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Abstract: We propose a novel fast-charging control framework for lithium-ion (Li-ion) batteries
that can leverage a class of models including the high-dimensional, electrochemical-thermal
pseudo-two-dimensional model. The control objective is to find the highest battery current while
fulfilling various operating constraints. Conventionally, computationally demanding optimiza-
tion is needed to solve such a constrained optimal control problem when an electrochemical-
thermal model is used, leading to practical difficulties in achieving low-cost implementation.
Instead, this paper provides an optimization-free solution to Li-ion battery fast charging by
converting the constrained optimal control problem into an output tracking problem with
multiple tracking references. The required control input, i.e., the charging current, is derived
by inverting the battery model. As a result, a nonlinear inversion-based control algorithm is
obtained for Li-ion battery fast charging. Results from comparative studies show that the
proposed controller can achieve performance close to nonlinear model predictive control but
at significantly reduced computational costs and parameter tuning efforts.

Keywords: Fast charging, inversion-based control, lithium-ion batteries, tracking, nonlinear
control.

1. INTRODUCTION

Long charging times are a notorious issue for lithium-ion
(Li-ion) battery-powered electric vehicles (EVs), which can
cause long queues at the charging station and serious road
congestion nearby, especially as the EV adoption level
increases. Currently, conservative low-to-medium charg-
ing rates are often applied, including commercially-viable
charging protocols such as constant-current constant-
voltage (CC-CV), constant-power constant-voltage (CP-
CV), multistage CC, and boost charging (see, e.g., Notten
et al. (2005); Liu and Luo (2010); Chen et al. (2013)).
These model-free and heuristic methods are characterized
by predefined profiles with limited patterns on constant
current, voltage, and/or power, while the internal dynam-
ics of the battery are not used for the design due to a
lack of relevant domain knowledge. Increasing the charging
current rates under these conditions will speed up the
battery aging, cause damage, and even pose severe hazards
to EV users.

Various battery models can provide the required internal
information, which can be used to design model-based
charging strategies. Conventionally, lumped-parameter e-
quivalent circuit models (ECMs) with simple circuit struc-
tures are used, and the state of charge (SOC), state of
health (SOH), and internal temperature are used to design
charging strategies based on frequency optimization (Lee
and Park (2015)), multi-objective optimization (Wang and
Liu (2015)), fuzzy control, or model predictive control (M-
PC) (Zou et al. (2017)). On the other hand, physics-based

models have recently been investigated for the design of
fast charging algorithms.

Physics-based models can accurately reproduce electro-
chemical battery dynamics, such as ion diffusion, inter-
calation kinetics, and heat generation and transfer (Li
et al. (2019)). Based on physics-based models, optimiza-
tion problems and open-loop optimal controls have been
formulated to minimize charging duration (Pramanik and
Anwar (2016)). A few charging strategies equipped with
closed-loop control algorithms were recently proposed. For
instance, a fast-charging strategy was developed utilizing
an isothermal electrochemical model, health-related con-
straints, and nonlinear MPC (NMPC) (Liu et al. (2017)).
A one-step NMPC was proposed to optimize charging
profiles by incorporating thermal dynamics into a multi-
physics pseudo-two-dimensional (P2D) model described
by partial-differential-algebraic equations (PDAEs) (Klein
et al. (2011)). However, the applications are largely limited
by their intractable computations associated with non-
linear PDAE models and nonlinear online optimization
unless a very large time step is adopted at the expense
of reduced accuracy. To solve the problem of low compu-
tational efficiency, a linear time-varying MPC (LTV-MPC)
was proposed based on a reduced-order model (ROM) of
Li-ion battery (Zou et al. (2018)), where the nonuniform
effect over the electrode thickness was ignored. To develop
the ROMs, most existing fast charging strategies assume
that the battery behaviors are uniform over each electrode,
which can significantly reduce the modeling and computa-
tional complexity (Li et al. (2021a)).



