of the heading error. Yaw rate emerged as the most impor-
tant predictor variable, which was to be expected since the steering angle is
closely coupled to the yaw rate (and vehicle speed; Pacejka, 2006). Since the
selected predictors were exclusively based on the vehicle’s yaw angle and lat-
eral movement in the lane, the regressor did not contain enough information
to predict the driver’s steering behavior on straight roads. Nonetheless, a high
level of prediction accuracy was reached when enforcing a curvature threshold
on the prediction algorithm (equivalent to discarding input with little or no
excitation). ADASs relying on this type of driver model should thus take road
curvature into account and be recommended not to trust predictions based
on data collected on road segments with low excitation levels of the relevant
signals (e.g., on straight roads).

As for the longitudinal control domain, Paper 2 evaluated the predictive
performance of models of various degrees of complexity. All models were based
on the range (relative distance to a lead vehicle), the range rate (speed relative
to a lead vehicle), and the KdB risk index. The KdB risk index corresponds
to the change in area of the visual image of the lead vehicle on the observer’s
retina and is thus a measure comparable to visual looming (Wada et al., 2007).
The analysis concluded that satisfactory prediction performance was difficult
to achieve when predicting driver behavior over long time horizons. In fact,
simple model structures performed as well as their more complex counterparts
for prediction horizons exceeding one time step.

Information from other systems, for example the DMS, could complement
the online driver models and improve the prediction accuracy (Hayley et al.,
2021). Black-box models, which were beyond the scope of this thesis, could
potentially also perform better than the models presented in Papers 1–2. How-
ever, these have the drawbacks of requiring extensive computational power,
being sensitive to the quality and amount of training data, and are usually
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hard to interpret (Linardatos et al., 2021). A more feasible alternative could
be applying the suggested driver models to real-time classification of driving
style rather than to a detailed prediction of the driver’s control behavior.

Online classification of driving behavior
Behavioral classification into clusters, or modes, with mutual similarities can
be used to differentiate between various driving styles—or to identify whether
drivers are driving within their individual safety limits. Both the current mode
affiliation and mode boundaries are subject to change over time. An HDS can
describe the dynamics in each mode and the switching between modes (Akita
et al., 2007a; Okuda, Ikami, et al., 2013). Although black-box models are
becoming increasingly popular for real-time driver model applications (Elam-
rani Abou Elassad et al., 2020), hybrid ARX models can also be used for
classification purposes (Taguchi et al., 2009).

Keeping the hybrid ARX framework for driving behavior classification has
several advantages: it is possibile to perform both classification and prediction
simultaneously; it is suitable for online parameter estimation; and it facilitates
an intuitive understanding, and thus a more relevant analysis, of model mech-
anisms. PrARX models were used to demonstrate a method for lateral driving
style estimation (Paper 1) and to determine whether the driver is currently
driving within his or her comfort boundaries (Paper 2). The drivers were
assumed to operate in the mode related to the highest estimated probability.
A similar approach has previously been demonstrated by Ikami et al. (2011);
see Section 3.2.

The classification potential of PrARX models was demonstrated in Paper 1.
The model was designed to distinguish between predominantly aggressive driv-
ing and non-aggressive driving. Aggressive driving is commonly described as
inappropriate, or even hostile; it has received a great deal of attention due
to the drivers’ risk-taking behaviors (Persak, 2011; Quintero M. et al., 2012;
Sagberg et al., 2015; Shinar, 2017; Su et al., 2023). This description was some-
what relaxed in Paper 1, where a tendency toward high lateral acceleration
and a wide range of lateral movement in the lane characterized the aggressive
driving mode. Although the suggested classification model requires curved
road segments for necessary signal excitation, it was shown to perform well in
such environments. It should be safe to assume that, in most cases, the gen-
eral driving style will not abruptly change from aggressive to non-aggressive.
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Thus, the driving style can be expected to remain in the latest estimated mode
for some time when the driver enters occasional straight road segments.

Drivers’ emotions have been suggested to influence their adopted driving
style (Eboli et al., 2017; Habibifar & Salmanzadeh, 2022). Recent publications
have analyzed how the driver’s affective state relates to driving performance
and how changes in the driver’s mood can be identified (Braun et al., 2020;
Jeon, 2012; Jeon et al., 2014; Lopez-Martinez et al., 2019). A personalized,
adaptive FCW system based on affective state estimation has even been pro-
posed (Govindarajan et al., 2018). The authors report that the adaptive sys-
tem improves the warning precision with 40–50 %, and the warning accuracy
with approximately 10 %, compared to conventional FCW systems. Fusing
information about the driver’s affective state and estimated driving style may
result in more robust classification systems, since the information generated
by one subsystem (e.g., affective state estimation) can complement the other
(e.g., driving style estimation). Such complementarity may be particularly
beneficial when the accuracy of the driving style classification algorithm is
low, such as on straight road segments (for most driving style classification
models) or in absence of other road users (for car-following models).

ADASs could use information about driving style for real-time tuning of
warnings and intervention thresholds. For example, lane departure warnings
and steering interventions may be more frequently delayed or suppressed for an
aggressive driver. On the other hand, if the system “knows” that the driver
does not usually drive aggressively, it could enable valuable interventions,
such as when drivers accidentally exceed the lane boundaries in situations
where commercial LKS warnings and interventions are generally suppressed
(e.g., in sharp inner curves). Research has, however, shown a correlation
between aggressive or hostile driving styles and crash risk, which can partly
be explained by an elevated tendency to violate traffic rules (Sagberg et al.,
2015). Consequently, care should be taken when determining which warnings
and interventions should be suppressed.

