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A B S T R A C T

In this work, we present a novel approach for considering dependencies (often called correlations) in the
uncertain parameters when performing (deterministic) flexibility analysis. Our proposed approach utilizes
(linear) boundary functions to approximate the observed or expected distribution of operating points (i.e.
uncertainty space), and can easily be integrated in the flexibility index or flexibility test problem. In contrast
to the hyperbox uncertainty sets commonly used in deterministic flexibility analysis, uncertainty sets based on
boundary functions allow subsets of the hyperbox which limit the flexibility metric but in which no operation
is observed or expected, to be excluded. We derive a generic mixed-integer formulation for the flexibility
index based on uncertainty sets defined by boundary functions, and suggest an algorithm to identify boundary
functions which approximate the uncertainty set with high accuracy. The approach is tested and compared in
several examples including an industrial case study.
1. Introduction

Flexibility analysis denotes different concepts to evaluate the ca-
pability of a physical system to react towards uncertainty (e.g. dis-
turbances) in order to maintain feasible operation (Grossmann et al.,
2014). In this context, feasible operation is achieved if the physical
system with given equipment (sizes) reaches pre-defined target val-
ues which can be formulated as mathematical constraints. Flexibility
analysis originates from the aspiration to avoid unnecessary overdesign
of the equipment while guaranteeing steady state flexible operation,
i.e. steady state operation at numerous operating points within a lim-
ited uncertain parameters space or uncertainty set 𝑇 (Grossmann et al.,
2014). Unnecessary overdesign may result from conservative safety
margins during the design process (e.g. rule-of-thumb estimates), which
are the consequence of insufficient knowledge about how a physical
system reacts towards uncertainty, e.g., when only nominal condi-
tions were considered during the design phase (Ochoa and Grossmann,
2020). To avoid unnecessary overdesign of equipment but still allow for
steady state flexible operation, it is therefore vital to consider those op-
erating conditions which set the hardest requirements on the equipment
size also known as critical operating points. Halemane and Grossmann
(1983) defined critical operating points as those realizations of the
uncertain parameters, 𝜃, for which a given design, 𝑑, (i.e. structural
layout, equipment size) has either the smallest degree of feasibility
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(i.e. at the critical operating point feasible operation can be observed
while the smallest deviation from the critical parameter values can
lead to infeasibility) or the largest degree of infeasibility (i.e. at the
critical operating point occurs the maximum constraint violation). In
order to identify the degree of feasibility/infeasibility, they formulated
the feasibility constraint (1) also known as max–min–max constraint.
The authors further proposed a solution algorithm for flexible process
design based on the procedure suggested by Grossmann and Sargent
(1978) in which the set of potentially critical points is obtained by
maximizing the inequalities with respect to the uncertain parameters
assuming monotonicity (Halemane and Grossmann, 1983).

max
𝜃∈𝑇

min
𝑧

max
𝑗∈𝐽

𝑓𝑗 (𝑑, 𝑧, 𝜃) ≤ 0 (1)

The feasibility constraint (1) involves a non-trivial max–min–max
optimization problem, whose objective is to ensure feasible operation
(𝑓𝑗 (𝑑, 𝑧, 𝜃) ≤ 0, 𝑗 ∈ 𝐽 ) over the entire uncertainty set, 𝑇 , while ac-
counting for possible adjustment of the control variables, 𝑧, in order to
adapt to the uncertainty in the parameters 𝜃. Based on the formulation
of the feasibility constraint, Swaney and Grossmann (1985) formulated
two concepts: the flexibility test and the flexibility index to perform
flexibility analysis for a hyperbox uncertainty set, 𝑇𝑏𝑜𝑥. (compare (2)).

𝑇𝑏𝑜𝑥 =
{

𝜃𝑖|𝜃𝑖,𝐿 ≤ 𝜃𝑖 ≤ 𝜃𝑖,𝑈
}

∀ 𝜃𝑖 ∈ 𝜃 (2)
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For a given design, 𝑑, and any given uncertainty set, 𝑇 , the solution
of the flexibility test defines a critical point, 𝜃∗, for feasible operation
n line with the definition of Halemane and Grossmann (1983) (see
bove). While the primary purpose of the flexibility test is to determine
f the operation of a given design, 𝑑, remains feasible for all realizations
f 𝜃 in 𝑇 , the flexibility index is a metric (single scalar 𝛿) which indi-
ates the maximum feasible deviation of each uncertain parameter in 𝜃
iven an expected variation range and nominal/mean value(s) (Swaney
nd Grossmann, 1985). Furthermore, the flexibility index implicitly
ndicates potentially critical points which can been utilized to develop
lexible process designs (see e.g., Langner et al., 2020). The problem
ormulation of the flexibility index for a hyperbox uncertainty set, 𝑇𝑏𝑜𝑥,
s given in (A.1) in Appendix A. Note that in the problem formulation of
he flexibility index, the hyperbox uncertainty set is scaled by the scalar
(𝑇𝑏𝑜𝑥(𝛿)) which thus refers to the largest scaled hyperbox which can

e inscribed in the feasible region.
Based on the definition of the flexibility test and index (com-

are Swaney and Grossmann, 1985) as key metrics to perform flexi-
ility analysis, much effort has been dedicated to study a variety of
spects related to the field during the last decades. For an extensive
eview and a historical perspective on this topic, the interested reader
s referred to Grossmann et al. (2014) and Zhang et al. (2016). An
verview of some selected literature will be provided here. To deter-
ine the flexibility index, Swaney and Grossmann (1985) proposed

earch procedures for the special case of exclusively convex constraint
unctions, 𝑓𝑗 (𝑑, 𝑧, 𝜃), in which the solution of (A.1) corresponds to ver-
ices of 𝑇𝑏𝑜𝑥(𝛿). To overcome the limitations of vertex exploration (ex-
onential number of vertices, 2𝜃 , and convexity of constraint functions
𝑗 (𝑑, 𝑧, 𝜃)), Grossmann and Floudas (1987) reformulated the flexibility
ndex problem (compare (A.1)) following the idea that the solution
f (A.1) must be on the boundary of the feasible region. Detailed
nformation on the study by Grossmann and Floudas (1987) is provided
n Appendix A. Their reformulation yielded a bi-level optimization
roblem (compare (A.2)) which they could further transform to a
single-level) Mixed-Integer (Non-)Linear Program (MI(N)LP) for the
lexibility index. Together with the MI(N)LP formulation, Grossmann
nd Floudas (1987) proposed the active constraint strategy which is
ased on the idea that the flexibility analysis for a given design, 𝑑,
an be performed in the space of constraints that can potentially limit
he flexibility, i.e. the constraints that are active at the solution of the
lexibility analysis problem. Note that the active constraint strategy
oes not rely on the assumption that critical points correspond to
ertices of 𝑇𝑏𝑜𝑥(𝛿).

Raspanti et al. (2000) used constraint aggregation functions
Kreisselmeier–Steinhaus a.k.a. KS functions) and smoothing functions
o reformulate the MI(N)LP formulation for the flexibility index by Gross
ann and Floudas (1987) to a single non-linear programming problem

NLP). The resulting NLP is non-convex which may lead to increased
ifficulties solving the problem for global optimality. Li et al. (2015)
uggested a framework to calculate the flexibility index by means of
n alternating direction matrix embedded in a Simulated Annealing
lgorithm. They suggest a search strategy to explore the feasible re-
ion by means of randomly created search directions and control the
earch via the simulated annealing of a temperature. While the recent
evelopment of personal computer capacity allows for fast analysis of
earch directions in the order of (1000), the resulting value remains
n upper bound approximation of the flexibility index. In addition
o the traditional definition of uncertainty where the control vari-
bles, 𝑧, can be manipulated to counteract variation in the uncertain
arameters, Ostrovsky et al. (2003) and Rooney and Biegler (2003)
rouped the uncertain parameters, 𝜃, into two types, measured 𝜃𝑚 and
nmeasured 𝜃𝑢. Variation of unmeasured uncertain parameters cannot
e counteracted by means of recourse actions (i.e. manipulation of
ontrol variables) since these countermeasures require knowledge of
he source of the disturbance. Recently, Ochoa and Grossmann (2020)
2

eformulated the MI(N)LP formulation by Grossmann and Floudas w
1987) to analyze the flexibility by means of the active constraint
trategy also when unmeasured uncertain parameters, 𝜃𝑢, are present.

An alternative approach for flexibility analysis was suggested by Pis-
ikopoulos and Mazzuchi (1990) and Straub and Grossmann (1990).
oth works suggest determining a stochastic flexibility index which
easures the probability that a given design (defined by linear con-

traint functions) remains feasible given the joint probability density
unction, 𝑝, of the uncertain parameters. The stochastic flexibility index
an be obtained directly by integrating 𝑝 over the feasible region
rojected in the space of the uncertain parameters (Grossmann et al.,
014). This integration can be done using Monte Carlo Sampling and
equires a feasibility check of every sampled realization. Straub and
rossmann (1993) later extended the framework of the stochastic

lexibility index also for systems described by non-linear constraint
unctions. Since Monte Carlo Sampling can be computationally ex-
ensive due to the large number of samples required to cover the
ncertainty set, Pulsipher and Zavala (2018) suggested a mixed-integer
onic program which can be used to compute a lower bound for the
tochastic flexibility index.

In addition to the deterministic and the stochastic flexibility in-
exes, a third flexibility index has been proposed by Lai and Hui (2008):
he volumetric flexibility index. The volumetric flexibility index quanti-
ies the percentage of the expected hyperbox uncertainty set that can be
easibly handled. In a geometric sense, the volumetric flexibility index
escribes the volumetric fraction of the hypervolume of the feasible
pace within the expected hyperbox, compared to the volume of this
yperbox bounded by the expected upper and lower limits of uncer-
ain parameters. The authors concluded that the approximation of the
easible space within the hyperbox is challenging, and, recently, Zheng
t al. (2021) presented a novel approach to approximate the volumetric
lexibility index based on the symbolic computation method.

Due to the nature of joint probability density functions, the stochas-
ic flexibility index is able to capture dependencies in the uncertain
arameters. On the other hand, in most studies focusing on determinis-
ic flexibility analysis, the uncertain parameters are assumed to vary
ndependently which is well expressed by the hyperbox representa-
ion of the uncertainty set (𝑇𝑏𝑜𝑥 and 𝑇𝑏𝑜𝑥(𝛿), respectively). However,
or practical applications, this assumption is not always valid. Espe-
ially for industrial processes it is very probable that dependencies
n (some of) the uncertain parameters are present. In case of de-
endencies in the uncertain parameters, several studies pointed out
hat the flexibility index based on the hyperbox uncertainty set (sig-
ificantly) underestimates the flexibility of the underlying physical
ystem (compare Rooney and Biegler, 1999, Pulsipher and Zavala, 2018
nd Langner et al., 2021).

We identified two approaches in the literature which present al-
ernatives to the hyperbox uncertainty set, namely the approaches
resented by Grossmann and Floudas (1987) and Pulsipher and Zavala
2018) (the approach of Pulsipher and Zavala, 2018 is based on an
dea presented by Rooney and Biegler, 1999). Both approaches were
uggested explicitly for considering dependencies in the uncertain pa-
ameters when modeling the uncertainty set. A detailed overview on
hese existing approaches is provided in Section 2. However, as we
how in Section 2, the approach of Grossmann and Floudas (1987) can
ead to the obtained (deterministic) flexibility index overestimating the
ctual flexibility. Additionally, we identified that the approach of Pul-
ipher and Zavala (2018) is not suitable for performing deterministic
lexibility analysis since it was developed as a method for approxima-
ion of the stochastic flexibility index. Although this approximation is
one using deterministic operations, the obtained results are inherently
ifferent from the findings provided by the deterministic flexibility
ndex.

To allow for considering dependencies in the uncertain parameters
hen performing deterministic flexibility analysis while lowering the

isk for over- and underestimation, we developed a novel approach

hich was outlined in a recent conference contribution (Langner et al.,
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Fig. 1. Conceptual illustration of the flexibility index using a single equation (regression) model to capture dependencies in the uncertain parameters. Note, the presence of
xpected operating points in the red hatched area would indicate that the feasible interval indicated by the flexibility index [𝛿𝑐𝑜𝑟𝑟𝛥𝑇 −

2 , 𝛿𝑐𝑜𝑟𝑟𝛥𝑇 +
2 ] overestimates the flexibility since

these operating points would be within the feasible interval but are de facto infeasible.
2021) and applied to several small-scale theoretical examples to demon-
strate its applicability. In the work described in this paper, we continue
the development of our approach by deriving (and presenting for the
first time) a generic problem formulation which is applicable not only
to small-scale literature and theoretical examples but also to more
complex and multi-dimensional examples. In addition to the generic
problem formulation, we formulated supporting algorithms to extend
our proposed approach. The generic problem formulation and the
supporting algorithms are presented in Section 3. In Section 4.1, we
use an illustrative example to demonstrate the differences between our
proposed approach and the other approaches presented in Section 2.
Additionally, the applicability of the proposed approach to more com-
plex and multi-dimensional cases is illustrated by means of a literature
Heat Exchanger Network (HEN) example (see Section 4.2) and an
industrial case study in Section 5.

