
thesis for the degree of doctor of philosophy

Efficient concurrent data structure access
parallelism techniques for increasing scalability

Adones Rukundo

Division of Networks and Systems
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2023

thesis for the degree of doctor of philosophy

Efficient concurrent data structure access
parallelism techniques for increasing scalability

Adones Rukundo

Division of Networks and Systems
Department of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden, 2023



Efficient concurrent data structure access parallelism techniques for
increasing scalability

Adones Rukundo

Copyright © 2023 Adones Rukundo
All rights reserved.

ISBN: 978-91-7905-837-1
Series number: 5303
in the series Doktorsavhandlingar vid Chalmers tekniska högskola.
ISSN 0346-718X

Division of Networks and Systems
Department of Computer Science and Engineering
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Phone: +46 (0)31 772 1000
www.chalmers.se

Printed by Chalmers Reproservice
Gothenburg, Sweden, May 2023



I dedicate this thesis to my dear mother Saddress Twinomucunguzi
and my dear sister Victoria Talent Musiime





Abstract
Multi-core processors have revolutionised the way data structures are designed
by bringing parallelism to mainstream computing. Key to exploiting hardware
parallelism available in multi-core processors are concurrent data structures.
However, some concurrent data structure abstractions are inherently sequen-
tial and incapable of harnessing the parallelism performance of multi-core
processors. Designing and implementing concurrent data structures to har-
ness hardware parallelism is challenging due to the requirement of correctness,
efficiency and practicability under various application constraints. In this the-
sis, our research contribution is towards improving concurrent data structure
access parallelism to increase data structure performance. We propose new
design frameworks that improve access parallelism of already existing concur-
rent data structure designs. Also, we propose new concurrent data structure
designs with significant performance improvements. To give an insight into
the interplay between hardware and concurrent data structure access paral-
lelism, we give a detailed analysis and model the performance scalability with
varying parallelism.

In the first part of the thesis, we focus on data structure semantic relax-
ation. By relaxing the semantics of a data structure, a bigger design space,
that allows weaker synchronization and more useful parallelism, is unveiled.
Investigating new data structure designs, capable of trading semantics for
achieving better performance in a monotonic way, is a major challenge in the
area. We algorithmically address this challenge in this part of the thesis.
We present an efficient, lock-free, concurrent data structure design framework
for out-of-order semantic relaxation. We introduce a new two-dimensional
algorithmic design, that uses multiple instances of a given data structure to
improve access parallelism.

In the second part of the thesis, we propose an efficient priority queue
that improves access parallelism by reducing the number of synchronization
points for each operation. Priority queues are fundamental abstract data
types, often used to manage limited resources in parallel systems. Typical
proposed parallel priority queue implementations are based on heaps or skip
lists. In recent literature, skip lists have been shown to be the most efficient
design choice for implementing priority queues. Though numerous intricate
implementations of skip list based queues have been proposed in the literature,
their performance is constrained by the high number of global atomic updates
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per operation and the high memory consumption, which are proportional to
the number of sub-lists in the queue. In this part of the thesis, we propose
an alternative approach for designing lock-free linearizable priority queues,
that significantly improve memory efficiency and throughput performance, by
reducing the number of global atomic updates and memory consumption as
compared to skip-list based queues. To achieve this, our new design combines
two structures; a search tree and a linked list, forming what we call a Tree
Search List Queue (TSLQueue).

Subsequently, we analyse and introduce a model for lock-free concurrent
data structure access parallelism. The major impediment to scaling concur-
rent data structures is memory contention when accessing shared data struc-
ture access points, leading to thread serialisation, and hindering parallelism.
Aiming to address this challenge, a significant amount of work in the literature
has proposed multi-access techniques that improve concurrent data structure
parallelism. However, there is little work on analysing and modelling the
execution behaviour of concurrent multi-access data structures especially in
a shared memory setting. In this part of the thesis, we analyse and model
the general execution behaviour of concurrent multi-access data structures in
the shared memory setting. We study and analyse the behaviour of the two
popular random access patterns: shared (Remote) and exclusive (Local) ac-
cess, and the behaviour of the two most commonly used atomic primitives for
designing lock-free data structures: Compare and Swap, and, Fetch and Add.

Keywords: Data structure, lock free, concurrency, semantic relaxation, de-
sign framework, parallelism, performance modelling, performance analysis,
multi-core processor, multi-access, stack, FIFO queue, counter, priority queue,
search tree.
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CHAPTER 1

Introduction

1.1 Multi-Processor Systems
The computing industry has gone under a revolution, certainly a vigorous
shaking-up. More and more transistors have been fit into the same space
(Moore’s Law), but their clock speed cannot be increased without overheat-
ing. Overheating can require complex cooling systems negating the possible
performance advantages of increased clock speed. The major chip manufactur-
ers have, for the time being at least, given up trying to make single processors
run faster.