Whereas the driving style identification model presented in Paper 1 can
potentially improve ADASs, it is arguably mainly beneficial for systems tar-
geting lateral situations, such as lane departures. In a situation with a threat
in the longitudinal direction, such as a slower or decelerating lead vehicle,
it might be better to use driver classification models to detect when drivers
are unaware of, or unprepared for, a critical situation (i.e., leaving a “safe”
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driving mode). In Paper 2, a PrARX model with simplified mode transition
was suggested to distinguish between safe and unsafe car-following behavior.
In this model, patterns of the driver’s previous brake and throttle pedal oper-
ation were used as inputs. Akita et al. (2007a, 2007b) investigated a similar
concept, modeling pedal operation as a piecewise ARX model. Driving control
was divided into four modes, one of which corresponded to longitudinal colli-
sion avoidance behavior. The optimal number of modes, arguably depending
on the intended model application, could also be determined based on a trade-
off between model robustness and model error, as discussed by Nwadiuto et
al. (2021). Nwadiuto and colleagues suggest applying an iterative submodel
selection method, based on the Bayesian Information Criterion, to PWARX
models in order to balance model accuracy against model complexity (i.e.,
model error against robustness, since the model complexity influences how
well the model generalizes to unseen data).

By continuously collecting driving data and updating the classification model
parameters in real-time, ADASs that target longitudinal situations (e.g., FCW
or AEB systems) can be tailored to the current driver’s comfort zone. Such
a system would only warn or intervene when the driver remains in the non-
braking mode as a threatening situation arises. Consequently, this kind of
model would improve ADASs in the same way as the driving style classifica-
tion discussed above: reducing undesired interventions and enabling earlier
warnings for unskilled drivers. Importantly, the threshold of the system’s per-
ception of dangerous situations must be set at a suitable level. Note, however,
that if the ADAS detects a threat that the driver has very little chance of
avoiding by braking or steering (or a combination thereof) an intervention
must be issued even if the driver is estimated to be prepared to brake. This
kind of late intervention is critical for reducing the negative impact of classi-
fication errors in severely critical situations, as well as for mitigating the risk
that the driver will apply insufficient brake pressure; the classification model
does not specify the expected deceleration amplitude.

While the framework used in this thesis had great potential (and still does),
recent research has turned more towards machine learning and statistical mod-
eling as the availability, amount and quality of data suitable for model training
are constantly increasing (see, e.g., the reviews by Elamrani Abou Elassad et
al., 2020 and Yi et al., 2020). Similar to the method suggested in Paper 1,
these models are either trained offline or require a calibration period to ob-

55



Chapter 5 Discussion

tain a reasonable initial estimate of the model’s parameter values. These val-
ues are then updated by online algorithms. Lately, methods facilitating the
interpretation of ML models through explainable artificial intelligence have
emerged (Gunning & Aha, 2019; Linardatos et al., 2021), and advances have
been made in real-time driver modeling applications, using a variety of HMM
structures in combination with autoregressive (AR) models (Akai et al., 2019;
Hamada et al., 2016; Jain et al., 2015). This approach is similar to the hybrid
ARX framework. Nonetheless, the model interpretability is still higher for
conventional HDSs (including hybrid ARX models), and these thus remain
reasonable alternatives to statistical models. One of the main drawbacks of
HDSs is that the number of modes must be predetermined, but efforts have
been made to solve this issue by suggesting methods for automatic mode seg-
mentation (Nwadiuto et al., 2021).

Personalized systems are still rare. According to Hasenjäger et al. (2020),
only a single prototype system had been implemented in a physical vehicle by
2020: an adaptive longitudinal ADAS (J. Wang et al., 2013). Nevertheless,
simulator studies show a clear advantage for personalized ADASs over conven-
tional ADASs, in terms of successful interventions (Lefèvre et al., 2015) and
false warnings (J. Wang et al., 2016). Several attempts to construct driver-
adaptive ADASs have been made, targeting systems such as FCW (J. Wang
et al., 2016), AEB (Muehlfeld et al., 2013), LKS (Lefèvre et al., 2014, 2015;
W. Wang, Zhao, et al., 2018), ACC (Bifulco et al., 2013; Lefèvre et al., 2015,
2016; J. Wang et al., 2013; Zhao et al., 2022), and automatic lane change sys-
tems (Butakov & Ioannou, 2015; Vallon et al., 2017). However, more research
is needed to determine how best to design and integrate these systems into
the vehicle (see, e.g., the survey by Hasenjäger et al., 2020 or the review by
Yi et al., 2020).

Apart from allowing real-time ADAS adaptation, driver classification mod-
els have the potential to increase road safety by enabling driver monitoring
in vehicle fleets. For instance, identifying drivers’ dominant driving styles (by
calculating the percent of driving spent in the aggressive driving mode using
the method proposed in Paper 1) makes it possible for insurance companies
to adapt their fees according to the crash risk associated with that driving
style. This action might incentivize drivers to adopt to safer driving pat-
terns (similar to the behavior-based monitoring systems proposed by Horrey
et al., 2012; Sekar et al., 2014; and Toledo et al. 2008). If granted permission
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to access relevant data, road authorities could also benefit from driver classi-
fication models, which might identify certain road areas where drivers often
leave their comfort zones.

5.2 Computational modeling of driver behavior in
critical situations

Drivers may encounter a wide variety of potentially threatening situations,
all putting different demands on the driver’s response. Hence, it is common
to constrain computational driver models so they are valid only for specific
traffic situations (see, e.g., the review by Markkula et al., 2012b). This thesis
targets drivers’ evasive maneuvers in two of the most common road conflicts:
collisions with a lead vehicle and unintentional lane departures. In the former,
drivers typically brake to resolve the conflict (Adams, 1994; Ljung Aust et al.,
2013), though steering is also possible (but beyond the scope of this thesis). In
contrast, the latter situation warrants an evasive steering maneuver to safely
return to the roadway. Driver models tailored for each of these scenarios are
further discussed below.