2. Analysis of (existing) approaches for flexibility analysis consid-
ering dependencies in the uncertain parameters

As mentioned in Section 1, several studies in the literature point
out that the deterministic flexibility index based on the hyperbox
uncertainty set potentially underestimates the flexibility of a process if
dependencies in the uncertain parameters are present. In this context,
the term underestimation refers to the phenomenon that the flexibility
index indicates only a small feasible interval [𝛿𝑏𝑜𝑥𝛥𝜃−𝑖 , 𝛿𝑏𝑜𝑥𝛥𝜃+𝑖 ] while
a much larger share of the expected operating points or expected
realizations of the uncertain parameters are within the feasible re-
gion. There is consensus in the literature that the reason for this
underestimation is bad resemblance of the hyperbox uncertainty set
with the real uncertainty set, i.e. the actual distribution of operating
points. To overcome this problem, we identified two approaches in the
literature which are suitable to consider dependencies when modeling
the expected uncertainty set. Both approaches build upon knowledge
regarding the distribution of operating points, i.e. historical or expected
values of the uncertain parameters.

2.1. Approach based on regression models

Grossmann and Floudas (1987) suggested to express the dependent
uncertain parameters through algebraic equations, 𝑓 (𝜃) = 0, which can
be included as additional constraints in the flexibility index problem
(compare (A.2)). Although not explicitly formulated by the authors,
the approach can be generalized by reformulating the uncertainty set
(𝑇 (𝛿)) in the flexibility index problem (compare (A.2)). For this
3

𝑏𝑜𝑥
purpose, we group the uncertain parameters into independent uncer-
tain parameters (𝜃𝑖𝑛𝑑) and dependent uncertain parameters (𝜃𝑑𝑒𝑝) and
express the dependent uncertain parameters by a set of functions 𝐶.
The uncertainty set in which the uncertain parameters vary can then
be described as done in (3).

𝑇𝑐𝑜𝑟𝑟,𝑏𝑜𝑥(𝛿) =

{

{

𝜃𝑖 | 𝜃𝑖,𝑁 − 𝛿𝛥𝜃−𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖,𝑁 + 𝛿𝛥𝜃+𝑖
}

∀ 𝜃𝑖 in 𝜃𝑖𝑛𝑑
{

𝜃𝑗 | 𝑓𝑐 (𝜃𝑖𝑛𝑑 ) ∀ 𝑐 in 𝐶
}

∀ 𝜃𝑗 in 𝜃𝑑𝑒𝑝
(3)

In general, different mathematical models can be considered to ex-
press the dependencies between dependent and independent uncertain
parameters. An intuitive approach, is to express dependencies via (lin-
ear) single equation models as demonstrated by Grossmann and Floudas
(1987) and reported in the aforementioned review on concepts and
models for flexibility analysis (Grossmann et al., 2014). A conceptual
illustration of the flexibility index for a linear single equation model in
comparison to the hyperbox uncertainty set is shown in Fig. 1.

A single equation model is comparable to a regression model, i.e. a
model which defines how a dependent variable changes with respect
to one or several independent variable(s). In the two-dimensional case
shown in Fig. 1, we see that the result of the flexibility index (scale
parameter 𝛿) is different when the uncertainty set is modeled using
a single equation model to express the dependency between the two
uncertain parameters 𝑇1 and 𝑇2 compared to the hyperbox uncertainty
set. More specifically, 𝛿𝑐𝑜𝑟𝑟 is larger than 𝛿𝑏𝑜𝑥 which implies that the
underestimation of the flexibility by means of the flexibility index
based on the hyperbox uncertainty set could possibly be decreased.
On the other hand, it needs to be ensured that the larger value of
𝛿𝑐𝑜𝑟𝑟 compared to 𝛿𝑏𝑜𝑥 is not the result of an overestimation of the
flexibility. This is analyzed in more detail in the next paragraph. Firstly,
we want to highlight that in the hyperbox case the scale parameter,
𝛿𝑏𝑜𝑥, explicitly defines the feasible variation of all uncertain parame-
ters, i.e. the products 𝛿𝑏𝑜𝑥𝛥𝜃−𝑖 and 𝛿𝑏𝑜𝑥𝛥𝜃+𝑖 , respectively indicate the
feasible range in which the uncertain parameter, 𝜃𝑖, may vary. On
the other hand, when expressing dependent uncertain parameters via
single equation models, the scale parameter, 𝛿𝑐𝑜𝑟𝑟, defines the feasible
variation of the independent uncertain parameters, only. The variation
of the dependent parameters is expressed as functional relationship of
the independent parameters, i.e. when using single equation models
one assumes that for each value or realization of the independent
uncertain parameters exactly one value or realization of the dependent
uncertain parameters can be expected as shown in Fig. 1.

The observations described in the previous paragraph relate to the
main drawback of single equation regression models, which is that
they are only exact if the strongest possible agreement exists between
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Fig. 2. Conceptual illustration of an ellipsoidal uncertainty set to approximate the stochastic flexibility index (SFI) according to the approach of Pulsipher and Zavala (2018).
Note, the stochastic flexibility index can be interpreted as the share of the green colored shape (covering all expected operating points within the feasible region) and the light
blue colored shaped (expected uncertainty space).
the correlated uncertain parameters. Commonly, correlated uncertain
parameters in chemical processes agree only to some extent which
means that single equation regression models are able to capture the
trend between these uncertain parameters well while neglecting oper-
ating points which deviate from this trend (i.e. operating points caused
by ‘‘other’’ sources of uncertainty). Consequently, when using single
equation regression models, there is a high likelihood that realizations
of the uncertain parameters or operating points which are expected are
not included in the modeled uncertainty set as we have also shown
previously (compare Langner et al., 2021). However, these operating
points which are not captured by the chosen regression model can be
vital for actual plant operation meaning that their consideration in the
modeled uncertainty set is critical. Therefore, the non-consideration of
such operating points leads to the possibility that the flexibility index
based on single equation models overestimates the flexibility of a pro-
cess. In this context, we want to define overestimation of flexibility as
the situation where operating points which should be feasible according
to the analysis (i.e. the values of the independent uncertain parameters
are within the interval [𝛿𝑐𝑜𝑟𝑟𝛥𝜃−𝑖𝑛𝑑,𝑖, 𝛿𝑐𝑜𝑟𝑟𝛥𝜃

+
𝑖𝑛𝑑,𝑖]) are indeed outside of

the feasible region and thereby not feasible. This has been visualized
in Fig. 1. A numerical example where the deterministic flexibility index
based on a single equation model overestimates the flexibility of a given
process is presented in Section 4.1.

We conclude that the aforementioned overestimation is a conse-
quence of the dimension reduction of the uncertainty set (compared
to the hyperbox uncertainty set) when utilizing single equation (re-
gression) models. This dimensionality reduction of the uncertainty
set can be seen in Fig. 1. When incorporating the single equation
(regression) model, the 2-dimensional hyperbox uncertainty set reduces
to a 1-dimensional uncertainty set. Also in higher dimensions, the
dimensionality reduction can be observed. For example, in the case of
three uncertain parameters the 3-dimensional hyperbox can be trans-
formed into a 2-dimensional plane (single parameter dependent on
4

one independent parameter) or into a 1-dimensional line (single pa-
rameter dependent on both independent parameter). The consequence
of this dimensionality reduction is that the modeled uncertainty set
(significantly) underestimates the expected uncertainty set. Note that
overestimating the flexibility of a process can have severe consequences
since the infeasibility of certain operating conditions may not be iden-
tified before actual operation. Consequently, (very) costly retrofits may
be required which are likely to exceed the cost of (unnecessary) overde-
sign which may occur as a result of underestimating the flexibility of
the process.

2.2. Approach based on ellipsoidal uncertainty sets

An alternative approach to account for dependencies between un-
certain parameters was suggested by Rooney and Biegler (1999) who
suggested to approximate the expected uncertainty set based on the
covariance matrix and the mean values of 𝜃 (𝑉𝜃 and �̄�, see (4)). In (4),
𝑛𝜃 is the number of the uncertain parameters (dimension of uncertainty
space), and 𝜒2

𝑛𝜃
(𝛼) is the critical value of a 𝜒-squared distribution at

the probability level 𝛼 and with 𝑛𝜃 degrees of freedom. Assuming that
the uncertain parameters of a physical system can be described as
multivariate Gaussian random variables, Rooney and Biegler (1999)
explained that the value of 𝜒2

𝑛𝜃
(𝛼) (obtained by solving (4)) can be

interpreted as a joint confidence region of ellipsoidal shape. Such a joint
confidence region attempts to enclose all joint parameter combinations
up to the desired confidence level, 1 − 𝛼. The authors concluded that
uncertainty sets described by (4) (hereinafter referred to as ellipsoidal
uncertainty sets) are able to capture (linear) dependencies in the un-
certain parameters more accurately compared to hyperbox uncertainty
sets.

𝑇 =
{

𝜃 |(𝜃 − �̄�)𝑇 𝑉 −1 (𝜃 − �̄�) ≤ 𝜒2 (𝛼)
}

(4)
𝑒𝑙𝑙𝑖𝑝 𝜃 𝑛𝜃
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Based on the findings of Rooney and Biegler (1999), Pulsipher and
Zavala (2018) reformulated the ellipsoidal set by replacing 𝜒2

𝑛𝜃
(𝛼) with

yielding a scalable uncertainty set. They claimed that the scalable el-
ipsoidal set can substitute the hyperbox uncertainty set in the approach
y Grossmann and Floudas (1987). Thereby, the largest scaled ellip-
oidal can be identified which can be inscribed in the feasible region.
ote that the interpretation of the solution of the scale parameter (𝛿∗)
btained for an ellipsoidal uncertainty set is different compared to the
olution obtained with a hyperbox uncertainty set. More precisely, Pul-
ipher and Zavala (2018) followed the idea of Rooney and Biegler
1999) and utilized 𝛿∗ to compute the confidence level (of ellipsoidal
hape) based on the 𝑝-value calculation of the probability density
unction of the 𝜒-squared distribution with 𝑛𝜃 degrees of freedom at
he critical value 𝛿∗. Furthermore, the authors provided mathematical
roof that the obtained confidence level represents a lower bound to
he stochastic flexibility index which can be obtained without compu-
ationally expensive Monte Carlo Sampling. A conceptual illustration of
n ellipsoidal uncertainty set is shown in Fig. 2.

In Fig. 2, the expected distribution of uncertainty is visualized
y an ellipsoidal set defined by a given mean value and covariance.
t is assumed that this ellipsoidal covers all expected realizations of
he uncertain parameters, i.e. it represents the expected uncertainty
et. Utilizing the approach by Pulsipher and Zavala (2018), the ellip-
oidal uncertainty set was scaled, yielding an ellipsoidal set which is
ully inscribed in the feasible region. Fig. 2 shows further how the
cale parameter characterizing this scaled ellipsoidal set (𝛿𝑠𝑐𝑎𝑙𝑒𝑑) can
e utilized to approximate the stochastic flexibility index following
he 𝑝-value calculation of the probability density function of the 𝜒-

squared distribution. As a comparison to this scaled ellipsoidal, the area
covering all expected operating points which are within the feasible
region is also indicated. The latter can be interpreted as a visualization
of the stochastic flexibility index especially if it is seen in relation to
the expected distribution of uncertainty. Furthermore, Fig. 2 allows for
assessing the quality of the approximation of the stochastic flexibility
index which is obtained by following the approach by Pulsipher and
Zavala (2018). This can be achieved by comparing the difference in
size of the in Fig. 2 purple colored shape and the scaled ellipsoidal.