Instead, manufacturers are turning to multi-processor architectures, in which
multiple processors (cores) communicate directly through shared hardware re-
sources. Herein, the term core refers to an independent computational unit of
a processor. Therefore a multi-core processor will have more than one core,
whereas a multi-processor system will have more than one processor that are
typically multi-core processors as depicted in Figure 1.1. However, processor
and core are sometimes used interchangeably in the literature to refer to the
same thing (independent processing unit). Similarly, we use the terms pro-
cess(es) and thread(s) interchangeably to refer to an active execution of a set
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Chapter 1 Introduction

of computational instructions by a core.
A multi-processor system is defined as a system with more than one inde-

pendent processing units linked together to enable parallel processing to take
place. The key objective of a multi-processor is to boost a system’s execution
speed without necessary having to increase processor clock speed. Multi-
processor systems make computing more effective by exploiting parallelism:
harnessing multiple processing units to work on a single task. To keep up with
the increasing processor count, coherent multi-core processors are configured
as multiple nodes with complex memory hierarchies, including several levels
of private/local and shared memory.

Shared Memory
Shared memory can be simultaneously accessed by multiple threads with an
intent to provide communication among the threads. Shared Memory is an
efficient means of sharing data between different cores/processors. Shared
memory can either be uniformly distributed as in the Uniform Memory Access
(UMA) architecture [1] or non-uniformly distributed as in the Non Uniform
Memory Access (NUMA) architecture.

In a NUMA system, the response time of a memory access depends on the
memory location relative to the core location. Under NUMA, a core can access
it’s own local memory faster than remote memory, where, remote memory can
be local memory that belongs to another core or shared memory as depicted
in Figure 1.1. In contrast to the NUMA system, under the UMA system,
the response time for memory accesses is the same for all cores irrespective of
their location away from memory.

Memory Hierarchy
Multiprocessor systems typically have a great deal of complexity associated
with their memory hierarchy. There is often a small amount of fast memory
such as registers, augmented with increasingly larger amounts of slower mem-
ory such as cache. Whereas registers are private to each core, cache levels can
be private to a single core or shared among a set of cores as depicted in Figure
1.1. Each core typically has a cache hierarchy composed of private and shared
caches. The cores store temporary copies of data in the cache hierarchy for
faster access than reading from main memory.
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1.1 Multi-Processor Systems

Processor 1

Core1

L1 Cache

L2 Cache

Intra Processor Shared L3 Cache

. . .

CoreN

L1 Cache

L2 Cache
. . .

Processor N

Core1

L1 Cache

L2 Cache

Intra Processor Shared L3 Cache

. . .

CoreN

L1 Cache

L2 Cache

Main Memory

Figure 1.1: An illustration of a typical multiple multi-core processor with three
cache levels, L1 and L2 being private to each core, while L3 be-
ing shared among all cores on the same processor. Typically, multi-
processors will not have a shared cache between processors and will
mostly inter communicate through the main memory or through a
special interconnection.

Caches create an illusion of fast high-bandwidth memory by exploiting local-
ity. Programs generally access small portions of memory at any small interval
in time; either an address is accessed repeatedly, and the accesses are close
in time temporal locality or adjacent addresses are accessed close in time spa-
tial locality. Effectively, bandwidth demands on main memory are reduced,
allowing multiple processors to access data more efficiently.

Unfortunately, when cores store copies of shared data in caches, reasoning
about executions by different processes on different cores is not straight for-
ward. Replicated copies of data in different caches may not be up-to-date;
accordingly, processes may have different views of shared memory locations
creating the possibility of inconsistency among cached copies. This gives rise
to cache coherence concerns.

Cache Coherence
If multiple caches are allowed to simultaneously have copies of a given memory
location, a mechanism must exist to ensure that all copies remain consistent
when the contents of a given memory location are modified. For example,
imagine a dual-core processor where each core brought a copy of a given block
of memory M into its private cache, and then one core modifies the content
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of M. When the second core attempts to read the content of M from its cache,
its copy will not have the most recent version of M since the content will have
since been modified. In some systems, a software approach is taken to prevent
the existence of multiple copies by marking shared blocks as not to be cached,
and by restricting or prohibiting task migration. An alternate approach is to
allow multiple copies of given memory blocks be cached simultaneously and
to rely on a cache coherence mechanisms to maintain consistency.

In general there are two mechanisms for cache coherence; a snooping mech-
anism and a directory-based mechanism.

• Snooping: Snooping mechanisms work with bus-based1 systems, and
uses a number of states to determine whether or not it needs to up-
date cache entries, and whether it has control over writing to the block.
Snooping depend on cache controllers observing the bus transactions of
all other cache processes in the system and taking appropriate actions
to maintain consistency [2]–[5]. The state of each memory location in
the system is encoded in a distributed way among all cache controllers.

• Directory-based: In a directory-based coherence mechanism, a di-
rectory is used to hold information about which memory locations are
being shared in multiple caches, and which are exclusively cached in one
core’s cache. The directory knows when a block needs to be updated or
invalidated. [6]–[9].