However, ignoring the nonuniformity in Li-ion battery
electrodes can lead to inaccurate prediction of battery
degradation, especially under fast charging scenarios. For
instance, the spatially uneven development of lithium plat-
ing and the solid-electrolyte interphase (SEI) film can be
observed, and the phenomena can be significantly exac-
erbated under extremely high charge current conditions
due to certain chain effects (Yang and Wang (2018)).
Significant model errors due to the uniform assumptions
can make the designed control scheme too aggressive,
especially for high-energy battery cells with thick elec-
trodes (Boyce et al. (2021)). To address this problem, well-
established spatial discretization methods, such as finite
volume method (FVM), can be generally applied to sim-
plify the multi-physics PDAE model, so that the spatially
distributed dynamics can be accurately captured. By Li
et al. (2019), the model is reformulated as a multi-physics
distributed-parameter circuit network to overcome the ma-
jor drawbacks of the existing ad-hoc ROMs. Some initial
attempts have been made to develop NMPC-based fast
charging strategies using such a high-dimensional model,
showing its prospect for future implementation (see e.g.,
Pozzi et al. (2020)).

Unfortunately, high-dimensional nonlinear systems are
fundamentally difficult to be used for control algorithms
that require online optimization, such as LTV-MPC and
NMPC. To sidestep the computational problems, in this
work, we propose a model-based nonlinear control strategy
based on the inversion technique for battery charging. We
show that the variables in the P2D model, or their first
time-derivatives, can be expressed as an affine-input or
a quadratic-input form. This fact motivates us to derive
analytical solutions so that the required input charging
current can be analytically calculated using the high-
fidelity battery model in different operating modes, and
thus the charging current will meet all constraints. Conse-
quently, the original constrained optimal control problem
is converted to a multiple-output tracking problem. The
proposed optimization-free nonlinear inversion-based out-
put tracking control strategy requires almost no parameter
tuning efforts and is shown to largely outperform MPC-
based methods in terms of computational efficiency.

2. INVERSION-BASED CONTROL FOR BATTERY
FAST CHARGING

2.1 General Problem Statement and Optimization-Based
Solution for Battery Fast Charging

The general problem of optimal battery fast charging has
been well-discussed by Klein et al. (2011) and can be cast
as a time-optimal control problem. Let SOC0 be a low
initial charge level at time t = 0 and SOCf as a high target
charge level at t = tf . Suppose the battery is charging
from a given initial state x0 at t = 0, but the end of
charging is not specified (as a variable end-point problem).
The optimal fast charging solution is obtained by solving

Problem 1 (General Fast Charging Problem):

min
u(t),t∈[0,tf ]

∫ tf

0

1 dt (1a)

s.t. state equation ẋ(t) = f(x(t), u(t)), (1b)

output equation y(t) = g(x(t), u(t)), (1c)

initial state x(0) = x0, (1d)

final SOC SOC(tf ) = SOCf , (1e)

inequality constraints y(t) ≤ y∗, (1f)

where x ∈ Rnx is the state vector and the battery charging
current u = Iapp ∈ R+ is the single input (We define the
current as positive during charging). f : Rnx × R → Rnx

and g : Rnx × R → Rny are two nonlinear operators on
x and u. The battery SOC usually can be expressed as a
linear function of state x (e.g., x contains concentration
terms or SOC itself). Furthermore, y is a generalized
output vector and its elements include all health- and
safety-related variables that can limit battery charging
rates. These can include either the external variables such
as current, voltage, and power, as well as internal variables
such as battery temperature, concentrations, side-reaction
potential, etc (See Section 3.2). Here, we use yj , y

∗
j , and

gj to denote the jth element of y, y∗, and g, respectively,
where j ∈ {1, 2, · · · , ny}. Note that in contrast to the
common formulation in the literature, we treat the system
input u as an output and the first element of the output
y, i.e., y1 = u and y∗1 = u, where u is the upper limit of
the input.