Pulsipher and Zavala (2018) identified that the approach by Gross-
mann and Floudas (1987) is compatible with any compact set to
approximate the uncertainty set as long as the size of the set can
be parameterized in terms of the scale parameter, 𝛿. In this context,
the authors refer to the work by Li et al. (2011) who presented
several scalable uncertainty sets based on the 𝑙∞ norm, 𝑙1 norm and
𝑙2 norm. Note that, e.g., the hyperbox uncertainty set can be seen as
a special interpretation of the 𝑙∞ norm (see Li et al., 2011 for further
nformation). However, the interpretation of the scale parameter can
e different depending on the chosen uncertainty set, i.e. the results
ay allow a statistic or a deterministic interpretation as explained in

he previous paragraphs. Additionally, both (Li et al., 2011) and Pul-
ipher and Zavala (2018) only refer to compact sets which can be
magined as regular geometric shapes such as a box, an ellipsoidal
r a rhombus. This can cause inexact results when the distribution
f operating points, i.e. the expected uncertainty set, cannot (or only
artially) be captured by these regular geometric shapes. Consequently,
f an ellipsoidal only partially resembles the distribution of operating
oints, the approach of Pulsipher and Zavala (2018) may only reveal
conservative approximation of the stochastic flexibility index. Note

hat this conservative approximation is partly comparable to the afore-
entioned bad resemblance of a hyperbox uncertainty set with the real
istribution of uncertainty leading to the consequence that the deter-
inistic flexibility index underestimates the feasible variation range.
owever, it is beyond the scope of this work to suggest developments
f uncertainty sets which allow for a statistical analysis of the flexibility
5

uch as ellipsoidal uncertainty sets.
2.3. Similarities and differences of the existing approaches

This Subsection summarizes the essential findings of this Section.
Both approaches presented in Sections 2.1 and 2.2 allow for consid-
ering parameter dependencies when modeling a scalable uncertainty
set which can be integrated in a deterministic framework, namely the
MI(N)LP formulations by Grossmann and Floudas (1987), to perform
flexibility analysis. However, single equation (regression) models allow
for considering dependencies between different uncertain parameters in
deterministic flexibility analysis while ellipsoidal uncertainty sets allow
for approximating the stochastic flexibility index (which inherently
considers dependencies in the uncertain parameters) deterministically.
Note, stochastic flexibility analysis, i.e. the stochastic flexibility index,
and deterministic flexibility analysis are complementary since different
information is obtained. As mentioned in Section 1, the stochastic
flexibility index returns the (maximum) probability for feasible op-
eration given the joint probability density function of the uncertain
parameters. Knowledge regarding the probability for feasible operation
can be advantageous, when comparing different system designs. On the
other hand, the stochastic flexibility index does not provide information
on the feasibility or infeasibility of specific operating conditions, i.e. to
identify if a randomly drawn sample from the expected distribution of
uncertainty is feasible, additional analysis is necessary. Such knowledge
is provided by deterministic flexibility analysis since the deterministic
flexibility index returns the maximum feasible disturbance for each
uncertain parameter from a nominal/mean value. Consequently, the
deterministic flexibility index can be important for operative deci-
sions and/or problems, e.g. in case an operator needs to identify the
feasibility of an expected operating point.

In contrast to the (traditional) Monte Carlo sampling for calculating
the stochastic flexibility index, the approach of Pulsipher and Zavala
(2018) can explicitly reveal constraint functions which limit the un-
certainty set and thereby the flexibility. Traditionally, such knowledge
could only be revealed by deterministic flexibility analysis since it is
based on identifying the feasible scaling of a compact uncertainty set.
The disclosure of such information may favor a certain approach over
another since it can be advantageous for identifying and eliminating
bottlenecks of processes. On the other hand, the inherent difference
between stochastic and deterministic flexibility analysis does not allow
for a direct comparison of the obtained results. To illustrate these
differences, we calculate the deterministic flexibility index and we
also approximate the stochastic flexibility index utilizing the approach
of Pulsipher and Zavala (2018) for a numerical example in Section 4.1.

3. Methodology

As an alternative to single equation models, we suggest to formulate
uncertainty sets by means of upper and lower boundary functions to
capture dependencies in the uncertain parameters. Based on the group-
ing of the uncertain parameters into independent uncertain parameters
(𝜃𝑖𝑛𝑑) and dependent uncertain parameters (𝜃𝑑𝑒𝑝) (see Section 2.1),
we reformulated the hyperbox uncertainty set to (5). A conceptual
illustration of the deterministic flexibility index based on upper and
lower boundary functions in comparison to the hyperbox uncertainty
set is shown in Fig. 3.

𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝛿) =

{

{

𝜃𝑖 | �̄�𝑖 − 𝛿𝛥𝜃−𝑖 ≤ 𝜃𝑖 ≤ �̄�𝑖 + 𝛿𝛥𝜃+𝑖
}

∀ 𝜃𝑖 in 𝜃𝑖𝑛𝑑
{

𝜃𝑗 | 𝑓𝑙(𝜃𝑖𝑛𝑑 ) ≤ 𝜃𝑗 ≤ 𝑓𝑢(𝜃𝑖𝑛𝑑 )
}

∀ 𝜃𝑗 in 𝜃𝑑𝑒𝑝
(5)

The advantage of boundary functions in comparison to single equa-
tion (regression) models is that the dimensionality of the uncertainty set
is not reduced. Boundary functions allow for considering uncertainty
even in the dependent parameters since this uncertainty is expressed
as space between the upper and lower boundary function(s) (see col-
ored parallelogram in Fig. 3). Due to the additional uncertainty in
the dependent parameters, the overestimation of the flexibility can

be avoided (compare Figs. 1 and 3). More specifically, the boundary
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Fig. 3. Conceptual illustration of the flexibility index using boundary functions to capture dependencies in the uncertain parameters.
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functions can be chosen is such a way that all expected realizations of
the uncertain parameters are enclosed by the modeled uncertainty set.
In comparison to the hyperbox uncertainty set, incorporating boundary
functions transforms the uncertainty set into a hyperpolygon set. This
transformation allows for excluding irrelevant subsets of the hyperbox
set, i.e. subsets in which no operation is observed or expected while
maintaining the dimensionality of the uncertainty set. When assuming
that the boundary functions in Fig. 3 enclose all expected realizations
of the uncertain parameters 𝑇1 and 𝑇2, we can identify such subsets in
ig. 3 (not colored parts of the rectangle). Consequently, the incorpora-
ion of boundary functions can allow for a better resemblance between
he modeled uncertainty set and the real uncertainty set which helps
ecreasing the risk for underestimating the feasible variation range
hen calculating the deterministic flexibility index.

In this section, we derive a mixed-integer formulation for the flex-
bility index based on uncertainty sets defined by boundary functions
see Section 3.1). In this context, we utilize the findings of Pulsipher
nd Zavala (2018), i.e. that the bi-level formulation of Grossmann and
loudas (1987) (compare (A.2)) is valid for any compact uncertainty
et. The derived formulation can be solved by means of the active
onstraint strategy developed by Grossmann and Floudas (1987) and
llows for the generic application of boundary functions when per-
orming deterministic flexibility analysis. In a second step, we focus
n the question how to define boundary functions in such a way that
he expected or observed uncertainty set is represented as accurately
s possible. Such a task can be solved manually (see Langner et al.,
021) but especially for multi-dimensional dependencies, a manual def-
nition may be burdensome and error-prone. We therefore developed
n algorithm to automate the definition of boundary functions. In this
ay, multiple upper and lower boundary functions (in contrast to single
pper and lower boundary functions) can be identified, effectively.
onsequently, the number of degrees of freedom increases which means
hat the observed or expected uncertainty set can be approximated
ith a high accuracy. The proposed algorithm is based on the polygon

onvex hull and is presented in Section 3.2.

.1. Mixed-integer formulation for the flexibility index based on uncertainty
ets described by boundary functions

As shown in Appendix A, Grossmann and Floudas (1987) developed
MI(N)LP ((A.2) in combination with (A.3a) to (A.3g)) for determining

he deterministic flexibility index also for non-vertex solutions of a
yperbox uncertainty set. Based on this work, Pulsipher and Zavala
2018) observed that for any compact set 𝑇 (𝛿), such as 𝑇𝑏𝑜𝑥(𝛿) or
𝑒𝑙𝑙𝑖𝑝(𝛿), the derived MI(N)LP is valid (based on mathematical proof
rovided by Swaney and Grossmann (1985)). Pulsipher and Zavala
6

o

2018) further provided proof that for a scalable ellipsoidal uncertainty
et, the solution (𝜃∗) of (A.2) lies on the boundary of both the feasible
egion (𝜓(𝑑, 𝜃) = 0) and the ellipsoidal uncertainty set, 𝑇𝑒𝑙𝑙𝑖𝑝(𝛿). A
eneralized version of this proof for any compact set is provided in
ppendix B.

Since 𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝛿) (compare (5)) defines a set around the nomi-
al/mean value(s), the resulting hyperpolygon set is a compact set
similar to 𝑇𝑏𝑜𝑥(𝛿) or 𝑇𝑒𝑙𝑙𝑖𝑝(𝛿)). Following the observation of Pulsipher
nd Zavala (2018), the MI(N)LP ((A.2) in combination with (A.3a) to
A.3g)) developed by Grossmann and Floudas (1987) can be adapted
o incorporate an uncertainty set based on boundary functions. The
I(N)LP formulation to determine the deterministic flexibility index

ased on uncertainty sets described by boundary functions is given in
6). Note that the complementarity conditions of the inner minimiza-
ion problem’s Karush–Kuhn–Tucker (KKT) conditions have already
een replaced in line with the active constraint strategy by Grossmann
nd Floudas (1987). Further note that in (6), equality constraints and
tate variables, 𝑥, have been considered explicitly, while in (A.2), the
tate variables 𝑥 were eliminated by means of the equality constraints.

=min 𝛿

𝑠.𝑡. 𝑔𝑗 (𝑑, 𝑥, 𝑧, 𝜃) + 𝑠𝑗 = 0, 𝑗 ∈ 𝐽

ℎ𝑖(𝑑, 𝑥, 𝑧, 𝜃) = 0, 𝑖 ∈ 𝐼
∑

𝑗∈𝐽
𝜆𝑗 = 1

∑

𝑖∈𝐼
𝜇𝑖
𝜕ℎ𝑖
𝜕𝑧

+
∑

𝑗∈𝐽
𝜆𝑗
𝜕𝑔𝑗
𝜕𝑧

= 0

∑

𝑖∈𝐼
𝜇𝑖
𝜕ℎ𝑖
𝜕𝑥

+
∑

𝑗∈𝐽
𝜆𝑗
𝜕𝑔𝑗
𝜕𝑥

= 0

𝑠𝑗 −𝑀(1 − 𝑦𝑗 ) ≤ 0, 𝑗 ∈ 𝐽

𝜆𝑗 − 𝑦𝑗 ≤ 0, 𝑗 ∈ 𝐽
∑

𝑗∈𝐽
𝑦𝑗 ≤ 𝑛𝑧 + 1

𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦(𝛿) =
{

{

𝜃𝑖 | �̄�𝑖 − 𝛿𝛥𝜃−𝑖 ≤ 𝜃𝑖 ≤ �̄�𝑖 + 𝛿𝛥𝜃+𝑖
}

∀ 𝜃𝑖 in 𝜃𝑖𝑛𝑑
{

𝜃𝑗 | 𝑓𝑙(𝜃𝑖𝑛𝑑 ) ≤ 𝜃𝑗 ≤ 𝑓𝑢(𝜃𝑖𝑛𝑑 )
}

∀ 𝜃𝑗 in 𝜃𝑑𝑒𝑝
𝛿, 𝜆𝑗 , 𝑠𝑗 ≥ 0; 𝑦𝑗 ∈ 0, 1, 𝑗 ∈ 𝐽

(6)

In (6), 𝑠𝑗 refers to the slack variable and 𝜆𝑗 refers to the Lagrangian
multiplier of the inequality constraint 𝑔𝑗 ≤ 0. Additionally, a binary
ariable, 𝑦𝑗 , indicates if the corresponding inequality constraint, 𝑔𝑗 ≤ 0,
s active, i.e. 𝑠𝑗 = 0 at the found solution. For more detailed information

n the derivation of the MI(N)LP formulation, the reader is referred to
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Appendix A. Note, that uncertainty sets based on boundary functions
can also be integrated in the MI(N)LP formulation for the flexibility
test problem.

3.2. Algorithm for identification of boundary functions to approximate the
expected uncertainty set

The main idea of defining boundary functions is to establish a
tight representation of an expected or observed uncertainty set. An
uncertainty set can be visualized by plotting all operating points ob-
served/expected. The distribution of operating points allows for iden-
tifying dependencies in the uncertain parameters. On the other hand,
manual analysis of operating point distributions may be tedious for
problems with more than two uncertain parameters especially if there
exist multi-dimensional dependencies. To overcome this difficulty, we
suggest to calculate a numerical metric to determine the statistical
relationship among the present data such as correlation coefficients.
A commonly used correlation coefficient is the coefficient established
by Pearson (7) which determines the strength and the direction of
the linear relationship between two random variables (Boslaugh and
Watters, 2008).