Among multi-processor systems, the snooping mechanism is mostly used
together with the MESI cache coherence protocol. MESI maintains cached
memory blocks (cache-lines) in either of the four states; modified, exclusive,
shared and invalid [4]. A cache-line in modified state means that it is cached
only in the current cache, and has been modified from the value in main
memory. The cache-line is required to be written back to main memory at
some time in the future, before granting any other core read requests to the
cache-line. Writing back a cache-line in modified state, changes the cache-line
to the shared state. Shared state means that the cache-line maybe cached
in other caches and also matches the value in main memory. Exclusive state
applies to a the cache-line that is only cached by the current cache and matches
the value in main memory. It may be changed to the Shared state in response

1The bus is a single set of wires connecting several devices, each of which can observe
every bus transaction.
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to a read request from another core. Alternatively, it may be changed to
the Modified state when written by either the current core or another core.
Invalid state indicates that the cache-line is not in use and therefore has to
be fetched from main memory.

While cache coherence hides the complexity of the system from the pro-
grammer, it also hides opportunities for performance improvement, making
it difficult to exploit the full capabilities that these processors provide. A lot
of research has been dedicated to understanding the performance limitations
of cache coherence protocols, and how concurrent systems can be tuned to
overcome such limitations and extract utmost performance [10]–[15].

1.2 Process Synchronization
The need for process synchronization arises in every area where multiple pro-
cesses have to agree or commit to a given set of steps. In order to cooperate,
concurrently executing processes must communicate and synchronize. Process
synchronization refers to information exchange among concurrent processes ei-
ther via shared memory or a message passing mechanism. In shared memory
systems, concurrent processes can share information by updating variables and
make them visible to other processes through shared memory locations. In
contrast, a message passing mechanism allows processes in separate memory
spaces to share information with each other through messages passed across
the different memory spaces.

Process synchronization is important in concurrent processing to prevent
race conditions. A race condition occurs when the timing or order of process
events affects the correctness of a program. This can be due to a data race
condition, where, a process accesses a mutable object while another concur-
rent process is writing to it. Race conditions can be detrimental, especially for
concurrent data structures whose sequential semantics must be maintained.
Race conditions are commonly avoided through the notion of critical section.
A critical section can be a particular program segment (sequence of instruc-
tions) that need to be executed by a single process at a time in order to
maintain program correctness.

Process synchronization ensures that concurrent processes do not simulta-
neously execute a critical section by guaranteeing some notion of atomicity.
A guarantee of atomicity prevents the critical section from being partially
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executed. As a consequence, a process executing the critical section cannot
be observed to be in progress by another concurrent process, in that, a given
sequence of instructions executed within a critical section appears instanta-
neously to other concurrent processes [16]–[19].

As a requirement, process synchronization mechanisms should be correct by
satisfying both the safety and liveness properties. Informally, a safety prop-
erty states that “bad” things never happen, while, liveness property (progress
guarantees) states that “good” things eventually happen [20], [21]. Some
examples of safety properties are mutual exclusion and deadlock freedom,
whereas for liveness are starvation freedom and live-lock freedom.

• Mutual Exclusion: in any execution, at most one process is in the crit-
ical section – “bad thing” happening, is two or more processes executing
in a critical section leading to a race condition.

• Deadlock Freedom: if a process attempts to enter a critical section,
then eventually some process executes inside the critical section – “bad
thing” happening, is a deadlock where no process cannot eventually
enter the critical section, hindering progress.

• Starvation Freedom: a process makes progress in an infinite execution
– the “good thing”, is making progress.

• Live-lock freedom: not all processes run forever without progress –
the “good thing” is at least one process makes progress.

Processes’ access to a critical section is controlled by using synchronization
mechanisms popularly implemented using hardware atomic primitives. Syn-
chronization mechanisms can be split into two categories; blocking and non-
blocking, that can further be split into sub-categories as discussed below.

Atomic Primitives
Atomic primitives are mostly hardware-assisted operations that atomically
update data at a given memory location. Given hardware instructions con-
duct a set of steps (read, modify and write) atomically at the hardware level.
Atomic primitives are required for efficient implementation of synchronization,
and have been utilised extensively to implement synchronization mechanisms
in an efficient way. Utilising the atomic primitives of a processor to access a
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1.2 Process Synchronization

shared memory location atomically is key to the correctness and feasibility of
concurrent software systems. For this reason, many modern multi-processor
hardware systems provide a number of atomic primitives as part of their in-
struction set [22]–[24].

Some of the most popular atomic primitives for synchronization include:

• Compare and Swap (CAS ): CAS typically takes three arguments say
A,B and C, where A is the memory location whose value needs to be
atomically updated, B is the value expected to be currently in location
A and C is the new value that needs to be written into location A [25].
CAS compares the contents of A with the given value B and, only if they
are the same, CAS modifies the contents of A by writing the new given
value C to A. If the value had been updated by another processor in
the meantime, the CAS write instruction would fail thus the CAS being
unsuccessful. This is done as a single atomic operation guaranteeing
that the new value is calculated based on up-to-date information. On a
successful CAS write, the CAS operation is a read-modify-write operation,
whereas if the CAS write fails, the CAS operation is a read operation. The
result of the CAS operation must indicate whether it performed the read-
modify-write operation; this can be done either with a simple boolean
response, or by returning the value read from A before the CAS write. CAS
typically operates on memory location of size equivalent to one word,
however, there are other variants such as the Double-word Compare and
Swap (DCAS ) the can operate on a double word size memory location.