Lead vehicle collision avoidance by braking
Papers 3–4 challenge the traditional modeling paradigm which initiates brak-
ing based on reaction time distributions and predetermined trigger mecha-
nisms (e.g., the onset of lead vehicle brake lights or a looming threshold; De-
lorme & Song, 2001; D. N. Lee, 1976; Shinar et al., 1997; Society of Automotive
Engineers, 2015). The papers present an approach more consistent with the
state of the art in cognitive science and neuroscience. The suggested mod-
els are based on noisy evidence accumulation of a visually perceivable quan-
tity (looming; D. N. Lee, 1976) and ideas from predictive processing (Clark,
2013, 2015).

In addition to being cognitively plausible, the framework used in Papers 3
and 4 allows great flexibility in the model setup. The flexibility is reflected in
the possibility of including additional model layers (e.g., the high-level predic-
tion layer mentioned in Paper 3) and adapting the included components to fit
different modeling needs (e.g., to consider different kinds of critical scenarios or
evasive maneuvers; Engström et al., 2022; Engström, Bärgman, et al., 2018;
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Markkula et al., 2018). Paper 3 describes the construction and validation
of a non-deterministic, kinematics-dependent model for brake initiation and
modulation intended for critical lead vehicle scenarios. The possibility of an
additional (high-level) prediction layer means that the suggested model can be
extended to account for the driver’s current beliefs and expectations about an
upcoming situation.(See Engström, Bärgman, et al., 2018 for a more substan-
tial discussion on how to interpret the high-level prediction layer.) High-level
prediction was further investigated by Bianchi Piccinini et al. (2020), who
used it to model drivers’ responses to silent automation failures, based on the
model suggested in Paper 3. In Paper 3, instead of including a prediction
layer to account for overall driver expectancy, it is accounted for (at least
partly) by scaling the prediction error by a certain gain, then adding a gating
parameter before the accumulation. Here, the gating term represents the sum
of all non-looming evidence for or against braking.

Paper 4 further extends the model in Paper 3 with parameters to account for
the driver’s gaze direction, current cognitive state and evidence decay. Mul-
tiple model variants are explored to evaluate the effect of including different
combinations of these additional parameters. In some of the suggested model
variants, the gaze direction is accounted for by assuming that the drivers can
perceive looming partially even when (foveally) looking off-road. The valida-
tion and implication of this assumption is further discussed in Section 5.3.

The driver’s cognitive state has been found to influence the expectations
about the upcoming situation or reduce the responsiveness to looming and
other perceptual inputs (Y.-C. Lee et al., 2009; Ratcliff & Van Dongen, 2011).
Further, studies have associated factors such as driving style and driver im-
pairment, which can be reflected in the cognitive state, with increased crash
risk (Dingus et al., 2016; Nilsson, 2022). In Paper 4, the driver’s cognitive sta-
tee was estimated based on the pre-crash gaze pattern. A distinction was made
between events in which drivers kept their gaze directed toward the forward
roadway and events in which they performed visual time-sharing between the
road in front and other areas of interest (e.g., secondary tasks). This separa-
tion was motivated by the mechanisms causing a situation to become critical,
which are different for eyes-on-road and eyes-off-road events. In eyes-on-road
events, a mismatch between the driver’s expectations and the upcoming situ-
ation is a more important factor than it is in eyes-off-road events (Engström,
Bärgman, et al., 2018; T. W. Victor et al., 2018), since the latter are mainly

58



5.2 Computational modeling of driver behavior in critical situations

caused by ill-timed off-road glances (Markkula et al., 2016; T. Victor et al.,
2015). The expectation mismatch was, in this case, modeled as a decreased
sensitivity to looming in eyes-on-road events—the prediction error was scaled
with a lower gain than eyes-off-road cases. However, the same decrease in pre-
diction error could have been achieved by including the high-level perception
prediction layer described in Paper 3 (as suggested by Engström, Bärgman,
et al., 2018).

The final model addition described in Paper 4 was evidence decay, which
was integrated by adding a leakage term in the accumulation, thus allowing
the models to emphasize newly acquired sensory input over old (Nunes & Gur-
ney, 2016; Usher & McClelland, 2001). The idea of leakage in accumulator
models was applied by Usher and McClelland (2001) to achieve a soft trun-
cation (i.e., gradual forgetting) of the accumulated information. This method
differs from to the hard truncation achieved with a model that immediately
discards input accumulated outside a particular time frame. (Hard trunca-
tion was used in the sliding window estimation method applied in Paper 1;
see Section 3.3.) The concept of soft truncation is aligned with the theory of
(memory) decay first suggested by Thorndike (1913), which assumes a grad-
ual decrease in synaptic strengths as a result of neuron inactivity (see also
J. Brown, 1958). Paper 4 shows that the performance of the braking models
significantly improves when the models are allowed to “forget” old looming
input. Moreover, the Adaptive Control of Thought-Rational (ACT-R) model
for driving, suggested by Salvucci (2006), incorporates a similar activation de-
cay mechanism, which also allows the model to predict potential driver errors
caused by acting on outdated information (errors which could occur if the
model did not perform a visual scanning of the environment often enough).

The ACT-R architecture also considers the driver’s cognitive state, and
effects of driver sleepiness have previously been modeled in this architecture
as cognitive microlapses. The microlapses result in fluctuations in the driver’s
cognitive capacity (perceptual responsiveness), rather than a decrease, which
causes response delays (Gunzelmann, Gross, et al., 2009; Gunzelmann, Moore,
et al., 2009). The ACT-R model can also account for response delays caused
by cognitive distraction, since its cognitive capacity constraints allow only
one perceptual-motor action to be executed at a time (Salvucci, 2002, 2006).
In contrast to the ACT-R model presented by Salvucci (2006), the models
in Paper 4 seek to capture the response delays from a vast range of cognitive
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states in a single parameter. Thus, the resulting model is simpler, but perhaps
somewhat less cognitively accurate, than the ACT-R.