𝜌(𝑋, 𝑌 ) =
𝑐𝑜𝑣(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

(7)

In (7), 𝑋 and 𝑌 describe two random variables forming a population
(or 2-dimensional data set) and 𝜎 denotes the standard deviation of
ach random variable. Furthermore, the covariance between the two
andom variables is expressed by 𝑐𝑜𝑣(𝑋, 𝑌 ). The calculation of such cor-

relation coefficients can be automated and large data sets can rapidly be
evaluated and analyzed for dependencies. Once certain indication exists
for a dependency between two or more uncertain parameters, the un-
certain parameters need to be classified as dependent or independent.
This classification can be enhanced by background knowledge about
the process of interest to identify the origin of the dependencies. If this
background knowledge is not available, an arbitrary classification may
be considered. The identified dependencies can be formulated in the
following general form:

𝜃𝑗 = 𝑓 (𝜃𝑖,1, 𝜃𝑖,2,…), 𝜃𝑖 ∈ 𝜃𝑖𝑛𝑑 , 𝜃𝑗 ∈ 𝜃𝑑𝑒𝑝. (8)

Having identified dependencies and classified the uncertain pa-
rameters into dependent and independent, we can proceed with the
formulation of upper and lower boundary functions. These upper and
lower boundary functions can be chosen freely (as long as the com-
pactness of the uncertainty set is preserved, see Section 3.1) but we
assume that linear functions present a good compromise between level
of accuracy and computational expenses. To automate the definition
of boundary functions, we suggest to reduce multi-dimensional depen-
dencies to their 2-dimensional projections and apply the Quick Hull
algorithm (see e.g., Barber et al., 1996). For a 2-dimensional data set,
the Quick Hull algorithm yields the vertices of the polygon convex hull
(in clockwise or counter-clockwise order, see Bykat (1978)). We suggest
to use the identified vertices of the polygon convex hull to identify
potential boundary functions. In this context, we define a potential
boundary function by the linear function which spans between two
neighboring vertices. Consequently, for each 2-dimensional projection,
the maximum number of boundary functions is given by the number of
vertices: 𝑁𝑏𝑜𝑢𝑛𝑑,𝑚𝑎𝑥 = 𝑁𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠. For illustrative purposes, Fig. 4 shows
the distribution of a 2-dimensional data set, the respective vertices
identified with the Quick Hull algorithm and the potential boundary
functions as the edges of the polygon convex hull of the data set.

In general, including all available boundary functions in (6) leads to
the best possible approximation of the expected/observed uncertainty
set and thereby also to the most accurate value of the flexibility index
(based on the polygon convex hull). However, including all avail-
able boundary functions may lead to increasing problem complexity
7

for high numbers of dependent uncertain parameters. Additionally, d
Fig. 4. Illustration of the polygon convex hull for a 2-dimensional data set.

we assume that some bounds of the polygon convex hull (potential
boundary functions) have a stronger influence on the solution of (6)
when included than other potential boundary functions. Therefore, we
formulated an algorithm to identify the most influencing boundary
functions, i.e. those boundary functions which capture the individual
characteristics of the expected/observed uncertainty set, for a given
maximum number of boundary functions. In this context, the influential
character of each potential boundary functions is assessed by means of a
selection criterion. The flowchart of this algorithm is given in Fig. 5 and
further information also regarding the selection criterion is provided in
the following paragraphs.

The boundary function selection algorithm needs two input argu-
ments, the 2-dimensional data set and the number of upper and lower
boundary functions, respectively, which the algorithm should return.
To be able to classify the different boundary functions as lower and
upper bounds, it is essential that the abscissa (x-coordinate) of the data
set corresponds to the independent parameter while the ordinate (y-
coordinate) describes the dependent parameter. In the first step, the
vertices of the polygon convex hull are determined using the Quick
Hull algorithm on the 2-dimensional data set. It is vital, that the Quick
Hull algorithm is initialized in such a way that the order (clockwise
or counter-clockwise) of the polygon convex hull vertices is known.
Next we identify if the linear function spanned by two neighboring
vertices forms an upper or a lower bound of the convex hull. Here we
utilize the order in which the vertices were returned by the Quick Hull
algorithm. More precisely, we check if the value of the independent
parameter (abscissa of data set) of a vertex is smaller or larger than
the value of the independent parameter of the following (neighboring)
vertex. If the vertices were returned in counter-clockwise order and
the value of the independent parameter of a vertex is smaller than the
independent parameter value of the following (neighboring) vertex, the
two vertices must form a lower bound. If the independent parameter
value of a vertex is larger than the independent parameter value of the
following vertex, they must form an upper bound. In the case that the
independent parameter values of both vertices are the same, we discard
the bound defined by these two vertices since it cannot be classified
as upper or lower bound.1 This step yields two lists of neighboring
vertices, the first comprising all upper and the second all lower bound
vertices. Note that, consequently, there is a maximum number of lower
and a maximum number of upper boundary functions which is defined

1 Note that such ‘‘steps’’ are only possible at left or right end of a
istribution since otherwise the enclosing shape would not be convex.
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Fig. 5. Algorithm to identify a predefined number of upper and lower boundary functions for 2-dimensional data. Note that counter-clockwise order of the vertices of the polygon
convex hull was assumed.
by the number of vertex pairs in each list. This implies that the number
of upper and/or lower boundary functions returned by the algorithm
may be different from the requested number if the number of requested
boundary functions exceeds the maximum number of lower and/or
the maximum number of upper boundary functions. In the final step,
the upper and lower boundary functions are ranked with respect to a
predefined selection criterion. Different selection criteria are possible.
In this paper, we investigated two selection criteria which are listed
below:

• the Euclidean distance (𝑙2 norm) between neighboring (or fol-
lowing) vertices given that all data values had been normalized
between 0 and 1 (hereinafter referred to as the selection criterion
𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒),

• the number of data points which are above/below a bound (here-
8

inafter referred to as the selection criterion 𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠).
In this context, the number of data points which are above/below a
certain bound can be identified by counting the number of data points
for which the value of the independent parameter is between the values
(of the independent parameter) of the vertices forming the lower/upper
bound. If the 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is chosen as selection criterion, a
bound is ranked higher if the distance between the neighboring vertices
is larger compared to another bound. If 𝐶𝑜𝑢𝑛𝑡𝑖𝑛𝑔 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 is chosen
as selection criterion, a bound is ranked higher if the number of data
points which are found above or below the respective bound is larger
compared to another bound. Finally, the highest ranked upper and
lower boundary functions are returned by the algorithm with respect
to the requested number of boundary functions (if more candidate
functions are available than requested).

With respect to our previous assumption regarding the influence
of different boundary functions on the solution of (6), we can state

that for any suitable selection criterion the flexibility index should
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Fig. 6. Visualization of the feasible region of the illustrative example, the data points of the assumed distribution and the results of the deterministic flexibility index calculation
for the (hyper) box uncertainty set (blue), the uncertainty set based on a linear regression function (cyan) and the uncertainty set based on boundary functions (red). Note that
the labeling of the constraint functions refers to the equation numbering in the paper.
converge to the same value for 𝑁𝑏𝑜𝑢𝑛𝑑,𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 < 𝑁𝑏𝑜𝑢𝑛𝑑,𝑚𝑎𝑥. Conse-
quently, when increasing the number of boundary functions (which
should be returned) the choice of the selection criterion should become
less important since the probability increases that the same boundary
functions are selected (although the order of the selection may differ).
In Section 4.2, the flexibility index is calculated for different numbers
of boundary functions and both selection criteria.

4. Numerical examples

In this Section, we present two numerical examples to illustrate the
calculation of the flexibility index based on boundary functions. All
calculations were performed on a Intel Core i7 with 32 GB installed
RAM using BARON 21.1.13 (Sahinidis, 2017).

4.1. Illustrative example — comparison of different modeled uncertainty
sets

To compare the differences in the results obtained with the tradi-
tional hyperbox uncertainty set to the results obtained for the uncer-
tainty set based on single equation models as well as the uncertainty set
based on boundary functions, an illustrative example was developed.
Additionally, the ellipsoidal uncertainty set is utilized to approximate
the stochastic flexibility index to illustrate the essential differences
between stochastic and deterministic flexibility analysis. Consider the
following example with two uncertain parameters (𝑇1 and 𝑇2), one
state variable (𝑇3), one equality and five inequality constraints. The
uncertain parameters 𝑇1 and 𝑇2 are expected to vary around a given
mean vector (267, 219):

𝑇2 − 2 ∗ 𝑇3 = 0 (9a)

2 ∗ 𝑇3 − (1
3
∗ 𝑇1 + 180) ≤ 0 (9b)

𝑇2 − (3 ∗ 𝑇1 − 200) ≤ 0 (9c)
1 ∗ 𝑇 + 20 − 𝑇 ≤ 0 (9d)
9

4 1 2
3 ∗ 𝑇1 − 1000 − 2 ∗ 𝑇3 ≤ 0 (9e)

𝑇2 − (−1
3
∗ 𝑇1 + 400) ≤ 0 (9f)

As operating data, artificially generated data representing a multi-
variate Gaussian distribution for the given mean vector, an absolute
positive and negative disturbance of (±134,±68) and a Pearson correla-
tion coefficient (compare (7)) of 0.9 was assumed. The active constraint
strategy proposed by Grossmann and Floudas (1987) was utilized to
solve the flexibility index problem for the various uncertainty sets. In
all problem formulations in Section 4.1, the Big-M parameter value was
set to 3000.

For the given set of observed operating points, the deterministic
flexibility index based on the hyperbox approach (compare (A.2)) yields
a value of 0.44 with constraint function (9b) being active at the solution
as can be seen in Fig. 6. When expressing the dependency between the
two uncertain parameters 𝑇1 and 𝑇2 by means of a linear regression
model, a value of 0.87 is obtained for the flexibility index which is
significantly higher. In line with Section 2.1, the obtained result indi-
cates that feasible operation is possible within [0.87𝛥𝑇 −

1 , 0.87𝛥𝑇
+
1 ]. The

deterministic flexibility index was further calculated for an uncertainty
set based on boundary functions following our proposed approach
presented in Section 3. The number of upper and lower boundary
functions was set to three and the 𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 was chosen as
selection criterion. Again, it was assumed that 𝑇1 is independent while
the uncertainty of 𝑇2 could be expressed by means of (upper and
lower) boundary functions depending on 𝑇1. For three upper and lower
boundary functions, the flexibility index was calculated using (6) and
a value of 0.65 was received which means that, based on all observed
data points, feasibility can be guaranteed if the independent parameter
𝑇1 varies between ±(0.65 ∗ 134). The obtained feasible region for the
flexibility analysis based on boundary functions is shown in red in
Fig. 6. Note that a different number of boundary functions may yield a
different value for the flexibility index. This is further investigated in
Section 4.2.

Fig. 6 shows three different results for the deterministic flexibility
analysis which originate from different modeling strategies for the
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Fig. 7. Visualization of the feasible region of the illustrative example, the data points of the assumed distribution and the results of the deterministic flexibility index calculation
for the uncertainty set based on boundary functions (red) as well as the approximation of the stochastic flexibility index by means of an ellipsoidal uncertainty set (purple). Note
that the labeling of the constraint functions refers to the equation numbering in the paper.
expected uncertainty set. In this context, Fig. 6 illustrates that modeling
the expected uncertainty set using boundary functions derived from the
convex hull allows for the best resemblance of the set of observed oper-
ating points compared to the box uncertainty set and the uncertainty set
based on the linear regression model. When comparing the boundary
function uncertainty set with the box uncertainty set, we see that two
triangular-shaped subsets of the box uncertainty set were excluded from
the analysis since no operating points were observed in these subsets.
Additionally, Fig. 6 shows that the scaling of the box uncertainty set
was limited by an operating point which is not expected (𝑇1 at its lowest
expected value while 𝑇2 is at its highest expected value). Consequently,
it cannot be expected that constraint function (9b) limits the flexibility
of the process described by constraint functions (9a)–(9f). More pre-
cisely, constraint function (9b) is not limiting the given distribution,
but rather the mathematical model of a (hyper)box (see Fig. 6). On the
other hand, the feasible uncertainty set based on boundary functions
was limited by constraint function (9f), and Fig. 6 shows that this
constraint function de facto limits the distribution and thereby also the
flexibility of the process. Consequently, a good representation of the
observed data is vital to identify the real bottleneck(s) in a system to
be able to initiate the best possible countermeasures (if necessary).

Lastly, the highest value for the deterministic flexibility index was
obtained for the uncertainty set based on the linear regression function.
However, Fig. 6 shows operating points outside of the feasible region
even for values of 𝑇1 that lie within the interval ±(0.87 ∗ 134) which
was indicated to be feasible according to the analysis. More precisely,
a rigorous analysis of all operating points visualized in Fig. 6 reveals
that for 7 samples the value of 𝑇1 is within the interval ±(0.87 ∗ 134)
while those samples are outside the feasible region. Consequently, the
obtained result of the deterministic flexibility index overestimates the
flexibility of the process, since the uncertainty set based on the linear
regression function significantly underestimates the set of observed
operating points. Note that the identified number of samples which
were indicated to be feasible according to the analysis, but which are
de facto infeasible, was provided for illustrative purposes only. Further
note that the corresponding fraction of the total number of operating
points was intentionally not presented to avoid confusion between
stochastic and deterministic flexibility analysis.
10
Hereafter, we summarize the findings presented in Fig. 6. We ob-
tained three different numerical values for the deterministic flexibility
index depending on the modeling approach of the expected uncertainty
set:

• 0.44 for the box uncertainty set,
• 0.87 for the uncertainty set based on the linear regression func-

tion,
• 0.65 for the uncertainty set based on boundary functions

However, as shown in Fig. 6, a value of 0.87 overestimates the feasible
variation range of the (independent) uncertain parameter 𝑇1 since
operating points within this interval are found to be infeasible. Due to
the aforementioned potentially severe consequences of overestimating
the feasible variation range, linear regression functions are discarded
from further analysis. Since overestimating the feasible variation range
cannot occur when using the box uncertainty set (see Swaney and
Grossmann, 1985 for extensive mathematical proof) or the uncertainty
set based on boundary functions (see Section 3), both approaches
are suitable for calculating the deterministic flexibility index. In this
context, the larger value of the flexibility index obtained for the un-
certainty set based on boundary functions can be seen as the most
exact quantification of the feasible interval in which the (independent)
uncertain parameter 𝑇1 may vary while achieving feasible operation.
This conclusion is also illustrated in Fig. 6 which shows that the box
uncertainty set approximates the actual distribution of uncertainty with
less accuracy than the uncertainty set based on boundary functions.