• Fetch and Add (FAA ): FAA typically takes two arguments say A and
B, where A is the memory location whose value needs to be atomically
incremented and B is the value that needs to be added to the value in
location A. FAA reads the value in location A, modifies the value by
adding to it the specified value B. That is, FAA increments the value
at memory location A by B and return the original value at A. This is
done as a single atomic operation guaranteeing that the increment is
calculated based on up-to-date information in such a way that if this
operation is executed by one process in a concurrent system, no other
process will ever see an intermediate result. Unlike the CAS operation
that can either be as a read-modify-write or read operation, FAA always
succeeds to increment the given memory location, making it a read-
modify-write operation. There are other variants of atomic primitives
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Chapter 1 Introduction

that follow the same procedure as FAA , these include; Add and Fetch,
Fetch and Subtract, Subtract and Fetch, Fetch and Xor, and Xor and
Fetch.

• Test and Set (TAS ): TAS typically takes one argument say A, which
is a memory location. TAS reads the value at memory location A and
modifies it by writing one to it (setting it to one). That is, TAS sets
the value of a given memory location to one and returns the old value
read before the TAS write instruction. This is done as a single atomic
operation, in that if multiple processes may access the same memory
location A, and if a process is currently performing a TAS , no other
process may begin another TAS until the first process’s TAS is finished.
As described above, TAS always sets the given memory location to one
despite whether it is already set or not. Test Test and Set (TTAS ) is an
extension of TAS that adds an initial test before TAS instructions are
executed. In the case of TTAS , the given memory location A is read and
checked if it is set or not, if the memory is set, TTAS retries without
modifying the memory location. Otherwise, if the memory is not set,
TAS operation is executed to try and set the memory to one.

Apart from the commonly available atomic primitives described above, some
multi-processor hardware systems provide a pair of instructions called Load-
Link / Store-Conditional (LL/SC ) as an alternative to the CAS operation [25].
LL/SC typically takes one argument as a memory location. Load-Link reads
and returns the current value in the given memory location, while a subse-
quent Store-Conditional to the same memory location by the same process
will store a new value only if no updates have occurred to that memory loca-
tion since the Load-Link. Similar to the CAS , on a successful LL/SC write,
the LL/SC operation is an atomic read-modify-write operation, whereas if the
Store-Conditional write fails, the LL/SC operation is only a read operation.
LL/SC is some what similar to the CAS operation in terms of conditionally
updating a given memory location. However, the CAS operation can be af-
fected by the so called ABA problem, a problem which does not occur with
LL/SC . ABA problem occurs during synchronization, when a process say X,
reads a given memory location A twice and returns the same value a for both
reads. However between the two reads, another process(es) say Y, can update
the value to b (A ← b), do some work and then update the value back to a
(A ← a), thus fooling X into thinking "nothing has changed" even though Y
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could have done work that violates that assumption. The LL/SC operation
can instead detect any concurrent update on A between the time interval of
a Load-Link and Store-Conditional pair, independent of the value held by
A. Unfortunately, the real hardware implementations of LL/SC available are
rather weak, where the Store-Conditional operation can fail spuriously due
to shared accesses to A or even undefined reasons. Also, LL/SC pairs may
not be nested by the same processor. Versioning memory updates is one of
the common techniques used to support CAS operations overcome the ABA
problem [26], [27].

Blocking Synchronization
A general way to synchronize multiple accesses to shared resources is to use
blocking approaches also referred to as mutual exclusion. Mutual exclusion can
be implemented in several ways including disabling process interrupts, mes-
sage passing where a token system distributes accesses and critical sections
guarded by locks. In shared memory concurrent systems, mutual exclusion
is most commonly achieved by using critical sections guarded by locks. A
process has to request and acquire the given lock before it can enter the crit-
ical section. As a requirement, a process never enters a critical section while
another process is already executing inside the critical section [28]. This im-
plies, that at most one process executes instructions inside the critical section
at any given point in time. Any other process that requests for the critical
section lock held by another process (executing inside the critical section) will
be blocked until the lock is released. The blocked process can either busy wait
or yield [29], thus guaranteeing that instructions executed in the critical sec-
tion appear atomic to other processes. Locks are simple to implement in most
use cases and are widely available in most platforms and operating systems.

However, locks have some significant drawbacks that need to be taken care
of to avoid associated pitfalls:

• Blocking/Convoying: Once a given process holds a critical section
lock, all other eligible process trying to enter the same critical section
have to block. If the process is delayed within the critical section, the
blocked processes can queue up as they wait on the lock to be released.
When the lock is released, the queued processes form a convoy as they
acquire the lock to gain exclusive access to the critical section [17], [30].

11



Chapter 1 Introduction

Blocking makes the computation of worst-case response times more com-
plicated, and the currently used computation methods are quite pes-
simistic.