In addition to presenting extensions of the braking model, Paper 4 demon-
strates, for the first time, an efficient method to estimate the parameters of
a cognitive driver model using data from real-world crashes and near-crashes.
Naturalistic data has previously only been used to set the parameters of cog-
nitive models for routine, non-critical, driving (Gordon & Srinivasan, 2014).
Using real-life driving data is much more challenging than using data collected
from controlled experiments, particularly because of their vast variability (see
Section 3.1). Although the manually tuned model presented in Paper 3 could
also qualitatively reproduce observations in naturalistic driving data, the solid
parameterization in Paper 4 was necessary to ensure model representativeness
and capture the influence of off-road glances.

Paper 4 demonstrates that models with parameters which were estimated
on less critical data (near-crashes) could accurately reproduce driver responses
in situations of higher criticality (crashes). For the brake initiation and mod-
ulation models in Paper 4, no differences in fit were observed when the models
were parameterized using a data set with only crash data and when then were
fit to data sets containing both crash and near-crash data (even with a near-
crash/crash ratio of four). These findings indicate that it is possible, at least
for some conflict scenarios, to use near-crash data instead of crash data to
parameterize a critical event response model. However, it still needs to be
determined to what extent this finding is generalizable to other data sources,
scenario kinematics, and model structures. Nonetheless, much can be gained
if it is possible to use non-critical data to construct critical event response
models (see, e.g., Guo et al., 2010). The research community as a whole still
needs to agree on the validity and potential consequences of using (behavioral
and kinematic) data collected in less critical situations, such as near-crashes
or other crash-relevant events, as surrogates for crash data. On the one hand,
studies have identified clear discrepancies between crashes and near-crashes
caused by selection bias and crash heterogeneity (Dingus et al., 2016; Jonas-
son & Rootzén, 2014; Knipling, 2015, 2017). On the other hand, pre-evasive
kinematics have been shown to be similar between crashes and near-crashes,
at least in specific scenarios (e.g., rear-end; Bärgman, Lisovskaja, et al., 2015;
Dozza, 2020; Olleja et al., 2022; T. Victor et al., 2015).

While the ideas behind the driver models built on the predictive processing
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framework are relatively simple and intuitive, the resulting driver behavior
models are highly complex. The high number of unknown parameters results
in a tedious, time-consuming parameter estimation process, which may not be
feasible within a reasonable time frame with conventional optimization meth-
ods. The first estimate of the time required for a full-grid simulation setup to
estimate the parameters of the most complex model in Paper 4 was 40 years
(assuming 100,000 central processing unit cores). Simplifications in the model
structure may be necessary to make the models applicable in practice. Paper 4
addresses this issue in two ways, by (1) assuming constant values for a subset
of the parameters and (2) using a stochastic optimization method (particle
swarm optimization; see Section 3.3). Nonetheless, the estimation was still
computationally expensive, and it would certainly not have been feasible in
real time (in an ADAS, for example). This insight emphasizes the impor-
tance of considering the intended driver model application when choosing a
modeling framework.

In summary, with the research presented in Papers 3–4, driver response
models for critical longitudinal situations have reached maturity. The models
are validated on real-world data and thus enable virtual safety benefit assess-
ment for lead vehicle events with the driver model in the loop (e.g., AEB
effectiveness evaluations; Seyedi et al., 2021; Sugimoto & Sauer, 2005; X.
Yang et al., 2022). The models could also be extended to include responses
to warnings (e.g., FCW), to complete the system-driver response chain in
simulated critical situations. The possibility of performing simulations with
a driver model in the loop enables the prospective safety benefit assessment
of conceptual and future ADASs. It also contributes to human-centric and
cost-efficient ADAS development, verification, and validation processes. As a
consequence, it will be possible for new ADASs to quickly enter the market
and contribute to even safer roads. Moreover, warnings and interventions can
be tailored to (presumed) driver reactions, improving drivers’ ADAS usage
rates and acceptance.

Lane departure recovery by steering
While this thesis has elevated the maturity of computational driver models for
braking in critical situations to a level that is useful for industrial applications,
much more work remains to reach the same maturity for steering models. Most
research in this area has concentrated on modeling drivers’ steering control
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during routine driving on curved roads (A. Li et al., 2019; Markkula et al.,
2018; Salvucci, 2006, 2011), during intentional lane changes (Cheng et al.,
2020; Salvucci & Gray, 2004), or during (non-critical) lane keeping (Gordon
& Srinivasan, 2014; Markkula et al., 2018; Martínez-García & Gordon, 2017,
2018; Martínez-García et al., 2016; Salvucci & Gray, 2004). A few publi-
cations considering critical situations include Salvucci and Gray’s paper on
the two-point steering model (2004) which served as a basis for the ACT-
R steering model described by Salvucci (2006) and the lane-keeping model
by Markkula et al. (2018). Furthermore, Goodridge et al. (2022) propose that
human steering responses in lane departure situations can be explained by
evidence accumulation, but no model was constructed in their work. Never-
theless, their study results indicate that the predictive processing and noisy
evidence accumulation framework has great potential for the construction of
lane departure response models.

For cognitive plausibility, the quantity guiding the driver’s steering response
should preferably be perceptually available to the driver. In the longitudinal
domain, looming was used since it is the optical equivalent of TTC. However,
in the lateral domain, a consensus on a corresponding quantity, or risk metric,
to quantify the risk subjectively perceived by the driver cannot be found in
the current literature. Hence, Paper 6 investigates a set of suggested lane
departure risk metrics guiding the drivers’ recovery maneuvers at unintended
lane departures on straight roads. Each explored risk metric is based on one
of four different entities inspired by the literature: (1) the inverse time to
lane crossing (iTLC), a quantity equivalent to inverse TTC in a longitudinal
scenario (Boer, 2016; Cheng et al., 2020); (2) the splay angle, the angle created
by the optical projection (on the driver’s retina) of the driving path and a
vertical line (Beall & Loomis, 1996; E. S. Calvert, 1954; L. Li & Chen, 2010;
Warren, 1982); (3) the critical yaw rate, the yaw rate required to depart from
the road at a precise preview distance (Daniello et al., 2013; Gordon et al.,
2010; Gordon & Srinivasan, 2014; Gordon et al., 2009; Martínez-García &
Gordon, 2018); and (4) the yaw angle relative to the road heading. (See
Paper 6 for a detailed description of each risk metric.) The use of splay angle
and relative yaw angle information is attractive since angular information is
directly perceivable by the visual system. However, iTLC and critical yaw
angle are not as perceptual available.