To illustrate the different interpretation of the use of the ellipsoidal
uncertainty set compared to the deterministic methods, the covariance
matrix of the data set was calculated (see (10)).
[

2045.6 929.9
929.9 527.1

]

(10)

Following the approach of Pulsipher and Zavala (2018), a solution
of 6.1 was found for 𝛿𝑒𝑙𝑙𝑖𝑝. Calculating the left-tail 𝑝-value for the
probability density function of the 𝜒-squared distribution with 𝑛𝜃 = 2
(degrees of freedom) returns a confidence level of 95.3%. As mentioned
in Section 2.2, this result approximates the stochastic flexibility index,
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meaning that a random sample (i.e. a random operating point) drawn
from a multivariate Gaussian distribution which is characterized by the
given mean vector and covariance matrix is feasible with a probability
of 95.3%. The scaled ellipsoidal uncertainty set is visualized in Fig. 7.
To assess the quality of the approximation of the stochastic flexibility
index, we determined the share of the expected operating points within
the feasible region. Note that in general rigorous Monte Carlo Sampling
is necessary to determine the stochastic flexibility index, i.e. evaluate
the feasibility of randomly drawn realizations of the uncertain param-
eters from the expected distribution of uncertainty. However, it was
decided that the feasibility evaluation of the already drawn samples is
sufficient for these illustrative purposes. The evaluation revealed that
the probability for feasible operation is 99.3%. Although the differ-
ence between the approximation and the (more rigorous) determined
stochastic flexibility index is not negligible, the quality of the obtained
approximation may be considered satisfactory.

Although the obtained feasible uncertainty set based on boundary
functions as well as the feasible ellipsoidal set can be graphically
compared as shown in Fig. 7, the information obtained by the dif-
ferent analyses is inherently different (see above). As mentioned in
Section 2.3, the obtained information is complementary. On the other
hand, the approach of Pulsipher and Zavala (2018) is also based on
an uncertainty set described by a geometric shape, and given Fig. 7 it
seems that both uncertainty sets, namely the purple colored ellipsoidal
as well as the red colored polygon, are of similar geometric size, and,
furthermore, that the number of operating points covered by these
shapes is of similar magnitude. This latter observation can be mathe-
matically confirmed by calculating the share of operating points which
are covered by the respective shape from the total number of feasible
operating points. This share is 95.7% for the purple colored ellipsoidal
uncertainty set and 95.0% for the red colored uncertainty set based
on boundary functions. Consequently, we can conclude that for the
given example the ellipsoidal uncertainty set is a good choice to model
the expected distribution of uncertainty. This was expected since the
(artificial) data originates from a multivariate Gaussian. The situation
may be different if the expected distribution of uncertainty deviates
from a Gaussian distribution. For the uncertainty set based on boundary
functions, this share provides additional information, i.e. that 95.0% of
the feasible operating points are found within the interval in which 𝑇1
eviates with ±(0.65 ∗ 134) from its given mean value. This information
s complementary to the results of the deterministic flexibility analysis
ince probability analysis is not part of deterministic flexibility analysis.
t should be noted that such information was straightforward to obtain
or the investigated example, but may be more burdensome to obtain
or more complex examples characterized by more than two uncertain
arameters.

Finally, note that the limiting constraint identified using the el-
ipsoidal uncertainty set (constraint function (9f)) is identical to the
ne identified using the uncertainty set based on boundary functions.
e previously identified that constraint function (9f) indeed limits the

lexibility of the process described by constraint functions (9a)–(9f).
onsequently, this observation is again an indication that both uncer-
ainty sets show a good resemblance with the expected distribution of
ncertainty/uncertainty set.

.2. Heat exchanger network example

By means of a second numerical example, we aim to illustrate the
pplicability of the suggested approach (see Section 3) in cases of multi-
imensional dependencies in the uncertain parameters. Additionally,
e investigate the influence of the two selection criteria for identifying
oundary functions (presented in Section 3.2) on the deterministic
lexibility index. The example of interest is a HEN and it is shown
n Fig. 8. This HEN-example is well-known in the flexibility analysis
11

iterature and slightly different versions can be found, e.g. in Saboo b
Fig. 8. Grid diagram representation of the heat exchanger network example.

Table 1
Flexibility analysis results of the heat exchanger network example with
respect to the number of upper/lower boundary functions and the
selection criterion for the boundary functions.

Number of
boundary
functions

Selection criteria Flexibility index

1 Euclidean distance 0.66
Counting of points 0.66

2 Euclidean distance 0.73
Counting of points 0.69

3 Euclidean distance 0.73
Counting of points 0.73

4 Euclidean distance 0.74
Counting of points 0.73

5 Euclidean distance 0.74
Counting of points 0.74

Big-M value: 200; solver BARON, solver tolerance: 1E-6.

et al. (1985), Grossmann and Floudas (1987) and Ochoa and Gross-
mann (2020). In contrast to the version used by Grossmann and Floudas
(1987) a heater was added to control the target temperature of stream
𝐶1 while the target temperature of stream 𝐻2 was fixed. For the flex-
bility analysis, it was assumed that the start temperatures of the four
treams vary with ±10 K around the given mean values (see highlighted
alues in Fig. 8). The flexibility index for the hyperbox uncertainty
et was calculated using the active constraint strategy (Grossmann and
loudas, 1987), and a value of 0.5 was obtained (Big-M parameter
alue: 200).

To illustrate the influence of parameter dependencies, it was as-
umed that the uncertain start temperatures of streams 𝐻2, 𝐶1 and
𝐶2 show correlating trends. Fig. 9 shows an artificially generated
distribution of operating points. Based on Fig. 9, the start temperature
of stream 𝐻2 was chosen to be dependent since it shows strong de-
pendencies with the start temperatures of streams 𝐶1 and 𝐶2 (the start
temperatures of streams 𝐶1 and 𝐶2 show also a dependency with each
other, but it is somewhat weaker).

To consider the identified dependencies in the start temperatures
of streams 𝐻2, 𝐶1 and 𝐶2 when computing the flexibility index,
boundary functions were derived following the algorithm presented in
Section 3.2. Both selection criteria for identifying the most influencing
boundary functions (i.e. those boundary functions which capture the
individual characteristics of the observed uncertainty set) mentioned
in Section 3.2 were investigated and selected results of the analysis are
shown in Table 1. The values for the flexibility index shown in Table 1
were obtained by applying the active constraint strategy (Grossmann
and Floudas, 1987) for solving (6). Note that an uncertainty set based
on single equation regression models was not considered due to the
previously identified risk that the obtained deterministic flexibility
index overestimates the flexibility.

The results in Table 1 show that considering the dependencies in the
start temperatures of streams 𝐻2, 𝐶1 and 𝐶2 has a significant influence
n the result of the flexibility analysis (flexibility index for the hyperbox
ncertainty set: 0.5). As mentioned in Section 3.2, considering more
oundary functions increases the accuracy of the approximation of
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Fig. 9. Distribution of operating points of the heat exchanger network example; the
mean values are highlighted in red.

the observed uncertainty set. Table 1 shows that when increasing the
number of boundary functions, the flexibility index increases up to 0.74
meaning that variations (in the independent parameters) of ±7.4 K
are feasible (compared to variation of ±5 K calculated with the hy-
perbox uncertainty set). Furthermore, for lower numbers of boundary
functions some influence of the selection criterion on the flexibility
index can be observed. However, it must be noted that this is a highly
case-specific observation and no conclusion can be drawn regarding
which selection criterion should be preferred. Additionally, note that
the flexibility index converges to the same value (0.74), for higher
numbers of boundary functions. The number of boundary functions was
further increased until the maximum number of lower and the maxi-
mum number of upper boundary functions for the two dependencies
12
Table 2
Maximum number of lower and maximum number of upper boundary functions for the
dependencies in the start temperatures of streams 𝐻2, 𝐶1 and 𝐶2 of the heat exchanger
network example.

Max number of lower
boundary functions
𝑁𝑙𝑜𝑤𝑒𝑟,𝑚𝑎𝑥

Max number of upper
boundary functions
𝑁𝑢𝑝𝑝𝑒𝑟,𝑚𝑎𝑥

𝐻2_𝑇 𝑖𝑛 = 𝑓 (𝐶1_𝑇 𝑖𝑛) 6 8
𝐻2_𝑇 𝑖𝑛 = 𝑓 (𝐶2_𝑇 𝑖𝑛) 8 11

𝐻2_𝑇 𝑖𝑛 = 𝑓 (𝐶1_𝑇 𝑖𝑛) and 𝐻2_𝑇 𝑖𝑛 = 𝑓 (𝐶2_𝑇 𝑖𝑛) was reached while no
influence on the flexibility index was identified. The maximum number
of lower and the maximum number of upper boundary functions for
the two dependencies 𝐻2_𝑇 𝑖𝑛 = 𝑓 (𝐶1_𝑇 𝑖𝑛) and 𝐻2_𝑇 𝑖𝑛 = 𝑓 (𝐶2_𝑇 𝑖𝑛)
is given in Table 2. This observation supports our assumption that
some bounds of the polygon convex hull do not influence the result of
(6). Additionally, since for both selection criteria the flexibility index
converges for 𝑁𝑏𝑜𝑢𝑛𝑑,𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 < 𝑁𝑏𝑜𝑢𝑛𝑑,𝑚𝑎𝑥 (for both dependencies), we
can conclude that both selection criteria are suitable for the given
problem (i.e. with both selection criteria the most influencing boundary
functions could be identified before reaching the maximum number of
boundary functions).

5. Industrial case study

As mentioned in Section 1, dependencies between uncertain pa-
rameters can be expected, especially in industrial case studies. Since
problem size and complexity often go hand in hand, it is rather likely
that when defining the system boundaries of an industrial case study
(and thereby also the input parameters to the system of interest which
often are subject to some uncertainty) upstream dependencies between
these input parameters can be missed. However, ignoring dependencies
in input parameters (i.e. modeling the expected uncertainty set as a
hyperbox) can lead to a significant underestimation of the flexibility,
as previously discussed and as illustrated by the numerical example in
Section 4.1. Consequently, equipment may be overdesigned or design
proposals may even be discarded since they seem to be inherently
inflexible.

In the following, we will analyze the flexibility of a design proposal
for a HEN used to recover process heat through a warm and hot water
system in a Swedish kraft pulp mill. Measurement data representing
real mill operating conditions was available from a previous study
of the mill in question (Persson and Berntsson, 2009). The design
proposal for the HEN is shown in Fig. 10. Fig. 10 shows a system
of 14 process streams (five cold streams and nine hot streams) which
are interconnected by heat exchangers. Five of the hot streams (H02,
H03, H04, H05 & H06) are describing energy release during a phase-
change (condensation). The operational target of this HEN is to heat
the five cold streams to their defined target temperatures. The cooling
of the respective hot streams is not critical for operation, i.e. the
target temperatures of the hot streams shown in Fig. 10 are soft target
temperatures with the presented value being the lowest feasible value.

In addition to the target temperatures of the streams, Fig. 10 also
provides information on the heat capacity flow rates and the start
temperatures of the 14 process streams (for condensing streams, a
temperature drop of 1 K was assumed and the corresponding heat
capacity flow rate in Fig. 10 correspond to the heat load released during
condensation). While the operational target, i.e. the target temperatures
of the cold streams, is fixed, variation is observed for some of the heat
capacity flow rates (condensation heat loads) and start temperatures.
These uncertain parameters are highlighted in yellow and the values
shown in Fig. 10 correspond to the mean values. Operating data
was collected and for each uncertain parameter 313 data points were
available to identify the uncertainty set.

To reduce the complexity of the flexibility index problem for-
mulation, the system of heat exchangers was divided into its four
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Table 3
Overview of independent subsystems and respective process streams present in the
studied system.

Subsystem Cold process streams Hot process streams

1 C01 H08, H09
2 C02 H02
3 C03, C05 H01, H03, H04, H05, H07
4 C04 H06

independent subsystem(s). The streams of each independent subsys-
tem are listed in Table 3. As we can see by comparing Fig. 10 and
Table 3, uncertain parameters are only present in subsystems 1 and
3 (uncertain parameters are highlighted yellow in Fig. 10). We can
further conclude that only subsystem 3 is critical for the flexibility of
the overall system since the operational target in subsystem 1 (target
temperature of stream C01) is controlled by means of hot utility steam
(which is assumed to be available in necessary amount). Summarizing,
the flexibility analysis of the system of interest can be performed by
reducing the problem to subsystem 3.