• Deadlocks: If locks are improperly used, circular dependencies might
arise leading to a deadlock. A circular dependency occurs when a process
(say P1) holding a critical section lock (say L1) blocks while trying to
enter a critical section locked by a lock (say L2) held by another process
(say P2). Meanwhile, P2 is also blocked trying to enter the critical section
locked by L1 held by blocked P1. This therefore implies that neither P1
or P2 will proceed leading to a deadlock.

• Priority inversions: The exclusion of other tasks while one low prior-
ity task is holding the lock can cause a high priority task to actually have
to wait for middle priority tasks to finish. With preemptive scheduling,
a high priority process can yield the processor to a low priority process
that holds a lock required by the high priority process. Then a middle
priority process that does not need the lock preempts the low priority
process leading to a priority inversion between high priority and middle
priority processes [31].

Non-blocking Synchronization
Non-blocking synchronization mechanisms provide an alternative to achiev-
ing atomicity without using mutual exclusion. Non-blocking synchronization
states that an attempt by a process to access a shared resource cannot block or
be blocked by another process, regardless of the state of the system. However,
it does not specify the outcome of the attempt. As non-blocking synchro-
nization does not involve mutual exclusion, shared resource accesses can be
executed concurrently. Generally, non-blocking mechanisms are optimistic;
each process attempts to execute independently or locally for as long as pos-
sible and publish their modifications using atomic instructions. An optimistic
execution of a process can be invalidated by a concurrent modification, at
which point publication of the modifications will fail, and the process will
have to repeat the local execution and try to publish.

Being concurrent, the criteria for consistency correctness of non-blocking
synchronization is a bit more complex than that for the respective blocking
implementation. In general, the correctness condition used for concurrent
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operations is called linearizability [32]. Informally, linearizability states that
in every execution, each supporting operation appears to take effect instanta-
neously at some point (linearization point) between the operation’s invocation
and response. This basically means that for each real concurrent execution
there exists an equivalent sequential execution that preserves the partial order
that is legal according to the sequential semantics of the given data structure.
The fulfilment of the linearizability property enables concurrent shared re-
sources to still be accessed in a predictive manner. The operation can be
viewed by other concurrent processes as it occurred at a unique instant in
time, i.e. the effect of two operations can not be viewed as taking place at the
same time.

Non-blocking mechanisms can be classified according to the progress guar-
antees that they provide, as follows:

• Wait-freedom: A synchronization mechanism is wait-free if it guaran-
tees that every process continues to make progress regardless of arbitrary
delays or failures of other processes [33]. Wait-freedom guarantees in-
dividual progress; combines non-blocking progress with starvation free-
dom.

• Lock-freedom: A synchronization mechanism is lock-free if it guaran-
tees that at least some process makes progress [34]. Ensures system-wide
progress without ensuring starvation freedom.

• Obstruction-freedom: A synchronization mechanism is obstruction-
free if it guarantees that a process will eventually make progress if exe-
cuted in isolation.

Non-blocking synchronization mechanisms are more resilient to pitfalls as-
sociated with mutual exclusion. Strong progress guarantees such as wait-
freedom may be required for systems with real-time constraints and resiliency
requirements. However, they are non-trivial to achieve efficiently [35], thus,
on modern shared-memory multi-core systems, weaker progress guarantees
such as lock-freedom and obstruction-freedom generally suffice, and are eas-
ier to implement efficiently [36]. In contrast to wait-freedom and lock-free,
obstruction-freedom is dependent on the operating system scheduler.
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1.3 Concurrent Data Structures
Data structures are an important component of efficient and well structured
programs. Data structures organise data in a way to allow efficient access. In
shared memory multi-core computing, data structures can be shared among
multiple threads to exploit parallelism available on multi-core systems. Con-
current data structures are shared data structures that allow threads to access
the data structure concurrently. Concurrent data structures are essentially
adaptations of abstract data types, defined for sequential data structures to
support concurrent operations. Concurrent accesses require synchronized ac-
cess to guarantee consistency with respect to the given data structure sequen-
tial semantics [37], [38].

Thread synchronization of concurrent accesses is generally achieved by guar-
anteeing some notion of atomicity, where, an operation appears to occur at
a single instant between its invocation and its response. A concurrent data
structure is typically designed around one or more synchronization access-
points. An access-point is a memory location from where threads compute,
consistently, the current state of the data structure. As an example, a stack
has one access-point referred to as the top, from where concurrent threads
can add (push) or remove (pop) an item from the stack. The state of the
stack will change when an item is pushed or popped at the top of the stack.
Almost similar to the stack, a FIFO2 queue has two access-points, through
one access-point (tail) a thread can add (enqueue) an item to the queue, and
through the other access-point (head) a thread can remove (dequeue) an item
from the queue. Although the FIFO queue has two access-points, each type of
operation is tied to only one access-point. There are also data structures such
as a tree and a skip list that have multiple access-points for either adding or
removing items from the data structure.

Thread synchronization is vital to achieving consistency and cannot be elim-
inated [39]. Whereas this is true, synchronization mechanisms usually result in
poor performance because they produce large amounts of memory and inter-
connection network contention and, more significantly, because they produce
convoy effects [40], [41]. When threads concurrently access a shared resource,
one thread succeeds and others incur stalls waiting to gain access, one by one
(convoying).