Research has shown that drivers may use optic flow (or, physically, retinal
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flow, the retinal projection of optic flow; Gibson, 1950, 1954) as complemen-
tary information to guide steering (Kountouriotis et al., 2016; Lappi, 2013;
L. Li & Chen, 2010; Mole et al., 2016; Okafuji et al., 2018). Attempts have
been made to mathematically express optic flow information so that it can
be applied in computational models (Longuet-Higgins & Prazdny, 1980; Oka-
fuji, 2018). It is, however, difficult to quantify how the driver perceives optic
flow without making explicit assumptions about the gaze direction and ro-
tation of the driver’s head and torso—assuming, for example, that drivers
look where they want to go (Wann & Swapp, 2000; Wilkie & Wann, 2003;
Wilkie et al., 2008). However, recent research revealed occurrences of steering
corrections during off-road glances (i.e., a direct gaze does not precede the
steering action; Nguyen, 2021). It thus remains to be investigated whether
drivers use optic flow information captured by the peripheral visual system
during off-road glances in the decision to initiate evasive steering (and, more
importantly, whether and how this can be modeled). In addition, optic flow
information is generally not available in the simulation environments for which
the computational driver models discussed in this thesis are intended (at least
not to any detailed extent). It may also be challenging to reliably estimate
how much optic flow information that accurately represent what is typically
available to drivers in real-world critical situations. Based on this reasoning,
the potential influence of optic flow was deliberately left out of the study in
Paper 6.

Paper 6 used correlation analysis and constructed Bayesian linear regres-
sion models based on the proposed lane departure risk metrics. Although the
choice of risk metrics was based on the literature, most of the selected metrics
were not previously related to corrective maneuvers. However, in a driving
simulator study, Hildreth et al. (2000) observed increased corrective steering
amplitudes with increased initial heading angles. Even though the number
of experiment participants was low (only six drivers), the observations were
consistent across all participating drivers. The heading in Hildreth’s experi-
ment corresponds to the relative yaw angle described in Paper 5, which found
a similar relation between this angle and the steering amplitude.

Overall, models based on the relative yaw angle showed great potential
in modeling the amplitude of the primary steering correction during an unin-
tended lane departure, outperforming models based on more complex metrics.
Nonetheless, the change in splay error turned out to be a more suitable risk
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metric when analyzing lane departures extracted from naturalistic data sets
(excluding driving simulator data). This difference in relevance may be ex-
plained by the different event severity levels for the lane departures in the
naturalistic data sets and in the simulator data set; alternatively, behavioral
differences between the artificial, heavily controlled simulator setup and an
actual vehicle on a real road may be the cause (see, e.g., Engen, 2008, for an
overview of how driving in a simulator may differ from naturalistic driving).
More research is needed to understand which risk metric (or combination of
risk metrics) would be most suitable for which situation.

To the author’s best knowledge, the way that the three data sets with
different characteristics were combined for most of the analyses in Paper 6
has not previously been reported in the driver modeling literature. Although
all data sets contained unintended lane departures, the criticalities of the
departures were different. Moreover, the data collection and analysis methods
differed somewhat between the data sets. Whereas the fusion of several data
sources may contribute to the generalizability of the results, it also raises
questions about the comparability of the data sets and, thus, the validity of
the analysis results. It was, however, possible to fit a single steering amplitude
model to the combination of data sets, although a separate analysis showed
that it may be preferable to use different risk metrics for the simulated and
naturalistic data sets. Thus, despite the additional noise induced by the data
set differences, the main conclusions regarding glance response times hold for
all three data sets. Hence, the results can be considered more robust and
generalizable than would have been the case had only a single homogeneous
data set been analyzed.

The lane departure risk metrics identified in Paper 6 can be used as the
perceptual basis for future corrective steering models intended to describe
driver control in critical lane departure situations. The construction of these
models is a prerequisite for virtual evaluation of LKSs with a virtual driver
in the loop. Adding a driver model to the ADAS effectiveness evaluations
contributes to improved safety estimates, particularly if the virtual driver
can also respond to warnings and automatic interventions. Thus, corrective
steering models have the potential to improve the development, verification,
and validation process of ADASs for lateral critical situations. In the long
term, this may lead to a fewer unintentional lane departures and lost lives.
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5.3 Glance behavior in driver models

Although inappropriate glance behavior (in particular, off-road glances that
are ill-timed, extended, or frequent) is associated with increased crash risk (Din-
gus et al., 2016; Horrey & Wickens, 2007; S. Klauer et al., 2006; T. Victor
et al., 2015), few computational driver models consider how off-road glances
impact drivers’ decision making and control behaviors. As a result, simulated
drivers are, for practical applications, always assumed to either direct their
gaze toward the forward roadway or not take any visual input into account
at all during off-road glances (essentially assuming they are “blind” at these
occasions; Bärgman, Lisovskaja, et al., 2015; Bärgman et al., 2022; Michaud,
2018; H. H. Yang & Peng, 2010). Despite the numerous publications describ-
ing drivers’ ability to perform actions without looking at the road (Cooper et
al., 2013; Hildreth et al., 2000; Lehtonen et al., 2018; Summala et al., 1996),
the use of peripheral vision is typically overlooked in computational driver
models.