Unfortunately, as discussed by Klein et al. (2011), this
general fast charging problem is difficult to solve analyt-
ically as the battery model is usually highly nonlinear
and subject to many state/output constraints. However,
based on numerically obtained approximated global so-
lution, Klein et al. (2011) shows that Problem 1 can be
well addressed via NMPC, i.e., at each control instance
t ∈ [0,∆t, 2∆t, · · · , tf −∆t] the following nonlinear opti-
mization problem with a reduced prediction horizon [t, t+
H] is solved:

Problem 2 (NMPC-Based Fast Charging):

u?(τ) = arg min
u(τ),τ∈[t,t+H]

−
∫ t+H

t

u(τ)dτ (2)

s.t. the same constraints as (1b)–(1f).

Only a segment of the obtained solution u?(τ), τ ∈ [t, t +
∆t] is implemented. Problem 2 is repeatedly solved start-
ing from the new current state so that new control input
is calculated and implemented.

2.2 Inversion-Based Output Tracking

For the fast charging problem under the conditions of
extremely high current and wide temperature ranges, con-
siderable nonuniform battery dynamics can be excited so
that a high-dimensional nonlinear model is essential to
guarantee the prediction accuracy. For short prediction
horizons, the fast charging problem (2) can also be solved
via the LTV-MPC. However, in the presence of hundreds
of battery cells in a battery pack, the cell inconsistency
problem needs also to be properly addressed when design-
ing the control algorithm. In this condition, the complexity
and computational burden of an MPC solver for battery
systems may increase dramatically.

To cope with this challenge, we first consider a relaxed
problem similar to Problem 2, but with only the first
(regarding the input) and the jth inequality constraints of



(1f) imposed. We denote this problem as Problem 3.j. For
Problem 3.1 where only the input constraint is imposed,
we have

Problem 3.1 (Input-Bounded Fast Charging):

u?(t) = arg min
u(t),t∈[tk,tk+H]

−
∫ tk+H

tk

u(t)dt (3a)

s.t. the same constraints as (1b)–(1e),

u(t) ≤ u. (3b)

We can immediately obtain the solution as u(t) ≡ u.
The corresponding charging time can be approximated as
3600Qmax(SOCf−SOC0)/(ηu) given by coulomb counting

˙SOC(t) = ηIapp(t)/(3600Qmax), (4)

where η is the coulombic efficiency and Qmax is the battery
capacity in ampere-hour (Ah).

Next, consider Problem 3.j where j ∈ {2, 3, · · · }, i.e.,

Problem 3.j (Input-Output-Bounded Fast Charging):

u?(t) = arg min
u(t),t∈[tk,tk+H]

−
∫ tk+H

tk

u(t)dt (5a)

s.t. the same constraints as (1b)–(1e),

u(t) ≤ u, (5b)

yj(t) ≤ y∗j . (5c)

In this case, one more constraint is imposed along with
the input constraint, and thus, the corresponding optimal
current is always less or equal to that of Problem 3.1. In
other words, the optimal solution to Problem 3.j should
always be in the feasible domain of Problem 3.1. In this
condition, to guarantee the compliance of the inequality
constraints, the optimal output should always track one of
the upper bounds y∗j . We thus propose to design a simple
control strategy as

I∗app(t) = u∗(x(t), y∗1 , y
∗
2 , · · · )

≡ min {u∗j (x(t), y∗j ) | j = 1, · · · , ny}, (6)

where u∗j is the solution for the output yj to track its
reference or constraint y∗j . This general control strategy
converts an optimal control problem to an output tracking
problem with multiple tracking objectives y∗j , where we
should apply the lowest current to charge the battery.

Inversion-based techniques will now be used to solve the
output tracking problem (Devasia et al. (1996)). As will be
shown in the latter sections, all the output variables in the
present investigation can be expressed in low-degree input-
polynomial forms. Based on this fact, we will analyze and
derive a control strategy based on whether the input u has
direct feedthrough to the output yj or not. For brevity, the
time argument t will be dropped henceforth.