2First In First Out semantics
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The necessity of reducing contention at the synchronization access-points,
and consequently improving scalability, is and has been a major focus for con-
current data structure researchers. Techniques like; elimination [42], [43], com-
bining [44], dynamic elimination-combining [45] and back-off strategies have
been proposed as ways to improve scalability. To address, in a more significant
way, the challenge of scalability bottlenecks of concurrent data structures, it
has been proposed that the semantic legal behaviour of data structures should
be extended [46]. This line of research has led to the introduction of an ex-
tended set of weak semantics including; weak internal ordering, weakening
consistency and semantic relaxation.

Correctness
Unfortunately, concurrent data structures are difficult to design. There is a
kind of conflict between correctness and performance: the more one tries to
improve performance, the more difficult it becomes to reason about the result-
ing data structure correctness. In contrast to the sequential data structures,
concurrent data structure correctness has two aspects: safety, guaranteeing
that nothing bad happens, and liveness, guaranteeing that eventually some-
thing good will happen.

The safety aspects of concurrent data structures impose the need to argue
about the many possible interleavings of processes. It is more intuitive to
specify how abstract data structures behave in a sequential setting, where
there are no interleavings. Thus, the standard approach to arguing the safety
properties of a concurrent data structure is to specify the data structure’s
properties sequentially, and then map its concurrent executions to these “cor-
rect” sequential properties. There are various approaches for doing this, called
consistency conditions. Some familiar conditions are serializability, lineariz-
ability, sequential consistency, and quiescent consistency. Linearizability [32]
is widely accepted as the strongest correctness condition of concurrent data
structures. Informally, linearizability states that in every execution of the
data structure implementation, each supporting operation appears to take
effect instantaneously at some point (linearization point) between the opera-
tion’s invocation and response.

Concurrent execution processes are modelled by a history. A history H is
a finite or infinite sequence of operation invocations and responses. A his-
tory is sequential if; the sequence starts with an invocation and a matching
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response immediately follows each invocation. A history is admissible if it is
a subset of the data structure’s sequential specification. Thus, an execution is
linearizable if there exists a sequential history S of operations in the execution
that respects the object’s sequential specification, and observes the real-time
ordering of events for all processes. S is referred to as a linearization of H.
Typically, to show that a concurrent data structure execution is linearizable,
one defines a linearization point for every operation in the execution history.
Intuitively, the order induced by a sequence of linearization points preserves
the real-time ordering of non-overlapping operations. Additionally, lineariz-
ability is composable; a composition of linearizable histories is linearizable.
This property is fundamental, concurrent data structures can be designed,
verified and implemented independently then combined to make a larger, but
still linearized data structure.

Semantic Relaxation
Semantic relaxation is one popular way of improving concurrent data struc-
ture scalability on the ever growing number of multi-core processor cores.
However, this is achieved at the expense of relaxing correctness, by redefin-
ing the semantics of the data structures [47]. By relaxing the semantics of a
data structure, a bigger design space, that allows weaker synchronization and
more useful parallelism, is unveiled. One of the main definition of semantic
relaxation proposed and used in the literature is k-out-of-order [27], [47]–[52].
k-out-of-order semantics allow operations to occur out of order within a given
k bound, for example, a pop operation of a k-out-of-order stack can remove
any item among the k topmost stack items. By allowing a pop operation
to remove any item among the k topmost stack items, the semantics do not
anymore impose a single access-point. Thus, by relaxing the stack semantics,
we allow for potentially more efficient stack designs with reduced synchroniza-
tion overhead, which is the motivation for concurrent data structure semantics
relaxation.

The general idea behind most semantic relaxation techniques is to increase
the number of access-points from which concurrent threads can access the
data structure and complete their operations in parallel [49], [50], [53]–[55].
Increasing the number of access-points of a concurrent data structure has
the potential to improve parallelism, and thus harness the high throughput
performance capabilities of the highly parallel multi-core processors [56]. Al-
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though relaxing semantics has been studied and shown to significantly improve
throughput performance, it has also been shown, that semantic relaxation,
through increasing the number of access-points, is inversely proportional to
the data structure accuracy (degree of relaxation) [27], [57], [58]. In the con-
text of semantic relaxation, data structure accuracy is the measure of how
far away the relaxed version of given data structure is from the it’s exact
sequential semantics. In other words, the degree of relaxation. Increasing
the number of data structure access-points also has a memory consumption
trade-off. Memory consumption increases with the increase in the number of
access-points, which in turn increases the cost of data structure access [13],
[27].

Scaling throughput performance is as important as data structure accuracy
and memory efficiency. As the number of access-points increases beyond a
certain point, the trade-offs can out weigh the performance gain [27]. There-
fore, understanding the liveliness of the trade-offs is key to the designing of
scalable concurrent data structures without counteracting the performance
benefits achieved through increasing the number of access-points. Modelling
and analysing the practical performance of concurrent data structures with
multiple access-points can give an insight into how to balance the various
trade-offs [59].