Paper 4 demonstrates how gaze direction can successfully be considered in
a critical event response model. By adding a scaling parameter to the input
signal, the simulated driver can perceive parts of the looming input during
off-road glances, presumably through the peripheral visual system. It was
estimated that drivers processed, on average, 30–40 % of the actual looming
input when they looked away from the road ahead. The low sensitivity to
looming resulted in delayed braking responses for visually distracted drivers.
Whereas researchers have not reached a consensus on whether the retinal pe-
riphery is less able to process looming or detect collisions than the fovea (N. G.
Kim, 2013; F. X. Li & Laurent, 2001; Stoffregen & Riccio, 1990), the results
in Paper 4 indicate that human drivers are less sensitive to perceptual input
when it is captured by the peripheral visual system. This finding is consistent
with the results from several studies on peripheral collision detection in both
simulated and real vehicle settings, which show that the timing of a driver’s
braking response is correlated to the gaze direction (i.e., visual eccentricity
with respect to the threat ahead; Burns et al., 2000; Lamble et al., 1999;
Summala et al., 1998).

A decreased sensitivity to perceptual input also aligns with the findings from
the driving simulator experiment presented in Paper 5, which investigated the
relation between glance and brake response times in critical lead vehicle sce-
narios. The results showed delayed brake responses for the drivers that, during
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the critical event, performed a distraction task positioned at high eccentricity,
while the glance response times were unaffected by the visual eccentricity level
(at least for the subset of drivers who successfully detected the approaching
lead vehicle). However, the threat detection rate was decreased at high eccen-
tricities (> 40°), in line with the scarce previous literature on the topic (Burns
et al., 2000; S. Yang et al., 2022). The poor detection rates can potentially be
related to the visual field capabilities of the study participants, since the high-
est investigated eccentricity corresponded to the limits of the lowest legally
required visual field for European drivers (European Parliament, 2006). Since
evidence suggest that peripheral visual field loss is associated with decreased
threat detection rates and braking response times (at least in the absence
of effective compensation strategies; Lockhart et al., 2009; Patterson et al.,
2019), measuring the useful field of view of each participant was considered in
the preparations for Paper 4. Although these measurements were never effec-
tuated, they could have shed light on whether (and how) varying visual field
capabilities influenced the drivers’ ability to detect the peripheral threat (i.e.,
the decelerating lead vehicle) in Paper 6. Deeper insights into how the visual
field size impacts the threat detection abilities of individual drivers could be
gained by measuring participants’ visual field in future studies.

The results in Paper 5 demonstrate that drivers are capable of peripheral
threat detection, and that perceptual input processed by the peripheral visual
system may be used to guide drivers’ gaze directions (i.e., make a distracted
driver look back towards the forward roadway). It further extends the conclu-
sions from a study performed by Lamble and colleagues (Lamble et al., 1999;
Summala et al., 1998) to unexpected and critical scenarios. Lamble et al.
(1999) used a forced peripheral vision paradigm to study brake reaction times
to a slowly decelerating lead vehicle. Their study participants were instructed
to constantly keep their gaze on a distraction task (even when braking). Sim-
ilar to the observations presented in Paper 5, a strong inverse correlation was
established between TTC at brake initiation and task eccentricity.

In the study presented in Paper 5, the motor response (braking) always
followed the redirection of the gaze. Thus, similarly to what was suggested
by Engström (2010) and Ljung Aust et al. (2013), drivers do not respond until
the criticality of the situation has been assessed. That is, drivers look back on
the forward roadway before responding to a critical event in front. This obser-
vation does, however, not seem to generalize to the lateral domain. Paper 6
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suggests that initiating evasive steering in response to an unintended lane
departure is possible while looking off-road. This finding is in line with the
results from a study by Summala et al. (1996), in which experienced drivers
managed routine lane keeping without looking at the road. Inexperienced
drivers were less successful but their performance improved with practice.
Drivers’ ability to initiate steering during off-road glances, as demonstrated
in Paper 6, constitutes yet another piece of evidence for the use of peripheral
vision in threat detection and decision-making during critical driving situ-
ations. Furthermore, the observed differences in perceptual-motor response
between the lateral and longitudinal domain (i.e., that gaze leads motor re-
sponse in longitudinal, but not necessarily in lateral, situations) indicate that
the decision to brake as a result of an already-detected threat is based mainly
on visual input in the foveal area, while steering may be guided more by pe-
ripheral cues. More research is necessary to confirm this claim, since it partly
contradicts previous observations from an experiment in which the partici-
pants were instructed to run and stop at a target, decreasing their speed at
the last possible moment (Bardy & Laurent, 1989). The study reported that
restrictions in peripheral vision led to longer stopping distances, which sup-
ported the authors’ hypothesis that peripheral cues are used to estimate time
to collision (and thus, when to initiate braking).

The results in this thesis demonstrate the importance of considering gaze
direction in computational critical event response models: drivers may both
acquire perceptual input (to various degrees) and perform control actions dur-
ing off-road glances. However, gaze direction is not necessarily equal to at-
tention direction (see, e.g., Kujala & Lappi, 2021, for a discussion on how
attention may relate to uncertainty and how the processing of uncertainty
can be modeled in a predictive processing framework). In fact, many drivers
look in the direction of a threat without reacting, with an accident as the re-
sult (this is commonly called “looked but failed to see”-crashes, see, e.g., the
review by I. D. Brown, 2005). This behavior could be explained by false driver
expectations (the role of driver expectations is discussed in Papers 3 and 4),
but also by two psychological phenomena: change blindness and inattentional
blindness. Change blindness is the failure to notice scene changes that are
very easily spotted once identified (Rensink et al., 1997; Simons & Rensink,
2005). It may be caused by interfering visual stimuli or eye movements (blinks
and saccades). Inattentional blindness, which is related to expectations, is the
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inability to detect the appearance of a new object in the scene when the at-
tention is engaged in something else (Mack & Rock, 1998).