In a first step of the flexibility analysis, the flexibility index was
calculated using the hyperbox set of the uncertain parameters. To
define the hyperbox uncertainty set, the largest positive and negative
deviation from the mean value of each data series was identified and
these values are presented in Table 4.

Using the active constraint strategy and the hyperbox uncertainty
set, a value of 0.64 was obtained for the flexibility index (Solver:
BARON; Big-M parameter value: 200). This flexibility index value
indicates that the design proposal will be able to handle 64% of the
observed variation, e.g., the heat capacity flow rate of stream 𝐶01 may
e allowed to vary by +53.63 kW∕K and −72.21 kW∕K from the mean
alue given in Fig. 10. Consequently, the design proposal would need
o be reworked or other measures would be necessary to control the
ariation of the uncertain parameters (in case the operational targets
f the system of interest must be met).

In the next step, the data series were analyzed to identify possible
ependencies in the uncertain parameters. In Fig. 11(a), a heat map
isualizes Pearson’s correlation coefficient (compare (7)) calculated
or all pairs of uncertain parameters. Darker colors show a stronger
ependency in the parameters (with positive or negative sign of the
13
Table 4
Mean values and maximum observed positive/negative deviation from the mean value
of the uncertain parameters of the studied system.
𝜃 �̄� 𝛥𝜃+𝑖 𝛥𝜃−𝑖
C01_Tin [K] 289,62 7,73 8,37
C01_Fcp [kW/K] 274,23 83,80 112,83
C03_Tin [K] 289,62 7,73 8,37
C03_Fcp [kW/K] 135,75 57,80 28,08
C05_Tin [K] 333,49 4,46 9,84
C05_Fcp [kW/K] 219,36 44,04 175,94
H03_Load [kW/K] 5836,01 9273,89 2116,65
H04_Load [kW/K] 6038,76 3492,10 4179,08
H05_Load [kW/K] 6461,99 2462,55 1734,44
H07_Tin [K] 352,79 1,36 8,64
H07_Fcp [kW/K] 267,28 141,54 202,96
H08_Tin [K] 359,15 6,00 8,00
H08_Fcp [kW/K] 186,83 126,96 140,95
H09_Tin [K] 353,82 5,33 6,67
H09_Fcp [kW/K] 427,02 134,01 217,25

correlation coefficient) while lighter colors indicate a weaker depen-
dency. The diagonal represents pairs of the same data series and, thus,
here the strongest possible agreement can be observed. In this context,
we can conclude that the start temperatures of streams 𝐶01 and 𝐶03
are identical which can be explained by the fact that both streams are
water streams originating from the same source. Consequently, for the
final flexibility analysis the start temperatures of streams 𝐶01 and 𝐶03

ere merged into one uncertain parameter. To allow a better overview
f the data series pairs which are characterized by a strong dependency,
n Fig. 11(b), only values of the Pearson’s correlation coefficient which
re greater or equal to 0.6 are highlighted in color. Using Fig. 11(b), we
an identify four dependencies between different uncertain parameters.
he observed dependencies are listed in Table 5.

Based on these findings, we can summarize that dependencies in the
ncertain parameters are present and that the flexibility index should
e re-calculated considering these dependencies. This way we could an-
lyze if ignoring the observed dependencies in the uncertain parameters
flexibility analysis based on hyperbox uncertainty set) has led to an
nderestimation of the flexibility. The proposed approach (presented in
ection 3) was applied, aiming to transform the hyperbox uncertainty
et to a multi-dimensional polygon by means of boundary functions.
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Fig. 11. Visualization of the Pearson’s correlation coefficient.

Table 5
Observed dependencies between uncertain parameters.

Dependency Uncertain parameters

1 C03_Fcp, C03_Tin
2 C03_Fcp, H05_Load
3 C05_Fcp, H07_Fcp
4 H04_Load, C03_Tin

Table 5 shows that formerly independent uncertain parameters can be
expressed as dependent parameters. The classification into dependent
and independent parameters is shown in Table 6. We assessed that it
is unreasonable to assume that the temperature of the water source
(start temperature of stream 𝐶03 and thereby 𝐶01) is dependent on the
other uncertain parameters listed in Table 5. Consequently, 𝐶03_𝑇 𝑖𝑛
was classified as an independent parameter. Further, we merged de-
pendencies 1 and 2 into dependency 1∗ by also classifying the heat
14
Table 6
Impact of identified dependencies and the number of boundary functions on the
flexibility index.

Dependency Dependent
parameter

Independent
parameter(s)

Number of
boundary
functions

Flexibility
Index

1* C03_Fcp C03_Tin,
H05_Load

1 0.68
2 0.76
3 0.76

3 C05_Fcp H07_Fcp

1 0.62
2 0.63
3 0.68
4 0.68

4 H04_Load C03_Tin
1 0.50
2 0.55
3 0.55

Big-M value: 200; solver BARON, solver tolerance: 1E-6.

load of stream 𝐻05 as independent. Finally, we arbitrarily classified the
heat capacity flow rate of stream 𝐻07 as independent. To analyze the
impact of the identified dependencies on the flexibility analysis, each
dependency was considered individually and the flexibility index was
obtained by solving (6) for increasing numbers of boundary functions.
The boundary functions have been identified following the algorithm
described in Section 3.2 and as selection criterion Counting of points was
utilized. Note, that the results in Section 4.2 indicate that any suitable
selection criterion would be valid since the flexibility index is expected
to converge to the same value as the number of boundary functions is
increased. The results are given in Table 6.

In line with previous results (see Section 4), we see that increasing
the number of boundary functions leads to a higher flexibility index
until the value converges. This trend can be explained by the increased
accuracy of the approximation of the observed uncertainty set when the
number of boundary functions is increased. Additionally, we learn that
including dependency 4 returns a smaller flexibility index compared
to the value obtained for the hyperbox uncertainty set even when the
number of boundary functions was increased. Note that this observation
was only made for dependency 4. For dependencies 1∗ and 3, the
flexibility index converges to a value beyond the value found for the
hyperbox uncertainty set. To understand this phenomena, the results
obtained with dependency 4 were analyzed in more detail.

For the case of dependency 4, we can identify the total feasible un-
certainty span in which the dependent parameter 𝐻04_𝐿𝑜𝑎𝑑 varies by
means of Fig. 12. Fig. 12 shows the 2-D projection of the observed data
points in the space of 𝐻04_𝐿𝑜𝑎𝑑 and 𝐶03_𝑇 𝑖𝑛. Furthermore, the three
upper and lower boundary functions are shown which were identified
using the algorithm explained in Section 3.2. For the case of three upper
and lower boundary functions, the results in Table 6 indicate that the
independent parameters can vary by ±55% of the expected/observed
deviation around the mean value(s). For the independent parameter
𝐶03_𝑇 𝑖𝑛, this feasible variation range is indicated by two dashed lines
in Fig. 12. The feasible variation range of the dependent parameter
𝐻04_𝐿𝑜𝑎𝑑 is given by the space between the boundary functions and
the combined feasible variation range is visualized as hatched area
in Fig. 12. For comparative reason, the 2-D projection of the feasible
hyperbox which was obtained for independent variation of the un-
certain parameters is also shown in Fig. 12. We could identify that
the feasible variation of the dependent parameter 𝐻04_𝐿𝑜𝑎𝑑 comprises
the entire expected uncertainty span meaning that, depending on the
value of 𝐶03_𝑇 𝑖𝑛, 𝐻04_𝐿𝑜𝑎𝑑 can deviate with up to +3492.10 kW∕K or
−4179.08 kW∕K from the mean value of 6038, 76 kW∕K. Concluding,
the flexibility index considering dependency 4 by means of boundary
functions decreased compared to the flexibility index based on the
hyperbox uncertainty set since the feasible variation of the independent
parameters was limited to allow for a bigger uncertainty range of the
dependent parameter 𝐻04_𝐿𝑜𝑎𝑑. Note, the here described phenomena
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Fig. 12. 2-dimensional projection of the operating points in the space of 𝐻04_𝐿𝑜𝑎𝑑 and 𝐶03_𝑇 𝑖𝑛 to visualize the dependency between these two parameters. Furthermore, the
easible uncertainty set when including the aforementioned dependency in the flexibility analysis by means of three lower/upper boundary functions is shown as hatched polygon.
or comparative reason, the 2-D projection of the feasible hyperbox which was obtained for independent variation of the uncertain parameters is shown as filled rectangle.
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Table 7
Flexibility analysis results of the industrial case study when considering the identified
parameter dependencies.

Dependency Dependent
parameter (s)

Independent
parameter(s)

Number of
boundary
functions

Flexibility
index

1* & 3 C03_Fcp,
C05_Fcp

C03_Tin,
H05_Load,
H07_Fcp

1 0.66
2 0.77
3 0.87
4 0.87

1* & 3 & 4
C03_Fcp,
C05_Fcp,
H04_Load

C03_Tin,
H05_Load,
H07_Fcp

1 0.41
2 0.65
3 0.84
4 0.84

Big-M value: 200; solver BARON, solver tolerance: 1E-6.

is highly individual and depends on the distribution of the operating
points and the resulting boundary functions of the investigated depen-
dency. A more detailed discussion around this phenomena is provided
in Section 6.

As mentioned previously, for dependencies 1∗ and 3, we can identify
hat with an increasing number of boundary functions, the flexibility
ndex converges to a value beyond the value found for the hyperbox
ncertainty set. This observation indicates that by including depen-
encies 1∗ and 3 in the analysis, regions of the hyperbox which limit
he flexibility index (but in which no operating points were observed)
ould successfully be excluded from the analysis. In the next step, the
lexibility analysis was repeated including all three dependencies and
nly dependencies 1∗ and 3. The results are presented in Table 7.

Considering dependencies 1∗ and 3 yields 0.87 for the flexibility
ndex for three or more lower/upper boundary functions. Compared
o the value of 0.64 calculated for independent uncertain parameters
hyperbox uncertainty set), the result indicates, that the design pro-
osal is more robust towards the observed variation than previously
ssumed. When including also dependency 4, the flexibility index for
hree or more lower/upper boundary functions was calculated to 0.84
see Table 7). Consequently, including all three dependencies reduces
he influence of dependency 4. On the other hand, we concluded that
15
including dependency 4 by means of boundary functions returns a bi-
sed result for the flexibility index and therefore excluded dependency
from the following analysis (see Section 6 for a detailed discussion).

In the next step, we analyzed the impact of possible outliers on the
olution of the flexibility analysis. By means of the unsupervised ma-
hine learning algorithm Isolation Forest, the three data sets describing
he dependencies (compare Table 5: 𝐶03_𝐹𝑐𝑝 and 𝐶03_𝑇 𝑖𝑛; 𝐶03_𝐹𝑐𝑝
nd 𝐻05_𝐿𝑜𝑎𝑑; 𝐶05_𝐹𝑐𝑝 and 𝐻07_𝐹𝑐𝑝) were filtered to identify pos-
ible outliers. Using a low contamination ratio of 1% for each data
et, 10 potential outliers were identified (3.2% of the total amount
f data points) which were removed from the data series. Background
nformation on the algorithm Isolation Forest can be found in Liu et al.
2008). Fig. 13 shows the distribution of the three data sets before
blue) and after (orange) filtering.

Excluding the identified outliers has an impact on the hyperbox
ncertainty set. In Table 8 the updated values for the mean and for
he largest positive and negative deviation from the mean of each data
eries are presented. Additionally, values are highlighted if they deviate
ignificantly (deviation ≥ 𝑎𝑏𝑠(1%)). Calculating the flexibility index for
hyperbox uncertainty set with the data after filtering yields a value

f 0.69 which is marginally higher compared to the value of 0.64
eceived with the initial data set. On the other hand, when including
ependencies 1∗ and 3 in the flexibility analysis and using the data
et after filtering, for three (or more) upper/lower boundary functions
value of 1.01 was calculated for the flexibility index (for both cal-

ulations, the Big-M parameter value was set to 200). Consequently,
he design proposal can handle all observed operating points assuming
hat the excluded operating points are outliers resulting of, e.g. faulty
easurements.

. Analysis and discussion

In this Section, we want to analyze and discuss two observations
ade during the calculations of the deterministic flexibility index using

n uncertainty set based on boundary functions which were presented
n this work. Finally, also an overview on the manual user input is
iven which is required when automating the approach suggested in
his paper.
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Fig. 13. Distribution of the three data sets before (blue) and after (orange) filtering.