Access-point Search Overhead
Having multiple access-points means that a thread has to search and select
a given access-point among the available access-points from which to read or
update the state of the data structure. Searching for an access-point may
involve reading multiple shared memory resources (cache-lines) before finally
selecting a given access-point. Having to read multiple cache-lines increases
the memory latency, in turn increasing the operation cost of accessing the
data structure. Towards minimising the search cost, design approaches have
been proposed in the literature, for both semantically relaxed and non relaxed
concurrent data structures. One popular design approach is to introduce
temporal locality.

Temporal locality is mostly achieved by assigning a thread exclusive own-
ership of a given access-point for given number of operations or depending on
a set of conditions [27], [52], [53], [60]. A thread can therefore operate on the
same access-point without having to incur the cost of searching for another
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access-point. However, for temporal locality to be effective, there has to be a
mechanism through which threads can efficiently share tasks or access-points.
Such mechanisms include work stealing [61], [62] and controlled thread access-
point acquisition [27]. Recall in cache based multi-core systems, a cached copy
of a shared memory location changes state between thread accesses from dif-
ferent cores. When a cached copy of a given access-point A is written to by a
given thread X on a given core, the cache-line copy of A belonging to X core
(AX) state changes to modified state. X can consecutively access A cheaply
without having to fetch data remotely3 for as long as AX is in modified state.
Without temporal locality, another thread on a different core may access and
write to A effectively changing the state of AX to invalid. The next time X
tries to access A, X will have to fetch a fresh copy of A remotely since it’s
cached copy AX would be invalid. Fetching data remotely is costly in terms
of memory latency depending on where the data is located within the mem-
ory hierarchy [10]–[14], [59], [63], [64]. Allowing a thread to utilise the same
access-point for multiple operations without interference from other threads
improves parallelism and cache efficiency.

3Remote data access is when a thread has to request for a valid copy of data from the
main memory or other cache levels other than it’s core local cache levels.
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CHAPTER 2

Summary of included contributions

This chapter provides a summary of the included contributions.

2.1 Contribution A
Adones Rukundo, Aras Atalar, Philippas Tsigas
Monotonically relaxing concurrent data-structure semantics for increas-
ing performance: An efficient 2D design framework

There has been a significant amount of work in the literature proposing se-
mantic relaxation of concurrent data structures for improving scalability and
performance. By relaxing the semantics of a data structure, a bigger design
space, that allows weaker synchronization and more useful parallelism, is un-
veiled. Investigating new data structure designs, capable of trading semantics
for achieving better performance in a monotonic way, is a major challenge in
the area. We algorithmically address this challenge in this contribution. We
present an efficient, lock-free, concurrent data structure design framework for
out-of-order semantic relaxation. We introduce a new two dimensional algo-
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rithmic design, that uses multiple instances of a given data structure. The first
dimension of our design is the number of data structure instances operations
are spread to, in order to benefit from parallelism through disjoint memory
access; the second dimension is the number of consecutive operations that try
to use the same data structure instance in order to benefit from data local-
ity. Our design can flexibly explore this two-dimensional space to achieve the
property of monotonically relaxing concurrent data structure semantics for
better performance within a tight deterministic relaxation bound. We show
how our framework can instantiate lock-free out-of-order queues, stacks and
counters. We provide implementations of these relaxed data structures and
evaluate their performance and behaviour on two parallel architectures. Ex-
perimental evaluation shows that our two-dimensional design significantly out-
performs the respected previous proposed designs with respect to scalability
and performance. Moreover, our design increases performance monotonically
as relaxation increases.

2.2 Contribution B
Adones Rukundo, Philippas Tsigas
TSLQueue: An Efficient Lock-free Design for Priority Queues

Priority queues are fundamental abstract data types, often used to manage
limited resources in parallel systems. Typical proposed parallel priority queue
implementations are based on heaps or skip lists. In recent literature, skip
lists have been shown to be the most efficient design choice for implementing
priority queues. Though numerous intricate implementations of skip list based
queues have been proposed in the literature, their performance is constrained
by the high number of global atomic updates per operation and the high mem-
ory consumption, which are proportional to the number of sub-lists in the
queue. In this contribution, we propose an alternative approach for designing
lock-free linearizable priority queues, that significantly improve memory effi-
ciency and throughput performance, by reducing the number of global atomic
updates and memory consumption as compared to skip-list based queues. To
achieve this, our new design combines two structures; a search tree and a
linked list, forming what we call a Tree Search List Queue (TSLQueue). The
leaves of the tree are linked together to form a linked list of leaves with a
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head as an access point. Analytically, a skip-list based queue insert or delete
operation has at worst case O(log n) global atomic updates, where n is the
size of the queue. While the TSLQueue insert or delete operations require
only 2 or 3 global atomic updates respectively. When it comes to memory
consumption, TSLQueue exhibits O(n) memory consumption, compared to
O(n log n) worst case for a skip-list based queue, making the TSLQueue more
memory efficient than a skip-list based queue of the same size. We exper-
imentally show, that TSLQueue significantly outperforms the best previous
proposed skip-list based queues, with respect to throughput performance.