The effects of change blindness and inattentional blindness are difficult to
incorporate explicitly into a computational driver model, although integrating
them into a high-level prediction layer (Engström, Bärgman, et al., 2018; see
also Paper 3) might be a feasible alternative. In Paper 4, the prediction error
gain was scaled to reflect the driver’s cognitive state, which may also capture
some of the effects of change or inattentional blindness. Further research is
needed to understand in detail how similar mechanisms could best be reflected
in a driver model. Since “look but failed to see” is a relatively common crash
causation factor in critical situations that involve vulnerable road users or
motorcycles, this understanding is of particular importance for driver models
intended for such situations (Clabaux et al., 2012; Herslund & Jørgensen, 2003;
Koustanaï et al., 2008). Moreover, it is essential to consider these phenomena
when analyzing real-world crashes to find mechanisms that can form the basis
of driver behavior models.

Improved understanding of drivers’ gaze behaviors in critical situations—
and how these behaviors relate to visual attention—can not only contribute
to the construction of accurate driver response models but may also facilitate
in-depth crash investigations (Islam & Kanitpong, 2008; Sandin & Ljung,
2007). Moreover, such knowledge can be valuable input for the design of more
efficient ADASs can be designed (distraction warning systems, in particular;
Doecke et al., 2020).

5.4 Cognitive model applicability for ADAS tuning
While it should again be emphasized that the choice of computational frame-
work should be adapted to the intended model application, some models may
be used in several application areas. Models based on concepts from cogni-
tive science and neuroscience have a solid theoretical foundation. This base
enables realistic simulations of the perception-action processes involved in
driving and improves the analysis of the cognitive processes behind motor ac-
tions (Salvucci, 2006). In addition, the models are often intuitive and easy
to analyze. Since the cognitive models presented in this thesis are intended
for offline use, they do not require computationally efficient parameter esti-
mation methods that enforce specific model structures (such as the PrARX
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structure).
Cognitive driver models, which only rarely exhibit the characteristics of

easily parameterized models, are not often used for online ADAS tuning. A
natural step toward making online driver models more psychologically plausi-
ble would be the exclusive use of visually perceivable entities, such as looming,
as model input. However, the model structure may still not be cognitively ac-
curate.

An alternative to enforcing cognitive structures in online models is to use
the cognitive models to tune ADASs (offline) during system development.
This approach would lead to an initial tuning that is optimal on a group
level. The default parameters can later be fine-tuned to individual drivers
in real time by using model structures similar to those in the hybrid ARX
framework. Similar methods are typically applied to train ML-based driver
models on large sets of driving data. Pre-tuned models can subsequently be
integrated into personalized ADASs or AD systems (see e.g., Lu et al., 2018;
Zhao et al., 2022; Zhu et al., 2018).

5.5 Limitations and future work
One of the main limitations of driving behavior studies, particularly for those
targeting critical situations, is the lack of appropriate data. Fortunately, acci-
dents are rare events, and recorded real-world accidents are even more scarce.
The vast situational and behavioral variability among drivers adds to the
challenge of finding sufficient data.

Another limitation related to the collected and analyzed data is the lack of
generalizability of driver behaviors, and thus of the driver models, to other
geocultural areas. Most data used for the work in this thesis were collected on
European or US roads or in simulated environments with similar characteris-
tics. More research is needed to understand how the models can be adapted
to different populations and driving environments.

The computational driver models presented in this thesis need further val-
idation on more extensive data sets. The general conclusions drawn about
driver behaviors should be confirmed by, for example, replicating the stud-
ies. Fortunately, because of the generalizability of the proposed modeling
frameworks, they can be used to construct models intended for other traffic
situations as well, such as critical intersection scenarios. In particular, models
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for the lateral driving domain can be improved by using the lane departure
risk metrics identified in Paper 6 as input to a noisy evidence accumulation
model combined with the predictive processing framework. In fact, Engström
et al. (2022) discuss how a framework very similar to the one used in Pa-
pers 3–4 can be generalized to any traffic scenario. However, their work uses
a surprise concept instead of the prediction error in the accumulation pro-
cess. The authors demonstrate how the surprise can be calculated using a
generative statistical model.

As the level of vehicle automation increases, many ADASs are becoming
standard in new cars. Future driver models must be able to adapt to the
corresponding, inevitable effects on driving. As previously mentioned, some
advancements have already been made in this area, by using the predictive
processing framework to model delayed brake responses when drivers are ex-
posed to silent failures of an ACC system (Bianchi Piccinini et al., 2020).
Similar models could be constructed for other ADASs, and potentially for the
hand-over phase of SAE level 3 (SAE International, 2021) automated driving
systems (i.e., systems requiring a fallback-ready user but not constant supervi-
sion). It might also be beneficial to include how ADASs influence the drivers’
behaviors in the driver models indended for multi-agent microscopic traffic
simulations: in this way, the effects of mixed traffic with different proportions
of manually driven, semi-automated, and fully automated vehicles could be
evaluated (S. C. Calvert et al., 2020; Farah et al., 2022). In addition, effects
of driver variability, driver errors, and driver distraction could be added to
the microscopic traffic simulation models to make them more realistic (Fries
& Fahrenkrog, 2021; Fries et al., 2022; van Lint & Calvert, 2018). However,
the validity of multi-agent microscopic traffic simulations, for safety benefit
assessments, still remains an open question.