.1. Analysis of identified critical points

It should be noted that for all but one calculation of the deter-
inistic flexibility index (using an uncertainty set based on boundary

unctions) in Sections 4 and 5, the obtained solution (𝜃∗) was a vertex
olution of the hyperbox formed by the independent uncertain param-
ters (𝜃𝑖𝑛𝑑). Only for the case of the filtered data set for the industrial
ase study in Section 5, the returned solution was a non-vertex solution
f the hyperbox formed by the independent uncertain parameters,
eaning that some of the independent uncertain parameters were at
16

d

Table 8
Mean values and maximum observed positive/negative deviation from the mean value
of the uncertain parameters of the studied system after filtering; values are highlighted
if they deviate with ≥ 𝑎𝑏𝑠(1%).
𝜃 �̄� 𝛥𝜃+𝑖 𝛥𝜃−𝑖
C01_Tin [K] 289,58 7,67 8,33
C01_Fcp [kW/K] 273,96 84,07 112,56
C03_Tin [K] 289,58 7,67 8,33
C03_Fcp [kW/K] 135,17 45,53 27,50
C05_Tin [K] 333,51 4,44 9,86
C05_Fcp [kW/K] 221,10 42,30 155,15
H03_Load [kW/K] 5817,64 9292,26 2098,28
H04_Load [kW/K] 6052,40 3478,46 4192,72
H05_Load [kW/K] 6444,55 2102,60 1717,00
H07_Tin [K] 352,82 1,33 5,67
H07_Fcp [kW/K] 269,10 139,72 192,50
H08_Tin [K] 359,13 6,02 7,98
H08_Fcp [kW/K] 187,24 126,55 141,36
H09_Tin [K] 353,82 5,33 6,67
H09_Fcp [kW/K] 426,40 134,63 216,63

a value between �̄�𝑖 − 1.01𝛥𝜃−𝑖 and �̄�𝑖 + 1.01𝛥𝜃+𝑖 . More precisely, the
identified critical value of the independent parameter 𝐻05_𝐿𝑜𝑎𝑑 was
6072.03 kW∕K and thereby a non-vertex solution. A further analysis
of the results revealed that the critical value of 𝐻05_𝐿𝑜𝑎𝑑 and the
identified critical value of the dependent parameter 𝐶03_𝐹𝑐𝑝 form
a corner point of the upper boundary functions of dependency 1∗

(see Fig. 14). Fig. 14 shows that the slope (𝑚𝑏𝑓 ,3) of the boundary
function for values > 6072.03 kW∕K is smaller than the slope (𝑚𝑏𝑓 ,2)
of the boundary function for values < 6072.03 kW∕K. Knowing that
the intersection point of these two boundary functions was identified
to be the critical point for the flexibility, we can assume that the
identified point, 𝜃∗, intersects with the boundary of the feasible region
(i.e. 𝜓(𝑑, 𝜃∗) = 0). We can further postulate that the slope of the
boundary of the feasible region at this point is between 𝑚𝑏𝑓 ,3 and
𝑚𝑏𝑓 ,2. These two assumptions were verified by means of a Monte Carlo
feasibility test which can be found in Appendix C. Note, that although
the returned solution was a non-vertex solution of the hyperbox formed
by the independent uncertain parameters, the solution is still a corner
point of the hyperpolygon describing the uncertainty set.

6.2. Parameter dependencies — higher or lower deterministic flexibility
index?

As illustrated by Langner et al. (2021) and the examples presented
in Sections 4 and 5 of this paper, dependencies between (some) of the
uncertain parameters can have a significant influence on the determin-
istic flexibility index if the respective dependency is captured well by
means of a mathematical model.

Grossmann and Floudas (1987) also assumed that dependencies
between (some of) the uncertain parameters, 𝜃, should have a signif-
icant influence on the flexibility index calculated for a process. More
precisely, they assumed that considering dependencies in the uncertain
parameters results in a higher flexibility index, compared to the case
of independent uncertain parameters. As previously mentioned (see
Section 2), Grossmann and Floudas (1987) accounted for dependencies
by means of single equation models, including them as constraints in
the flexibility index problem (compare (A.2)). To illustrate this, they
presented a HEN example where one uncertain temperature (here: for
simplicity 𝑇𝐵) was expressed as a linear function of another uncertain
temperature (here: for simplicity 𝑇𝐴) (compare Grossmann and Floudas
(1987)). When including this linear equation, the authors reported that
compared to the independent case (i.e. 𝑇𝐴 and 𝑇𝐵 vary independently
by ±10 K), the flexibility index increased by 0.08824. However, it
can easily be identified that due to the assumed linear equation, the
(absolute) expected disturbance range of the dependent parameter (𝑇𝐵)

ecreased from ±10 K to ±8 K, i.e. for the case that 𝑇𝐴 is 10 K
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Fig. 14. Dependency between 𝐶03_𝐹𝑐𝑝 and 𝐻05_𝐿𝑜𝑎𝑑 captured by means of three lower and upper bounds and identified critical point.
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higher than the nominal value, the linear equation returns a value for
𝑇𝐵 which is not 10 K but only 8 K higher than the nominal value.

onsequently, to allow a fair comparison, we decided to compare the
esult obtained for the linear equation to the case where 𝑇𝐴 and 𝑇𝐵 are
ssumed to vary independently but while for 𝑇𝐴 variations of ±10 K are
ssumed for 𝑇𝐵 variations of ±8 K are assumed, i.e. a modified hyperbox
ncertainty set. We then identified that for the modified hyperbox
ncertainty set, the flexibility index is also 0.08824 higher compared to
he initial hyperbox uncertainty set, i.e. the case where both parameters
ary independently by ±10 K. Therefore, we can conclude that the

presented example of Grossmann and Floudas (1987) illustrates, how
changes in the maximum and minimum extreme values influence the
result of the flexibility analysis. On the other hand, the same value for
the flexibility index was obtained when:

1. including the linear equation to model a dependency between
the uncertain parameters 𝑇𝐴 and 𝑇𝐵 ,

2. assuming independent variation of 𝑇𝐴 and 𝑇𝐵 while adjusting
the expected maximum and minimum extreme values of 𝑇𝐵
(modified hyperbox uncertainty set).

Consequently, the linear equation did not help to exclude subsets of the
hyperbox uncertainty set which limit the flexibility metric but in which
no operating points are expected/observed. In fact, the consequence
of including the linear equation is reduced expected extreme values
of the uncertain parameters. However, the absolute extreme values
of the uncertain parameters are independent of possible parameter
dependencies since a parameter dependency (only) describes the rela-
tion between the extreme values, e.g., if they occur at the same time
point(s). We can therefore also conclude that the example of Grossmann
and Floudas (1987) does not explicitly show the impact on the results
of the flexibility analysis when subsets of the hyperbox uncertainty set
which limit the flexibility metric (e.g. flexibility index) are excluded
since in these subsets no operating points are expected/observed. In
this paper, we presented examples where we successfully excluded
subsets of the hyperbox uncertainty set which are irrelevant for the
actual operation but which limit the flexibility analysis (see Sections 4
and 5). The assurance for the successful exclusion of aforementioned
subsets is given by the fact that the result of the flexibility analysis
differs when considering dependencies between uncertain parameters
compared to the hyperbox uncertainty set while considering the same
17

absolute extreme values of the uncertain parameters. t
As mentioned in the previous paragraph, Grossmann and Floudas
(1987) assumed that considering dependencies in the uncertain pa-
rameters results in a higher flexibility index, compared to the case of
independent uncertain parameters. This assumption is intuitive and was
shared by other authors in the field, such as Rooney and Biegler (1999)
and Pulsipher and Zavala (2018). However, in this paper, and in our
previous conference contribution (Langner et al., 2021), we showed
that when considering dependencies (by means of boundary functions)
the flexibility index can be lower compared to the flexibility index
calculated using a hyperbox uncertainty set:

• Langner et al. (2021): a case was identified for which 𝛿(𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) =
0.27 is smaller than 𝛿(𝑇𝑏𝑜𝑥) = 0.36,

• Considering only dependency 4 for the industrial case study (com-
pare Section 5) yields a flexibility index of 𝛿(𝑇𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦) = 0.55
which is smaller than 𝛿(𝑇𝑏𝑜𝑥) = 0.64

Note that, in our conference contribution we also used a single equa-
ion model to express the above-mentioned dependency which resulted
n a slightly higher flexibility index (𝛿(𝑇𝑐𝑜𝑟𝑟,𝑏𝑜𝑥) = 0.385) compared to
he hyperbox uncertainty set (𝛿(𝑇𝑏𝑜𝑥) = 0.36) (Langner et al., 2021).
owever, it can be shown that changes in the maximum and minimum
xtreme values as a consequence of the used regression model are the
eason for the difference in values, similar to the example of Grossmann
nd Floudas (1987).)

These observations contradict the intuitive assumption that con-
idering dependencies in the uncertain parameters results in a higher
lexibility index, compared to flexibility index based on the hyperbox
ncertainty set. For the case study presented in Section 5, we illustrated
see Fig. 12) that the reduced flexibility index (compared to the hyper-
ox uncertainty set) is a consequence of the (additional) uncertainty
pan of the dependent parameter(s) implied by the boundary functions.
his additional uncertainty span originates from the definition of the
oundary functions which are not scaled by the scale parameter 𝛿
which corresponds to the flexibility index) but are defined as functions
f the independent parameters. This means, that for each parameter
alue of the independent parameters (e.g. also the mean value), a
pecific uncertainty span of the dependent parameters is enforced.
herefore, the obtained value of 𝛿 after solving a specific flexibility

ndex problem expresses the limits of the feasible uncertainty span of

he independent parameters, only. Note that a similar observation was
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Table 9
Manual user input required during different steps of the presented methodology.

Step in methodology Manual input

Identification of
parameter dependencies

Metric to quantify the dependency
between several uncertain parameters

Threshold for dependency metric
to be included in analysis

Classification of uncertain
parameters

Selection of dependent and independent
parameters (based on background
knowledge
or arbitrary)

Identification of
boundary functions

Selection criterion to identify
most influencing boundary functions

number of lower boundary functions

number of upper boundary functions

Data pre-/post- processing filtering criteria to identify possible
outlier(s)

Active Constraint Strategy
(Calculation of flexibility metric)

Big-M parameter value (upper bound
of inequality constraints)

also made for an uncertainty set based on single equation models (see
Section 2.1).

For the dependent parameters applies that all variation is feasible
which has been observed/is expected for this feasible uncertainty span
of the independent parameters. In Section 5, we observed that due to
the integration of the boundary functions of one identified dependency
(dependency 4) a large feasible variation range of one (dependent)
parameter was achieved by reducing the feasible variation range of the
remaining uncertain parameters including the independent uncertain
parameters and thereby reducing value of 𝛿, i.e. the flexibility index.
Consequently, we can conclude that in certain cases, the proposed
usage of boundary functions to capture a dependency between two
or more uncertain parameters can bias the result of the flexibility
analysis to put more emphasis on the (previously) selected dependent
parameters. This also means that in case of an arbitrary classification of
the uncertain parameters into dependent and independent parameters,
one may want to reconsider the classification. In this paper for the
dependency in question (dependency 4 in Section 5), the classification
was not performed arbitrary since we assessed it unreasonable to
assume that the temperature of the external water source (𝐶03_𝑇 𝑖𝑛) is
dependent on the heat load of stream 𝐻4. However, to illustrate the
possible impact of a re-classification, we performed the theoretic ex-
periment of regrouping 𝐶03_𝑇 𝑖𝑛 and 𝐻4_𝐿𝑜𝑎𝑑. When considering only
dependency 4 but with reversed parameter dependency, we observed,
for one or more upper and lower boundary function, a flexibility index
of 0.61. This value is higher than the 0.55 which is the maximum
flexibility index value achieved for the original parameter classification
of dependency 4. On the other side, the aforementioned bias of the
result of the flexibility analysis could not be fully avoided since the
flexibility index for independent variation was calculated to 0.64. Note,
that in certain situations this bias may be desirable, e.g., when the
feasibility towards the uncertainty of selected parameters is prioritized.
In case the bias should be avoided, the identified dependencies can be
excluded (as done in Section 5) or need to be modeled using a different
modeling approach. In this context, single equation models should,
however, be avoided due to the risk of overestimating the flexibility.

6.3. Overview on manual user input

The methodology presented in this paper is well suited for automa-
tion. However, manual user input such as setting of parameter values
is required during certain steps. In Table 9, the manual user input is
grouped by the different steps in the presented methodology.
18
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7. Conclusions and outlook

In this work, we presented the concept of boundary functions to
allow for more accurate approximations of the uncertainty sets for
deterministic flexibility analysis. We identified that the shape of an
uncertainty set defined by boundary functions can be interpreted as a
hyperpolygon which can be classified as a compact set similar to 𝑇𝑏𝑜𝑥(𝛿)
r 𝑇𝑒𝑙𝑙𝑖𝑝(𝛿). Based on this observation, we derived a generic MI(N)LP
ormulation for the deterministic flexibility index based on uncertainty
ets described by boundary functions which can be solved by means of
vailable solution strategies.

We further proposed an algorithm based on the polygon convex
ull to identify the most influencing boundary functions for a given
aximum number of boundary functions, i.e. those boundary functions
hich capture the individual characteristics of the observed/expected
ncertainty set. The assessment of each bound of the polygon con-
ex hull (potential boundary functions) is performed by means of a
election criterion and we suggested two selection criteria in this paper.

The proposed algorithm was applied in several numerical examples,
nd we demonstrated its applicability also to multi-dimensional cases,
.e. when dependencies between more than two uncertain parameters
re identified. Two numerical examples and an industrial case study
ere presented.