2.3 Input With Direct Feedthrough to the Output

If the input u has a direct feedthrough to an output yj
and that yj can be written as a polynomial function of u,
and coefficients of the polynomial only depend on x

yj =gj(x, u) =

Lj∑
l=0

h
[l]
j (x)ul

=h
[0]
j (x) + h

[1]
j (x)u+ · · ·+ h

[Lj ]
j (x)uLj , (7)

where h
[l]
j : Rnx → R represents the lth coefficient

(function) for the jth output variable, Lj ∈ Z+ represents
the degree of the polynomial, and Z+ represents a set of

all positive integers. We note that h
[l]
j is a state-dependent

coefficient (SDC).

Given the reference output yj = y∗j , we seek the solution

u = u∗j = g−1j (x, y∗j ), based on (7), by inversion. Analytical
solutions exist and are easy to obtain for a low-degree

polynomial. For example, when Lj = 1, namely h
[1]
j (x) 6=

0, (7) becomes input-affine, and the required control input
u∗j is

u∗j =
y∗j − h

[0]
j (x)

h
[1]
j (x)

. (8)

When the input u itself is considered an output variable,

then h
[0]
j (x) ≡ 0 and h

[1]
j (x) ≡ 1.

If Lj = 2, h
[2]
j (x) 6= 0, (7) becomes an input-quadratic

form. For the charging process, given yj = y∗j , the required
input is the nonnegative solution to a quadratic equation,
i.e.,

u∗j =
−h[1]j (x) +

√
(h

[1]
j (x))2 − 4h

[2]
j (x)(h

[0]
j (x)− y∗j )

2h
[2]
j (x)

.

(9)

For Lj = 3, the analytical solution exists, although the
expression is rather complex. When Lj > 3, there are
no general analytical solutions (Moulay and Perruquetti
(2005)). Fortunately, we will show that input-polynomial
forms with Lj ≥ 3 are not needed in the present study on
battery charging control.

2.4 Input Without Direct Feedthrough to the Output

It should be noted that if Lj = 0 in (7), the input has no
direct feedthrough to the output, and thus the output will
be a function of the states x only. In this condition, instead
of investigating (7), we consider the first time-derivative of
yj . Similarly to (7), we assume ẏj can be expressed in an
input-polynomial form, i.e.,

ẏj = ġj(x, u) =

Lj∑
l=0

h
[l]
j (x)ul, (10)

where Lj ∈ Z+.

Clearly, to achieve yj = y∗j at all times, a direct inversion
of the input-output relationship (10) requires unfavorable
differential operation for practical implementation. To
avoid the differential operation and achieve zero-offset
control, we propose to shape the relationship between y∗j
and yj as a first-order system with a unit gain, i.e.,

τj ẏj = −yj + y∗j , (11)

where the time constant τj is a tuning parameter. In this
way, the output variable can exponentially approach its
upper bound in a monotonic manner without generating
an overshoot. Substituting (10) into (11) yields

y∗j − yj(x)

τj
=

Lj∑
l=0

h
[l]
j (x)ul. (12)



(8), (9), 

(13), or 

(14)
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Fig. 1. Block diagram of the proposed nonlinear inversion-
based output tracking for fast charging control of Li-
ion batteries

One can then solve (12) for u based on the polynomial
degree Lj , and similar results to (8) and (9) can be
obtained. Specifically, if Lj = 1, (10) possesses an input-
affine form, and the required control input is

u∗j =

y∗j−yj(x)
τj

− h[0]j (x)

h
[1]
j (x)

. (13)

If Lj = 2, (10) has an input-quadratic form, and the
required nonnegative control input for battery charging
is

u∗j =
−h[1]j (x) +

√
(h

[1]
j (x))2 − 4h

[2]
j (x)(h

[0]
j (x)− y∗

j
−yj(x)
τj

)

2h
[2]
j (x)

.