Given the relatively low maturity of models targeting lateral control in crit-
ical situations, another exciting area of future research is the combination of
perception-based and neuromuscular steering models (e.g., the neuromuscular
model suggested by Benderius, 2014). A perceptual-neuromuscular steering
model would simulate of a detailed, realistic, steering maneuver, including
both reflexive and conscious behaviors. The perceptual part could determine
the steering adjustment’s timing and amplitude, while the neuromuscular part
would guide the exact execution of the steering adjustments (i.e., determine
the shape of the steering signal during the adjustments).
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Similarly, computational driver behavior models targeting the pre-crash
phase may be combined with biomechanical active human body models (D.
Kato et al., 2018; Larsson et al., 2019; Östh, 2014). This way, a comprehen-
sive virtual toolchain for integrated safety (Wågström et al., 2019) can be con-
structed. This toolchain would be able to assess both crash and injury risk for
the driver and passengers in critical traffic situations. Recent advances have
been made in finite-element simulations of driver posture (Leledakis, Östh, et
al., 2021; Östh et al., 2014) and muscle activation in pre-crash situations (Östh
et al., 2015, 2022). However, more research is needed to understand how best
to conduct comprehensive assessments of crash and injury risks.

Finally, further research is needed regarding which data should be used as
a basis for computational driver models. Even though recent initiatives are
collecting vast amounts of data in naturalistic settings, resulting in huge data
sets such as the SHRP2, the number of critical events is still not sufficient for
model building. Moreover, studies have pointed out that using near-crashes
(which are generally available in larger numbers than crashes) as surrogates
for crashes has some drawbacks: the practice may result in underestimation
of the crash risk (Guo et al., 2010), may not give a reliable crash severity
estimation (Tarko, 2018; Zheng et al., 2014), and may not yield representative
impact speed distributions (Olleja et al., 2022). Hence, further research is
necessary to understand the relationship between crashes, near-crashes, and
other crash-relevant events, in order to know to what extent less-critical data
can be used to model and parameterize critical event response models. It
is reasonable to believe that there will be no general conclusion valid for all
kinds of situations; thus, investigations must be done separately for each type
of critical event.

Another problem with most naturalistic driving databases is that much of
the necessary data, such as kinematic data describing the movement of sur-
rounding road users, are still lacking. With the possibilities emerging from
wireless data transfer and cloud storage, large fleet databases collected by
vehicle manufacturers or other commercial actors (see, e.g., Carney et al.,
2015) should to become increasingly common in the future. Commercially
collected NDD (Bärgman, Lisovskaja, et al., 2015) have the potential to pro-
vide enormous quantities of driving data—but efficient data mining methods
will be needed to identify and extract driving sequences that are suitable for
the construction or parameterization of computational driver models.
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Conclusions

This thesis investigated how computational driver models can be constructed
and used in the ADAS development chain from the concept phase to the last
stages of verification and validation—and even as part of the final product.
Methodological advances contributing to our understanding of how human
control behavior can be translated into mathematical models were made in the
construction and practical application of driver models, for both longitudinal
and lateral control.

In both control domains, steps were taken toward real-time ADAS adapta-
tion by enabling continuous, online identification of driving styles. Further-
more, the work in this thesis contributed to improved methods for simulation-
based safety evaluations by suggesting validated kinematics-dependent models
of human braking behavior, parameterized using real-world crash and near-
crash data. The benefit of expressly including gaze direction information in
the models was also demonstrated. Initial steps were also taken to create
similarly valid models in the lateral domain, describing recovery maneuvers
during unintended lane departures.

The main conclusions related to the research questions formulated in Sec-
tion 1.1 are summarized as follows:

73



Chapter 6 Conclusions

1. How can driver behavior be estimated in real-time to enable online tun-
ing of ADASs?

This thesis showed that real-time prediction and classification of drivers’ style
and braking intent could be accomplished using PrARX models, which have
a model structure facilitating online parameter estimation (Paper 1; RQ 1.1 ).
However, since such complex model structures cannot be justified when per-
forming behavior prediction over more than one time step, classification mod-
els could be considered a better alternative for continuously tuning ADASs to
the individual driver (Paper 2; RQ 1.2 ).

2. How can driver behavior in critical situations be computationally mod-
eled?

The predictive processing and noisy evidence accumulation framework can
construct psychologically plausible human brake response models. The frame-
work enables the development of kinematics-dependent driver models that
can qualitatively reproduce driver behaviors found in real-world crashes and
near-crashes. The generic predictive processing and evidence accumulation
principles can also be applied when modeling other types of driving behavior,
using perceptual quantities suitable for the targeted scenarios. (Papers 3–4;
RQ 2.1 )

In the lateral domain, relative yaw angle and change in splay error were
identified as promising risk metrics for lane departure recovery maneuvers.
These metrics can be included in the design of cognitively-based steering am-
plitude models. (Paper 6; RQ 2.2 )

3. How does the gaze direction influence the driver’s behavior in critical
situations?

Expressly considering gaze direction and scaling the perceptual input accord-
ingly improve driver model performance (Paper 4; RQ 3.1 ). Further improve-
ments could be achieved by considering the exact gaze angle, since increasing
gaze angles are associated with increasing brake response times in critical
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lead vehicle scenarios (Paper 5; RQ 3.2 ). Interestingly, and surprisingly, the
corresponding glance response times seem unaffected by visual eccentricity.

The above findings, together with the observation that drivers can initiate
evasive steering to avoid lane departures without first looking on-road, demon-
strate the importance of considering peripheral vision in driving. (Papers 4–6;
RQ 3.3 )

In addition to contributing to a deeper understanding of how to model hu-
man cognition and control in driving, the methods and models demonstrated
in this thesis will ultimately be a part of more human-centric and cost-efficient
ADAS development, verification, and validation processes, as well as warning
and intervention systems adapted to each individual driver. Specifically, cog-
nitive driver models enable offline virtual safety evaluations with the driver in
the loop, whereas real-time, data driven models have the potential to improve
ADAS usage. These advances will result in safer cars, thus playing an im-
portant role in the fulfillment of the United Nation’s sustainable development
goals (United Nations, 2015; targets 3.6 and 11.2) by improving safety and
reducing the number of fatalities and injuries on the roads.
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