By means of a theoretical example, we compared how the results
f the deterministic flexibility index can differ in the presence of
arameter dependencies, when choosing a hyperbox uncertainty set
ompared to an uncertainty set based on a linear regression model
r boundary functions. We were able to confirm previously reported
bservations that the flexibility index based on a hyperbox uncertainty
et can underestimate feasible parameter variation if these parameters
how correlating trends. Additionally, we illustrated that the incor-
oration of linear regression models significantly underestimates the
et of expected operating points. The consequence of this observation
an be that the obtained flexibility index overestimates the interval
ithin which exclusively feasible operating points are observed. Such
n overestimation can have severe consequences for the practical appli-
ation of flexibility analysis, as outlined in Section 2.1. In comparison
o the hyperbox uncertainty set and the uncertainty set based on a
inear regression model, the uncertainty set defined by following our
roposed approach showed the best resemblance with the set of ob-
erved operating points (compare Fig. 6). We can thus conclude that the
btained flexibility index is a more accurate quantification of a system’s
lexibility when following our suggested approach compared to the
esults obtained with a hyperbox uncertainty set or an uncertainty set
ased on linear regression functions.

To avoid confusion regarding the comparability of our proposed ap-
roach with the incorporation of ellipsoidal uncertainty sets in the de-
erministic framework of the flexibility index (as suggested by Pulsipher
nd Zavala (2018)), we utilized our theoretical example to further
llustrate the differences of these approaches. We showed that ellip-
oidal uncertainty sets can be effective for approximating the stochastic
lexibility index which provides information on the probability for
easible operation. On the other hand, the deterministic flexibility index
eturns the maximum feasible disturbance for each uncertain parameter
rom a nominal/mean value. Consequently, the two approaches cannot
e substituted but provide complementary information.

To illustrate the applicability of the proposed concepts also in more
omplex situations characterized by multi-dimensional dependencies,
mong others, we investigated a HEN example and an industrial case
tudy. We showed that dependencies in (some) of the uncertain param-
ters can have a significant influence on the deterministic flexibility
ndex if the respective dependency is accurately captured by a math-
matical model. However, we also concluded that it is not possible to
ake general statements regarding the effect of dependencies in the
ncertain parameters on the flexibility index and that such observations

re dependent on the chosen modeling approach.
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Finally, we concluded that, compared to previously published ap-
proaches to capture dependencies in the uncertain parameters when
conducting deterministic flexibility analysis, the risk for over- or un-
derestimation of the feasible variation span is lower when following
the approach presented in this paper. More precisely, overestimation
of the feasible variation range can be avoided using the proposed
approach since all expected operating conditions are included in the
analysis, i.e. the boundary functions are defined based on the convex
hull. At the same time, it is worth mentioning that underestimation
is inherent in any approach where geometrical shapes are used to ap-
proximate the actual uncertainty space. However, boundary functions
allow for a more precise modeling of the uncertainty set compared to
regular geometric shapes. More specifically, boundary functions allow
for excluding subsets which limit the flexibility metric but contain
no operating points (observed or expected). Consequently, with the
proposed approach, the level of underestimation is likely to be lower
since a better approximation of the actual uncertainty space is possible
due to the increased degrees of freedom. This assumption is reflected
in the numerical results presented in the paper since in all investigated
examples (compare Sections 5, 4.1 and 4.2), a higher deterministic
flexibility index was obtained when modeling the uncertainty set fol-
lowing our proposed approach, compared to the hyperbox approach.
In this context, it can be assumed that the resemblance of the modeled
uncertainty set with the expected uncertainty set should be satisfactory
as long as a tight convex hull representation can be found.

The approach suggested in this paper for approximating the ex-
pected uncertainty space by means of boundary functions which are
derived using the convex hull may also be utilized in other concepts
related to flexibility analysis. The previously mentioned volumetric
flexibility index has been defined as the percentage of the expected
hyperbox uncertainty set that can be feasibly handled. However, if
the distribution of uncertainty shows correlating trends, modeling the
expected uncertainty space by means of a hyperbox may lead to small
values of the volumetric flexibility index. According to Lai and Hui
(2008), this implies that the investigated system cannot operate feasibly
at all expected realizations of the uncertain parameters. On the other
hand, if the model of the expected uncertainty space significantly over-
estimates the space in which operating conditions are expected (which
can be a consequence of the hyperbox approach, as shown in this work),
the result of the volumetric flexibility index for a hyperbox uncertainty
set may be inaccurate. Additionally, a model of the expected uncer-
tainty space is needed for the identification of critical parameter values
which, according to Halemane and Grossmann (1983), can be utilized
in a design under uncertainty problem to ensure that the obtained
design allows for feasible operation at all realizations of the uncertain
parameters. In this context, a more exact representation of the expected
uncertainty space should avoid unnecessary overdesign of equipment
which can result from designing process equipment for combinations
of uncertain parameter values which are not expected.
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Appendix A. Theory on the flexibility index

The problem formulation of the flexibility index for a hyperbox
uncertainty set is given in (A.1) as derived by Swaney and Grossmann
(1985). Note that in (A.1), the uncertainty set is scaled with the
scalar 𝛿 (𝑇𝑏𝑜𝑥(𝛿)). In (A.1), Swaney and Grossmann (1985) included the
feasibility constraint (compare (1)) to find the largest value for the scale
parameter of the uncertainty set (𝛿) so that all constraint functions are
feasible (𝑓𝑗 (𝑑, 𝑧, 𝜃) ≤ 0) while accounting for recursive actions. Since
the uncertainty set is scaled, 𝑇𝑏𝑜𝑥(𝛿) can be interpreted as the largest
scaled hyperbox which can be inscribed in the feasible region.

𝐹 =max 𝛿

𝑠.𝑡. max
𝜃∈𝑇

min
𝑧

max
𝑗∈𝐽

𝑓𝑗 (𝑑, 𝑧, 𝜃) ≤ 0

𝑇𝑏𝑜𝑥(𝛿) =
{

𝜃𝑖 | 𝜃𝑖,𝑁 − 𝛿𝛥𝜃−𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖,𝑁 + 𝛿𝛥𝜃+𝑖
}

∀ 𝜃𝑖 ∈ 𝜃

𝛿 ≥ 0

(A.1)

Grossmann and Floudas (1987) proposed a reformulation of (A.1)
to solve the feasibility constraint, (1), explicitly without relying on the
assumption of critical points corresponding to vertices of the hyperbox
uncertainty set. They reformulated the feasibility constraint in (A.1) to
explicitly search for the solution on the boundary of the feasible region
(𝜓(𝑑, 𝜃) = 0) yielding the bi-level optimization problem given in (A.2).

𝐹 = min 𝛿

𝑠.𝑡. 𝜓(𝑑, 𝜃) = 0

𝜓(𝑑, 𝜃) = min
𝑧,𝑢

𝑢

𝑠.𝑡. 𝑓𝑗 (𝑑, 𝑧, 𝜃) ≤ 𝑢, 𝑗 ∈ 𝐽

𝑇𝑏𝑜𝑥(𝛿) =
{

𝜃𝑖 | 𝜃𝑖,𝑁 − 𝛿𝛥𝜃−𝑖 ≤ 𝜃𝑖 ≤ 𝜃𝑖,𝑁 + 𝛿𝛥𝜃+𝑖
}

∀ 𝜃𝑖 ∈ 𝜃

𝛿 ≥ 0

(A.2)

The advantage of (A.2) is that the feasibility constraint, (1), can
be solved explicitly by replacing the lower level optimization problem
(𝜓(𝑑, 𝜃) = min 𝑢) by its Karush–Kuhn–Tucker (KKT) optimality con-
ditions. Grossmann and Floudas (1987) further identified that if the
gradients 𝜕𝑓𝑗∕𝜕𝑧 are linearly independent, there will be 𝑛𝑧 + 1 active
inequality constraints at the solution. Therefore, the authors simpli-
fied the complementarity conditions with mixed-integer constraints.
Later, Biegler et al. (1997) found out that if linear independence of the
gradients 𝜕𝑓𝑗∕𝜕𝑧 cannot be guaranteed, the number of active inequality
constraints can be relaxed. The mixed-integer representation of the
KKT-conditions and the relaxed constraint on the number of active
inequality constraints is given from (A.3a) to (A.3g). Note that the
𝐵𝑖𝑔 −𝑀-parameter in (A.3d) represents an upper bound to the slack
variables of the inequality constraints. Further, note that the resulting
mixed-integer linear/non-linear program (MI(N)LP) does not require
strict convexity of the constraint functions 𝑓𝑗 (𝑥, 𝑧, 𝜃) ≤ 0, 𝑗 ∈ 𝐽 and
thereby does not rely on the assumption of critical points corresponding
to vertices. To also be able to solve non-convex system formulations in
general, the active constraint strategy was later extended by Floudas
et al. (2001) to a global solution algorithm.

∑

𝜆𝑗 = 1 (A.3a)

𝑗∈𝐽
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Fig. C.1. Results of the Monte Carlo Feasibility Test color-coded with respect to the feasibility (blue: infeasible, green: feasible).
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𝑓𝑗 (𝑑, 𝑧, 𝜃) + 𝑠𝑗 = 0, 𝑗 ∈ 𝐽 (A.3b)
∑

𝑗∈𝐽
𝜆𝑗
𝜕𝑓𝑗
𝜕𝑧

= 0 (A.3c)

𝑗 −𝑀(1 − 𝑦𝑗 ) ≤ 0, 𝑗 ∈ 𝐽 (A.3d)

𝑗 − 𝑦𝑗 ≤ 0, 𝑗 ∈ 𝐽 (A.3e)
∑

𝑗∈𝐽
𝑦𝑗 ≤ 𝑛𝑧 + 1 (A.3f)

𝑗 ≥ 0, 𝜆𝑗 ≥ 0, 𝑦𝑗 ∈ 0, 1 𝑗 ∈ 𝐽 (A.3g)

ppendix B. Proof of theorem

In the following, a generalized version of Theorem 3 by Pulsipher
nd Zavala (2018) and the corresponding proof are provided. Defining
he feasible region of a physical system as 𝛩 = {𝜃 ∶ 𝜓(𝑑, 𝜃) ≤ 0} and
he boundary of this feasible region as 𝜕𝛩 = {𝜃 ∶ 𝜓(𝑑, 𝜃) = 0}.

heorem 1. Given a solution pair (𝛿∗, 𝜃∗) for a scalable compact uncer-
ainty set 𝑇 (𝛿), this solution pair satisfies the following properties: (i) The
ncertainty set is contained in the feasible set (𝑇 (𝛿∗) ⊆ 𝛩), (ii) the critical
arameter 𝜃∗ lies on the boundary of the uncertainty set (𝜃∗ ∈ 𝜕𝑇 (𝛿∗)), and
iii) the critical parameter 𝜃∗ lies on the intersection of the boundaries of
he feasible and uncertainty sets (𝜃∗ ∈ 𝜕𝛩 ∪ 𝜕𝑇 (𝛿∗)).

roof of Theorem 1. To prove (i) assume there exists 𝜃 ∈ 𝑇 (𝛿∗) but
̃ ∉ 𝛩. Since 𝜃 is infeasible, we have that 𝜓(𝑑, 𝜃) > 0 which implies that
(𝑑, 𝜃) > 𝜓(𝑑, 𝜃∗) because 𝜓(𝑑, 𝜃∗) = 0. This is a contradiction because
∗ ∈ argmax

𝜃∈𝑇 (𝛿∗)
𝜓(𝑑, 𝜃∗) and thus 𝜓(𝑑, 𝜃∗) = 0 is the maximum possible

alue of 𝜓(𝑑, 𝜃) in 𝑇 (𝛿∗). To prove (ii) we note that 𝜃∗ ∈ 𝜕𝛩 holds and,
herefore, if 𝜃∗ ∉ 𝜕𝑇 (𝜃∗) then there exists 𝜃 ∈ 𝑇 (𝛿∗) with 𝜃 ∉ 𝛩. The
esult then follows from the argument used to prove (i). The proof of
iii) follows trivially from the observation that 𝛿∗ lies on the boundary
f both 𝛩 and 𝑇 (𝛿∗).

ppendix C. Monte Carlo feasibility test

A Monte Carlo feasibility test was performed to verify that at
he identified critical point, 𝜃∗, the boundary functions (describing
ependency 1∗) intersect with the boundary of the feasible region
i.e. 𝜓(𝑑, 𝜃∗) = 0). In this context, we investigated the feasibility of
0000 randomly chosen operating points around the identified criti-
al point. More precisely, all uncertain parameters were fixed at the
dentified critical values except for 𝐶03_𝐹𝑐𝑝 and 𝐻05_𝐿𝑜𝑎𝑑 which were
aried randomly. The results are shown in Fig. C.1 (feasible points are
olored green, infeasible points are marked blue). We could further
erify that the slope of the boundary of the feasible region at identified
ritical point is between 𝑚𝑏𝑓 ,3 and 𝑚𝑏𝑓 ,2.
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