(14)

2.5 Overall Control Framework

The proposed inversion-based charging control strategy
is illustrated in Fig. 1. Here, the inversion-based control
essentially calculates the feedforward (FF) component u∗

as a nonlinear function of the state x and all output
references/constraints y∗j . u∗(·), and use it as the nomi-
nal tracking control command. This FF control assumes
precise prior knowledge of the battery model is available
(Devasia (2002)). Note that the state x requires to be
fully observable in this strategy. For a high-dimensional
nonlinear battery model, a battery state estimator based
on ensemble-based methods, such as the ensemble Kalman
filter (Li et al. (2021c)) and the singular evolutive intepo-
lated Kalman filter (Li et al. (2022)), can be designed
to reduce computational costs. However, state estimation
will not be elaborated in the present work for the sake
of brevity. We assume direct access to the system state x
is available. Although not demonstrated in the work, it is
easy to show that common physical quantities in a battery,
such as potentials/voltages, currents, concentrations, mo-
lar fluxes, temperature, and power, can be tracked using
the proposed inversion method.

3. ILLUSTRATIVE EXAMPLES

3.1 System Configuration

In this section, results from simulation studies will be
presented to verify the efficacy of the proposed con-
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Fig. 2. Construction of the charging current profile limited
by various physical constraints. CC: constant current;
CV: constant voltage; CP: constant power; CηLiP :
constant lithium plating potential; CT: constant tem-
perature; CSOC: constant SOC; Ccss: constant solid-
phase surface concentration; Cce: constant electrolyte
concentration

trol strategy using an electrochemical-thermal pseudo-two-
dimensional model (P2D-T). The battery model and con-
troller are both implemented in MATLAB R2016a, and
the simulated results were obtained on a 64-bit Windows
10 on a PC with Intel Core 2 Q9400 @ 2.67GHz proces-
sor and 8GB RAM. To simulate the plant, we consider
evenly divided control volumes in each domain in an FVM
scheme, and the numbers of control volumes of the battery
model are selected to be high (10, 3, 10 for the positive
electrode, separator, and negative electrode, respectively)
to guarantee the model fidelity under high-current and
high-temperature conditions. The fidelity of the P2D-T
model has been verified in many existing works (see, e.g.,
Li et al. (2021b)) and the procedure will thus not be
repeated in the present investigation. Instead, the model
parameters are obtained from the software GT AutoLion
for a 2.4-Ah NMC-Graphite cell. The battery plant model
is solved using the continuous-time solver ode23ts with
guaranteed numerical stability for such a stiff system. For
the controller, the same numbers of control volumes and
the same model parameters as the plant are used. Under
the assumption of perfect state estimation, the plant state
x is sampled at ∆t = 1 s.

3.2 Performance of the Proposed Inversion-Based Output
Tracking for Battery Charging

An example of the simulated current profile based on the
proposed inversion-based fast charging strategy is shown
in Fig. 2, where the calculated input u∗j for each constraint
is also plotted and indicated by the output index j. In this
example, all inequality constraints described in the pre-
vious sections are considered for demonstration purposes,
although only a subset of them may be needed for a prac-
tical design. The constraints for the control are: maximum
charging current rate Iapp/Qmax = 8C, maximum voltage

V bat = 4.4 V, maximum charging power P bat = 70 W,
maximum battery temperature T = 323.15 K (50 ◦C),
minimum lithium plating potential (LiP) η

LiP
= 0 V, max-

imum solid-phase surface concentration cnegss = 0.98cnegs,max,
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Fig. 3. Outputs as physical constraints under the proposed
current profile in Fig. 2. (a) Local LiP potentials in
the negative electrode. (b) Local solid-phase surface
concentrations in the negative electrode. (c) Local
electrolyte concentrations. (d) Battery temperature.
(e) SOC. (f) Activated control mode. The dashed lines
indicate the tracking references

and minimum electrolyte concentration ce = 0.25c0e. The
battery is charged from the fully empty state to the fully
charged state, i.e., SOC0 = 0, SOCf = 1. Furthermore, we
select all the time constants as 1 s.