2.3 Contribution C
Adones Rukundo, Aras Atalar, Philippas Tsigas
Performance Analysis and Modelling of Concurrent Multi-access Data
Structures

The major impediment to scaling concurrent data structures is memory con-
tention when accessing shared data structure access-points, leading to thread
serialisation and hindering parallelism. Aiming to address this challenge, a
significant amount of work in the literature has proposed multi-access tech-
niques that improve concurrent data structure parallelism. However, there
is little work on analysing and modelling the execution behaviour of concur-
rent multi-access data structures especially in a shared memory setting. In
this contribution, we analyse and model the general execution behaviour of
concurrent multi-access data structures in the shared memory setting. We
study and analyse the behaviour of the two popular random access patterns:
shared (Remote) and exclusive (Local) access, and the behaviour of the two
most commonly used atomic primitives for designing lock-free data structures:
Compare and Swap, and, Fetch and Add. We model the concurrent multi-
accesses by splitting the thread execution procedure into five logical sessions:
i) side-work, ii) access-point search iii) access-point acquisition, iv) access-
point data acquisition and v) access-point data operation. We evaluate our
model on a set of concurrent data structure designs including a counter, a
stack and a FIFO queue. The evaluation is carried out on two state of the art
multi-core processors: Intel Xeon Phi CPU 7290 with 72 physical cores and
Intel Xeon E5-2695 with 14 physical cores. Our model is able to predict the
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throughput performance of the given concurrent data structures with 80% to
100% accuracy on both architectures.
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CHAPTER 3

Concluding Remarks and Future Work

In this thesis, we have contributed research towards improving concurrent
data structure access parallelism to increase data structure scalability. We
have proposed new design frameworks that improve access parallelism of al-
ready existing concurrent data structure designs. Also, we have proposed new
concurrent data structure designs with significant performance improvements.
To give an insight into the interplay between hardware and concurrent data
structure access parallelism, we have given a detailed analysis and modelled
the performance scalability with varying parallelism.

In the first part of the thesis, we showed that semantics relaxation has the
potential to monotonically trade relaxed semantics of concurrent data struc-
tures for achieving throughput performance within tight relaxation bounds.
This was achieved through an efficient two-dimensional framework that is
simple and easy to implement for different data structures. We demonstrated
that, by deriving two-dimensional lock-free designs for stacks, FIFO queues
and shared counters. Our experimental results showed that compared to pre-
vious solutions, our framework can be used to extend existing data structures
with minimal modifications while achieving better performance in terms of
throughput and accuracy.
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We observed that the framework has several possible parameter configura-
tions. As part of future work, we intend to further explore these configurations
and propose possible optimal configurations for different system execution en-
vironments. Furthermore, we intend to look into how data structure semantic
relaxation can be applied dynamically without having relaxation bounds as a
fixed parameter. As an example, contention varies as threads request access
to shared resources. There is a need for a mechanism that can detect the level
of contention within the system and adjust the relaxation bounds accordingly
to improve data accuracy (elastic relaxation). This would help maintain a
meaningful data structure semantics scalability trade-off.

In the second part of the thesis, we introduced a new design approach for
designing efficient priority queues. We have demonstrated the design with
a linearizable lock-free priority queue implementation. Our implementation
outperformed the previously proposed state-of-the-art skip list based priority
queues. In the case of DeleteMin() we have achieved a performance improve-
ment of up to more than 400% and up to more than 65% in the case of In-
sert(). Numerous optimisation techniques such as flat combining, elimination
and back-off can be applied to further enhance the performance of TSLQueue.

As part of future work, we intend to apply numerous optimisation tech-
niques such as balancing the tree search structure, flat combining, elimination
and back-off to further enhance the performance of the TSLQueue. TSLQueue
improved parallelism makes it a good candidate for semantic relaxation, we
also intend to explore ways of implementing relaxed priority queue designs
using the TSLQueue.

Subsequently, we analysed and modelled the performance of concurrent
multi-accesses of lock-free data structures in multi-core/many-core shared
memory systems. We considered disjoint memory accesses techniques that
typically use two types of memory access patterns, locally and remotely. We
considered two classes of atomic operations: Repeat until Condition (Com-
pare and Swap) and Atomically Modify (Fetch and Add), which are the typical
atomics used in the design of lock-free data structures. We then modelled the
acquisition of a memory access-point, as a system of queuing networks with
parallel servers, where each server corresponds to an access point. We also
modelled memory latency in terms of cache location and data coherence sta-
tus. Our evaluation results show that our model follows closely the actual
execution behaviour without significant deviations independently of the num-
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ber of access points or concurrent threads used.
As part of future work, we intend to explore ways of extending the model

to data structures with a more complex search process such as that of hierar-
chical or 2D-framework data structures. Our preliminary results have shown
that improved concurrent data structure parallelism has great potential to-
wards reducing memory and energy consumption. We intend to explore this
line further and study the impact of parallelism techniques such as semantic
relaxation on energy and memory consumption. We consider memory and
energy as some of the critical resources, especially for mobile computing.
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