The simulated LiP potentials, solid-phase concentrations
at particle surfaces, electrolyte concentrations, tempera-
ture, SOC, and the index of the activated output variables
are shown in Fig. 3. In this example, the capability of the
charging rate is limited by the current and power (j = 1, 3)
only at the very beginning of the charging process (i.e.,
t ≤ 10 s), while most of the time (10 s < t ≤ 908 s), it is
limited by the internal variables such as LiP, temperature,
and concentrations (j = 4, 5, 7, 8). At the end of the charg-
ing process, the terminal voltage and SOC constraints play
the limiting roles (j = 2, 6). This result demonstrates
the importance of considering the internal electrochemical
and thermal behaviors during fast charging, while the
conventionally considered factors only have impacts at
the very initial and late stages of the charging process.
Furthermore, from Fig. 3(a) and Fig. 3(b), we can see the
significance of considering the electrode nonuniformity in
the electrode when investigating the fast charging of Li-ion
batteries.

Table 1. Performance Comparison Between
Different Fast-Charging Strategies

NMPC NMPC LTV-MPC Inv.-Based

Pred. horizon 10 1 1 –
Charging Time 1002 s 1002 s 1002 s 1002 s
RMSE of Iapp – 0.003C 0.003C 0.005C
RMSE of SOC – 0.0001 0.0001 0.0002
MAX of SOC – 0.0003 0.0003 0.0004
CPU runtime
per 1-s sample

2.41 s 0.0576 s 0.0229 s 0.0032 s
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Fig. 4. Comparison of NMPC, LTV-MPC, and the pro-
posed inversion-based control for battery fast charg-
ing. The dashed lines represent different bounds. (a)
Battery power. (b) Battery temperature. (c) Battery
voltage. (d) LiP potential at the sep/neg boundary).
(e) CPU runtime per sample time (∆t = 1 s)

3.3 Comparative Studies With NMPC and LTV-MPC

In this subsection, the inversion-based output tracking
charging strategy is compared with MPC-based schemes.
LTV-MPC and NMPC algorithms (Rawlings et al. (2017))
are used to design three charging strategies based on the
same battery model and constraints: NMPC with a longer
prediction of 10, one-step NMPC, and one-step LTV-MPC.
Table 1 compares their numerical performances. The NM-
PC is solved using the sequential quadratic programming
provided by the fmincon function and LTV-MPC is solved
using the quadprog in MATLAB. It shows both one-step
NMPC and one-step LTV-MPC have achieved nearly the
same charging time and current/SOC profiles to the NM-
PC solution with a long prediction horizon. The proposed
strategy is also able to achieve a very close result to the
MPC strategies. However, the computational cost of the
proposed strategy is much lower than the MPCs: It is
over 10 and 20 times faster than the one-step LTV-MPC



and NMPC strategies, respectively. Furthermore, when the
NMPC is considered as the benchmark, the root-mean-
square error (RMSE) and the maximum absolute error
(MAX) of the inversion-based control are close to those
of MPC schemes.

4. CONCLUSIONS

In this paper, we show that if an internal or an external
variable, or their first-order time derivatives, of a Li-ion
battery model can be expressed in an input-affine or input-
quadratic form, an inversion-based multiple-output track-
ing strategy can be designed for fast charging. Different
physical operating limits are considered as the tracking ref-
erences, and the charging current is bounded by complying
with the constraint requirement when a given tracking con-
trol signal comes into action. Consequently, the charging
current is explicitly expressed as a state-dependent func-
tion. The input-output control stability and performance
are guaranteed by shaping the input-output relationship as
a first-order linear system, and the tuning effort of the con-
trol parameters is limited to decide the corresponding time
constants. The results in the illustrative examples have
exhibited the computational superiority of the proposed
inversion-based nonlinear control algorithm to MPC-based
control algorithms. However, it should be noted that the
model inversion technique requires accurate model pa-
rameters and state estimation. Thus, robustness to model
uncertainty should be addressed in future investigations.
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